JP2004148177A - Catalyst for manufacturing lower fatty acid ester and manufacturing method for lower fatty acid ester - Google Patents

Catalyst for manufacturing lower fatty acid ester and manufacturing method for lower fatty acid ester Download PDF

Info

Publication number
JP2004148177A
JP2004148177A JP2002315171A JP2002315171A JP2004148177A JP 2004148177 A JP2004148177 A JP 2004148177A JP 2002315171 A JP2002315171 A JP 2002315171A JP 2002315171 A JP2002315171 A JP 2002315171A JP 2004148177 A JP2004148177 A JP 2004148177A
Authority
JP
Japan
Prior art keywords
catalyst
fatty acid
lower fatty
acid ester
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002315171A
Other languages
Japanese (ja)
Inventor
Kazuyuki Matsuoka
一之 松岡
Toyokazu Yanagii
豊和 楊井
Yasuichiro Yamada
靖一郎 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daicel Corp
Original Assignee
Daicel Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daicel Chemical Industries Ltd filed Critical Daicel Chemical Industries Ltd
Priority to JP2002315171A priority Critical patent/JP2004148177A/en
Priority to MYPI20024551 priority patent/MY122928A/en
Priority to GB0229137A priority patent/GB2385287C/en
Priority to GB0411895A priority patent/GB2398749B/en
Priority to CN 02159817 priority patent/CN1428327A/en
Publication of JP2004148177A publication Critical patent/JP2004148177A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

<P>PROBLEM TO BE SOLVED: To provide a catalyst for manufacturing lower fatty acid ester having high activity and suppressing side reaction such as the production of an oligomer from a lower olefin or the like, and a manufacturing method for lower fatty acid ester using the catalyst. <P>SOLUTION: The catalyst for manufacturing lower fatty acid ester is used for manufacturing a lower fatty acid ester from a lower fatty acid and the lower olefin and it is characterized by having a double pore distribution of mesopores and macropores. This catalyst contains, for example, a heteropoly-acid or a salt thereof as a catalytically active component. Further, the catalyst may be a catalyst in which the total pore volume thereof is not less than 0.05 ml/g, the ratio of the pore volume of mesopores of the total pore volume is not less than 50% and the ratio of the pore volume of macropores is not less than 15%. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は低級脂肪酸と低級オレフィンとを反応させて低級脂肪酸エステルを製造する際に用いる触媒と、この触媒を用いた低級脂肪酸エステルの製造法に関する。
【0002】
【従来の技術】
従来、低級脂肪酸を低級オレフィンと反応させて対応するエステルを製造する方法として、強酸性陽イオン交換樹脂を触媒として用いる方法、芳香族ジスルホン酸を担体に担持した触媒を用いる方法(例えば、特許文献1参照。)、硫酸、リン酸、リンタングステン酸、硫酸鉄などを触媒として用いる方法(例えば、特許文献2参照。)、イオン半径が1.1オングストローム以上の金属からなるリンタングステン酸塩を触媒として用いる方法(例えば、特許文献3参照。)、ヘテロポリ酸又はその塩を特定の表面積を有する担体に担持した触媒を用いる方法(例えば、特許文献4参照。)が知られている。また、前記文献4には、触媒の表面積や用いる担体の表面積が開示されている。
【0003】
一般に、触媒が、触媒活性成分を担持する担体の細孔分布や担持後の触媒の細孔分布により触媒性能(活性や目的物に対する選択率)が異なることが予想される。しかし、細孔分布に関する記載は上記文献の何れにもなく、具体的な細孔分布の触媒性能への影響については知られていない。
【0004】
【特許文献1】
特公昭60−1775号公報
【特許文献2】
特公昭53−6131号公報
【特許文献3】
特許第2848011号公報
【特許文献4】
特開2000−342980号公報
【0005】
【発明が解決しようとする課題】
本発明の目的は、高い活性を有し、しかも低級オレフィンからのオリゴマーの生成等の副反応を抑制できる低級脂肪酸エステル製造用触媒と、この触媒を用いた低級脂肪酸エステルの製造法を提供することにある。
【0006】
【課題を解決するための手段】
本発明者らは、上記目的を達成するため鋭意検討した結果、メソ孔とマクロ孔との二重細孔分布を有する触媒によれば、高い活性を維持しつつ、低級オレフィンの副反応を抑制でき、生産効率よく低級脂肪酸エステルを製造しうることを見いだし、本発明を完成した。
【0007】
すなわち、本発明は、低級脂肪酸と低級オレフィンより低級脂肪酸エステルを製造する際に用いる触媒であって、メソ孔とマクロ孔との二重細孔分布を有する触媒であることを特徴とする低級脂肪酸エステル製造用触媒を提供する。前記触媒は、例えば、触媒活性成分としてヘテロポリ酸又はその塩を含んでいる。
【0008】
本発明の触媒は、全細孔容積が0.05ml/g以上であって、全細孔容積のうちメソ孔の細孔容積の占める割合が50%以上、且つマクロ孔の細孔容積の占める割合が15%以上の触媒であってもよく、また、全細孔容積が0.3ml/g以上であって、全細孔容積のうちメソ孔の細孔容積の占める割合が50%以上、且つマクロ孔の細孔容積の占める割合が10%以上である担体に触媒活性成分を担持して得られた触媒であってもよい。前記担体にはシリカが含まれる。
【0009】
前記ヘテロポリ酸には、リンタングステン酸、ケイタングステン酸、リンモリブデン酸、ケイモリブデン酸、リンモリブドタングステン酸、ケイモリブドタングステン酸、リンバナドモリブデン酸、及びケイバナドモリブデン酸からなる群より選択された少なくとも一種の化合物が含まれる。また、前記ヘテロポリ酸塩には、リンタングステン酸、ケイタングステン酸、リンモリブデン酸、ケイモリブデン酸、リンモリブドタンステン酸、ケイモリブドタングステン酸、リンバナドモリブデン酸、又はケイバナドモリブデン酸のリチウム塩、ナトリウム塩、カリウム塩、ルビジウム塩、セシウム塩、タリウム塩、マグネシウム塩、インジウム塩、及びアンモニア塩からなる群より選択された少なくとも一種の化合物が含まれる。
【0010】
また、本発明は、上記本発明の低級脂肪酸エステル製造用触媒の存在下、低級脂肪酸と低級オレフィンとを反応させて低級脂肪酸エステルを製造することを特徴とする低級脂肪酸エステルの製造法を提供する。このとき、水の存在下で反応を行ってもよい。また、前記低級脂肪酸が、炭素数1〜5の脂肪酸であってもよく、前記低級オレフィンが、炭素数2〜5のオレフィンであってもよい。
【0011】
【発明の実施の形態】
本発明の低級脂肪酸エステル製造用触媒の特徴は、メソ孔とマクロ孔との二重細孔分布を有する触媒である点にある。本発明において、メソ孔とは細孔径が2〜50nm未満、マクロ孔とは細孔径が50nm以上である細孔を意味する。細孔分布及び細孔容積は、水銀圧入法により容易に求めることができ、例えばユアサアイオニクス社製のPore Master(登録商標) 60などの装置が用いられる。このように触媒が二重細孔分布を有する場合には、高い活性を有すると共に、低級オレフィンの副反応を効率よく抑制することができる。二重細孔分布が有効な理由について詳細は不明であるが、マクロ孔は反応物質の触媒粒子内における拡散速度の向上を促し、低級オレフィン同士の反応によるオリゴマー化等の副反応が起こりにくくなるためと推察される。
【0012】
本発明の触媒は、好ましくは、全細孔容積が0.05ml/g以上であって、全細孔容積のうちメソ孔の細孔容積の占める割合が50%以上、且つマクロ孔の細孔容積の占める割合が15%以上である。このような触媒は、より高い活性を発揮することができると共に、低級オレフィンのオリゴマー化などの副反応を効率よく抑制することができる。なお、メソ孔の細孔容積の占める割合が50%未満の場合は触媒活性が低下しやすく、マクロ孔の細孔容積の占める割合が15%未満の場合は低級オレフィンのオリゴマー化が起こりやすい。
【0013】
本発明の触媒としては特に限定されないが、低級脂肪酸エステルを製造する際に一般に用いられる触媒が使用される。このような触媒には、例えば、それ自体で触媒として使用される固体酸触媒が含まれ、具体的には、芳香族ジスルホン酸、硫酸、リン酸などの金属塩;固体リン酸;ガリウムシリケート、アルミノシリケート(ゼオライト)、ボロシリケート等の結晶性金属シリケート;ヘテロポリ酸及びその塩などが挙げられる。また、本発明の触媒は、触媒活性成分を担体に担持した担持型触媒であってもよく、このような触媒活性成分として、具体的には、芳香族ジスルホン酸、硫酸、リン酸及びこれらの金属塩;ヘテロポリ酸及びその塩などが挙げられる。上記例示の触媒のなかでも、ヘテロポリ酸及びその塩、又はこれらを担体に担持した触媒が好ましい。これらの触媒は単独で用いてもよく、2種以上を併用することもできる。
【0014】
ヘテロポリ酸は中心元素と酸素が結合した周辺元素で構成されている。中心元素としては、周期表の1族〜17族の元素から任意に選ぶことができ、例えば、リン、ヒ素、アンチモン、ケイ素、イスマス、銅、ホウ素などが挙げられる。これらの中でも、リン、ケイ素、ヒ素であることが多い。周辺元素としては、例えば、タングステン、モリブデン、バナジウム、ニオブ、タンタルなどが挙げられるが、これらに限定されるものではない。
【0015】
ヘテロポリ酸は、ポリオキソアニオン、ポリオキシ金属塩又は酸化金属クラスターとして知られており、これらのいくつかの構造については、ケギン、ウエルス−ドーソン構造などとして知られている。ヘテロポリ酸の代表的な例として、リンタングステン酸、ケイタングステン酸、ホウタングステン酸、リンモリブデン酸、ケイモリブデン酸、ホウモリブデン酸、リンモリブドタングステン酸、ケイモリブドタングステン酸、ホウモリブドタングステン酸、リンバナドモリブデン酸、ケイバナドモリブデン酸などが挙げられるが、これらに限定されない。
【0016】
これらのヘテロポリ酸のなかでも、ヘテロ原子(中心元素)がリン又はケイ素であり、ポリ原子(周辺元素)がタングステン、モリブデン及びバナジウムからなる群から選択された少なくとも1つの元素であるヘテロポリ酸が好ましい。具体的には、例えば、リンタングステン酸、ケイタングステン酸、リンモリブデン酸、ケイモリブデン酸、リンモリブドタングステン酸、ケイモリブドタングステン酸、リンバナドモリブデン酸、ケイバナドモリブデン酸などが好ましい。
【0017】
また、ヘテロポリ酸の塩としては、ヘテロポリ酸の水素原子の一部又は全部が、例えば、リチウム、カリウム、ナトリウム、ルビジウム、セシウム、タリウム、マグネシウム、インジウムなどの金属又はアンモニウムなどで置換されたものが挙げられる。特に、インジウム塩、リチウム塩などが好ましい。
【0018】
担体としては、一般に触媒の担体として用いられるものであればよく、例えば、シリカ、活性炭、ケイソウ土、アルミナ、シリカ−アルミナ、ゼオライト、チタニア、ジルコニアなどが例示される。なかでも、耐酸性の多孔質体は、エステル化触媒として長時間使用する際に担体の一部が低級脂肪酸と反応して細孔を閉塞するなどの問題が生じにくいため好ましく用いられる。具体的には、例えばシリカなどが好ましい。特に、メソ孔とマクロ孔との二重細孔分布を有する担体、すなわち、本発明の触媒と同様の細孔構造を有する担体が好ましく用いられる。より好ましくは、全細孔容積が0.3ml/g以上であって、全細孔容積のうちメソ孔の細孔容積の占める割合が50%以上、且つマクロ孔の細孔容積の占める割合が10%以上である担体が用いられる。このような性状を有する担体としては、例えば、富士シリシア化学株式会社から販売されているG−10M(商品名)などが挙げられる。このような担体を用いれば、触媒の細孔を容易に制御することができる。担体の形状は特に限定されず、粉末状、顆粒状、ペレット状等の何れであってもよい。
【0019】
触媒活性成分の担体への担持量は特に制限はなく、触媒活性成分や単体の種類、調製法に応じて適宜選択され、一般的には担体1重量部に対して0.2〜5重量部程度が適当である。該担持量が0.2重量部未満の場合は十分な活性が得られないおそれがあり、また5重量部を超えてもさほど活性の増加は得られないだけでなく、二重細孔分布を得ることが難しくなり得策ではない。
【0020】
本発明の低級脂肪酸エステル製造用触媒の調製法としては特に限定されず、一般的な触媒の調製法を採用できる。本発明の触媒は、例えば、触媒活性成分をそのまま成型したり、触媒活性成分の溶液(水溶液等)を乾燥、粉砕し、成型した後、必要に応じて120〜450℃程度の温度で焼成することにより得ることができる。また、触媒活性成分の溶液(水溶液等)に担体を浸漬して触媒活性成分を担体に含浸させた後、濾過又は濃縮、乾燥し、さらに必要に応じて120〜450℃程度の温度で焼成(又は乾燥)することによっても本発明の触媒を得ることができる。
【0021】
なお、本発明における触媒の細孔を制御する方法としては、例えば、前記のように担体を選択する方法のほか、触媒調製時に有機物などを添加し焼成により除去して細孔を形成する方法などが挙げられる。後者の方法は、より詳細には、触媒活性成分の溶液を調製する際、触媒活性成分を担体に含浸させる際や粉末状の担体を成型する際に、粉末ポリエチレンなどの有機物等を添加剤として加え、焼成時に該添加剤を燃焼除去することにより空孔を形成する方法である。
【0022】
本発明の触媒は、その形状、性状も特に制限はなく、粉末状、顆粒状、ペレット状等の何れであってもよい。
【0023】
本発明において使用する低級脂肪酸には、例えば炭素数1〜5程度(好ましくは炭素数1〜4程度)の脂肪酸(飽和脂肪酸、不飽和脂肪酸)が含まれるが、これに限定されない。低級脂肪酸の代表的な例として、例えば、ギ酸、酢酸、プロピオン酸、酪酸、アクリル酸、メタクリル酸などが挙げられる。これらの中でも、酢酸、アクリル酸が好ましい。
【0024】
低級オレフィンには、例えば炭素数2〜5程度(好ましくは炭素数2〜4程度)のオレフィンが含まれるが、これに限定されない。低級オレフィンの代表的な例として、例えば、エチレン、プロピレン、ブテン、イソブテンなどが挙げられる。
【0025】
反応は一般に気相で行われる。低級オレフィンの使用量は特に限定されず、例えば低級脂肪酸1モルに対して0.1〜30モルの範囲から適当に選択できるが、一般には低級オレフィン過剰系が望ましく、低級脂肪酸1モルに対して1〜20モル程度の低級オレフィンを用いるのが好ましい。
【0026】
反応温度は、例えば50〜300℃、好ましくは100〜250℃程度である。反応温度が50℃未満では反応速度が遅くなり目的物である脂肪酸エステルの空時収率が低下しやすくなる。反応温度が300℃を超えると副反応が増大するとともに触媒寿命も低下しやすくなる。目的物の空時収率を増大させるため、反応圧力を高めて反応を行うこともできる。反応圧力としては、例えば0.1〜5MPa、好ましくは0.1〜1.5MPa程度である。
【0027】
反応系に水が存在すると触媒寿命が長くなり好都合である。本発明の触媒は、従来の触媒と比較して、水が存在する場合に副反応として生成するアルコール(エタノールなど)などの副生率が小さいという特徴を有する。そのため、従来より多量の水を添加することが可能となり、触媒寿命の点で有利である。水の供給量(添加量)は、原料(低級脂肪酸及び低級オレフィン)に対して1〜30モル%程度の範囲が好ましい。原料を含む混合ガスの反応器への供給速度[空間速度(SV)]は、標準状態で、例えば100/hr〜5000/hr程度である。原料を含む混合ガスの供給速度が100/hr未満では目的物の空時収率が低下しやすく、5000/hrより多くしても目的物の空時収率の増加は小さく、未反応物質が多くなり好ましくない。
【0028】
反応の方式としては特に限定されず、固定床、流動床、移動床等の何れの方式も採用可能である。反応の方式に応じて、触媒の形状、大きさ等を適宜選択できる。
【0029】
反応により、低級脂肪酸が低級オレフィンに付加した対応する低級脂肪酸エステルが生成する。生成した低級脂肪酸エステルは、蒸留等の分離、精製手段により分離精製できる。本発明では、必要に応じて、未反応原料を反応系へリサイクル使用することもできる。本発明の触媒によれば、原料としての低級オレフィンから副生する低級オレフィンのオリゴマー類を著しく抑制することができる。従って、未反応低級オレフィンをリサイクル使用する際に、未反応低級オレフィンから前記オリゴマー類を除去する工程を設ける必要がなく、そのまま循環使用することができるため有利である。
【0030】
【発明の効果】
本発明の低級脂肪酸エステル製造用触媒によれば、高い触媒活性を有し、低級オレフィンのオリゴマー類などの副生を抑制しうるため、未反応低級オレフィンをそのまま循環使用することができる。
本発明の低級脂肪酸エステルの製造法によれば、上記のような優れた触媒を用いるため、低級脂肪酸エステルを生産効率よく製造することができる。
【0031】
【実施例】
以下に、実施例に基づいて本発明をより詳細に説明するが、本発明はこれらの実施例により限定されるものではない。細孔容積及び細孔分布は、ユアサアイオニクス社製、Pore Master(登録商標) 60を用いて水銀圧入法により求めた。
実施例1
全細孔(細孔径3.5〜10000nm)容積0.8ml/g、メソ孔(細孔径3.5〜50nm未満)部の細孔容積が0.60ml/g(全細孔容積に対して75%)、マクロ孔(細孔径50〜10000nm)部の細孔容積が0.2ml/g(同25%)である二重細孔分布を有する球状シリカ(粒径5mm;商品名「G−10M」、富士シリシア化学株式会社製)を担体として用いた。
市販のリンタングステン酸505gと硝酸インジウム8.8gを水1500mlに溶解した。この水溶液に、上記シリカ(G−10M)800gを投入し濃縮することにより全量をシリカに含浸させた。このシリカを120℃乾燥後、300℃で焼成して触媒を得た。得られた触媒の全細孔容積は0.20ml/g、メソ孔部の細孔容積は0.13ml/g(全細孔容積に対して65%)、マクロ孔部の細孔容積は0.07ml/g(同35%)であった。
得られた触媒300mlを内径34mmのSUS316製の反応管(触媒層温度測定用鞘管(外径6mm)付属)に充填し、反応圧力0.5MPa、反応温度166℃で、エチレンと酢酸と水の混合ガス[エチレン:酢酸:水(容積比率)=85:10:5]を空間速度1500/hrで触媒層を通過させて反応を行った。反応生成ガスを0℃に冷却して未反応のエチレンと凝縮液とに気液分離し、未反応エチレンガスを含む混合ガス(リサイクルガス)は再循環して用いた。反応を開始して2時間後の反応ガスを採集して触媒活性を評価した。その結果、酢酸エチルの空時収率は305g/L−触媒・hrであった。なお、エタノール、ジエチルエーテルが若干副生していた。反応凝縮液を分析したところ、エチレンのオリゴマー類として、炭素数5の炭化水素類が100重量ppm、炭素数6の炭化水素類が120重量ppm、炭素数7の炭化水素類が200重量ppm存在していた。
【0032】
実施例2
実施例1において、原料としての混合ガス[エチレン:酢酸:水(容積比率)=80:10:10]を用い、反応圧力を0.4MPa、反応温度を169℃とした以外は、実施例1と同様の反応を行った。本実施例において、長時間の反応を実施し、循環エチレンの影響を確かめた。反応開始して(A)21〜25時間後、及び(B)100〜110時間後の反応ガスを採集して触媒活性を評価した。その結果、酢酸エチルの空時収率は(A)(B)いずれも210g/L−触媒・hrであった。反応凝縮液を分析したところ、(A)(B)いずれもエチレンのオリゴマー類は検出されなかった。リサイクルガス中には、(A)(B)いずれもエチレンのオリゴマー類が200容量ppm存在していた。
【0033】
比較例1
水銀圧入法で細孔径3.5〜10000nmの範囲の全細孔容積1.0ml/g、メソ孔部のみを有する粉末状シリカ(粒径75〜250μm;商品名「G−10」、富士シリシア化学株式会社製)を担体として用いた。
市販のリンタングステン酸505gと硝酸インジウム8.8gを水1500mlに溶解した。この水溶液に、上記シリカ(G−10)800gを投入し濃縮することにより全量をシリカに含浸させた。このシリカを120℃で乾燥後、打錠機(商品名「HU−T」、畑鉄工所社製)により径5mm、長さ2mmの円柱状に成型し、300℃で焼成して触媒を得た。得られた触媒は、全細孔容積が0.15ml/gであり、メソ孔部のみを有していた。
実施例1において、上記触媒を用いた以外は実施例1と同様の方法で反応を行った。反応を開始して2時間後の反応ガスを採集して触媒活性を評価した。その結果、酢酸エチルの空時収率は273g/L−触媒・hrであった。なお、エタノール、ジエチルエーテルが若干副生していた。反応凝縮液を分析したところ、エチレンのオリゴマー類として、炭素数5の炭化水素類が280重量ppm、炭素数6の炭化水素類が130重量ppm、炭素数7の炭化水素類が400重量ppm、炭素数8の炭化水素類が200重量ppm存在していた。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a catalyst used for producing a lower fatty acid ester by reacting a lower fatty acid and a lower olefin, and a method for producing a lower fatty acid ester using the catalyst.
[0002]
[Prior art]
Conventionally, as a method for producing a corresponding ester by reacting a lower fatty acid with a lower olefin, a method using a strongly acidic cation exchange resin as a catalyst, a method using a catalyst supporting an aromatic disulfonic acid on a carrier (for example, Patent Document 1), a method using sulfuric acid, phosphoric acid, phosphotungstic acid, iron sulfate or the like as a catalyst (for example, see Patent Document 2), a method using a phosphotungstate made of a metal having an ionic radius of 1.1 angstroms or more. (For example, see Patent Document 3) and a method of using a catalyst in which a heteropolyacid or a salt thereof is supported on a carrier having a specific surface area (for example, see Patent Document 4). In addition, the above-mentioned Document 4 discloses the surface area of the catalyst and the surface area of the support to be used.
[0003]
In general, it is expected that the catalyst performance (activity and selectivity to the target substance) will differ depending on the pore distribution of the carrier supporting the catalytically active component and the pore distribution of the catalyst after the catalyst is supported. However, there is no description about the pore distribution in any of the above-mentioned documents, and no specific influence on the catalytic performance of the pore distribution is known.
[0004]
[Patent Document 1]
Japanese Patent Publication No. 60-1775 [Patent Document 2]
JP-B-53-6131 [Patent Document 3]
Japanese Patent No. 2848011 [Patent Document 4]
JP 2000-342980 A
[Problems to be solved by the invention]
An object of the present invention is to provide a catalyst for producing a lower fatty acid ester having high activity and capable of suppressing side reactions such as formation of an oligomer from a lower olefin, and a method for producing a lower fatty acid ester using the catalyst. It is in.
[0006]
[Means for Solving the Problems]
The present inventors have conducted intensive studies to achieve the above object, and as a result, according to a catalyst having a double pore distribution of mesopores and macropores, while suppressing the side reaction of lower olefins, while maintaining high activity. The present inventors have found that a lower fatty acid ester can be produced with good production efficiency, and the present invention has been completed.
[0007]
That is, the present invention relates to a catalyst used for producing a lower fatty acid ester from a lower fatty acid and a lower olefin, wherein the lower fatty acid is a catalyst having a double pore distribution of mesopores and macropores. Provided is a catalyst for producing an ester. The catalyst contains, for example, a heteropolyacid or a salt thereof as a catalytically active component.
[0008]
The catalyst of the present invention has a total pore volume of 0.05 ml / g or more, a proportion of the mesopores in the total pore volume is 50% or more, and a proportion of the macropores in the total pore volume. The catalyst may have a proportion of 15% or more, and the total pore volume is 0.3 ml / g or more, and the proportion of the mesopores in the total pore volume is 50% or more, The catalyst may be a catalyst obtained by supporting a catalytically active component on a carrier in which the ratio of the macropores to the pore volume is 10% or more. The carrier includes silica.
[0009]
The heteropoly acid is selected from the group consisting of phosphotungstic acid, silicotungstic acid, phosphomolybdic acid, silicomolybdic acid, phosphomolybdotungstic acid, silicomolybdungstic acid, phosphovanadomolybdic acid, and silicovanadomolybdic acid. And at least one compound. In addition, the heteropolyacid salt includes phosphotungstic acid, silicotungstic acid, phosphomolybdic acid, silicomolybdic acid, phosphomolybdotanstenic acid, silicomolybdotungstic acid, phosphovanadomolybdic acid, or lithium salt of silicovanadomolybdate. At least one compound selected from the group consisting of sodium, potassium, rubidium, cesium, thallium, magnesium, indium, and ammonium salts.
[0010]
The present invention also provides a method for producing a lower fatty acid ester, comprising reacting a lower fatty acid with a lower olefin in the presence of the catalyst for producing a lower fatty acid ester of the present invention to produce a lower fatty acid ester. . At this time, the reaction may be performed in the presence of water. Further, the lower fatty acid may be a fatty acid having 1 to 5 carbon atoms, and the lower olefin may be an olefin having 2 to 5 carbon atoms.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
The feature of the catalyst for producing a lower fatty acid ester of the present invention is that the catalyst has a double pore distribution of mesopores and macropores. In the present invention, mesopores mean pores having a pore diameter of 2 to less than 50 nm, and macropores mean pores having a pore diameter of 50 nm or more. The pore distribution and the pore volume can be easily obtained by a mercury intrusion method, and for example, an apparatus such as Pore Master (registered trademark) 60 manufactured by Yuasa Ionics is used. When the catalyst has a double pore distribution in this way, it has high activity and can efficiently suppress side reactions of lower olefins. Although the details of the reason why the double pore distribution is effective are unknown, macropores promote the improvement of the diffusion rate of the reactants in the catalyst particles, and are less likely to cause side reactions such as oligomerization due to the reaction between lower olefins. It is presumed to be.
[0012]
The catalyst of the present invention preferably has a total pore volume of 0.05 ml / g or more, a proportion of the mesopores in the total pore volume occupying 50% or more, and macropores. The proportion of the volume is 15% or more. Such a catalyst can exhibit higher activity and can efficiently suppress side reactions such as oligomerization of a lower olefin. When the proportion of the pore volume of the mesopores is less than 50%, the catalytic activity tends to decrease. When the proportion of the pore volume of the macropores is less than 15%, oligomerization of the lower olefin tends to occur.
[0013]
The catalyst of the present invention is not particularly limited, but a catalyst generally used for producing a lower fatty acid ester is used. Such catalysts include, for example, solid acid catalysts that are themselves used as catalysts, and specifically include metal salts such as aromatic disulfonic acid, sulfuric acid, and phosphoric acid; solid phosphoric acid; gallium silicate; Crystalline metal silicates such as aluminosilicates (zeolites) and borosilicates; heteropoly acids and salts thereof; Further, the catalyst of the present invention may be a supported catalyst in which a catalytically active component is supported on a carrier, and as such a catalytically active component, specifically, aromatic disulfonic acid, sulfuric acid, phosphoric acid, and these. Metal salts; heteropoly acids and salts thereof. Among the catalysts exemplified above, heteropolyacids and salts thereof, or catalysts in which these are supported on a carrier are preferred. These catalysts may be used alone or in combination of two or more.
[0014]
Heteropoly acid is composed of a central element and peripheral elements in which oxygen is bonded. The central element can be arbitrarily selected from elements of Groups 1 to 17 of the periodic table, and examples thereof include phosphorus, arsenic, antimony, silicon, ismuth, copper, and boron. Among these, phosphorus, silicon, and arsenic are often used. Examples of the peripheral element include, but are not limited to, tungsten, molybdenum, vanadium, niobium, and tantalum.
[0015]
Heteropoly acids are known as polyoxoanions, polyoxymetal salts or metal oxide clusters, and for some of these structures are known as Keggin, Wels-Dawson structures and the like. Representative examples of heteropolyacids include phosphotungstic acid, silicotungstic acid, borotungstic acid, phosphomolybdic acid, silico molybdic acid, boromolybdic acid, phosphomolybdung tungstic acid, silico molybdo tungstic acid, and boro molybdo tungstic acid , Linvanado molybdate, silicate vanadium molybdate, and the like, but are not limited thereto.
[0016]
Among these heteropoly acids, a heteropoly acid in which the hetero atom (center element) is phosphorus or silicon and the poly atom (peripheral element) is at least one element selected from the group consisting of tungsten, molybdenum, and vanadium is preferable. . Specifically, for example, phosphotungstic acid, silicotungstic acid, phosphomolybdic acid, silicomolybdic acid, phosphomolybdic tungstic acid, silicomolybdotungstic acid, phosphovanadomolybdic acid, silicatevanadomolybdic acid, and the like are preferable.
[0017]
Further, as the salt of the heteropolyacid, those in which part or all of the hydrogen atoms of the heteropolyacid are substituted with, for example, a metal such as lithium, potassium, sodium, rubidium, cesium, thallium, magnesium, and indium, or ammonium. No. In particular, an indium salt, a lithium salt and the like are preferable.
[0018]
The carrier may be any carrier that is generally used as a carrier for the catalyst, and examples thereof include silica, activated carbon, diatomaceous earth, alumina, silica-alumina, zeolite, titania, and zirconia. Above all, an acid-resistant porous body is preferably used because it is unlikely that a part of the carrier will react with a lower fatty acid when used as an esterification catalyst for a long time and the pores will be blocked. Specifically, for example, silica is preferable. In particular, a carrier having a double pore distribution of mesopores and macropores, that is, a carrier having the same pore structure as the catalyst of the present invention is preferably used. More preferably, the total pore volume is 0.3 ml / g or more, the proportion of the mesopores in the total pore volume is 50% or more, and the proportion of the macropores in the macropores is 50% or more. A carrier that is at least 10% is used. Examples of the carrier having such properties include G-10M (trade name) sold by Fuji Silysia Chemical Ltd. By using such a carrier, the pores of the catalyst can be easily controlled. The shape of the carrier is not particularly limited, and may be any of powder, granule, pellet and the like.
[0019]
The amount of the catalytically active component carried on the carrier is not particularly limited, and is appropriately selected depending on the type of the catalytically active component, the type of the simple substance, and the preparation method. The degree is appropriate. If the amount is less than 0.2 parts by weight, sufficient activity may not be obtained. If the amount exceeds 5 parts by weight, not only an increase in activity is not obtained, but also a double pore distribution is not obtained. It is not a good idea because it is difficult to obtain.
[0020]
The method for preparing the catalyst for producing a lower fatty acid ester of the present invention is not particularly limited, and a general catalyst preparation method can be employed. The catalyst of the present invention may be, for example, a catalyst active component as it is, or a solution (aqueous solution or the like) of the catalyst active component, dried, pulverized, molded, and then, if necessary, calcined at a temperature of about 120 to 450 ° C. Can be obtained. Further, after the carrier is immersed in the solution of the catalytically active component (such as an aqueous solution) to impregnate the carrier with the catalytically active component, the carrier is filtered or concentrated, dried and, if necessary, calcined at a temperature of about 120 to 450 ° C ( Or drying) to obtain the catalyst of the present invention.
[0021]
In addition, as a method of controlling the pores of the catalyst in the present invention, for example, in addition to the method of selecting a carrier as described above, a method of forming pores by adding an organic substance or the like at the time of catalyst preparation and removing by calcining Is mentioned. The latter method, more specifically, when preparing a solution of the catalytically active component, when impregnating the carrier with the catalytically active component or when molding a powdery carrier, an organic substance such as powdered polyethylene is used as an additive. In addition, it is a method of forming pores by burning and removing the additive during firing.
[0022]
The shape and properties of the catalyst of the present invention are not particularly limited, and may be any of powder, granule, pellet and the like.
[0023]
The lower fatty acids used in the present invention include, for example, fatty acids having about 1 to 5 carbon atoms (preferably about 1 to 4 carbon atoms) (saturated fatty acids and unsaturated fatty acids), but are not limited thereto. Representative examples of lower fatty acids include, for example, formic acid, acetic acid, propionic acid, butyric acid, acrylic acid, methacrylic acid, and the like. Of these, acetic acid and acrylic acid are preferred.
[0024]
Lower olefins include, for example, olefins having about 2 to 5 carbon atoms (preferably about 2 to 4 carbon atoms), but are not limited thereto. Representative examples of lower olefins include, for example, ethylene, propylene, butene, isobutene, and the like.
[0025]
The reaction is generally performed in the gas phase. The amount of the lower olefin used is not particularly limited, and can be appropriately selected, for example, from the range of 0.1 to 30 mol per mol of lower fatty acid. It is preferable to use about 1 to 20 moles of a lower olefin.
[0026]
The reaction temperature is, for example, about 50 to 300 ° C, preferably about 100 to 250 ° C. If the reaction temperature is lower than 50 ° C., the reaction rate becomes slow and the space-time yield of the target fatty acid ester tends to be reduced. If the reaction temperature exceeds 300 ° C., side reactions increase and the catalyst life tends to decrease. In order to increase the space-time yield of the desired product, the reaction can be carried out at an increased reaction pressure. The reaction pressure is, for example, about 0.1 to 5 MPa, preferably about 0.1 to 1.5 MPa.
[0027]
The presence of water in the reaction system advantageously increases the catalyst life. The catalyst of the present invention is characterized in that the by-product rate of alcohol (such as ethanol) generated as a side reaction when water is present is smaller than that of a conventional catalyst. Therefore, it is possible to add a larger amount of water than before, which is advantageous in terms of catalyst life. The supply amount (addition amount) of water is preferably in the range of about 1 to 30 mol% based on the raw materials (lower fatty acids and lower olefins). The supply speed [space velocity (SV)] of the mixed gas containing the raw materials to the reactor is, for example, about 100 / hr to 5000 / hr in a standard state. If the supply rate of the mixed gas containing the raw materials is less than 100 / hr, the space-time yield of the target product tends to decrease, and if it is more than 5000 / hr, the increase in the space-time yield of the target product is small, and unreacted substances are reduced. It is not preferable because it increases.
[0028]
The reaction system is not particularly limited, and any system such as a fixed bed, a fluidized bed, and a moving bed can be adopted. The shape, size, and the like of the catalyst can be appropriately selected depending on the reaction system.
[0029]
The reaction produces the corresponding lower fatty acid ester in which the lower fatty acid has been added to the lower olefin. The produced lower fatty acid ester can be separated and purified by a separation and purification means such as distillation. In the present invention, if necessary, the unreacted raw materials can be recycled to the reaction system. ADVANTAGE OF THE INVENTION According to the catalyst of this invention, the oligomer of lower olefin by-produced from lower olefin as a raw material can be suppressed remarkably. Therefore, when the unreacted lower olefin is recycled, there is no need to provide a step of removing the oligomers from the unreacted lower olefin, and the unreacted lower olefin can be recycled as it is.
[0030]
【The invention's effect】
The catalyst for producing lower fatty acid esters of the present invention has high catalytic activity and can suppress by-products such as oligomers of lower olefins, so that unreacted lower olefins can be recycled as they are.
According to the method for producing a lower fatty acid ester of the present invention, since the above-mentioned excellent catalyst is used, the lower fatty acid ester can be produced with high production efficiency.
[0031]
【Example】
Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to these Examples. The pore volume and pore distribution were determined by a mercury intrusion method using Pore Master (registered trademark) 60 manufactured by Yuasa Ionics.
Example 1
All pores (pore diameter 3.5 to 10000 nm) have a volume of 0.8 ml / g and mesopores (pore diameter less than 3.5 to 50 nm) have a pore volume of 0.60 ml / g (to the total pore volume). 75%), spherical silica having a double pore distribution with a macropore (pore diameter of 50 to 10000 nm) having a pore volume of 0.2 ml / g (25% of the same) (particle size: 5 mm; trade name "G- 10M ", manufactured by Fuji Silysia Chemical Ltd.).
505 g of commercially available phosphotungstic acid and 8.8 g of indium nitrate were dissolved in 1500 ml of water. 800 g of the above silica (G-10M) was added to this aqueous solution, and the whole was impregnated with silica by concentration. After drying this silica at 120 ° C., it was calcined at 300 ° C. to obtain a catalyst. The obtained catalyst has a total pore volume of 0.20 ml / g, a mesopore volume of 0.13 ml / g (65% of the total pore volume), and a macropore volume of 0%. 0.07 ml / g (35%).
300 ml of the obtained catalyst was filled in a SUS316 reaction tube (with a sheath tube for measuring the temperature of the catalyst layer (outer diameter: 6 mm)) having an inner diameter of 34 mm, and a reaction pressure of 0.5 MPa, a reaction temperature of 166 ° C, and ethylene, acetic acid and water were added. [Ethylene: acetic acid: water (volume ratio) = 85: 10: 5] was passed through the catalyst layer at a space velocity of 1500 / hr to carry out the reaction. The reaction product gas was cooled to 0 ° C. and gas-liquid separated into unreacted ethylene and condensate. A mixed gas (recycled gas) containing unreacted ethylene gas was recycled and used. Two hours after the start of the reaction, the reaction gas was collected to evaluate the catalytic activity. As a result, the space-time yield of ethyl acetate was 305 g / L-catalyst · hr. In addition, ethanol and diethyl ether were slightly produced as by-products. Analysis of the reaction condensate revealed that as oligomers of ethylene, hydrocarbons having 5 carbon atoms were present at 100 ppm by weight, hydrocarbons having 6 carbon atoms were present at 120 ppm by weight, and hydrocarbons having 7 carbon atoms were present at 200 ppm by weight. Was.
[0032]
Example 2
Example 1 Example 1 was repeated except that a mixed gas [ethylene: acetic acid: water (volume ratio) = 80: 10: 10] was used as the raw material, the reaction pressure was 0.4 MPa, and the reaction temperature was 169 ° C. The same reaction as described above was performed. In this example, the reaction was carried out for a long time to confirm the effect of circulating ethylene. The reaction gas was collected 21 to 25 hours after the start of the reaction (A) and 100 to 110 hours after the reaction was started (B) to evaluate the catalytic activity. As a result, the space-time yield of ethyl acetate was 210 g / L-catalyst · hr in both (A) and (B). When the reaction condensate was analyzed, oligomers of ethylene were not detected in any of (A) and (B). In the recycled gas, 200 ppm by volume of ethylene oligomers were present in both (A) and (B).
[0033]
Comparative Example 1
Powdered silica having a total pore volume of 1.0 ml / g in a pore diameter range of 3.5 to 10000 nm and a mesopore portion only by a mercury intrusion method (particle size of 75 to 250 μm; trade name “G-10”, Fuji Silysia) Chemical Co., Ltd.) was used as a carrier.
505 g of commercially available phosphotungstic acid and 8.8 g of indium nitrate were dissolved in 1500 ml of water. 800 g of the above silica (G-10) was added to this aqueous solution, and the whole was impregnated with silica by concentration. After drying this silica at 120 ° C., it is molded into a column having a diameter of 5 mm and a length of 2 mm by a tableting machine (trade name “HU-T”, manufactured by Hata Iron Works) and calcined at 300 ° C. to obtain a catalyst. Was. The resulting catalyst had a total pore volume of 0.15 ml / g and had only mesopores.
The reaction was carried out in the same manner as in Example 1 except that the above catalyst was used. Two hours after the start of the reaction, the reaction gas was collected to evaluate the catalytic activity. As a result, the space-time yield of ethyl acetate was 273 g / L-catalyst · hr. In addition, ethanol and diethyl ether were slightly produced as by-products. When the reaction condensate was analyzed, as oligomers of ethylene, hydrocarbons having 5 carbon atoms were 280 ppm by weight, hydrocarbons having 6 carbon atoms were 130 ppm by weight, hydrocarbons having 7 carbon atoms were 400 ppm by weight, Hydrocarbons having 8 carbon atoms were present at 200 ppm by weight.

Claims (11)

低級脂肪酸と低級オレフィンより低級脂肪酸エステルを製造する際に用いる触媒であって、メソ孔とマクロ孔との二重細孔分布を有する触媒であることを特徴とする低級脂肪酸エステル製造用触媒。A catalyst for producing a lower fatty acid ester from a lower fatty acid and a lower olefin, wherein the catalyst has a double pore distribution of mesopores and macropores. 触媒がヘテロポリ酸又はその塩を含む請求項1記載の低級脂肪酸エステル製造用触媒。The catalyst for producing a lower fatty acid ester according to claim 1, wherein the catalyst comprises a heteropolyacid or a salt thereof. 全細孔容積が0.05ml/g以上であって、全細孔容積のうちメソ孔の細孔容積の占める割合が50%以上、且つマクロ孔の細孔容積の占める割合が15%以上である触媒である請求項1記載の低級脂肪酸エステル製造用触媒。When the total pore volume is 0.05 ml / g or more, the proportion of the mesopores in the total pore volume is 50% or more, and the proportion of the macropores in the macropores is 15% or more. The catalyst for producing a lower fatty acid ester according to claim 1, which is a certain catalyst. 全細孔容積が0.3ml/g以上であって、全細孔容積のうちメソ孔の細孔容積の占める割合が50%以上、且つマクロ孔の細孔容積の占める割合が10%以上である担体に触媒活性成分を担持して得られた触媒である請求項1又は2記載の低級脂肪酸エステル製造用触媒。When the total pore volume is 0.3 ml / g or more, the proportion of the mesopores in the total pore volume is 50% or more, and the proportion of the macropores in the pore volume is 10% or more. 3. The catalyst for producing a lower fatty acid ester according to claim 1, which is a catalyst obtained by supporting a catalytically active component on a certain carrier. 担体がシリカである請求項4記載の低級脂肪酸エステル製造用触媒。The catalyst for producing a lower fatty acid ester according to claim 4, wherein the carrier is silica. ヘテロポリ酸が、リンタングステン酸、ケイタングステン酸、リンモリブデン酸、ケイモリブデン酸、リンモリブドタングステン酸、ケイモリブドタングステン酸、リンバナドモリブデン酸、及びケイバナドモリブデン酸からなる群より選択された少なくとも一種の化合物である請求項2記載の低級脂肪酸エステル製造用触媒。The heteropolyacid is at least one selected from the group consisting of phosphotungstic acid, silicotungstic acid, phosphomolybdic acid, silicomolybdic acid, phosphomolybdotungstic acid, silicomolybdotungstic acid, phosphovanadomolybdic acid, and silicovanadomolybdic acid. The catalyst for producing a lower fatty acid ester according to claim 2, which is a compound. ヘテロポリ酸塩が、リンタングステン酸、ケイタングステン酸、リンモリブデン酸、ケイモリブデン酸、リンモリブドタンステン酸、ケイモリブドタングステン酸、リンバナドモリブデン酸、又はケイバナドモリブデン酸のリチウム塩、ナトリウム塩、カリウム塩、ルビジウム塩、セシウム塩、タリウム塩、マグネシウム塩、インジウム塩、及びアンモニア塩からなる群より選択された少なくとも一種の化合物である請求項2記載の低級脂肪酸エステル製造用触媒。Heteropolyacid salts are phosphotungstic acid, silicotungstic acid, phosphomolybdic acid, silicomolybdic acid, phosphomolybdotanstenic acid, silicomolybdotungstic acid, phosphovanadomolybdic acid, or lithium salt of sodium cavanadomolybdate, sodium salt, The catalyst for producing a lower fatty acid ester according to claim 2, wherein the catalyst is at least one compound selected from the group consisting of a potassium salt, a rubidium salt, a cesium salt, a thallium salt, a magnesium salt, an indium salt, and an ammonia salt. 請求項1〜7の何れかの項に記載の低級脂肪酸エステル製造用触媒の存在下、低級脂肪酸と低級オレフィンとを反応させて低級脂肪酸エステルを製造することを特徴とする低級脂肪酸エステルの製造法。A method for producing a lower fatty acid ester, comprising producing a lower fatty acid ester by reacting a lower fatty acid with a lower olefin in the presence of the catalyst for producing a lower fatty acid ester according to any one of claims 1 to 7. . 水の存在下で反応を行う請求項8記載の低級脂肪酸エステルの製造法。The method for producing a lower fatty acid ester according to claim 8, wherein the reaction is carried out in the presence of water. 低級脂肪酸が、炭素数1〜5の脂肪酸である請求項8記載の低級脂肪酸エステルの製造法。The method for producing a lower fatty acid ester according to claim 8, wherein the lower fatty acid is a fatty acid having 1 to 5 carbon atoms. 低級オレフィンが、炭素数2〜5のオレフィンである請求項8記載の低級脂肪酸エステルの製造法。The method for producing a lower fatty acid ester according to claim 8, wherein the lower olefin is an olefin having 2 to 5 carbon atoms.
JP2002315171A 2001-12-27 2002-10-30 Catalyst for manufacturing lower fatty acid ester and manufacturing method for lower fatty acid ester Withdrawn JP2004148177A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2002315171A JP2004148177A (en) 2002-10-30 2002-10-30 Catalyst for manufacturing lower fatty acid ester and manufacturing method for lower fatty acid ester
MYPI20024551 MY122928A (en) 2001-12-27 2002-12-04 Catalyst and process for the production of lower fatty acid esters
GB0229137A GB2385287C (en) 2001-12-27 2002-12-13 Catalyst and process for the production of lower fatty acid esters
GB0411895A GB2398749B (en) 2001-12-27 2002-12-13 Catalyst and process for the production of lower fatty acid esters
CN 02159817 CN1428327A (en) 2001-12-27 2002-12-27 Method for preparing catalyst of low-grade fatty acid ester

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002315171A JP2004148177A (en) 2002-10-30 2002-10-30 Catalyst for manufacturing lower fatty acid ester and manufacturing method for lower fatty acid ester

Publications (1)

Publication Number Publication Date
JP2004148177A true JP2004148177A (en) 2004-05-27

Family

ID=32459252

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002315171A Withdrawn JP2004148177A (en) 2001-12-27 2002-10-30 Catalyst for manufacturing lower fatty acid ester and manufacturing method for lower fatty acid ester

Country Status (1)

Country Link
JP (1) JP2004148177A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019049838A1 (en) * 2017-09-05 2019-03-14 Showa Denko K.K. Production method of aliphatic carboxylic acid ester
JP2019042697A (en) * 2017-09-05 2019-03-22 昭和電工株式会社 Method for producing silica carrier and silica carrier
KR20210035232A (en) * 2018-11-02 2021-03-31 쇼와 덴코 가부시키가이샤 Alcohol production method and alcohol production catalyst

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019049838A1 (en) * 2017-09-05 2019-03-14 Showa Denko K.K. Production method of aliphatic carboxylic acid ester
JP2019043909A (en) * 2017-09-05 2019-03-22 昭和電工株式会社 Method for producing aliphatic carboxylic acid ester
JP2019042697A (en) * 2017-09-05 2019-03-22 昭和電工株式会社 Method for producing silica carrier and silica carrier
CN111065618A (en) * 2017-09-05 2020-04-24 昭和电工株式会社 Process for producing aliphatic carboxylic acid ester
US10919836B2 (en) 2017-09-05 2021-02-16 Showa Denko K.K. Production method of aliphatic carboxylic acid ester
CN111065618B (en) * 2017-09-05 2022-07-19 昭和电工株式会社 Process for producing aliphatic carboxylic acid ester
US11890592B2 (en) 2017-09-05 2024-02-06 Resonac Corporation Method for producing silica carrier, and silica carrier
KR20210035232A (en) * 2018-11-02 2021-03-31 쇼와 덴코 가부시키가이샤 Alcohol production method and alcohol production catalyst
KR102605196B1 (en) * 2018-11-02 2023-11-23 가부시끼가이샤 레조낙 Method for producing alcohol and catalyst for producing alcohol

Similar Documents

Publication Publication Date Title
JP2002079088A (en) Catalyst for manufacturing lower aliphatic carboxylic acid ester, method for manufacturing the same and method for manufacturing lower aliphatic carboxylic acid ester by the catalyst
JP2013508127A (en) Method for producing catalyst used for producing unsaturated aldehyde and / or unsaturated carboxylic acid by dehydration reaction of glycerin, and catalyst obtained by this method
KR20070057853A (en) Silica support, heteropolyacid catalyst produced therefrom and ester synthesis using the silica supported heteropolyacid catalyst
CN111065618B (en) Process for producing aliphatic carboxylic acid ester
WO2020090756A1 (en) Method for producing alcohol and catalyst for producing alcohol
JP2004148177A (en) Catalyst for manufacturing lower fatty acid ester and manufacturing method for lower fatty acid ester
EP4134360A1 (en) Method for producing alcohol
JP3998973B2 (en) Catalyst for producing lower fatty acid ester and method for producing lower fatty acid ester
GB2385287A (en) Catalyst and process for the production of lower fatty acid esters
GB2398749A (en) Catalyst and process for the production of lower fatty acid esters
EP1320517B1 (en) Process for producing lower aliphatic carboxylic acid ester
JP2002079089A (en) Catalyst for manufacturing lower aliphatic carboxylic acid ester, method for manufacturing the same and method for manufacturing lower aliphatic carboxylic acid ester by catalyst
EP1294673B1 (en) Catalyst for use in producing lower aliphatic carboxylic acid ester, process for producing the catalyst and process for producing lower aliphatic carboxylic acid ester using the catalyst
US20040181088A1 (en) Production of lower aliphatic carboxylic acid ester
JP2004148178A (en) Catalyst for manufacturing lower fatty acid ester, its manufacturing method and manufacturing method for lower fatty acid ester
JP4332951B2 (en) Method for producing mixed gas of lower olefin and lower aliphatic carboxylic acid, and method for producing lower aliphatic ester using the mixed gas
US6818790B1 (en) Process for producing mixed gas of lower olefin and lower aliphatic carboxylic acid, and process for producing lower aliphatic ester using the mixed gas
EP1224158B1 (en) Process for producing esters
WO2023276407A1 (en) Method for producing alcohols
EP1218331B1 (en) Process for producing mixed gas of lower olefin and lower aliphatic carboxylic acid, and process for producing lower aliphatic ester using the mixed gas
WO2023276406A1 (en) Method for producing alcohol
JP2002079090A (en) Catalyst for manufacturing lower aliphatic carboxylic acid ester, method for manufacturing the same and method for manufacturing lower aliphatic carboxylic acid ester by catalyst
JP2002520380A (en) Ester synthesis
US20050203310A1 (en) Process for the production of aliphatic carboxylic acid esters
JP4620236B2 (en) Method for producing lower aliphatic carboxylic acid ester

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050926

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20070807