JP2004147641A - Method of producing pigment or other useful substance - Google Patents

Method of producing pigment or other useful substance Download PDF

Info

Publication number
JP2004147641A
JP2004147641A JP2003146229A JP2003146229A JP2004147641A JP 2004147641 A JP2004147641 A JP 2004147641A JP 2003146229 A JP2003146229 A JP 2003146229A JP 2003146229 A JP2003146229 A JP 2003146229A JP 2004147641 A JP2004147641 A JP 2004147641A
Authority
JP
Japan
Prior art keywords
light
led
photosynthetic organism
irradiation
production
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003146229A
Other languages
Japanese (ja)
Inventor
Tadanobu Iwasa
忠信 岩佐
Shigeo Kato
滋雄 加藤
Tomonao Katsuta
知尚 勝田
Hisashi Takemura
壽 竹村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IWATA KAGAKU KOGYO
IWATA KAGAKU KOGYO KK
Toyoda Gosei Co Ltd
Original Assignee
IWATA KAGAKU KOGYO
IWATA KAGAKU KOGYO KK
Toyoda Gosei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IWATA KAGAKU KOGYO, IWATA KAGAKU KOGYO KK, Toyoda Gosei Co Ltd filed Critical IWATA KAGAKU KOGYO
Priority to JP2003146229A priority Critical patent/JP2004147641A/en
Publication of JP2004147641A publication Critical patent/JP2004147641A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of producing pigment and other useful substances by utilizing a photosynthetic organism through more simplified procedures. <P>SOLUTION: The pigment or other useful substances are produced by culturing a photosynthetic organism under radiation with light having a peak wavelength of about ≤540nm. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【産業上の利用分野】
本発明は色素その他の有用物質の生産方法及び当該生産方法に使用される反応装置に関する。本発明の方法及び反応装置は、光合成生物が生産するカロテノイド系色素等、有用物質の生産に利用できる。
【0002】
【従来の技術】
光合成細菌等の光合成生物は生理活性物質、有用色素など様々な物質の生産に広く用いられている。特に、Haematococcus sp.、Spirulina sp.、及びDunaliella sp.等の産生するカロテノイド系色素はその生理活性、安全性が優れており食品着色料、抗酸化剤、動物飼料、及び健康食品等として広い用途を持っている。これらの光合成生物を利用した色素の生産にはその生育に適した光照射が必要なばかりではなく、目的色素を多量にかつ効率的に生産させる状態に光合成生物を導く誘導と呼ばれる操作が必要なことがしばしばおこる。この誘導条件下では一般に光合成生物の増殖は停止し、もはや細胞数は増加しない。
【0003】
【発明が解決しようとする課題】
そこで、光照射下あるいは非光照射下で光合成生物を高濃度に培養した後、適当な化合物の添加や、ストレス条件の負荷によって、目的色素の生産を増加させることが必要となる。このため、培養操作が2段階の過程に分かれ、このことが培養装置設計、培養操作、更には生産コスト上大きな問題となっていた。
色素生産の誘導法については様々な先行技術が存在する。例えば、光照射下でHaematococcus pluvialisの培養液に鉄イオンを生じ得る物質等の活性酸素生産物質と酢酸等の炭素源を添加する方法(特開平5−68585号公報)や、光照射下で、一般に約20℃で行われるHaematococcus pluvialisの培養を約30℃で行うことによって温度ストレスを与える方法(特開平7−39389号公報)、あるいはHaematococcus pluvialisを光照射下、固定培地上で培養することによって乾燥ストレスを与える方法(特開平8−103288号公報)が提案されている。しかしながら、これらの方法は培養操作が2段階となる問題を本質的に解決するものではない。
そこで、本発明はより簡便な操作で光合成生物を利用した色素その他の有用物質生産を行うことができる方法を提供することを目的とする。
【0004】
【課題を解決するための手段】
本発明者は以上の目的に鑑みて鋭意検討を行った。即ち、光合成生物としてHaematococcus sp.を用いた実験系において、特定の波長の光を照射した場合の細胞増殖率の変化、色素生産量の変化を検討した。その結果、波長の短い光を主とする光照射下の培養によって、細胞の増殖能を維持しつつ、カロテノイド系色素を特別の誘導操作なしで生産させることに成功した。この結果から、本発明者らは光合成生物が全波長領域の光に対して等しく応答するのではなく、特定波長の光に特異的な応答を示すことを見出した。本発明はかかる知見に基づき完成されたものであって以下の構成を提供する。
[1]ピーク波長が約540nm以下の光を光合成生物に照射する工程、を含む色素その他の有用物質の生産方法。
[2]前記光の照射が間欠的に行なわれる、[1]に記載の生産方法。
[3]前記光合成生物がカロテノイド系色素生産菌である、[1]又は[2]に記載の生産方法。
[4]前記光合成生物がHaematococcus属、Dunaliella属、Chlorella属、Chlamydomonas属、Nannochloropsis属、Spirulina属、Anabaena属、及びRhodobacter属のいずれかに属する微生物である、[1]又は[2]に記載の生産方法。
[5]光源としてLEDが用いられる、[1]〜[4]のいずれかに記載の生産方法。
[6]ピーク波長が約540nm以下の光源と、及び
前記光源からの光がその内部に照射するように設置される培養容器と、を備える色素その他の有用物質生産用の反応装置。
[7]前記光源がLEDからなる、[6]に記載の反応装置。
[8]ピーク波長が約540nm以下の光を光合成生物に照射する、ことを特徴とする前記光合成生物による色素その他の有用物質の生産を誘導する方法。
[9]前記光の照射が間欠的に行なわれる、[8]に記載の方法。
[10]前記光合成生物がカロテノイド系色素生産菌である、[8]又は[9]に記載の方法。
[11]前記光合成生物がHaematococcus属、Dunaliella属、Chlorella属、Chlamydomonas属、Nannochloropsis属、Spirulina属、Anabaena属、及びRhodobacter属のいずれかに属する微生物である、[8]又は[9]に記載の方法。
[12]光源としてLEDが用いられる、[8]〜[11]のいずれかに記載の方法。
【0005】
【発明の実施の形態】
本発明は光合成生物を利用した色素その他の有用物質の生産方法に関し、ピーク波長が約540nm以下の光を光合成生物に照射する工程を含むことを特徴とする。
本発明における「光合成生物」とは光合成を行うことが可能な生物を意味し、光合成細菌(シアノバクテリアを含む)、藻類(紅藻、褐藻、緑藻、ケイ藻など)、高等植物などを含む。光合成細菌としては、例えばSpirulina属、Anabaena属、Rhodobacter属のいずれかに属する微生物が用いられる。Spirulina属に属する微生物としては、Spirulina platensis、Spirulina maxima等を挙げることができる。同様に、Anabaena属及びRhodobacter属に属する微生物としてはそれぞれ、Anabaena variabilis、Anabaena cylindrica等、及びRhodobacter capsulatus、Rhodobacter sphaeroides等を挙げることができる。藻類としては、例えばHaematococcus属、Dunaliella属、Chlorella属、Chlamydomonas属、Nannochloropsis属のいずれかに属する微生物が用いられる。Haematococcus属に属する微生物としては、Haematococcus lacustris、Haematococcus pluvialis等を挙げることができる。同様に、Dunaliella属、Chlorella属、Chlamydomonas属、及びNannochloropsis属に属する微生物としてはそれぞれ、Dunaliella salina、Dunaliella bardawil等、Chlorella vulgaris、Chlorella pyrenoidosa等、Chlamydomonas nivalis、Chlamydomonas reinhardtii等、及びNannochloropsis salina、Nannochloropsis oculata等を挙げることができる。
【0006】
本発明によって生産可能な有用物質の例としては、カロテノイド系色素、及びクロロフィル系色素等の有用色素、エイコサペンタエン酸、及びビタミンC等の生理活性物質が挙げられる。カロテノイド系色素は例えばHaematococcus属の微生物を利用して生産することができる。同様に、クロロフィル系色素は例えばSpirulina属の微生物、生理活性物質は例えばNannochloropsis属の微生物をそれぞれ利用して生産することができる。
【0007】
照射する光の波長はより短いことが好ましく、即ち好ましくはピーク波長が約530nm以下の光、更に好ましくはピーク波長が約470nm以下、更に更に好ましくはピーク波長が約420nm以下の光を採用することができる。ピーク波長の下限値は特に限定されないが例えば約350nm、好ましくは約380nm(可視領域の光)である。
ピーク波長が異なる2種類以上の光を用いることもできる。例えばピーク波長がそれぞれ約530nm及び約470nmの光を同時に照射することができる。勿論、ピーク波長が異なる2種類以上の光を個別に照射してもよい。
【0008】
波長幅の狭い光を用いることが好ましい。有用物質の生産に適した波長領域の光のみを選択して照射し、もって効率的な有用物質の生産を期待できるからである。
光を照射する工程を光合成生物の培養工程と同時に行うことができる。換言すれば光合成生物が増殖する条件で培養しつつ、上記の特定波長の光の照射を行うことができる。このようにすることで有用物質生産過程が実質的に一段階の工程によって構成され、操作の簡便化、生産コストの削減などが可能となる。また、培養装置もその構成が簡略化され、この点からも生産コストの削減が達成される。尚、光合成生物の増殖を行った後に上記の光照射工程を行うこともできる。
【0009】
光照射工程を光合成生物の培養と同時に行う場合における培養条件は、培養に供される光合成生物の成育に適したものであれば特に限定されない。即ち、当該光合成生物の成育に適した公知ないし周知の培地、培養温度、及びpHなどを採用することができる。培地としては、例えば炭素源、窒素源、及び必要に応じて無機塩化物(無機イオン)を含むものを用いることができる。光合成生物の生育を促進するために、ビタミン、アミノ酸などを添加した培地を用いることもできる。炭素原としては例えばグルコース、デンプン、デキストリン等を採用でき、窒素原としては例えばポリペプトン、イーストエキス、肉エキス等を採用でき、無機塩化物としてはリン酸二カリウム、硫酸鉄、硫酸マグネシウム、塩化ナトリウム、塩化カリウム、塩化カルシウム、塩化マグネシウム等を採用できる。
【0010】
培養温度としては、Haematococcus sp.を利用する場合を例に採れば、例えば10℃〜30℃の範囲であり、好ましくは15℃〜25℃の範囲である。また、培地のpHは、Haematococcus sp.を利用する場合を例に採れば例えば5.0〜9.0の範囲、好ましくは6.0〜7.5の範囲に調整される。
【0011】
光を照射する時間は特に限定されず、使用する光の強度、色素生産量、及び生産効率等を考慮して設定することができる。
光の照射方法も特に限定されず、例えば所定時間連続的に照射したり、所定のインターバルを設けて間欠的に照射したりすることができる。ここでの「間欠的に照射」にはパルス光による照射(パルス照射)を含む。光の照射を間欠的に行なえば、消費電力を削減でき、また効率的に有用物質を生産することができる。尚、後述の実施例において、所定の照射強度を保ちつつパルス照射することによって収量の確保と消費電力の削減を両立できることが確認された。
パルス照射する場合における、照射光の強度、照射周期(Hz)、デューティー比(%)、使用する光源の出力(明るさ)などは特に限定されないが、例えば連続的に点灯(デューティー比100%)すると仮定した場合に照射強度が5μmol photon/m/s以上、好ましくは10μmol photon/m/s以上、更に好ましくは12μmol photon/m/s以上となるように照射条件を設定することができる。
光照射工程を行った後の培養液又は光合成生物内より目的とする有用物質が回収される。培養液から回収する場合には、例えば培養上清をろ過、遠心処理などして不溶物を除去した後、抽出、吸着、カラムクロマトグラフィー等の精製手法を適宜組み合わせて目的とする有用物質を得ることができる。他方、光合成生物内から回収する場合には、例えば光合成生物を加圧処理、超音波処理などによって破砕した後、上記と同様に分離、精製を行うことにより目的とする有用物質の回収を行うことができる。尚、ろ過、遠心処理などによって予め培養液から光合成生物を回収した後、上記一連の工程(光合成生物の破砕、分離、精製)を行ってもよい。
【0012】
光照射工程における光源としては、LED(発光ダイオード)、電球(バルブ)、蛍光灯、冷陰極管などを用いることができるが、特定波長領域の光を照射する必要があることから、使用する光源の光の波長スペクトルが広域に亘る場合には不要な光をカットすることが好ましい。ここで、LEDは波長幅の狭い光を放出可能であることを特徴の一つとする。したがって、LEDを用いれば一部の光をカットするといった特別の手段を要することなく波長域を絞った光の照射が可能となる。また、効率的な光の利用が図られるといった効果も奏される。LEDとしては発光効率が高い窒化ガリウム系化合物半導体を用いたものを採用することが好ましい。
【0013】
以上の本発明の有用物質の生産方法は専用の反応装置を利用して行うことができる。この反応装置には、ピーク波長が約540nm以下の光源、当該光源からの光がその内部に照射するように設置される培養容器が備えられることとなる。
上述のように光源の種類は特に限定されないが、LEDを採用することが好ましい。また、光源は効率的な照射が行えるように複数個備えられることが好ましい。光源を複数個使用する場合にはできるだけ均一な光の照射を可能にすべく、各光源が互いに均等な間隔をおいて配置されることが好ましい。
【0014】
培養中に培養液を攪拌するための手段(例えば、回転ファンや攪拌棒)を培養容器内に備えることが生産効率の面から好ましい。また、培養装置に保温手段(加熱冷却手段)、注水手段、排水手段、及び/又はタイマー等、一般的に培養装置に必要とされる手段(装置)を備えることができる。
以下、実施例を用いて本発明の構成をより詳細に説明する。
【0015】
【実施例】
[実施例1]
本発明の実施例の一つとして、Haematococcus lacustrisによるアスタキサンチンの生産について説明する。
Haematococcus lacustris NIES144株(国立環境研究所微生物系統保存施設保存)を基本培地(酢酸ナトリウム16 mM、イーストエキス2.0 g/L、L−アスパラギン酸2.5 mM、MgCl・6HO 1mM、FeSO・7HO 40μM、CaCl・2HO 0.5mM、リン酸カリウム緩衝液(pH6.8) 30mM)を用い、4.5×6.0cm、厚さ3.0cmのガラス製透明培養容器中で、所定の光強度においてLED(発光ダイオード)あるいは蛍光灯(比較対照群)による光照射下、20℃において攪拌しつつ培養した。経時的に細胞濃度、細胞のメタノール抽出液の470nmにおける吸光度、及び逆相HPLCカラムによる色素成分分析を行った。
【0016】
LEDとして主たる発光波長が赤系領域、緑系領域、青系領域、及び紫系領域にある4種類(赤系LED、緑系LED、青系LED、及び紫系LED)を用いた。各LEDの発光スペクトルを図1に示す。赤系LEDは約625nm、緑系LEDは約525nm、青系LEDは約470nm、及び紫系LEDは約420nmにそれぞれ発光ピークを有し、そのスペクトル幅は蛍光灯に比してはるかに狭い(蛍光灯の発光スペクトルは、ほぼ可視光領域全体に亘っている(図2))。
【0017】
図3に各条件における経時的な細胞濃度の増加曲線を示す。図3に示されるように、異なる2種の光強度で培養を行ったが、いずれの条件においても同一光強度に関わらず赤系LED、蛍光灯、緑系LED、青系LED、紫系LEDの順に増殖速度が増加する傾向がみられる。これは、本実施例の波長範囲では短い波長ほど増殖に有効であることを表している。
【0018】
更に、図4の表に示すように細胞中のカロテノイド系色素含有量を示すメタノールによる細胞抽出液の470nmにおける吸光度は、赤系LEDを照射した条件で培養した細胞に比較して、概略蛍光灯を用いた条件では2倍、青系LED又は紫色LEDを用いた条件では4〜6倍に達している。緑系LEDを用いた条件では概ね蛍光灯を用いた条件と同等の結果となった。尚、図4の表は培養後7日目の菌体を用いて吸光度を測定した結果であって、乾燥菌体重量100μgの細胞を0.5mlのメタノールに抽出した際の吸光度(波長λ=470nm)が示される。
【0019】
以上の結果によって示された波長の短い光の照射によるカロテノイド系色素生産増加効果は、図5に示す培養後7日目の菌体を用いたメタノール抽出液の逆相HPLC分析結果(移動相液:メタノール、流速:1ml/min、測定波長470nm)のクロマトグラムにおいてもいっそう明瞭に示される。尚、図5には青系LED及び赤系LEDの光をそれぞれ照射した条件による逆相HPLC分析の結果が示される。
【0020】
以上の結果から緑系波長領域以下、より好ましくは青系波長領域以下の光を主として含む光源の光を照射した条件下でHaematococcus lacustrisを培養すれば、従来行われている誘導操作を行わなくてもカロテノイド系色素の生産を効率的に行うことができることがわかる。また、従来の誘導操作を伴う生産方法では二段階の培養が必要であったところ、当該条件によれば細胞の増殖能を維持させた状態で効率的にカロテノイド系色素の生産を行うことができることから、一段階の培養によっても目的とする色素の生産を効率的に行うことができ、培養操作、培養設備の簡略化を図れる。
【0021】
[実施例2]
次に、照射する光の強度を変えてアスタキサンチンの生産を行った。光強度以外の条件は実施例1と同様とした。即ち、Haematococcus lacustris NIES144株(国立環境研究所微生物系統保存施設保存)を基本培地(酢酸ナトリウム16 mM、イーストエキス2.0 g/L、L−アスパラギン酸2.5 mM、MgCl・6HO 1mM、FeSO・7HO 40μM、CaCl・2HO 0.5mM、リン酸カリウム緩衝液(pH6.8) 30mM)を用い、4.5×6.0cm、厚さ3.0cmのガラス製透明培養容器中で、12μmol photon/m/sの光強度において青系LED(発光ダイオード)、赤系LED、又は蛍光灯(比較対照群)による光照射下、20℃において攪拌しつつ培養した。経時的に細胞濃度、アスタキサンチン生産量、アスタキサンチン細胞含量の定量を行った。
【0022】
図6に上記培養条件における経時的な細胞濃度の増加曲線を示す。図6に示すように、増殖速度は青系LED、蛍光灯、赤系LEDの順に高く、細胞濃度の最大値は0.4g/L程度でいずれの光源下でも大差ない結果が得られた。また、蛍光灯による光照射下では4日間程度、赤系LED下では2日間程度の増殖遅延が見られるが、青系LED下では観察されなかった。これらの結果から、青系LEDによる光照射は増殖に有効であることが示される。
【0023】
図7にアスタキサンチン生産量(培養液1 Lあたり生産されたアスタキサンチン重量)の増加曲線を示す。曲線の立ち上がりにおける勾配から、アスタキサンチンの生産速度は青系LEDによる光照射下が最も高く、赤系LED下の生産速度は蛍光灯下とほぼ同程度であることが示される。最大生産量は赤系LEDによる光照射下では12 mg/L(11日後)で、蛍光灯下の13 mg/L(12日後)と同等であったが、青系LED下では25 mg/L(12日後)に達した。
【0024】
図8にアスタキサンチン含有率(乾燥細胞重量あたり含有されるアスタキサンチン重量のパーセンテージ)の経時的な変化を示す。青系LEDによる光照射下では、3日後から含有率に顕著な増大が見られ、9日後には6.7%に達する結果が得られた。一方、赤系LED下の含有率は蛍光灯下と同様な増加傾向を示したが、青系LED下における増加傾向と比較すると明らかに緩やかであった。尚、赤系LED下の含有率の最大値は3.0%(7日後)、蛍光灯下では3.5%(11日後)と既往の値(約3%)と大差ない結果であった。以上の結果から、青系LEDによる光照射はアスタキサンチンの生産に有効であることが示される。
【0025】
以上の結果から、緑系波長領域以下、より好ましくは青系波長領域の光を主として含む光源の光を照射した条件下でHaematococcus lacustrisを培養すれば、従来行われている誘導操作を行わなくてもカロテノイド系色素の生産を効率的に行うことができる上、既往の光源では得られなかったほどの高い収率を期待できることがわかる。
【0026】
[実施例3]
LED(発光ダイオード)は、一定周期の断続的な電力供給によって、パルス光を放射できる。本実施例では、このようなパルス光を使用してアスタキサンチンの生産試験を行なった。パルス光による光照射を採用したこと以外は、実施例1及び2と同様の条件とした。即ち、Haematococcus lacusris NIES144株(国立環境研究所微生物系統保存施設保存)を基本培地(酢酸ナトリウム16 mM、イーストエキス2.0 g/L、L−アスパラギン酸2.5 mM、MgCl・6HO 1mM、FeSO・7HO 40μM、CaCl・2HO 0.5mM、リン酸カリウム緩衝液(pH6.8) 30mM)を用い、4.5×6.0cm、厚さ3.0cmのガラス製透明培養容器中で、20℃において攪拌しつつ培養した。パルス光照射は、青系LEDを用い、1秒間の明減回数である周波数を100 Hz(明減周期がそれぞれ10ミリ秒に相当する)とし、1度の点灯時間の1周期に対する割合であるデューティー比を33%と67%(それぞれ、総点灯時間が光照射時間の3分の1と3分の2に相当する)に設定して行なった。パルス光照射時の光強度は、連続的に点灯(デューティー比)すれば12μmol photon/m/sとなるように調整した。即ち、デューティー比33%及び67%では光強度をそれぞれ4.0μmolphoton/m/s及び8.0μmol photon/m/sとした。また、比較対照として、青系LEDを使用して連続的に光強度の光強度12μmol photon/m/sで照射する条件、及び同様に青系LEDを使用して上記各パルス照射条件と同じ光強度で連続的に照射する条件を用いた。以上の各培養条件において、経時的に細胞濃度及びアスタキサンチン生産量を定量した。
【0027】
図9に光強度8.0μmol photon/m/sでパルス光照射をしつつ培養した場合の細胞濃度の経時変化を示す。パルス光照射下で培養した場合には、光強度12μmol photon/m/sで連続的に光照射する条件下で培養した場合、及び同じ光強度で連続的に光照射する条件下で培養した場合と比較して、ほぼ同様の細胞増殖挙動が得られることが示される。
図10に、同条件のパルス光照射下(光強度8.0μmol photon/m/s)におけるアスタキサンチン含有率(乾燥細胞重量あたり含有されるアスタキサンチン重量のパーセンテージ)の経時変化を示す。パルス光照射下でのアスタキサンチン含有量は、同じ光強度で連続的に光照射して培養した場合に比較して顕著に高く、光強度12μmol photon/m/sで連続的に光照射して培養した場合と比較してもわずかに低い程度である。この結果から、パルス光照射は、時間的に平均すると同じ光強度となる強度の光を連続的に照射するよりも、アスタキサンチンの生産に有利であることが判明した。
図11に、デューティー比とアスタキサンチン含有率の最大値との関係を示す。デューティー比と最大アスタキサンチン含有量とは比例せず、67%までデューティー比を下げたときの最大アスタキサンチン含有率5.7%は、連続的に照射した時(6.2%)の90%程度、さらに、33%までデューティー比を下げても最大含有率は4.7%となり、連続的に照射したときの75%程度に止まった。このことから、パルス光照射は、断続的に光照射することによって電力消費を抑えながらも、アスタキサンチン生産量をそれほど低下させることはないことがわかる。このように、パルス光照射によれば十分な収量を確保しつつ消費電力の低減が図られる。
【0028】
本発明の適用対象は以上の実施例に限定されるものではなく、Spirulina sp.、Dunaliella sp.等による色素の生産やその他光合成生物が産生する有用物質の生産に対しても本発明を適用することが可能である。特許請求の範囲の記載を逸脱せず、当業者が容易に想到できる範囲で種々の変形態様も本発明に含まれる。
【0029】
【発明の効果】
本発明の色素その他の有用物質の生産方法によれば細胞増殖操作と有用物質のための誘導操作を個別に行う必要が無くなり、即ち簡便な操作によって光合成生物を利用した色素等の生産が可能となる。このことによって、単一の反応装置(バイオリアクター)を用いて色素等の生産を行うことができる。このことは回分的あるいは連続的な色素等の生産を容易かつ効率的に行えることを意味する。一方、間欠的な光照射によって生産した場合には、有用物質の十分な収量を確保しつつ消費電力の低減を図ることができる。
【0028】
以下、次の事項を開示する。
11.ピーク波長が約540nm以下の光を光合成生物に照射する工程、を含む色素の生産方法。
12.前記光合成生物がカロテノイド系色素生産菌である、11.に記載の生産方法。
13.前記光合成生物がHaematococcus属、Dunaliella属、Chlorella属、Chlamydomonas属、Nannochloropsis属、Spirulina属、Anabaena属、及びRhodobacter属のいずれかに属する微生物である、11.に記載の生産方法。
14.光源としてLEDが用いられる、11.〜13.のいずれかに記載の生産方法。
21.前記工程においてピーク波長が約540nm以下の可視領域の光が用いられる、ことを特徴とする請求項1〜4のいずれかに記載の生産方法。
31.前記工程の後、培養液又は菌体内に産生された有用物質を回収する工程、を更に含むことを特徴とする請求項1〜4、11.〜14.、及び21のいずれかに記載の方法。
【図面の簡単な説明】
【図1】図1は実施例1において使用される各LEDの発光スペクトルを示すグラフ図である。
【図2】図2は実施例1において比較対照として使用される蛍光灯の発光スペクトルを示すグラフ図である。
【図3】図3は実施例1における細胞濃度の増殖曲線を示すグラフ図である。
【図4】図4は実施例1における吸光度測定結果をまとめた表である。培養後7日目の菌体(乾燥菌体重量100μg)を0.5mlのメタノールに抽出した際の吸光度(波長λ=470nm)が示される。
【図5】図5は実施例1における逆相HPLC分析結果(移動相液:メタノール、流速:1ml/min、測定波長470nm)を示すクロマトグラムである。青系LED及び赤系LEDの光をそれぞれ照射した条件によるHPLC分析結果が示される。
【図6】図6は実施例2における細胞濃度の増加曲線を示すグラフである。
【図7】図7は実施例2におけるアスタキサンチン生産量(培養液1 Lあたり生産されたアスタキサンチン重量)の増加曲線を示すグラフである。
【図8】図8は実施例2におけるアスタキサンチン含有率(乾燥細胞重量あたり含有されるアスタキサンチン重量のパーセンテージ)の経時変化を示すグラフである。
【図9】図9は実施例3における細胞濃度の経時変化を示すグラフである。
【図10】図10は実施例3におけるアスタキサンチン含有率(乾燥細胞重量あたり含有されるアスタキサンチン重量のパーセンテージ)の経時変化を示すグラフである。
【図11】図11は実施例3におけるデューティー比とアスタキサンチン含有率の最大値との関係を示すグラフである。
[0001]
[Industrial applications]
The present invention relates to a method for producing dyes and other useful substances, and a reaction apparatus used in the production method. The method and the reaction apparatus of the present invention can be used for producing useful substances such as carotenoid pigments produced by photosynthetic organisms.
[0002]
[Prior art]
Photosynthetic organisms such as photosynthetic bacteria are widely used for the production of various substances such as physiologically active substances and useful dyes. In particular, Haematococcus sp. , Spirulina sp. And Dunaliella sp. The carotenoid-based pigments produced by these methods have excellent physiological activity and safety, and have wide applications as food coloring agents, antioxidants, animal feeds, health foods and the like. The production of pigments using these photosynthetic organisms not only requires light irradiation suitable for their growth, but also requires an operation called induction, which leads the photosynthetic organisms to a state in which the target pigment is produced in large quantities and efficiently. Things often happen. Under these inducing conditions, the growth of photosynthetic organisms generally stops and cell numbers no longer increase.
[0003]
[Problems to be solved by the invention]
Therefore, after culturing photosynthetic organisms at a high concentration under light irradiation or non-light irradiation, it is necessary to increase the production of the target dye by adding an appropriate compound or applying stress conditions. For this reason, the culturing operation is divided into two stages, and this has been a serious problem in terms of culturing apparatus design, culturing operation, and production cost.
There are various prior art methods for inducing pigment production. For example, a method of adding an active oxygen-producing substance such as a substance capable of generating iron ions and a carbon source such as acetic acid to a culture solution of Haematococcus pluvialis under light irradiation (Japanese Unexamined Patent Publication No. 5-68585), A method of imparting temperature stress by culturing Haematococcus privalis generally performed at about 20 ° C. at about 30 ° C. (Japanese Unexamined Patent Publication No. 7-39389), or by culturing Haematococcus privalis on a fixed medium under light irradiation. A method of applying a drying stress (JP-A-8-103288) has been proposed. However, these methods do not essentially solve the problem of a two-stage culture operation.
Therefore, an object of the present invention is to provide a method capable of producing dyes and other useful substances using photosynthetic organisms by simpler operations.
[0004]
[Means for Solving the Problems]
The present inventor has conducted intensive studies in view of the above objects. That is, Haematococcus sp. In an experimental system using, changes in the cell growth rate and changes in the amount of dye production when light of a specific wavelength was irradiated were examined. As a result, we succeeded in producing a carotenoid-based dye without special induction operation while maintaining the cell growth ability by culturing under light irradiation mainly using short-wavelength light. From these results, the present inventors have found that photosynthetic organisms do not respond equally to light in the entire wavelength range, but show a specific response to light of a specific wavelength. The present invention has been completed based on such knowledge and provides the following configurations.
[1] A method for producing a dye or other useful substance, comprising: irradiating a photosynthetic organism with light having a peak wavelength of about 540 nm or less.
[2] The production method according to [1], wherein the light irradiation is performed intermittently.
[3] The production method according to [1] or [2], wherein the photosynthetic organism is a carotenoid pigment-producing bacterium.
[4] [1] or [2], wherein the photosynthetic organism is a microorganism belonging to any of the genus Haematococcus, the genus Dunaliella, the genus Chlorella, the genus Chlamydomonas, the genus Nannochloropsis, the genus Spirulina, the genus Ranabactera, and the genus Rhodobacter. Production method.
[5] The production method according to any one of [1] to [4], wherein an LED is used as a light source.
[6] a light source having a peak wavelength of about 540 nm or less, and
A reaction vessel for producing dyes and other useful substances, comprising: a culture vessel installed so that light from the light source irradiates the inside thereof.
[7] The reactor according to [6], wherein the light source comprises an LED.
[8] A method for inducing the production of a dye or other useful substance by the photosynthetic organism, which comprises irradiating the photosynthetic organism with light having a peak wavelength of about 540 nm or less.
[9] The method according to [8], wherein the light irradiation is performed intermittently.
[10] The method according to [8] or [9], wherein the photosynthetic organism is a carotenoid pigment-producing bacterium.
[11] The microorganism according to [8] or [8], wherein the photosynthetic organism belongs to any one of the genus Haematococcus, the genus Dunaliella, the genus Chlorella, the genus Chlamydomonas, the genus Nannochloropsis, the genus Spirulina, the genus Ranabana, and the genus Rhodobacter. Method.
[12] The method according to any one of [8] to [11], wherein an LED is used as a light source.
[0005]
BEST MODE FOR CARRYING OUT THE INVENTION
The present invention relates to a method for producing a dye or other useful substance using a photosynthetic organism, which comprises irradiating the photosynthetic organism with light having a peak wavelength of about 540 nm or less.
The "photosynthetic organism" in the present invention means an organism capable of performing photosynthesis, and includes photosynthetic bacteria (including cyanobacteria), algae (red algae, brown algae, green algae, diatoms, etc.), higher plants, and the like. As the photosynthetic bacterium, for example, a microorganism belonging to any of the genus Spirulina, the genus Anabaena, and the genus Rhodobacter is used. Examples of microorganisms belonging to the genus Spirulina include Spirulina platensis and Spirulina maxima. Similarly, examples of microorganisms belonging to the genera Anabaena and Rhodobactera include Anabaena variabilis, Anabaena cylindrica, and the like, and Rhodobacter capsulatus, Rhodobacter sphaeroides, and the like, respectively. As the algae, for example, a microorganism belonging to any one of the genus Haematococcus, the genus Dunaliella, the genus Chlorella, the genus Chlamydomonas, and the genus Nannochloropsis is used. Examples of microorganisms belonging to the genus Haematococcus include Haematococcus lacustris, Haematococcus pluvialis, and the like. Similarly, Dunaliella sp, Chlorella genus Chlamydomonas spp, and respectively as the microorganisms belonging to Nannochloropsis genus, Dunaliella salina, Dunaliella bardawil, etc., Chlorella vulgaris, Chlorella pyrenoidosa, etc., Chlamydomonas nivalis, Chlamydomonas reinhardtii, and the like, and Nannochloropsis salina, Nannochloropsis oculata, etc. Can be mentioned.
[0006]
Examples of useful substances that can be produced according to the present invention include useful pigments such as carotenoid pigments and chlorophyll pigments, and physiologically active substances such as eicosapentaenoic acid and vitamin C. The carotenoid pigment can be produced using, for example, a Haematococcus microorganism. Similarly, a chlorophyll pigment can be produced using a microorganism of the genus Spirulina, and a physiologically active substance can be produced using a microorganism of the genus Nannochloropsis, for example.
[0007]
The wavelength of the light to be irradiated is preferably shorter, that is, light having a peak wavelength of about 530 nm or less, more preferably light having a peak wavelength of about 470 nm or less, and still more preferably light having a peak wavelength of about 420 nm or less. Can be. The lower limit of the peak wavelength is not particularly limited, but is, for example, about 350 nm, preferably about 380 nm (light in the visible region).
Two or more types of light having different peak wavelengths can be used. For example, light having peak wavelengths of about 530 nm and about 470 nm, respectively, can be simultaneously irradiated. Of course, two or more types of light having different peak wavelengths may be individually irradiated.
[0008]
It is preferable to use light having a narrow wavelength width. This is because it is possible to select and irradiate only light in a wavelength region suitable for the production of a useful substance, and thereby to expect efficient production of a useful substance.
The step of irradiating light can be performed simultaneously with the step of culturing the photosynthetic organism. In other words, irradiation with light of the above-mentioned specific wavelength can be performed while culturing under conditions in which photosynthetic organisms proliferate. By doing so, the useful substance production process is substantially constituted by a one-step process, so that the operation can be simplified and the production cost can be reduced. In addition, the configuration of the culture device is simplified, and the production cost can be reduced from this point as well. The light irradiation step can be performed after the photosynthetic organism is multiplied.
[0009]
The culture conditions when the light irradiation step is performed simultaneously with the culture of the photosynthetic organism are not particularly limited as long as they are suitable for the growth of the photosynthetic organism to be cultured. That is, a known or well-known medium, culture temperature, pH, or the like suitable for growing the photosynthetic organism can be employed. As the medium, for example, a medium containing a carbon source, a nitrogen source, and if necessary, an inorganic chloride (inorganic ion) can be used. In order to promote the growth of photosynthetic organisms, a medium supplemented with vitamins, amino acids and the like can also be used. As a carbon source, for example, glucose, starch, dextrin, etc. can be adopted, as a nitrogen source, for example, polypeptone, yeast extract, meat extract, etc., and as inorganic chlorides, dipotassium phosphate, iron sulfate, magnesium sulfate, sodium chloride , Potassium chloride, calcium chloride, magnesium chloride and the like.
[0010]
The cultivation temperature is Haematococcus sp. For example, the temperature is in the range of 10 ° C to 30 ° C, preferably in the range of 15 ° C to 25 ° C. In addition, the pH of the medium is determined according to Haematococcus sp. For example, the range is adjusted to a range of 5.0 to 9.0, and preferably to a range of 6.0 to 7.5.
[0011]
The time for irradiating light is not particularly limited, and can be set in consideration of the intensity of light to be used, the amount of dye production, the production efficiency, and the like.
The method for irradiating light is not particularly limited. For example, irradiation may be performed continuously for a predetermined time or may be performed intermittently with a predetermined interval. Here, “intermittent irradiation” includes irradiation with pulsed light (pulse irradiation). If light irradiation is performed intermittently, power consumption can be reduced and useful substances can be efficiently produced. In Examples described later, it was confirmed that by performing pulse irradiation while maintaining a predetermined irradiation intensity, it is possible to secure both the yield and the power consumption.
In the case of pulse irradiation, the intensity of irradiation light, irradiation cycle (Hz), duty ratio (%), output (brightness) of a light source to be used, and the like are not particularly limited. For example, continuous lighting (duty ratio 100%) Assuming that the irradiation intensity is 5 μmol photon / m 2 / S or more, preferably 10 μmol photon / m 2 / S or more, more preferably 12 μmol photon / m 2 / S or more can be set.
The useful substance of interest is recovered from the culture solution or the photosynthetic organism after the light irradiation step. In the case of recovering from a culture solution, for example, a culture supernatant is filtered, centrifuged, etc. to remove insolubles, and then extraction, adsorption, column chromatography and other purification techniques are appropriately combined to obtain a desired useful substance. be able to. On the other hand, when recovering from the photosynthetic organism, for example, after the photosynthetic organism is crushed by pressure treatment, ultrasonic treatment, etc., separation and purification are performed in the same manner as above to collect the useful substance of interest. Can be. After the photosynthetic organism has been recovered from the culture solution by filtration, centrifugation, or the like, the above series of steps (crushing, separation, and purification of the photosynthetic organism) may be performed.
[0012]
As a light source in the light irradiation step, an LED (light emitting diode), a light bulb (bulb), a fluorescent lamp, a cold cathode tube, or the like can be used. However, since light in a specific wavelength region needs to be irradiated, the light source used When the wavelength spectrum of the light is wide, it is preferable to cut off unnecessary light. Here, one of the characteristics is that the LED can emit light with a narrow wavelength width. Therefore, if an LED is used, it is possible to irradiate light in a narrow wavelength range without requiring any special means such as cutting off a part of the light. Further, there is an effect that efficient use of light is achieved. It is preferable to adopt an LED using a gallium nitride-based compound semiconductor having high luminous efficiency as the LED.
[0013]
The above-described method for producing a useful substance of the present invention can be carried out using a dedicated reaction apparatus. This reaction apparatus is provided with a light source having a peak wavelength of about 540 nm or less, and a culture vessel installed so that light from the light source irradiates the inside thereof.
Although the type of the light source is not particularly limited as described above, it is preferable to use an LED. Further, it is preferable that a plurality of light sources are provided so that efficient irradiation can be performed. When a plurality of light sources are used, it is preferable that the light sources are arranged at equal intervals from each other in order to make the irradiation of light as uniform as possible.
[0014]
It is preferable from the viewpoint of production efficiency to provide a means for stirring the culture solution during the culture (for example, a rotating fan or a stirring rod) in the culture vessel. In addition, the culture apparatus may be provided with a means (apparatus) generally required for the culture apparatus, such as a warming means (heating / cooling means), a water injection means, a drainage means, and / or a timer.
Hereinafter, the configuration of the present invention will be described in more detail using examples.
[0015]
【Example】
[Example 1]
As an example of the present invention, production of astaxanthin by Haematococcus lacustris will be described.
Haematococcus lacustris NIES144 strain (preserved at the National Institute for Environmental Studies Microbial Strain Preservation Facility) in a basic medium (sodium acetate 16 mM, yeast extract 2.0 g / L, L-aspartic acid 2.5 mM, MgCl 2) 2 ・ 6H 2 O 1 mM, FeSO 4 ・ 7H 2 O 40 μM, CaCl 2 ・ 2H 2 Using 0.5 mM O, 30 mM potassium phosphate buffer (pH 6.8), an LED (light emission) at a predetermined light intensity in a 4.5 x 6.0 cm, 3.0 cm thick transparent glass culture vessel. The cells were cultured with stirring at 20 ° C under light irradiation with a diode) or a fluorescent lamp (comparative control group). The cell concentration, the absorbance at 470 nm of a methanol extract of the cells, and the dye component analysis with a reversed-phase HPLC column were performed with time.
[0016]
Four types of LEDs (red-based LED, green-based LED, blue-based LED, and violet-based LED) whose main emission wavelengths are in a red-based region, a green-based region, a blue-based region, and a violet-based region are used. FIG. 1 shows the emission spectrum of each LED. The red LED has an emission peak at about 625 nm, the green LED has an emission peak at about 525 nm, the blue LED has an emission peak at about 470 nm, and the violet LED has an emission peak at about 420 nm, and the spectrum width is much narrower than that of a fluorescent lamp ( The emission spectrum of a fluorescent lamp covers almost the entire visible light region (FIG. 2).
[0017]
FIG. 3 shows an increase curve of the cell concentration over time under each condition. As shown in FIG. 3, cultivation was performed at two different light intensities, but regardless of the same light intensity under any of the conditions, a red LED, a fluorescent lamp, a green LED, a blue LED, and a purple LED were used. There is a tendency for the growth rate to increase in the order of. This indicates that shorter wavelengths are more effective for proliferation in the wavelength range of the present embodiment.
[0018]
Further, as shown in the table of FIG. 4, the absorbance at 470 nm of the cell extract with methanol indicating the content of the carotenoid-based dye in the cells was substantially lower than that of the cells cultured under the conditions of irradiation with the red-based LED. , And 4 to 6 times under the condition using a blue LED or a violet LED. Under the condition using the green LED, the result was almost the same as the condition using the fluorescent lamp. The table in FIG. 4 shows the results of the measurement of the absorbance using the cells on the 7th day after the culture, and the absorbance when the cells having a dry cell weight of 100 μg were extracted into 0.5 ml of methanol (wavelength λ = 470 nm).
[0019]
The carotenoid pigment production increasing effect due to the irradiation of light having a short wavelength shown by the above results is shown in FIG. 5 by reverse phase HPLC analysis of a methanol extract using bacterial cells on day 7 after culturing (mobile phase solution). : Methanol, flow rate: 1 ml / min, measurement wavelength 470 nm). FIG. 5 shows the results of reversed-phase HPLC analysis under the conditions of irradiating the blue LED and the red LED, respectively.
[0020]
From the above results, if the Haematococcus lacustris is cultured under the condition of irradiating light of a light source mainly including light of a green wavelength region or less, and more preferably a blue wavelength region or less, the conventional guiding operation is not performed. It can be seen that carotenoid pigments can also be produced efficiently. In addition, the conventional production method involving an induction operation required two-stage culture, but under these conditions, carotenoid pigments can be efficiently produced while maintaining the cell growth ability. Therefore, the target dye can be efficiently produced even by one-stage culture, and the culturing operation and the culturing equipment can be simplified.
[0021]
[Example 2]
Next, astaxanthin was produced by changing the intensity of the irradiation light. The conditions other than the light intensity were the same as in Example 1. That is, Haematococcus lacustris NIES144 strain (preserved at the National Institute for Environmental Studies, Microbial Strain Preservation Facility) was used as a basic medium (sodium acetate 16 mM, yeast extract 2.0 g / L, L-aspartic acid 2.5 mM, MgCl 2). 2 ・ 6H 2 O 1 mM, FeSO 4 ・ 7H 2 O 40 μM, CaCl 2 ・ 2H 2 O, 0.5 mM, potassium phosphate buffer (pH 6.8, 30 mM), in a 4.5 × 6.0 cm, 3.0 cm thick transparent glass culture vessel, 12 μmol photon / m 2. 2 The cells were cultured with stirring at 20 ° C. under light irradiation with a blue LED (light emitting diode), a red LED, or a fluorescent lamp (comparative control group) at a light intensity of / s. The cell concentration, astaxanthin production amount, and astaxanthin cell content were quantified over time.
[0022]
FIG. 6 shows an increase curve of the cell concentration over time under the above culture conditions. As shown in FIG. 6, the growth rate was higher in the order of the blue LED, the fluorescent lamp, and the red LED, and the maximum value of the cell concentration was about 0.4 g / L. In addition, a growth delay of about 4 days was observed under light irradiation with a fluorescent lamp and about 2 days under a red LED, but was not observed under a blue LED. These results indicate that light irradiation by a blue LED is effective for proliferation.
[0023]
FIG. 7 shows an increase curve of the amount of astaxanthin produced (the weight of astaxanthin produced per liter of culture solution). The slope at the rise of the curve shows that the production rate of astaxanthin is highest under light irradiation by a blue LED, and the production rate under a red LED is almost the same as under a fluorescent lamp. The maximum production was 12 mg / L (after 11 days) under light irradiation with a red LED, and was equivalent to 13 mg / L (after 12 days) under fluorescent light, but 25 mg / L under a blue LED. (After 12 days).
[0024]
FIG. 8 shows the change over time in the astaxanthin content (percentage of astaxanthin weight per dry cell weight). Under light irradiation by a blue LED, a remarkable increase in the content was observed after 3 days, and a result reaching 6.7% was obtained after 9 days. On the other hand, the content under the red LED showed an increasing tendency similar to that under the fluorescent lamp, but was clearly slow compared with the increasing tendency under the blue LED. In addition, the maximum value of the content rate under the red LED was 3.0% (after 7 days), and under the fluorescent lamp, it was 3.5% (after 11 days), which was not much different from the previous value (about 3%). . From the above results, it is shown that light irradiation by a blue LED is effective for producing astaxanthin.
[0025]
From the above results, if the Haematococcus lacustris is cultured under the condition of irradiating light of a light source mainly containing light in the green wavelength region or less, more preferably in the blue wavelength region, it is not necessary to perform a conventional guiding operation. It can also be seen that carotenoid pigments can be efficiently produced and that high yields that could not be obtained with existing light sources can be expected.
[0026]
[Example 3]
An LED (light emitting diode) can emit pulsed light by intermittent power supply at a constant period. In this example, an astaxanthin production test was performed using such a pulsed light. The conditions were the same as in Examples 1 and 2, except that light irradiation with pulsed light was employed. That is, Haematococcus laccusris NIES144 strain (preserved at the National Institute for Environmental Studies, Microbial Strain Preservation Facility) was used in a basic medium (sodium acetate 16 mM, yeast extract 2.0 g / L, L-aspartic acid 2.5 mM, MgCl 2). 2 ・ 6H 2 O 1 mM, FeSO 4 ・ 7H 2 O 40 μM, CaCl 2 ・ 2H 2 Using 0.5 mM O, 30 mM potassium phosphate buffer (pH 6.8), the cells were cultured in a 4.5 × 6.0 cm, 3.0 cm thick transparent glass culture vessel with stirring at 20 ° C. . The pulsed light irradiation uses a blue LED and sets the frequency, which is the number of light reductions per second, to 100 Hz (each light reduction period corresponds to 10 milliseconds), and is the ratio of one lighting time to one period. The duty ratio was set to 33% and 67% (the total lighting time was equivalent to one third and two thirds of the light irradiation time, respectively). The light intensity at the time of pulsed light irradiation is 12 μmol photon / m when continuously lit (duty ratio). 2 / S. That is, when the duty ratio is 33% and 67%, the light intensity is 4.0 μmolphoton / m2, respectively. 2 / S and 8.0 μmol photon / m 2 / S. In addition, as a comparative control, a light intensity of 12 μmol photon / m2 was continuously obtained using a blue LED. 2 / S, and a condition of continuously irradiating with the same light intensity as the above pulse irradiation conditions using a blue LED similarly. Under the above culture conditions, the cell concentration and the amount of astaxanthin produced were determined over time.
[0027]
FIG. 9 shows the light intensity of 8.0 μmol photon / m. 2 6 shows the time-dependent change in cell concentration when culturing while irradiating pulse light at / s. When cultured under pulsed light irradiation, the light intensity was 12 μmol photon / m 2 It can be seen that almost the same cell growth behavior can be obtained when cultured under the condition of continuous light irradiation at / s and when cultured under the condition of continuous light irradiation at the same light intensity. It is.
FIG. 10 shows the results under pulsed light irradiation under the same conditions (light intensity 8.0 μmol photon / m 2). 2 / S) shows the change over time of the astaxanthin content (percentage of astaxanthin weight per dry cell weight) at time. The astaxanthin content under pulsed light irradiation is remarkably higher than that in the case of continuous light irradiation at the same light intensity, and the light intensity is 12 μmol photon / m 2. 2 / S is slightly lower than that in the case of continuous light irradiation at / s. From this result, it was found that pulsed light irradiation is more advantageous for astaxanthin production than continuous irradiation of light having the same light intensity when averaged over time.
FIG. 11 shows the relationship between the duty ratio and the maximum value of the astaxanthin content. The duty ratio is not proportional to the maximum astaxanthin content, and the maximum astaxanthin content of 5.7% when the duty ratio is reduced to 67% is about 90% of that when continuously irradiated (6.2%), Further, even if the duty ratio was lowered to 33%, the maximum content was 4.7%, which was only about 75% when continuously irradiated. This shows that pulsed light irradiation does not significantly reduce astaxanthin production while suppressing power consumption by intermittent light irradiation. As described above, according to the pulsed light irradiation, the power consumption can be reduced while securing a sufficient yield.
[0028]
The application object of the present invention is not limited to the above-described embodiment, and may be Spirulina sp. , Dunaliella sp. The present invention can also be applied to the production of pigments and the like and the production of other useful substances produced by photosynthetic organisms. Various modifications are included in the present invention without departing from the scope of the claims and within a range that can be easily conceived by those skilled in the art.
[0029]
【The invention's effect】
According to the method for producing a dye or other useful substance of the present invention, it is not necessary to separately perform a cell growth operation and an induction operation for a useful substance, that is, it is possible to produce a dye or the like using a photosynthetic organism by a simple operation. Become. This allows the production of dyes and the like using a single reaction apparatus (bioreactor). This means that batch or continuous production of dyes and the like can be performed easily and efficiently. On the other hand, when produced by intermittent light irradiation, power consumption can be reduced while ensuring a sufficient yield of useful substances.
[0028]
Hereinafter, the following matters will be disclosed.
11. Irradiating the photosynthetic organism with light having a peak wavelength of about 540 nm or less.
12. 10. the photosynthetic organism is a carotenoid pigment-producing bacterium; Production method described in the above.
13. 10. The photosynthetic organism is a microorganism belonging to any one of the genera Haematococcus, Dunaliella, Chlorella, Chlamydomonas, Nanochloropsis, Spirulina, Anabaena, and Rhodobacter. Production method described in the above.
14. 10. An LED is used as a light source. ~ 13. The production method according to any one of the above.
21. 5. The production method according to claim 1, wherein in the step, light in a visible region having a peak wavelength of about 540 nm or less is used.
31. The method according to claim 1, further comprising, after the step, recovering a useful substance produced in the culture solution or the cells. ~ 14. , And 21.
[Brief description of the drawings]
FIG. 1 is a graph showing an emission spectrum of each LED used in Example 1.
FIG. 2 is a graph showing an emission spectrum of a fluorescent lamp used as a control in Example 1.
FIG. 3 is a graph showing a growth curve of cell concentration in Example 1.
FIG. 4 is a table summarizing the results of absorbance measurement in Example 1. The absorbance (wavelength λ = 470 nm) obtained by extracting the cells (dry cell weight 100 μg) 7 days after culturing into 0.5 ml of methanol is shown.
FIG. 5 is a chromatogram showing the results of reversed-phase HPLC analysis (mobile phase liquid: methanol, flow rate: 1 ml / min, measurement wavelength: 470 nm) in Example 1. The HPLC analysis results under the conditions of irradiating light of the blue LED and the red LED respectively are shown.
FIG. 6 is a graph showing an increase curve of cell concentration in Example 2.
FIG. 7 is a graph showing an increase curve of astaxanthin production amount (weight of astaxanthin produced per liter of culture solution) in Example 2.
FIG. 8 is a graph showing the time course of the astaxanthin content (percentage of astaxanthin weight per dry cell weight) in Example 2.
FIG. 9 is a graph showing the change over time in the cell concentration in Example 3.
FIG. 10 is a graph showing the change over time in the astaxanthin content (percentage of astaxanthin weight per dry cell weight) in Example 3.
FIG. 11 is a graph showing the relationship between the duty ratio and the maximum value of the astaxanthin content in Example 3.

Claims (12)

ピーク波長が約540nm以下の光を光合成生物に照射する工程、を含む色素その他の有用物質の生産方法。Irradiating the photosynthetic organism with light having a peak wavelength of about 540 nm or less. 前記光の照射が間欠的に行なわれる、請求項1に記載の生産方法。The production method according to claim 1, wherein the light irradiation is performed intermittently. 前記光合成生物がカロテノイド系色素生産菌である、請求項1又は2に記載の生産方法。The production method according to claim 1, wherein the photosynthetic organism is a carotenoid pigment-producing bacterium. 前記光合成生物がHaematococcus属、Dunaliella属、Chlorella属、Chlamydomonas属、Nannochloropsis属、Spirulina属、Anabaena属、及びRhodobacter属のいずれかに属する微生物である、請求項1又は2に記載の生産方法。The method according to claim 1 or 2, wherein the photosynthetic organism is a microorganism belonging to any one of the genera Haematococcus, Dunaliella, Chlorella, Chlamydomonas, Nanochloropsis, Spirulina, Anabaena, and Rhodobacter. 光源としてLEDが用いられる、請求項1〜4のいずれかに記載の生産方法。The production method according to claim 1, wherein an LED is used as a light source. ピーク波長が約540nm以下の光源と、及び
前記光源からの光がその内部に照射するように設置される培養容器と、を備える色素その他の有用物質生産用の反応装置。
A reaction apparatus for producing dyes and other useful substances, comprising: a light source having a peak wavelength of about 540 nm or less; and a culture vessel installed so that light from the light source irradiates the inside thereof.
前記光源がLEDからなる、請求項6に記載の反応装置。7. The reactor of claim 6, wherein said light source comprises an LED. ピーク波長が約540nm以下の光を光合成生物に照射する、ことを特徴とする前記光合成生物による色素その他の有用物質の生産を誘導する方法。A method for inducing the production of dyes and other useful substances by the photosynthetic organism, which comprises irradiating the photosynthetic organism with light having a peak wavelength of about 540 nm or less. 前記光の照射が間欠的に行なわれる、請求項8に記載の方法。9. The method according to claim 8, wherein the light irradiation is performed intermittently. 前記光合成生物がカロテノイド系色素生産菌である、請求項8又は9に記載の方法。The method according to claim 8 or 9, wherein the photosynthetic organism is a carotenoid pigment-producing bacterium. 前記光合成生物がHaematococcus属、Dunaliella属、Chlorella属、Chlamydomonas属、Nannochloropsis属、Spirulina属、Anabaena属、及びRhodobacter属のいずれかに属する微生物である、請求項8又は9に記載の方法。10. The method according to claim 8 or 9, wherein the photosynthetic organism is a microorganism belonging to any of the genus Haematococcus, Dunaliella, Chlorella, Chlamydomonas, Nanochloropsis, Spirulina, Anabaena, and Rhodobacter. 光源としてLEDが用いられる、請求項8〜11のいずれかに記載の方法。The method according to claim 8, wherein an LED is used as a light source.
JP2003146229A 2002-05-28 2003-05-23 Method of producing pigment or other useful substance Pending JP2004147641A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003146229A JP2004147641A (en) 2002-05-28 2003-05-23 Method of producing pigment or other useful substance

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2002153289 2002-05-28
JP2002260203 2002-09-05
JP2003146229A JP2004147641A (en) 2002-05-28 2003-05-23 Method of producing pigment or other useful substance

Publications (1)

Publication Number Publication Date
JP2004147641A true JP2004147641A (en) 2004-05-27

Family

ID=32475150

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003146229A Pending JP2004147641A (en) 2002-05-28 2003-05-23 Method of producing pigment or other useful substance

Country Status (1)

Country Link
JP (1) JP2004147641A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006061126A (en) * 2004-08-30 2006-03-09 Nippon Ika Kikai Seisakusho:Kk Temperature-controlled device
JP2009072140A (en) * 2007-09-21 2009-04-09 National Fisheries Univ Method for reddening algae by light radiation and method for producing reddening material
CN103256556A (en) * 2013-05-16 2013-08-21 邯郸市盛德技术玻璃有限公司 Sunlight and manual light combined utilization type photosynthetic light turning glass plane light source
JP2015216873A (en) * 2014-05-16 2015-12-07 株式会社未来技術研究所 Microalgae culture system
EP2952573A4 (en) * 2013-02-04 2016-08-10 Showa Denko Kk Method for promoting growth of green algae
EP2952574A4 (en) * 2013-02-04 2016-08-17 Showa Denko Kk Method for promoting growth of green algae
JP2017042088A (en) * 2015-08-26 2017-03-02 新日鐵住金株式会社 Growth method of brown algae, and production method of hydration solid with brown algae
US9617510B2 (en) 2013-02-04 2017-04-11 Showa Denko K.K. Method of promoting growth of green algae
WO2018043147A1 (en) * 2016-09-01 2018-03-08 昭和電工株式会社 Method for culturing photosynthetic microalgae

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006061126A (en) * 2004-08-30 2006-03-09 Nippon Ika Kikai Seisakusho:Kk Temperature-controlled device
JP4606093B2 (en) * 2004-08-30 2011-01-05 株式会社日本医化器械製作所 Thermostatic device
JP2009072140A (en) * 2007-09-21 2009-04-09 National Fisheries Univ Method for reddening algae by light radiation and method for producing reddening material
EP2952573A4 (en) * 2013-02-04 2016-08-10 Showa Denko Kk Method for promoting growth of green algae
EP2952574A4 (en) * 2013-02-04 2016-08-17 Showa Denko Kk Method for promoting growth of green algae
US9617510B2 (en) 2013-02-04 2017-04-11 Showa Denko K.K. Method of promoting growth of green algae
US9624466B2 (en) 2013-02-04 2017-04-18 Showa Denko K.K. Method of promoting growth of green algae
US9683211B2 (en) 2013-02-04 2017-06-20 Showa Denko K.K. Method of promoting growth of green algae
CN103256556A (en) * 2013-05-16 2013-08-21 邯郸市盛德技术玻璃有限公司 Sunlight and manual light combined utilization type photosynthetic light turning glass plane light source
JP2015216873A (en) * 2014-05-16 2015-12-07 株式会社未来技術研究所 Microalgae culture system
JP2017042088A (en) * 2015-08-26 2017-03-02 新日鐵住金株式会社 Growth method of brown algae, and production method of hydration solid with brown algae
WO2018043147A1 (en) * 2016-09-01 2018-03-08 昭和電工株式会社 Method for culturing photosynthetic microalgae

Similar Documents

Publication Publication Date Title
Katsuda et al. Astaxanthin production by Haematococcus pluvialis under illumination with LEDs
García-González et al. Production of Dunaliella salina biomass rich in 9-cis-β-carotene and lutein in a closed tubular photobioreactor
Fábregas et al. Two-stage cultures for the production of astaxanthin from Haematococcus pluvialis
Kim et al. Enhanced production of astaxanthin by flashing light using Haematococcus pluvialis
Degen et al. A novel airlift photobioreactor with baffles for improved light utilization through the flashing light effect
Aburai et al. Composition of carotenoids and identification of aerial microalgae isolated from the surface of rocks in mountainous districts of Japan
Mogedas et al. β-Carotene production enhancement by UV-A radiation in Dunaliella bardawil cultivated in laboratory reactors
US7566551B2 (en) Method of producing xanthophyll
Chen et al. Enhancing the production of eicosapentaenoic acid (EPA) from Nannochloropsis oceanica CY2 using innovative photobioreactors with optimal light source arrangements
JP6158427B2 (en) Production method of astaxanthin
Suh et al. A novel double-layered photobioreactor for simultaneous Haematococcus pluvialis cell growth and astaxanthin accumulation
CN110484451B (en) Method for promoting haematococcus pluvialis to grow and accumulate astaxanthin
CN102511306B (en) Illumination method for increasing yield and main ingredient contents of Cordyceps militaris
JP2018529343A (en) A novel method for culturing unicellular red algae
JP2007097584A (en) Green alga with high content of astaxanthin and method for producing the same
Hagen et al. Accumulation of secondary carotenoids in flagellates of Haematococcus pluvialis (Chlorophyta) is accompanied by an increase in per unit chlorophyll productivity of photosynthesis
JPWO2018043146A1 (en) Culture method of photosynthetic microalga
JP2004147641A (en) Method of producing pigment or other useful substance
Ajayan et al. Performance of reflector coated LED Bio-box on the augmentation of growth and lipid production in aerophytic trebouxiophyceaen algae Coccomyxa sp.
KR20150028613A (en) Method for producing microalgae with increased astaxanthin content using LED irradiation and the microalgae thereof
CN106399108A (en) Simple high-efficiency haematococcus pluvialis nutritive cell culturing and harvesting method
US20210010049A1 (en) Method for producing astaxanthin
EP3508567A1 (en) Method for culturing photosynthetic microalgae
Mahari et al. Light-emitting diodes (LEDs) for culturing microalgae and cyanobacteria
CN109825546B (en) Method for producing astaxanthin by haematococcus pluvialis

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20041227

Free format text: JAPANESE INTERMEDIATE CODE: A621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070403

A02 Decision of refusal

Effective date: 20070821

Free format text: JAPANESE INTERMEDIATE CODE: A02