JP2004146838A - Method and device for plasma treatment - Google Patents

Method and device for plasma treatment Download PDF

Info

Publication number
JP2004146838A
JP2004146838A JP2003367071A JP2003367071A JP2004146838A JP 2004146838 A JP2004146838 A JP 2004146838A JP 2003367071 A JP2003367071 A JP 2003367071A JP 2003367071 A JP2003367071 A JP 2003367071A JP 2004146838 A JP2004146838 A JP 2004146838A
Authority
JP
Japan
Prior art keywords
substrate
antenna
vacuum vessel
vacuum container
vacuum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003367071A
Other languages
Japanese (ja)
Other versions
JP4120561B2 (en
Inventor
Tomohiro Okumura
奥村 智洋
Yukihiro Maekawa
前川 幸弘
Izuru Matsuda
松田 出
Takayuki Kai
甲斐 隆行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2003367071A priority Critical patent/JP4120561B2/en
Publication of JP2004146838A publication Critical patent/JP2004146838A/en
Application granted granted Critical
Publication of JP4120561B2 publication Critical patent/JP4120561B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Plasma Technology (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and a device for plasma treatment by which the expansion of plasma to an area on the downstream side of a substrate electrode is made to hardly occur, and power efficiency is improved and, in addition, maintenance work is reduced. <P>SOLUTION: Plasma is generated in a vacuum vessel (1) by impressing high-frequency power of 100 Khz to 3 GHz in frequency upon an antenna (5) provided to face the substrate electrode (6) in the vessel (1), by controlling the inside of the vessel (1) to a prescribed pressure by exhausting the vessel (1) while a gas is supplied to the vessel (1). At that time, the vessel (1) is grounded, and a substrate (7) is treated in a state where the vessel (1) is divided into the substrate (7) existing side and the substrate (7) nonexisting side by a wave absorber (23) having many holes. <P>COPYRIGHT: (C)2004,JPO

Description

 この発明は、半導体等の電子デバイスやマイクロマシンの製造に利用されるプラズマ処理方法及び装置に関するものである。 The present invention relates to a plasma processing method and apparatus used for manufacturing electronic devices such as semiconductors and micromachines.

 以下、従来のプラズマ処理方法の一例として、パッチアンテナ方式プラズマ源を用いたプラズマ処理について、図6を参照して説明する。図6において、真空容器1内に、ガス供給装置2から所定のガスを導入しつつ、排気装置としてのターボ分子ポンプ3により排気を行い、真空容器1内を所定の圧力に保ちながら、アンテナ用高周波電源4により100MHzの高周波電力を真空容器1内に突出して設けられたアンテナ5に供給することにより、真空容器1内にプラズマが発生し、基板電極6上に載置された基板7に対してプラズマ処理を行うことができる。 Hereinafter, as an example of a conventional plasma processing method, a plasma processing using a patch antenna type plasma source will be described with reference to FIG. In FIG. 6, while a predetermined gas is introduced from a gas supply device 2 into a vacuum container 1, the gas is exhausted by a turbo-molecular pump 3 as an exhaust device. By supplying high-frequency power of 100 MHz to the antenna 5 protruding into the vacuum vessel 1 by the high-frequency power supply 4, plasma is generated in the vacuum vessel 1 and the plasma is generated on the substrate 7 placed on the substrate electrode 6. To perform a plasma treatment.

 また、基板電極6に高周波電力を供給するための基板電極用高周波電源8が設けられており、基板7に到達するイオンエネルギーを制御することができるようになっている。アンテナ5へ供給される高周波電圧は、給電棒9により、アンテナ5の中心付近へ給電される。また、アンテナ5の中心とも周辺とも異なる複数の部位と真空容器1の基板7に対向する面1’とが、ショートピン10により短絡されている。アンテナ5と真空容器1との間に誘電板11が挟まれ、給電棒9及びショートピン10は、誘電板11に設けられた貫通穴を介してそれぞれアンテナ5とアンテナ用高周波電源4、アンテナ5と真空容器1’とを接続している。また、アンテナ5の表面は、カバー12により覆われている。 Also, a high-frequency power supply 8 for the substrate electrode for supplying high-frequency power to the substrate electrode 6 is provided, so that the ion energy reaching the substrate 7 can be controlled. The high-frequency voltage supplied to the antenna 5 is supplied to the vicinity of the center of the antenna 5 by the power supply rod 9. Further, a plurality of portions different from the center and the periphery of the antenna 5 and the surface 1 ′ of the vacuum vessel 1 facing the substrate 7 are short-circuited by the short pins 10. A dielectric plate 11 is sandwiched between the antenna 5 and the vacuum vessel 1, and the feeder rod 9 and the short pin 10 are respectively connected to the antenna 5, the antenna high-frequency power supply 4, and the antenna 5 through through holes provided in the dielectric plate 11. And the vacuum vessel 1 '. The surface of the antenna 5 is covered with a cover 12.

 また、誘電板11と誘電板11の周辺部に設けられた誘電体リング13との間の溝状の空間と、アンテナ5とアンテナ5の周辺部に設けられた導体リング14との間の溝状の空間からなるプラズマトラップ15が設けられている。 Further, a groove-shaped space between the dielectric plate 11 and a dielectric ring 13 provided around the dielectric plate 11 and a groove between the antenna 5 and a conductor ring 14 provided around the antenna 5 are provided. There is provided a plasma trap 15 composed of a space in the shape of a circle.

 ターボ分子ポンプ3及び排気口16は、基板電極6の直下に配置されており、また、真空容器1を所定の圧力に制御するための調圧弁17は、基板電極6の直下で、かつ、ターボ分子ポンプ3の直上に位置する昇降弁である。 The turbo molecular pump 3 and the exhaust port 16 are arranged directly below the substrate electrode 6, and a pressure regulating valve 17 for controlling the vacuum vessel 1 to a predetermined pressure is provided immediately below the substrate electrode 6 and the turbocharger. The elevating valve is located immediately above the molecular pump 3.

 また、インナチャンバ18によって真空容器1の内壁面が覆われており、プラズマ処理によって真空容器1が汚れるのを防止している。所定数の基板7を処理した後、汚れたインナチャンバ18をローテーションパーツと交換することで、速やかにメンテナンス作業を実施することができるように考慮されている。
特開平10−12597号公報 特開平7−29894号公報 特開2000−91315号公報 特開2000−195843号公報 特開平4−225226号公報
Further, the inner wall surface of the vacuum vessel 1 is covered by the inner chamber 18 to prevent the vacuum vessel 1 from being stained by the plasma processing. After the predetermined number of substrates 7 have been processed, the dirty inner chamber 18 is replaced with a rotation part so that maintenance work can be promptly performed.
JP-A-10-12597 JP-A-7-29894 JP 2000-91315 A JP-A-2000-195842 JP-A-4-225226

 しかしながら、従来例で述べたプラズマ処理においては、処理条件によっては基板電極6よりも下流(図6のハッチング部分)にまでプラズマが拡がるという問題点がある。 However, in the plasma processing described in the conventional example, there is a problem that, depending on the processing conditions, the plasma spreads downstream of the substrate electrode 6 (hatched portion in FIG. 6).

 下流にまで拡がったプラズマは、基板7を処理するのに全く不要であるため、処理チャンバとしての真空容器1に投入されたパワーに対する処理効率の悪化を招く。また、処理による真空容器1の汚れも下流まで拡がり、メンテナンス作業の増大をもたらす。 (4) Since the plasma spread to the downstream is completely unnecessary for processing the substrate 7, the processing efficiency is deteriorated with respect to the power supplied to the vacuum chamber 1 as a processing chamber. In addition, the contamination of the vacuum vessel 1 due to the processing also spreads downstream, resulting in an increase in maintenance work.

 本発明は、上記従来の問題点に鑑み、基板電極よりも下流の領域へのプラズマの拡がりが起きにくく、パワー効率が良く、かつ、メンテナンス作業が軽減できるプラズマ処理方法及び装置を提供することを目的としている。 The present invention has been made in view of the above-described conventional problems, and provides a plasma processing method and apparatus in which plasma is hardly spread to a region downstream of a substrate electrode, power efficiency is high, and maintenance work can be reduced. The purpose is.

 本願の第1発明のプラズマ処理方法は、真空容器内にガスを供給しつつ排気し、真空容器内を所定の圧力に制御しながら、真空容器内の基板電極に対向して設けられたアンテナに周波数100kHz乃至3GHzの高周波電力を印加することにより真空容器内にプラズマを発生させ、基板を処理するプラズマ処理方法であって、前記真空容器は接地され、かつ、多数の穴が設けられた電波吸収体によって真空容器が基板のある側と基板の無い側に分離された状態で基板を処理することを特徴とする。 In the plasma processing method according to the first invention of the present application, the gas is exhausted while supplying gas into the vacuum vessel, and the antenna provided to face the substrate electrode in the vacuum vessel while controlling the inside of the vacuum vessel to a predetermined pressure. A plasma processing method for processing a substrate by generating plasma in a vacuum vessel by applying high-frequency power having a frequency of 100 kHz to 3 GHz, wherein the vacuum vessel is grounded and has a plurality of holes. The method is characterized in that the substrate is processed in a state where the vacuum container is separated into a side with the substrate and a side without the substrate by a body.

 また、本願の第2発明のプラズマ処理装置は、真空容器と、真空容器内にガスを供給するガス供給装置と、真空容器内を排気する排気装置と、真空容器内を所定の圧力に制御する調圧弁と、真空容器内に基板を載置する基板電極と、基板電極に対向して設けられたアンテナと、前記アンテナに周波数100kHz乃至3GHzの高周波電力を供給する高周波電源とを備えたプラズマ処理装置であって、前記真空容器は接地され、かつ、多数の穴が設けられた電波吸収体によって真空容器が基板のある側と基板の無い側に分離されていることを特徴とする。 Further, the plasma processing apparatus of the second invention of the present application controls the vacuum vessel, a gas supply device that supplies gas into the vacuum vessel, an exhaust device that evacuates the vacuum vessel, and controls the inside of the vacuum vessel to a predetermined pressure. Plasma processing comprising a pressure regulating valve, a substrate electrode for mounting a substrate in a vacuum vessel, an antenna provided to face the substrate electrode, and a high-frequency power supply for supplying high-frequency power having a frequency of 100 kHz to 3 GHz to the antenna. The apparatus is characterized in that the vacuum vessel is grounded, and the vacuum vessel is separated into a side without a substrate and a side without a substrate by a radio wave absorber provided with a number of holes.

 このとき、真空容器とアンテナとの間に誘電板を有し、前記アンテナ及び前記誘電板が真空容器内に突出した構造をなし、かつ、この誘電板の中心付近に設けられた貫通穴を介してアンテナに高周波電圧を給電し、誘電板の中心とも周辺とも異なる一部位に設けられ、かつ、アンテナの中心に対してほぼ等配置されている貫通穴を介して、真空容器とアンテナとをショートピンによって短絡すると好適である。 At this time, a dielectric plate is provided between the vacuum container and the antenna, the antenna and the dielectric plate have a structure protruding into the vacuum container, and a through hole provided near the center of the dielectric plate. High-frequency voltage to the antenna, and short-circuit the vacuum vessel and the antenna through a through hole that is provided at a position different from the center and the periphery of the dielectric plate, and is arranged approximately equally to the center of the antenna. Preferably, it is shorted by a pin.

 また、本願の第3発明のプラズマ処理装置は、接地された真空容器と、真空容器内にガスを供給するガス供給装置と、真空容器内を排気する排気装置と、真空容器内を所定の圧力に制御する調圧弁と、真空容器内に基板を載置する基板電極と、前記基板電極に対向して設けられたアンテナと、前記アンテナに周波数100kHz乃至3GHzの高周波電力を供給する高周波電源とを備えたプラズマ処理装置であって、外周部のほぼ全部が接地された多孔導体と、多孔電波吸収体によって真空容器が基板のある側と基板の無い側に分離されていることを特徴とする。 The plasma processing apparatus according to the third aspect of the present invention includes a grounded vacuum container, a gas supply device for supplying gas into the vacuum container, an exhaust device for exhausting the inside of the vacuum container, and a predetermined pressure inside the vacuum container. A pressure regulating valve, a substrate electrode for placing a substrate in a vacuum vessel, an antenna provided to face the substrate electrode, and a high frequency power supply for supplying high frequency power of 100 kHz to 3 GHz to the antenna. A plasma processing apparatus comprising: a porous conductor having substantially the entire outer periphery grounded; and a vacuum vessel separated by a porous electromagnetic wave absorber into a side with a substrate and a side without a substrate.

 このとき、多孔導体が、2つの領域に分離された真空容器の基板の有る側に、多孔電波吸収体が、2つの領域に分離された真空容器の基板の無い側に面していると好適である。 At this time, it is preferable that the porous conductor faces the side where the substrate of the vacuum container separated into the two regions is present, and the porous electromagnetic wave absorber faces the side where the substrate of the vacuum container separated into the two regions is not present. It is.

 以上の説明から明らかなように、本願の第1発明のプラズマ処理方法によれば、真空容器内にガスを供給しつつ排気し、真空容器内を所定の圧力に制御しながら、真空容器内の基板電極に対向して設けられたアンテナに周波数100kHz乃至3GHzの高周波電力を印加することにより真空容器内にプラズマを発生させ、基板を処理するプラズマ処理方法であって、前記真空容器は接地され、かつ、多数の穴が設けられた電波吸収体によって真空容器が基板のある側と基板の無い側に分離された状態で基板を処理するため、パワー効率が良く、かつ、メンテナンス作業が軽減できるプラズマ処理方法を実現できる。 As is clear from the above description, according to the plasma processing method of the first invention of the present application, the gas is exhausted while supplying the gas inside the vacuum vessel, and the inside of the vacuum vessel is controlled while controlling the inside of the vacuum vessel to a predetermined pressure. A plasma processing method for generating plasma in a vacuum vessel by applying high-frequency power having a frequency of 100 kHz to 3 GHz to an antenna provided to face a substrate electrode and treating a substrate, wherein the vacuum vessel is grounded; In addition, since the substrate is processed in a state where the vacuum vessel is separated into the side with the substrate and the side without the substrate by a radio wave absorber provided with a large number of holes, the plasma efficiency is high and the maintenance work can be reduced. A processing method can be realized.

 また、本願の第2発明のプラズマ処理装置によれば、真空容器と、真空容器内にガスを供給するガス供給装置と、真空容器内を排気する排気装置と、真空容器内を所定の圧力に制御する調圧弁と、真空容器内に基板を載置する基板電極と、基板電極に対向して設けられたアンテナと、前記アンテナに周波数100kHz乃至3GHzの高周波電力を供給する高周波電源とを備えたプラズマ処理装置であって、前記真空容器は接地され、かつ、多数の穴が設けられた電波吸収体によって真空容器が基板のある側と基板の無い側に分離された状態で基板を処理するため、基板電極よりも下流の領域へのプラズマの拡がりが起きにくく、パワー効率が良く、かつ、メンテナンス作業が軽減できるプラズマ処理装置を実現できる。 According to the plasma processing apparatus of the second invention of the present application, a vacuum vessel, a gas supply device that supplies gas into the vacuum vessel, an exhaust device that exhausts the inside of the vacuum vessel, and the inside of the vacuum vessel is maintained at a predetermined pressure. A pressure regulating valve to be controlled, a substrate electrode for placing the substrate in a vacuum vessel, an antenna provided to face the substrate electrode, and a high-frequency power supply for supplying high-frequency power having a frequency of 100 kHz to 3 GHz to the antenna. A plasma processing apparatus, wherein the vacuum vessel is grounded, and for processing a substrate in a state where the vacuum vessel is separated into a side with a substrate and a side without a substrate by a radio wave absorber provided with a number of holes. In addition, it is possible to realize a plasma processing apparatus in which plasma is hardly spread to a region downstream of the substrate electrode, power efficiency is high, and maintenance work can be reduced.

 更に、本願の第3発明のプラズマ処理装置によれば、接地された真空容器と、真空容器内にガスを供給するガス供給装置と、真空容器内を排気する排気装置と、真空容器内を所定の圧力に制御する調圧弁と、真空容器内に基板を載置する基板電極と、前記基板電極に対向して設けられたアンテナと、前記アンテナに周波数100kHz乃至3GHzの高周波電力を供給する高周波電源とを備えたプラズマ処理装置であって、外周部のほぼ全部が接地された多孔導体と、多孔電波吸収体によって真空容器が基板のある側と基板の無い側に分離された状態で基板を処理するため、パワー効率が良く、かつ、メンテナンス作業が軽減できるプラズマ処理装置を実現できる。 Further, according to the plasma processing apparatus of the third invention of the present application, a grounded vacuum container, a gas supply device for supplying gas into the vacuum container, an exhaust device for exhausting the inside of the vacuum container, and Pressure regulating valve, a substrate electrode for mounting a substrate in a vacuum vessel, an antenna provided opposite to the substrate electrode, and a high-frequency power supply for supplying high-frequency power having a frequency of 100 kHz to 3 GHz to the antenna A plasma processing apparatus comprising: a porous conductor having substantially the entire outer periphery grounded; and a substrate processed in a state in which the vacuum vessel is separated into a side having no substrate and a side having no substrate by a porous electromagnetic wave absorber. Therefore, it is possible to realize a plasma processing apparatus that has good power efficiency and can reduce maintenance work.

 図1に、本発明の実施形態において用いたプラズマ処理装置の断面図を示す。 FIG. 1 is a sectional view of a plasma processing apparatus used in the embodiment of the present invention.

 図1において、真空容器1内に、ガス供給装置2から所定のガスを導入しつつ、排気装置としてのターボ分子ポンプ3により排気を行い、真空容器1内を所定の圧力に保ちながら、アンテナ用高周波電源4により100MHzの高周波電力を真空容器1内に突出して設けられたアンテナ5に供給することにより、真空容器1内にプラズマが発生し、基板電極6上に載置された基板7に対してプラズマ処理を行うことができる。 In FIG. 1, while a predetermined gas is introduced from a gas supply device 2 into a vacuum vessel 1, the gas is exhausted by a turbo-molecular pump 3 as an exhaust device. By supplying high-frequency power of 100 MHz to the antenna 5 protruding into the vacuum vessel 1 by the high-frequency power supply 4, plasma is generated in the vacuum vessel 1 and the plasma is generated on the substrate 7 placed on the substrate electrode 6. To perform a plasma treatment.

 また、基板電極6に高周波電力を供給するための基板電極用高周波電源8が設けられており、基板7に到達するイオンエネルギーを制御することができるようになっている。アンテナ5へ供給される高周波電圧は、給電棒9により、アンテナ5の中心付近へ給電される。また、アンテナ5の中心とも周辺とも異なる複数の部位と真空容器1の基板7に対向する面1’とが、ショートピン10により短絡されている。アンテナ5と真空容器1との間に誘電板11が挟まれ、給電棒9及びショートピン10は、誘電板11に設けられた貫通穴を介してそれぞれアンテナ5とアンテナ用高周波電源4、アンテナ5と真空容器1’とを接続している。 Also, a high-frequency power supply 8 for the substrate electrode for supplying high-frequency power to the substrate electrode 6 is provided, so that the ion energy reaching the substrate 7 can be controlled. The high-frequency voltage supplied to the antenna 5 is supplied to the vicinity of the center of the antenna 5 by the power supply rod 9. Further, a plurality of portions different from the center and the periphery of the antenna 5 and the surface 1 ′ of the vacuum vessel 1 facing the substrate 7 are short-circuited by the short pins 10. A dielectric plate 11 is sandwiched between the antenna 5 and the vacuum vessel 1, and the feeder rod 9 and the short pin 10 are respectively connected to the antenna 5, the antenna high-frequency power supply 4, and the antenna 5 through through holes provided in the dielectric plate 11. And the vacuum vessel 1 '.

 また、アンテナ5の表面は、カバー12により覆われている。また、誘電板11と誘電板11の周辺部に設けられた誘電体リング13との間の溝状の空間と、アンテナ5とアンテナ5の周辺部に設けられた導体リング14との間の溝状の空間からなるプラズマトラップ15が設けられている。 表面 The surface of the antenna 5 is covered with the cover 12. Further, a groove-shaped space between the dielectric plate 11 and a dielectric ring 13 provided around the dielectric plate 11 and a groove between the antenna 5 and a conductor ring 14 provided around the antenna 5 are provided. There is provided a plasma trap 15 composed of a space in the shape of a circle.

 ターボ分子ポンプ3及び排気口16は、基板電極6の直下に配置されており、また、真空容器1を所定の圧力に制御するための調圧弁17は、基板電極6の直下で、かつ、ターボ分子ポンプ3の直上に位置する昇降弁である。また、インナチャンバ18によって真空容器1の内壁面が覆われており、プラズマ処理によって真空容器1が汚れるのを防止している。所定数の基板7を処理した後、汚れたインナチャンバ18をローテーションパーツと交換することで、速やかにメンテナンス作業を実施することができるよう、考慮されている。基板電極6は、4本の支柱19により、真空容器1に固定されている。 The turbo molecular pump 3 and the exhaust port 16 are arranged directly below the substrate electrode 6, and a pressure regulating valve 17 for controlling the vacuum vessel 1 to a predetermined pressure is provided immediately below the substrate electrode 6 and the turbocharger. The elevating valve is located immediately above the molecular pump 3. Further, the inner wall of the vacuum vessel 1 is covered by the inner chamber 18 to prevent the vacuum vessel 1 from being contaminated by the plasma processing. After the predetermined number of substrates 7 have been processed, the dirty inner chamber 18 is replaced with a rotation part so that maintenance work can be promptly performed. The substrate electrode 6 is fixed to the vacuum vessel 1 by four columns 19.

 真空容器1は接地され、かつ、電波吸収体23によって真空容器1が基板7のある側と基板7の無い側(図1のハッチング部分)に分離されている。電波吸収体23として、フェライトなどの渦電流損失を用いるものを利用することができる。 (4) The vacuum vessel 1 is grounded, and the vacuum vessel 1 is separated by a radio wave absorber 23 into a side with the substrate 7 and a side without the substrate 7 (hatched portion in FIG. 1). As the electromagnetic wave absorber 23, one using eddy current loss such as ferrite can be used.

 また、図2のプラズマ処理装置の平面図に示すように、電波吸収体23に設けられた穴のピッチは12mmである。なお、簡単のため、図2では穴の大きさを大きめに描いており、実際には穴の数はもっと多い。典型的には、基板電極6の直径は220mm、インナチャンバ18の内径は450mmであり、電波吸収体23に設けられた穴は半径方向に(450−220)/(2×12)≒9個設けられている。 (2) As shown in the plan view of the plasma processing apparatus in FIG. 2, the pitch of the holes provided in the radio wave absorber 23 is 12 mm. For the sake of simplicity, the size of the holes is drawn larger in FIG. 2, and the number of holes is actually larger. Typically, the diameter of the substrate electrode 6 is 220 mm, the inner diameter of the inner chamber 18 is 450 mm, and the holes provided in the radio wave absorber 23 are (450−220) / (2 × 12) ≒ 9 holes in the radial direction. Is provided.

 また、インナチャンバ18の開口部21(真空容器1内へのウエハの出し入れを行うためのゲートや、プラズマ発光を観察するためのビューイングポートなど)から、2つの領域に分離された真空容器1の基板7の無い側に電磁波が漏れないよう、インナチャンバ18の開口部21より下流側の接地点22(図1)にて接地している。 Further, the vacuum vessel 1 separated into two regions from an opening 21 of the inner chamber 18 (a gate for taking a wafer in and out of the vacuum vessel 1 and a viewing port for observing plasma emission). In order to prevent the electromagnetic wave from leaking to the side where the substrate 7 is not provided, a grounding point 22 (FIG. 1) downstream of the opening 21 of the inner chamber 18 is provided.

 ここでアンテナ5の平面図を図3に示す。 FIG. 3 shows a plan view of the antenna 5.

 図3において、ショートピン10は3ヶ所に設けられており、それぞれのショートピン10がアンテナ5の中心に対して等配置されている。 In FIG. 3, the short pins 10 are provided at three places, and the short pins 10 are equally arranged with respect to the center of the antenna 5.

 図1乃至図2に示すプラズマ処理装置において、白金膜付き基板をエッチングした。エッチング条件は、アルゴン/塩素=260/20sccm、圧力=0.3Pa、アンテナ電力=1500W、基板電極電力=400Wである。このような条件でエッチング処理したところ、基板電極6よりも下流の領域(図1のハッチング部分)へのプラズマの拡がりが起きず、良好な放電状態を得ることができた。 に お い て In the plasma processing apparatus shown in FIGS. 1 and 2, the substrate with a platinum film was etched. The etching conditions are argon / chlorine = 260/20 sccm, pressure = 0.3 Pa, antenna power = 1500 W, and substrate electrode power = 400 W. When etching was performed under such conditions, plasma did not spread to a region downstream of the substrate electrode 6 (hatched portion in FIG. 1), and a favorable discharge state could be obtained.

 このように、下流での放電が抑制できた理由は、電波吸収体23によって高周波電磁波が遮蔽(電磁波が吸収・減衰)され、下流へ電磁波が到達しなくなったためであると考えられる。本発明の第2実施形態においては、電波吸収体23の外周部を接地する必要が無く、設計上の自由度が増すという利点がある。 放電 It is considered that the reason why the downstream discharge can be suppressed is that the radio wave absorber 23 shields the high-frequency electromagnetic wave (absorbs and attenuates the electromagnetic wave) and stops the electromagnetic wave from reaching the downstream. In the second embodiment of the present invention, there is no need to ground the outer peripheral portion of the radio wave absorber 23, and there is an advantage that the degree of freedom in design is increased.

 本発明の実施形態では、下流までプラズマが拡がらなくなったため、従来例に比べて処理チャンバとしての真空容器1に投入されたパワーに対する処理効率が向上し、同一のエッチング条件で比較すると、エッチレートが4%向上した(従来例:82nm/min、本発明の第2実施形態:85nm/min)。また、処理による真空容器1の汚れも下流まで拡がらず、メンテナンス作業の負担が軽減できた。 In the embodiment of the present invention, since the plasma does not spread to the downstream, the processing efficiency with respect to the power supplied to the vacuum chamber 1 as the processing chamber is improved as compared with the conventional example, and the etching rate is compared under the same etching condition. Was improved by 4% (conventional example: 82 nm / min, second embodiment of the present invention: 85 nm / min). In addition, the contamination of the vacuum vessel 1 due to the processing did not spread to the downstream, so that the burden of maintenance work could be reduced.

 また、本発明の実施形態においては、本発明の適用範囲のうち、真空容器の形状、アンテナの形状及び配置等に関して様々なバリエーションのうちの一部を例示したに過ぎない。本発明の適用にあたり、ここで例示した以外にも様々なバリエーションが考えられることは言うまでもない。 Also, in the embodiment of the present invention, only a part of various variations regarding the shape of the vacuum vessel, the shape and the arrangement of the antenna, etc. in the applicable range of the present invention are exemplified. In applying the present invention, it goes without saying that various variations other than those exemplified here are possible.

 また、本発明の実施形態においては、誘電板の中心付近に設けられた貫通穴を介してアンテナに高周波電圧を給電し、誘電板の中心とも周辺とも異なる一部位に設けられ、かつ、アンテナの中心に対してほぼ等配置されている貫通穴を介して、アンテナと真空容器とをショートピンによって短絡する場合について説明したが、このような構成とすることでプラズマの等方性をより高めることができる。基板が小さい場合などは、ショートピンを用いなくても、十分に高い面内均一性が得られることは、いうまでもない。 Also, in the embodiment of the present invention, a high-frequency voltage is supplied to the antenna through a through hole provided near the center of the dielectric plate, provided at a position different from the center and the periphery of the dielectric plate, and The case where the antenna and the vacuum vessel are short-circuited by the short pin through the through-holes substantially equidistant from the center has been described, but by adopting such a configuration, the isotropy of the plasma can be further improved. Can be. Needless to say, when the substrate is small, sufficiently high in-plane uniformity can be obtained without using short pins.

 また、本発明の実施形態において、アンテナと真空容器との間に設けられた環状でかつ溝状のプラズマトラップによって、基板上のプラズマ分布が制御された状態で基板を処理する場合について説明したが、このような構成とすることでプラズマの均一性をより高めることができる。基板が小さい場合などは、プラズマトラップを用いなくても、十分に高い面内均一性が得られることは言うまでもない。 Further, in the embodiment of the present invention, the case where the substrate is processed in a state where the plasma distribution on the substrate is controlled by the annular and groove-shaped plasma trap provided between the antenna and the vacuum vessel has been described. With such a configuration, the uniformity of the plasma can be further improved. Needless to say, when the substrate is small, sufficiently high in-plane uniformity can be obtained without using a plasma trap.

 また、アンテナとして図4に示した誘導結合プラズマ源におけるコイル24や、図5に示す表面波プラズマ源における電磁波放射アンテナ25などを用いる場合にも、本発明は有効である。 The present invention is also effective when the coil 24 in the inductively coupled plasma source shown in FIG. 4 or the electromagnetic wave radiation antenna 25 in the surface wave plasma source shown in FIG. 5 is used as the antenna.

 また、本発明の実施形態において、真空容器を排気するためのターボ分子ポンプが、基板電極の直下に配置されており、かつ、2つの領域に分離された真空容器の基板の無い側に、排気口が位置しており、真空容器を所定の圧力に制御するための調圧弁が、基板電極の直下で、かつ、ターボ分子ポンプの直上に位置する昇降弁であり、2つの領域に分離された真空容器の基板の無い側に、調圧弁が位置している場合について説明したが、図6に示すように、ターボ分子ポンプ3が基板電極6の直下に配置されておらず、調圧弁17が基板電極6の直下に配置されておらず、調圧弁17が昇降弁でない場合においても、本発明は有効である。 Further, in the embodiment of the present invention, a turbo-molecular pump for evacuating the vacuum vessel is disposed immediately below the substrate electrode, and is evacuated to the substrate-free side of the vacuum vessel separated into two regions. The opening is located, and the pressure regulating valve for controlling the vacuum vessel to a predetermined pressure is an elevating valve located immediately below the substrate electrode and immediately above the turbo molecular pump, and is separated into two regions. Although the case where the pressure regulating valve is located on the side of the vacuum vessel where no substrate is provided has been described, as shown in FIG. 6, the turbo molecular pump 3 is not disposed immediately below the substrate electrode 6 and the pressure regulating valve 17 is provided. The present invention is effective even when the pressure regulating valve 17 is not arranged directly below the substrate electrode 6 and the pressure regulating valve 17 is not an elevating valve.

 また、真空容器内の圧力が、0.3Paである場合について説明したが、真空容器内の圧力が低いほど下流でのプラズマが発生し易いので、本発明は、真空容器内の圧力が10Pa以下である場合に、有効な方法である。さらに、真空容器内の圧力が、1Pa以下である場合に、特に有効な方法である。 Also, the case where the pressure in the vacuum vessel is 0.3 Pa has been described. However, the lower the pressure in the vacuum vessel, the more easily downstream plasma is generated. Is an effective method. Further, it is a particularly effective method when the pressure in the vacuum vessel is 1 Pa or less.

 また、アンテナに印加する高周波電力の周波数が、100MHzである場合について説明したが、低圧力化でのプラズマ処理には、100kHz乃至3GHzの高周波電力を用いることができ、そのすべての領域において本発明は有効である。しかし、高周波電力の周波数が高いほど、電磁波が広い範囲に拡がっていく傾向があるので、下流でのプラズマが発生しやすい。したがって、本発明は、高周波電力の周波数が高い場合、とくに、50MHz乃至3GHzである場合に有効な方法である。 Although the case where the frequency of the high-frequency power applied to the antenna is 100 MHz has been described, high-frequency power of 100 kHz to 3 GHz can be used for the plasma treatment at a low pressure, and the present invention is applied to all the regions. Is valid. However, the higher the frequency of the high-frequency power, the more the electromagnetic wave tends to spread over a wider range, so that downstream plasma is more likely to be generated. Therefore, the present invention is an effective method when the frequency of the high-frequency power is high, particularly when the frequency is 50 MHz to 3 GHz.

 更に、本発明の実施形態において、電波吸収体に設けられた穴のピッチが12mmである場合について説明したが、電磁波の透過を抑制するには、電磁波の波長よりも十分に小さい穴ピッチとする必要がある。パンチングメタルや導体メッシュを用いる場合と異なり、電波吸収体を用いる場合には、電磁波が穴よりも電波吸収体自体の内部に浸透していき、電波吸収体内部で減衰することから、電波吸収体に設けられた穴のピッチは、パンチングメタルや導体メッシュを用いる場合よりも大きくてよい。穴のピッチが大きいほど、排気特性上有利である。我々の実験によれば、電波吸収体に設けられた穴のピッチをp、アンテナに印加する高周波電力の周波数をf、光速をcとしたとき、
 p<0.02×c/f
なる関係式を満たすとき、かなり広範な放電条件において下流でのプラズマ発生を抑制することができることがわかっている。しかし、より確実に下流でのプラズマ発生を抑制するには、電波吸収体に設けられた穴のピッチをp、アンテナに印加する高周波電力の周波数をf、光速をcとしたとき、
 p<0.005×c/f
なる関係式を満たすことが望ましい。
Furthermore, in the embodiment of the present invention, the case where the pitch of the holes provided in the radio wave absorber is 12 mm has been described. However, in order to suppress the transmission of the electromagnetic wave, the hole pitch is set to be sufficiently smaller than the wavelength of the electromagnetic wave. There is a need. Unlike using punched metal or conductor mesh, when using a radio wave absorber, the electromagnetic wave penetrates into the radio wave absorber itself rather than through the holes and attenuates inside the radio wave absorber, so the radio wave absorber May be larger than in the case of using a punched metal or a conductor mesh. The larger the pitch of the holes, the more advantageous in the exhaust characteristics. According to our experiments, when the pitch of the holes provided in the radio wave absorber is p, the frequency of the high-frequency power applied to the antenna is f, and the speed of light is c,
p <0.02 × c / f
It has been found that when the following relational expression is satisfied, plasma generation downstream can be suppressed under a considerably wide range of discharge conditions. However, in order to more reliably suppress the downstream plasma generation, when the pitch of the holes provided in the radio wave absorber is p, the frequency of the high-frequency power applied to the antenna is f, and the speed of light is c,
p <0.005 × c / f
It is desirable to satisfy the following relational expression.

 また、本発明の実施形態において、インナチャンバによって真空容器の内壁面が覆われ、かつ、インナチャンバの開口部から、2つの領域に分離された真空容器の基板の無い側に電磁波が漏れないよう、インナチャンバの開口部より下流側を接地した場合について説明したが、このような構造とすることにより、下流でのプラズマ発生をより効果的に防止することができる。しかし、場合によっては、このような構造としなくても下流でのプラズマ発生を防止することもできる。 Further, in the embodiment of the present invention, the inner wall of the vacuum chamber is covered with the inner chamber, and the electromagnetic wave does not leak from the opening of the inner chamber to the side of the vacuum chamber separated into two regions without the substrate. The case where the downstream side is grounded from the opening of the inner chamber has been described, but by adopting such a structure, the generation of plasma downstream can be more effectively prevented. However, in some cases, even without such a structure, the generation of plasma downstream can be prevented.

本発明の実施形態で用いたプラズマ処理装置の構成を示す断面図Sectional view showing the configuration of the plasma processing apparatus used in the embodiment of the present invention. 本発明の実施形態で用いたプラズマ処理装置の構成を示す平面図FIG. 2 is a plan view illustrating a configuration of a plasma processing apparatus used in an embodiment of the present invention. 本発明の実施形態で用いたアンテナの平面図Plan view of an antenna used in an embodiment of the present invention 本発明を誘導結合プラズマ源方式プラズマ処理装置に適用した場合の構成を示す断面図Sectional drawing which shows the structure at the time of applying this invention to the inductively coupled plasma source type plasma processing apparatus. 本発明を表面波プラズマ源方式プラズマ処理装置に適用した場合の構成を示す断面図Sectional drawing which shows the structure at the time of applying this invention to the surface wave plasma source type plasma processing apparatus. 従来例で用いたプラズマ処理装置の構成を示す断面図Sectional view showing the configuration of the plasma processing apparatus used in the conventional example

符号の説明Explanation of reference numerals

 1 真空容器
 2 ガス供給装置
 3 ターボ分子ポンプ
 4 アンテナ用高周波電源
 5 アンテナ
 6 基板電極
 7 基板
 8 基板電極用高周波電源
 9 給電棒
 10 ショートピン
 11 誘電板
 12 カバー
 13 誘電体リング
 14 導体リング
 15 プラズマトラップ
 16 排気口
 17 調圧弁
 18 インナチャンバ
 19 支柱
 21 開口部
 22 接地点
 23 電波吸収体
DESCRIPTION OF SYMBOLS 1 Vacuum container 2 Gas supply device 3 Turbo molecular pump 4 High frequency power supply for antenna 5 Antenna 6 Substrate electrode 7 Substrate 8 High frequency power supply for substrate electrode 9 Power supply rod 10 Short pin 11 Dielectric plate 12 Cover 13 Dielectric ring 14 Conductor ring 15 Plasma trap Reference Signs List 16 exhaust port 17 pressure regulating valve 18 inner chamber 19 column 21 opening 22 grounding point 23 radio wave absorber

Claims (5)

真空容器内にガスを供給しつつ排気し、真空容器内を所定の圧力に制御しながら、真空容器内の基板電極に対向して設けられたアンテナに周波数100kHz乃至3GHzの高周波電力を印加することにより真空容器内にプラズマを発生させ、基板を処理するプラズマ処理方法であって、
前記真空容器は接地され、かつ、多数の穴が設けられた電波吸収体によって真空容器が基板のある側と基板の無い側に分離された状態で基板を処理すること
を特徴とするプラズマ処理方法。
Exhausting while supplying gas into the vacuum vessel, and applying high-frequency power having a frequency of 100 kHz to 3 GHz to an antenna provided to face the substrate electrode in the vacuum vessel while controlling the inside of the vacuum vessel to a predetermined pressure. A plasma processing method for generating plasma in a vacuum vessel and processing a substrate,
The plasma processing method, wherein the vacuum vessel is grounded, and the substrate is treated in a state where the vacuum vessel is separated into a side having no substrate and a side having no substrate by a radio wave absorber provided with a number of holes. .
真空容器と、真空容器内にガスを供給するガス供給装置と、真空容器内を排気する排気装置と、真空容器内を所定の圧力に制御する調圧弁と、真空容器内に基板を載置する基板電極と、基板電極に対向して設けられたアンテナと、前記アンテナに周波数100kHz乃至3GHzの高周波電力を供給する高周波電源とを備えたプラズマ処理装置であって、
前記真空容器は接地され、かつ、多数の穴が設けられた電波吸収体によって真空容器が基板のある側と基板の無い側に分離されていること
を特徴とするプラズマ処理装置。
A vacuum container, a gas supply device for supplying gas into the vacuum container, an exhaust device for exhausting the inside of the vacuum container, a pressure regulating valve for controlling the inside of the vacuum container to a predetermined pressure, and placing the substrate in the vacuum container A plasma processing apparatus comprising: a substrate electrode; an antenna provided to face the substrate electrode; and a high-frequency power supply that supplies high-frequency power having a frequency of 100 kHz to 3 GHz to the antenna,
The plasma processing apparatus according to claim 1, wherein the vacuum vessel is grounded, and the vacuum vessel is separated into a side having no substrate and a side having no substrate by a radio wave absorber provided with a number of holes.
真空容器とアンテナとの間に誘電板を有し、前記アンテナ及び前記誘電板が真空容器内に突出した構造をなし、かつ、この誘電板の中心付近に設けられた貫通穴を介してアンテナに高周波電圧を給電し、誘電板の中心とも周辺とも異なる一部位に設けられ、かつ、アンテナの中心に対してほぼ等配置されている貫通穴を介して、真空容器とアンテナとをショートピンによって短絡したことを特徴とする請求項2記載のプラズマ処理装置。 A dielectric plate is provided between the vacuum container and the antenna, the antenna and the dielectric plate have a structure protruding into the vacuum container, and are connected to the antenna through a through hole provided near the center of the dielectric plate. A high-frequency voltage is supplied, and the vacuum vessel and the antenna are short-circuited with a short pin through a through hole that is provided at a position different from the center and the periphery of the dielectric plate and that is arranged almost equally to the center of the antenna. 3. The plasma processing apparatus according to claim 2, wherein: 接地された真空容器と、真空容器内にガスを供給するガス供給装置と、真空容器内を排気する排気装置と、真空容器内を所定の圧力に制御する調圧弁と、真空容器内に基板を載置する基板電極と、前記基板電極に対向して設けられたアンテナと、前記アンテナに周波数100kHz乃至3GHzの高周波電力を供給する高周波電源とを備えたプラズマ処理装置であって、
外周部のほぼ全部が接地された多孔導体と、多孔電波吸収体によって真空容器が基板のある側と基板の無い側に分離されていること
を特徴とするプラズマ処理装置。
A grounded vacuum container, a gas supply device for supplying gas into the vacuum container, an exhaust device for exhausting the inside of the vacuum container, a pressure regulating valve for controlling the inside of the vacuum container to a predetermined pressure, and a substrate in the vacuum container A plasma processing apparatus comprising: a substrate electrode to be mounted; an antenna provided to face the substrate electrode; and a high-frequency power supply that supplies high-frequency power having a frequency of 100 kHz to 3 GHz to the antenna.
A plasma processing apparatus, characterized in that a vacuum vessel is separated into a side with a substrate and a side without a substrate by a porous conductor whose outer peripheral portion is almost all grounded and a porous radio wave absorber.
多孔導体が、2つの領域に分離された真空容器の基板の有る側に、多孔電波吸収体が、2つの領域に分離された真空容器の基板の無い側に面していることを特徴とする請求項4記載のプラズマ処理装置。 The porous conductor faces the non-substrate side of the vacuum container separated into two regions, and the porous electromagnetic wave absorber faces the side of the vacuum container separated into two regions. The plasma processing apparatus according to claim 4.
JP2003367071A 2000-10-03 2003-10-28 Plasma processing method and plasma processing apparatus Expired - Fee Related JP4120561B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003367071A JP4120561B2 (en) 2000-10-03 2003-10-28 Plasma processing method and plasma processing apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000303334 2000-10-03
JP2003367071A JP4120561B2 (en) 2000-10-03 2003-10-28 Plasma processing method and plasma processing apparatus

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2001306144A Division JP3814510B2 (en) 2000-10-03 2001-10-02 Plasma processing method and apparatus

Publications (2)

Publication Number Publication Date
JP2004146838A true JP2004146838A (en) 2004-05-20
JP4120561B2 JP4120561B2 (en) 2008-07-16

Family

ID=32472403

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003367071A Expired - Fee Related JP4120561B2 (en) 2000-10-03 2003-10-28 Plasma processing method and plasma processing apparatus

Country Status (1)

Country Link
JP (1) JP4120561B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100852577B1 (en) * 2006-03-23 2008-08-18 도쿄엘렉트론가부시키가이샤 Plasma processing apparatus, plasma processing method, and storage medium
JP2009163911A (en) * 2007-12-28 2009-07-23 Hitachi High-Technologies Corp Plasma treatment device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09237698A (en) * 1996-02-22 1997-09-09 Motorola Inc Inductive coupling plasma reactor, and method thereof
JPH1140398A (en) * 1997-07-23 1999-02-12 Kokusai Electric Co Ltd Plasma producing device
JPH11111700A (en) * 1988-04-25 1999-04-23 Applied Materials Inc Enhanced magnetic field plasma-etching reactor
WO2000019495A2 (en) * 1998-09-30 2000-04-06 Lam Research Corporation Chamber liner for semiconductor process chambers
JP2000164394A (en) * 1998-11-30 2000-06-16 Hitachi Ltd Plasma treating device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11111700A (en) * 1988-04-25 1999-04-23 Applied Materials Inc Enhanced magnetic field plasma-etching reactor
JPH09237698A (en) * 1996-02-22 1997-09-09 Motorola Inc Inductive coupling plasma reactor, and method thereof
JPH1140398A (en) * 1997-07-23 1999-02-12 Kokusai Electric Co Ltd Plasma producing device
WO2000019495A2 (en) * 1998-09-30 2000-04-06 Lam Research Corporation Chamber liner for semiconductor process chambers
JP2000164394A (en) * 1998-11-30 2000-06-16 Hitachi Ltd Plasma treating device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100852577B1 (en) * 2006-03-23 2008-08-18 도쿄엘렉트론가부시키가이샤 Plasma processing apparatus, plasma processing method, and storage medium
JP2009163911A (en) * 2007-12-28 2009-07-23 Hitachi High-Technologies Corp Plasma treatment device

Also Published As

Publication number Publication date
JP4120561B2 (en) 2008-07-16

Similar Documents

Publication Publication Date Title
US20020038791A1 (en) Plasma processing method and apparatus
KR100394484B1 (en) Piasma processing method and apparatus
JP6423706B2 (en) Plasma processing equipment
KR101149332B1 (en) Etching apparatus using the plasma
KR101058310B1 (en) Plasma processing equipment
JPH1041281A (en) Plasma treating apparatus
CN108091535B (en) Mounting table and plasma processing apparatus
JP2016506592A (en) Capacitively coupled plasma device with uniform plasma density
KR100733844B1 (en) Plasma generating apparatus using neutral beam and plasma generating method
JP4013674B2 (en) Plasma doping method and apparatus
KR102278074B1 (en) Apparatus and method for treating substrate
KR20030095256A (en) Simultaneous discharge apparatus
KR100603099B1 (en) Plasma processing method
JP4120561B2 (en) Plasma processing method and plasma processing apparatus
KR20090094352A (en) Method and apparatus for processing a substrate using plasma
JP3814510B2 (en) Plasma processing method and apparatus
US20220122820A1 (en) Substrate processing apparatus
JP4120566B2 (en) Plasma processing method and apparatus
JPH1140398A (en) Plasma producing device
JP2002050616A (en) Method and apparatus for plasma processing
KR100553757B1 (en) Inductively coupled plasma processing apparatus
KR20080020722A (en) Plasma processing apparatus and method for treating substrates using the same
KR101165725B1 (en) Apparatus and method for treating substrate using plasma
KR100725721B1 (en) Method for treating plasma with down stream type
JP2002299324A (en) Plasma processing method and apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040930

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050708

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080205

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080401

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080414

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110509

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110509

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees