JP2004146765A - Solar cell array - Google Patents

Solar cell array Download PDF

Info

Publication number
JP2004146765A
JP2004146765A JP2003009844A JP2003009844A JP2004146765A JP 2004146765 A JP2004146765 A JP 2004146765A JP 2003009844 A JP2003009844 A JP 2003009844A JP 2003009844 A JP2003009844 A JP 2003009844A JP 2004146765 A JP2004146765 A JP 2004146765A
Authority
JP
Japan
Prior art keywords
solar cell
cell module
frame
support member
module
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003009844A
Other languages
Japanese (ja)
Inventor
Mitsuo Yamashita
山下 満雄
Kyoichi Ibaraki
茨木 恭一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2003009844A priority Critical patent/JP2004146765A/en
Publication of JP2004146765A publication Critical patent/JP2004146765A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S25/00Arrangement of stationary mountings or supports for solar heat collector modules
    • F24S25/30Arrangement of stationary mountings or supports for solar heat collector modules using elongate rigid mounting elements extending substantially along the supporting surface, e.g. for covering buildings with solar heat collectors
    • F24S25/33Arrangement of stationary mountings or supports for solar heat collector modules using elongate rigid mounting elements extending substantially along the supporting surface, e.g. for covering buildings with solar heat collectors forming substantially planar assemblies, e.g. of coplanar or stacked profiles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S25/00Arrangement of stationary mountings or supports for solar heat collector modules
    • F24S25/20Peripheral frames for modules
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/10Photovoltaic [PV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/47Mountings or tracking

Abstract

<P>PROBLEM TO BE SOLVED: To provide a solar cell array which can prevent a reduction in an efficiency of power generation as much as possible, and has the high flexibility/reliability. <P>SOLUTION: The solar cell array is obtained by connecting a plurality of solar cell modules P in which a circumference part of a main body 3 provided with a solar cell in a substrate 1 is covered with a frame 4 of the same shape. An elongated support member 5 provided with an opening part 5a for inserting the frame 4 of each solar cell module P to fix is interposed between the peripheral end parts of the main bodies 3 of the adjacent solar cell modules P, to connect the adjacent solar cell modules P to each other. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、太陽光発電システムに使用される太陽電池モジュールの複数を相互に接続して成る太陽電池アレイに関するものであり、屋根面等の設置面により多くの太陽電池モジュールを簡便に設置可能とした太陽電池アレイに関する。
【0002】
【従来技術とその課題】
図6(a)〜(d)に、従来の家庭用太陽光発電システムに用いる太陽電池モジュールJの構造を示す。図示されているように、太陽電池モジュールJは、例えばガラスで構成された透光性部材50により、樹脂51中に封止された太陽電池52の受光面側を覆って成る本体53の周縁部に、異なる断面構造をなす枠体54,55を装着して成る。これらの枠体54,55は、一般にアルミニウム,鉄等の金属材料からなり、太陽電池モジュールJの強度確保、及び太陽電池モジュールJの透光性部材50の保護を主な目的としている。
【0003】
枠体54において、その上面部54aは透光性部材50を保護する目的があり、突設部54bは太陽電池モジュールJを屋根面等の設置面に固定する支持材に固定するための構造を有する。さらに、枠体54の下部54cは太陽電池モジュールJの強度を保持できる構造にしている。
【0004】
このような枠体の場合、太陽電池モジュールの固定辺が限定されてしまうために、例えば、太陽電池モジュールの長辺にしか固定部分がなければ、この長辺を固定するような設置しかできない。また、太陽電池モジュールが大型化すると、強度を高めるために枠体54も大型化し、太陽電池モジュール全体の重量増加となる。
【0005】
また、屋根面等の設置面への設置可能となる太陽電池モジュールの数量は、太陽電池モジュールの長辺,短辺の長さと設置面との関係で決まることから、太陽電池モジュールの長辺の長さをW、短辺の長さをLとした場合で、N枚の太陽電池モジュールを設置する場合、設置面は設置面の幅として(N×W)以上、長さとして(N×L)以上とした面積が必要とされる。
【0006】
したがって、種々の形状を有する屋根面等の設置面において、屋根面の形状に合わせてより多くの太陽電池モジュールを配置させるには、上記太陽電池モジュールの辺の長さ(W、L)をより短くして、設置しやすくしなければならない。このため、個々の太陽電池モジュールが小面積となり、非発電領域も増大することから、全体の発電効率の低下につながる。
【0007】
また、上記長辺,短辺のいずれの部分も支持材に固定可能な構造とすることにより、太陽電池モジュールを縦,横いずれの方向にも設置可能とすることが考えられるが、図6に示すように、太陽電池モジュールのすべての辺に固定可能な突設構造を採用した場合、その固定部分は太陽光による発電に寄与しない部分となるので、太陽電池モジュールに占める非発電面積の割合が増加する。このため、太陽電池モジュールを設置した場合に、有効に発電に寄与しうる面積が減少してしまうという弊害が生じる。
【0008】
本発明は、太陽電池モジュールの透光性部材となる基板の保護と固定を1種類の枠体で行うこととし、いずれの辺でも固定可能とすることにより、種々の面積を有する設置面にできるだけ多くの太陽電池モジュールの設置を可能とし、発電効率の低下を極力防止でき、しかも汎用性・信頼性の高い太陽電池アレイを提供することを目的とする。
【0009】
【課題を解決するための手段】
本発明の太陽電池アレイは、基板に太陽電池を設けた本体の周縁部を1種類の枠体で覆った太陽電池モジュールの複数を連結して成る太陽電池アレイであって、互いに隣合う太陽電池モジュールの本体の周縁部間に、各太陽電池モジュールの枠体を挿入する開口部を備えた長尺の支持部材を介在させて、前記互いに隣合う太陽電池モジュールどうしを連結するようにしたことを特徴とする。
【0010】
上記構成において、前記太陽電池モジュールの裏面側を支持する弾性部材を設けた支持基体の上に、前記太陽電池モジュールの複数を連結した状態で配設してもよい。
【0011】
【発明の実施の形態】
本発明に係る太陽電池アレイの実施形態について模式的に示した図面に基づき詳細に説明する。
【0012】
図1に太陽電池モジュールPの断面図を示す。なお、この断面図は既に説明した図6(c)におけるA−A線断面図、B−B線断面図に相当する部位の断面を示したものである。また、図2に透光性部材からなる基板1に太陽電池を設けたモジュール本体3の周縁部を1種類の枠体で覆って成る太陽電池モジュールの複数を連結して成る太陽電池アレイを示す。
【0013】
これら図面に示すように、互いに隣合う太陽電池モジュールPのモジュール本体3の周縁部間に、各太陽電池モジュールの枠体4を挿入して固定する開口部5a、5aを備えた長尺の支持部材5を介在させて太陽電池モジュールPどうしを連結するようにしている。
【0014】
具体的には、基板1はガラスや樹脂等からなる透光性部材から成り、この基板1の裏面側に、樹脂等の保護部材2内に封止された、単結晶または非単結晶のシリコンを主体とする太陽電池素子の複数が、直列、並列、または直並列に接続されて成る太陽電池が設けられ、このように構成されたモジュール本体3の周縁部には、図示のように同一断面構造を成す枠体4が嵌められている。
【0015】
ここで、枠体4はアルミニウム等の金属材料で構成されており、断面略コ字状のモジュール本体3の保護部4aと、強度を確保するための断面略L字状の補強部4bが形成されている。また、保護部4aの上端部には支持部材5の開口部5aからの抜けを防止するために支持部材5の開口部5aに係止する突起部4cが形成されている。
【0016】
通常、枠体4のないモジュール本体3はその自重により中央付近がたわんでしまうので、その外周にたわまない強度を持った枠体を配するか、設置する場所にモジュール本体3の外縁部を支持する支持フレームを配置する。この場合、太陽電池モジュールPは枠体と一体となるので、輸送や管理時に、枠体4を含めた重量と体積を一単位として負担する必要が生じたり、支持フレームを別途設置したり、その固定部材が必要となるなど部品点数が増加する。
【0017】
そこで、モジュール本体3と枠体4を別体とすることで一部品の輸送時の持ち運び性を良くするとともに、同形状の部品を集めて管理できることにより部品どうしの間に余計な空間がなくなり、管理・梱包において空間の節約ができる。モジュール本体3はそれを設置するまではたわみが生じるものの、枠体4を嵌め込んで設置した後は枠体4の枠強度によりモジュール本体3の重量が支えられるのでたわまない。
【0018】
このような状態で枠体4を架台等にネジなどで固定してもよいが、太陽電池モジュールPが大型化すると枠体4自身にもたわみが生じるようになり、これに対処するために、枠体4の強度を上げるのに厚みや大きさを増加させても、結果的に枠体どうしの張力が期待できる枠体一体型の太陽電池モジュールよりも大型の枠体を使用しないと強度的に不足する。
【0019】
このため、支持部材5の両端に枠体4がちょうど挿入できる精度で開口部5aを設けておき、隣り合う太陽電池モジュールPの向かい合う枠体4どうしが、同一の支持部材5に挿入されるようにすることで、開口部5aの両端にある上下突起が下にたわもうとする太陽電池モジュールPを嵌め込み、支持部材5に挿入された太陽電池モジュールPがお互いの落下を支えあう形となって保持される。しかも、支持部材5は架台等に固定されていなくてもよいので施工工数が少なくて済み、太陽電池モジュールの固定部材を兼ねているので部品点数の削減にもなる。また、枠体4を大型化するよりも製造が容易で、強度、材質を異なるものを用いてもよく、これにより小型化も容易となる。
【0020】
こうして、太陽電池モジュールPどうしを、長尺の金属材料や樹脂等で構成された支持部材5の開口部5aに、太陽電池モジュールPを挿入して固定することにより連結でき、複数の太陽電池モジュールPが連結された太陽電池アレイが完成する。
【0021】
かくして、このような太陽電池アレイによれば、太陽電池モジュールPのモジュール本体3の全外周に設けた枠体4を1種類とし、いずれの枠体部分でも支持部材5に設けた開口部5aにおいて挿入及び固定を可能とすることができる。
【0022】
さらに、開口部5aでは枠体4の保護部4aとほぼ重なるようにしているので、非発電領域を支持部材5と共通にすることができ、従来構造のように固定部として特別に面積を必要としない。これにより、複数の太陽電池モジュールどうしを連結した場合においても発電効率を低下させることがない。
【0023】
しかも、複数の太陽電池モジュールどうしを連結して成る太陽電池アレイの構造によれば、太陽電池モジュールPのすべての枠体4を同一構造の1種類としているので、枠体4を形成するための金型・設備等が1種類で形成可能であるという利点も有している。
【0024】
図3に上記枠体4を小型・軽量化させた枠体6を太陽電池モジュールPのモジュール本体3の周縁部に設けた一例を示す。また、図4にこのような太陽電池モジュールPの枠体6を上記支持部材5に挿入・固定して、互いに隣合う太陽電池モジュールどうしを連結して太陽電池アレイを構成した一例を示す。なおここで、6aは保護部、6cは突起部であり、これらは図1における枠体4と同様な役割をする。よって、枠体6の支持部材5への挿入・固定方法は既述した場合と同様である。ただし、支持部材5においては、基板1の保護、及び太陽電池モジュールPの強度保持とに分離させ、枠体6には、基板1の保護のみの機能を残している。
【0025】
この実施形態によれば、太陽電池モジュールPの軽量化を図ることができる上に、枠体6の部材も少なくてすみ、図示のようにきわめて簡単な構造でよいので、製造が簡便でかつ安価に行なえるという利点を有している。
【0026】
次に、上記構成の太陽電池モジュールPの枠体6を、断面において中央部が空洞で外形が四角形状の直方体状の補強部7bを備えた支持部材7の開口部7aに挿入・固定した太陽電池アレイを図5に示す。この太陽電池アレイにおいては、太陽電池モジュールPのモジュール本体の周縁部に設けた枠体6に形成された突設部6bは支持部材7の補強部7bのガイドとして機能する。
【0027】
このような太陽電池アレイによれば、支持部材7は補強部7bが空洞に形成された直方体状に形成されているので、支持部材7の強度、ひいては太陽電池アレイにおける強度をいっそう高めることができ、しかも軽量化を図ることができる。
【0028】
さらに、図7に示すように、太陽電池モジュールPの4辺のうち互いに背面となる2辺は桟21に支えられており、他方2辺は支持部材5及び/または支持部材7によって支持されるようにしてもよい。しかし、これら桟や支持部材にかかわらず、太陽電池モジュールが大型化した場合、その自重によって太陽電池モジュールP全体が中央部に向かって引き込まれるように歪む現象が発生する。これにより、太陽電池モジュールPの発電面に雨水が溜まり、その結果、発電効率を低下させるといった問題が生じる。
【0029】
そこで、図8に示すように、太陽電池モジュールの支持基体である2つの桟21の間に、太陽電池モジュールの主面に対して上下方向に弾性を有する太陽電池モジュールの弾性支持部材22を設けるとよい。この弾性支持部材22は太陽電池モジュールPの裏面を面によって支持する金属材料等からなる面支持部22aと、太陽電池モジュールPの自重によって下方向に弾性変形する金属材料等で形成された弾性部材からなる脚部22bから成り、脚部22bは桟21に形成されたレール状の凹部に挿入され固定される。
【0030】
また、上記支持基体の構成は図9に示すように、縦桟23に横桟24を設け、縦桟23に弾性支持部材22を設けるようにしてもよく、このような構成の場合は横桟24に太陽電池モジュールを固定する。
【0031】
図10(a)〜(c)に弾性支持部材22の構造の一例を示す。図示されているように、弾性支持部材22は例えば全体が断面U字状に湾曲した板状の脚部22bに、平面長方形で板状をなす面支持部22aがリベット等による固定または溶着等による接着により一体的に設けられている。なお、この弾性支持部材22の形状はこの実施形態に限定されるものではなく、太陽電池モジュールの裏面側を支持でき、支持基体に取り付けられる構成であればよい。
【0032】
以上の構成により、太陽電池モジュールPが大型化したり、太陽電池モジュール自体が薄型化しても、太陽電池モジュールPに高強度の枠体を不要とし、支持部材5及び/または支持部材7による太陽電池モジュール取り付け構造が可能と出来る。
【0033】
また、面支持部22aはアルミニウムや鉄などの良熱伝導性の材料を使用することにより太陽電池モジュールで最も熱上昇の大きい中央部の熱を拡散し、太陽電池モジュール外周部での放熱効果を向上させるとともに、前記面支持部22a自身および前記脚部22bによっても放熱が行なわれることにより太陽電池モジュールの冷却が行なえ、発電効率が向上するという効果が得られる。
【0034】
【発明の効果】
本発明の太陽電池アレイによれば、太陽電池モジュールどうしの連結において、その長辺、短辺いずれの辺においても連結・固定可能とすることにより、縦長な状態で同一の太陽電池モジュールを設置でき、また、横長の状態でも設置できる。その結果、種々の形状面積を有する屋根面等の設置面に設置可能で発電効率の低下のない汎用性の高い太陽電池アレイを提供できる。
【0035】
また、太陽電池モジュールの裏面に弾性部材を配するようにしたので、太陽電池モジュールが大型化したり、薄型化しても、高強度の枠体を必要としない優れた太陽電池モジュールの取り付け構造を備えた太陽電池アレイが実現される。
【0036】
さらに、弾性部材が良熱伝導性の材料から構成されることにより、太陽電池モジュールの裏面側から熱を放散させて、太陽電池モジュールの冷却を行なわせることができ、発電効率が向上した優れた太陽電池アレイを提供できる。
【図面の簡単な説明】
【図1】本発明に係る太陽電池モジュールの実施形態を示す断面図である。
【図2】本発明に係る太陽電池モジュールどうしを支持部材で連結した太陽電池アレイの断面図である。
【図3】本発明に係る他の太陽電池モジュールの実施形態を示す断面図である。
【図4】本発明に係る他の太陽電池モジュールどうしを支持部材で連結した太陽電池アレイの断面図である。
【図5】本発明に係る他の太陽電池モジュールどうしを他の支持部材で連結した太陽電池アレイの断面図である。
【図6】従来の太陽電池モジュールを説明する図であり、(a)は(c)における太陽電池モジュールのA−A線断面図、(b)は(c)におけるB−B線断面図、(c)は太陽電池モジュールの平面図、(d)は太陽電池モジュールの側面図である。
【図7】本発明に係る太陽電池モジュールどうしを支持部材で連結した様子を説明する太陽電池アレイの斜視図である。
【図8】本発明に係る弾性支持部材を桟に設けた様子を説明する斜視図である。
【図9】本発明に係る弾性支持部材を桟に設けた様子を説明する斜視図である。
【図10】本発明に係る弾性支持部材を説明する図であり、(a)は平面図、(b),(c)はそれぞれ側面図である。
【符号の説明】
1:基板
2:封止部材
3:モジュール本体
4、6:枠体
5、7:支持部材
21:桟
22:弾性支持部材
22a:面支持部
22b:脚部
P:太陽電池モジュール
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a solar cell array formed by interconnecting a plurality of solar cell modules used in a photovoltaic power generation system, and more solar cell modules can be easily installed on an installation surface such as a roof surface. The solar cell array.
[0002]
[Prior art and its problems]
FIGS. 6A to 6D show the structure of a solar cell module J used in a conventional home solar power generation system. As shown in the figure, the solar cell module J has a light-transmitting member 50 made of, for example, glass, and covers a light-receiving surface of a solar cell 52 sealed in a resin 51. And frames 54 and 55 having different cross-sectional structures. These frames 54 and 55 are generally made of a metal material such as aluminum or iron, and have a main purpose of securing the strength of the solar cell module J and protecting the translucent member 50 of the solar cell module J.
[0003]
In the frame 54, the upper surface 54a has a purpose of protecting the translucent member 50, and the projecting portion 54b has a structure for fixing the solar cell module J to a support member for fixing the solar cell module J to an installation surface such as a roof surface. Have. Further, the lower portion 54c of the frame 54 has a structure capable of maintaining the strength of the solar cell module J.
[0004]
In the case of such a frame, since the fixed side of the solar cell module is limited, for example, if there is a fixed portion only on the long side of the solar cell module, it is only possible to fix the long side. When the size of the solar cell module increases, the size of the frame 54 also increases in order to increase the strength, and the weight of the entire solar cell module increases.
[0005]
In addition, the number of solar cell modules that can be installed on an installation surface such as a roof surface is determined by the relationship between the lengths of the long and short sides of the solar cell module and the installation surface. When the length is W and the length of the short side is L, and N solar cell modules are installed, the installation surface is (N × W) or more as the width of the installation surface and (N × L) as the length. ) The above area is required.
[0006]
Therefore, in order to arrange more solar cell modules in accordance with the shape of the roof surface on an installation surface such as a roof surface having various shapes, the length (W, L) of the side of the solar cell module must be increased. It must be short and easy to install. For this reason, each solar cell module has a small area and a non-power generation area increases, which leads to a decrease in overall power generation efficiency.
[0007]
In addition, it is conceivable that the solar cell module can be installed in both the vertical and horizontal directions by adopting a structure in which both the long side and the short side can be fixed to the supporting material. As shown in the figure, when a protruding structure that can be fixed to all sides of the solar cell module is adopted, the fixed part is a part that does not contribute to power generation by sunlight. To increase. For this reason, when the solar cell module is installed, there is a problem that an area that can effectively contribute to power generation is reduced.
[0008]
According to the present invention, the protection and fixing of a substrate serving as a light-transmitting member of a solar cell module is performed by one type of frame, and the fixing can be performed on any side, so that the mounting surface having various areas can be mounted as much as possible. It is an object of the present invention to provide a solar cell array that enables installation of many solar cell modules, prevents a decrease in power generation efficiency as much as possible, and has high versatility and reliability.
[0009]
[Means for Solving the Problems]
The solar cell array of the present invention is a solar cell array formed by connecting a plurality of solar cell modules in which a peripheral portion of a main body having a solar cell provided on a substrate is covered with one type of frame, wherein solar cells adjacent to each other are provided. Between the peripheral edges of the module body, a long supporting member having an opening for inserting the frame of each solar cell module is interposed, and the adjacent solar cell modules are connected to each other. Features.
[0010]
In the above configuration, a plurality of the solar cell modules may be connected to each other on a supporting base provided with an elastic member for supporting a back side of the solar cell module.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
An embodiment of a solar cell array according to the present invention will be described in detail with reference to the drawings schematically shown.
[0012]
FIG. 1 shows a cross-sectional view of the solar cell module P. This cross-sectional view is a cross-sectional view of a portion corresponding to the cross-sectional view taken along the line AA and the cross-sectional view taken along the line BB in FIG. FIG. 2 shows a solar cell array formed by connecting a plurality of solar cell modules in which a peripheral portion of a module main body 3 in which a solar cell is provided on a substrate 1 made of a translucent member is covered with one type of frame. .
[0013]
As shown in these drawings, a long support having openings 5a, 5a for inserting and fixing the frame 4 of each solar cell module between the peripheral edges of the module main bodies 3 of the adjacent solar cell modules P. The solar cell modules P are connected to each other with the member 5 interposed therebetween.
[0014]
Specifically, the substrate 1 is made of a translucent member made of glass, resin, or the like, and a single-crystal or non-single-crystal silicon sealed on a back surface side of the substrate 1 in a protective member 2 such as a resin. Is provided with a plurality of solar cell elements mainly connected in series, in parallel, or in series-parallel, and the peripheral section of the module body 3 thus configured has the same cross section as shown in the figure. A frame 4 having a structure is fitted.
[0015]
Here, the frame 4 is made of a metal material such as aluminum, and has a protection portion 4a of the module main body 3 having a substantially U-shaped cross section and a reinforcing portion 4b having a substantially L-shaped cross section for securing strength. Have been. Further, a projection 4c is formed at the upper end of the protection portion 4a so as to be engaged with the opening 5a of the support member 5 in order to prevent the support member 5 from coming off the opening 5a.
[0016]
Normally, the module body 3 without the frame 4 is bent near its center due to its own weight. Therefore, a frame having strength that does not bend is disposed around its outer periphery, or the outer edge of the module body 3 is placed at a place where the module body 3 is installed. A support frame for supporting the. In this case, since the solar cell module P is integrated with the frame, it is necessary to bear the weight and volume including the frame 4 as one unit during transportation or management, or a support frame is separately installed, The number of parts increases, such as the need for a fixing member.
[0017]
Therefore, by making the module body 3 and the frame body 4 separate, the portability of one part during transportation is improved, and since the parts of the same shape can be collected and managed, there is no extra space between the parts. Space can be saved in management and packing. Although the module body 3 bends until it is installed, it does not bend after the module 4 is fitted and installed because the weight of the module body 3 is supported by the frame strength of the frame 4.
[0018]
In such a state, the frame body 4 may be fixed to a gantry or the like with screws or the like. However, when the size of the solar cell module P increases, the frame body 4 itself also bends. Even if the thickness or the size is increased to increase the strength of the frame 4, the strength is increased unless a frame larger than a frame-integrated solar cell module that can eventually expect tension between the frames is used. Shortage.
[0019]
For this reason, openings 5a are provided at both ends of the support member 5 with a precision that allows the frame members 4 to be inserted exactly, so that the opposite frame members 4 of the adjacent solar cell modules P are inserted into the same support member 5. By doing so, the upper and lower protrusions at both ends of the opening 5a are fitted with the solar cell modules P which are going to bend down, and the solar cell modules P inserted into the support member 5 support each other to fall. Is held. In addition, since the support member 5 does not need to be fixed to the gantry or the like, the number of construction steps can be reduced, and the number of parts can be reduced because the support member 5 also serves as a fixing member for the solar cell module. In addition, the frame 4 is easier to manufacture than a larger one, and may be made of a material having a different strength and a different material.
[0020]
In this manner, the solar cell modules P can be connected to each other by inserting and fixing the solar cell modules P to the openings 5a of the support member 5 made of a long metal material, resin, or the like. The solar cell array connected with P is completed.
[0021]
Thus, according to such a solar cell array, the frame 4 provided on the entire outer periphery of the module main body 3 of the solar cell module P is of one type, and any of the frame portions is provided in the opening 5 a provided in the support member 5. Insertion and fixation may be possible.
[0022]
Further, since the opening 5a substantially overlaps with the protection portion 4a of the frame 4, the non-power generation region can be made common with the support member 5, and a special area is required as a fixing portion as in the conventional structure. And not. Thereby, even when a plurality of solar cell modules are connected, the power generation efficiency is not reduced.
[0023]
In addition, according to the structure of the solar cell array formed by connecting a plurality of solar cell modules, since all the frames 4 of the solar cell module P are of the same type, the structure for forming the frames 4 is not required. There is also an advantage that a mold and equipment can be formed by one type.
[0024]
FIG. 3 shows an example in which a frame 6 obtained by reducing the size and weight of the frame 4 is provided on the periphery of the module main body 3 of the solar cell module P. FIG. 4 shows an example in which the frame 6 of the solar cell module P is inserted and fixed to the support member 5 and adjacent solar cell modules are connected to each other to form a solar cell array. Here, reference numeral 6a denotes a protection portion, and 6c denotes a protrusion, which serve the same role as the frame 4 in FIG. Therefore, the method of inserting and fixing the frame 6 to the support member 5 is the same as that described above. However, the support member 5 is separated into protection of the substrate 1 and maintenance of the strength of the solar cell module P, and the frame 6 retains only the function of protecting the substrate 1.
[0025]
According to this embodiment, the weight of the solar cell module P can be reduced, the number of members of the frame 6 can be reduced, and the structure can be extremely simple as shown in the figure. It has the advantage that it can be performed.
[0026]
Next, the frame 6 of the solar cell module P having the above configuration is inserted and fixed in the opening 7a of the support member 7 having a rectangular parallelepiped reinforcing portion 7b having a hollow central portion in cross section and a rectangular external shape. The battery array is shown in FIG. In this solar cell array, the projecting portion 6b formed on the frame 6 provided on the peripheral portion of the module main body of the solar cell module P functions as a guide for the reinforcing portion 7b of the support member 7.
[0027]
According to such a solar cell array, since the support member 7 is formed in a rectangular parallelepiped shape in which the reinforcing portion 7b is formed in a cavity, the strength of the support member 7 and further the strength of the solar cell array can be further increased. In addition, the weight can be reduced.
[0028]
Further, as shown in FIG. 7, of the four sides of the solar cell module P, two sides on the back are supported by the crosspiece 21, and the other two sides are supported by the support member 5 and / or the support member 7. You may do so. However, when the size of the solar cell module is increased irrespective of these bars and support members, a phenomenon occurs in which the entire solar cell module P is distorted by its own weight so as to be drawn toward the center. As a result, rainwater accumulates on the power generation surface of the solar cell module P, and as a result, there arises a problem that power generation efficiency is reduced.
[0029]
Therefore, as shown in FIG. 8, an elastic support member 22 of the solar cell module having elasticity in the vertical direction with respect to the main surface of the solar cell module is provided between two crosspieces 21 which are support bases of the solar cell module. Good. The elastic support member 22 includes a surface support portion 22a made of a metal material or the like that supports the back surface of the solar cell module P with a surface, and an elastic member formed of a metal material or the like elastically deformed downward by the weight of the solar cell module P. The leg 22b is inserted and fixed in a rail-shaped recess formed in the bar 21.
[0030]
Further, as shown in FIG. 9, the structure of the support base may be such that a horizontal bar 24 is provided on the vertical bar 23 and an elastic support member 22 is provided on the vertical bar 23. The solar cell module is fixed to 24.
[0031]
FIGS. 10A to 10C show an example of the structure of the elastic support member 22. As shown in the figure, the elastic support member 22 is formed, for example, by fixing or welding a flat rectangular and plate-shaped surface support portion 22a to a plate-shaped leg portion 22b having a U-shaped cross section as a whole with rivets or the like. They are provided integrally by bonding. The shape of the elastic support member 22 is not limited to this embodiment, and may be any configuration that can support the back surface of the solar cell module and can be attached to the support base.
[0032]
With the above configuration, even if the solar cell module P is enlarged or the solar cell module itself is thinned, a high-strength frame body is not required for the solar cell module P, and the solar cell using the support member 5 and / or the support member 7 can be used. Module mounting structure is possible.
[0033]
In addition, the surface support portion 22a uses a material having good thermal conductivity such as aluminum or iron to diffuse heat in the central portion where the heat rise is the largest in the solar cell module, thereby reducing the heat radiation effect in the outer peripheral portion of the solar cell module. In addition to this, the heat is also radiated by the surface support portion 22a itself and the leg portions 22b, so that the solar cell module can be cooled, and the effect of improving the power generation efficiency can be obtained.
[0034]
【The invention's effect】
According to the solar cell array of the present invention, in the connection between solar cell modules, the long side and the short side can be connected and fixed on any side, so that the same solar cell module can be installed in a vertically long state. Also, it can be installed in a horizontally long state. As a result, it is possible to provide a highly versatile solar cell array that can be installed on an installation surface such as a roof surface having various shape areas and does not lower power generation efficiency.
[0035]
In addition, since the elastic member is arranged on the back surface of the solar cell module, even if the solar cell module is enlarged or thinned, it has an excellent solar cell module mounting structure that does not require a high-strength frame. Solar cell array is realized.
[0036]
Furthermore, since the elastic member is made of a material having good thermal conductivity, heat can be dissipated from the back surface side of the solar cell module, and the solar cell module can be cooled, and the power generation efficiency is improved. A solar cell array can be provided.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view illustrating an embodiment of a solar cell module according to the present invention.
FIG. 2 is a cross-sectional view of a solar cell array in which solar cell modules according to the present invention are connected by a support member.
FIG. 3 is a sectional view showing an embodiment of another solar cell module according to the present invention.
FIG. 4 is a cross-sectional view of a solar cell array in which other solar cell modules according to the present invention are connected to each other by a support member.
FIG. 5 is a cross-sectional view of a solar cell array in which other solar cell modules according to the present invention are connected to each other by another support member.
6A and 6B are diagrams illustrating a conventional solar cell module, in which FIG. 6A is a cross-sectional view taken along line AA of the solar cell module in FIG. 6C, FIG. 6B is a cross-sectional view taken along line BB in FIG. (C) is a plan view of the solar cell module, and (d) is a side view of the solar cell module.
FIG. 7 is a perspective view of a solar cell array illustrating a state where the solar cell modules according to the present invention are connected to each other by a support member.
FIG. 8 is a perspective view illustrating a state where an elastic support member according to the present invention is provided on a crosspiece.
FIG. 9 is a perspective view illustrating a state where an elastic support member according to the present invention is provided on a crosspiece.
10A and 10B are diagrams illustrating an elastic support member according to the present invention, wherein FIG. 10A is a plan view, and FIGS. 10B and 10C are side views.
[Explanation of symbols]
1: substrate 2: sealing member 3: module bodies 4, 6: frames 5, 7: support member 21: beam 22: elastic support member 22a: surface support portion 22b: leg P: solar cell module

Claims (3)

基板に太陽電池を設けた本体の周縁部を1種類の枠体で覆った太陽電池モジュールの複数を連結して成る太陽電池アレイであって、互いに隣合う太陽電池モジュールの本体の周縁部間に、各太陽電池モジュールの枠体を挿入する開口部を備えた長尺の支持部材を介在させて、前記互いに隣合う太陽電池モジュールどうしを連結するようにしたことを特徴とする太陽電池アレイ。A solar cell array formed by connecting a plurality of solar cell modules in which a peripheral portion of a main body provided with a solar cell on a substrate is covered with one type of frame, between the peripheral portions of the main bodies of adjacent solar cell modules. A solar cell array, wherein adjacent solar cell modules are connected to each other via a long support member having an opening for inserting a frame of each solar cell module. 前記太陽電池モジュールの裏面側を支持する弾性部材を設けた支持基体の上に、前記太陽電池モジュールの複数を連結した状態で配設したことを特徴とする請求項1に記載の太陽電池アレイ。2. The solar cell array according to claim 1, wherein a plurality of the solar cell modules are connected to each other on a supporting base provided with an elastic member for supporting a back surface of the solar cell module. 3. 前記弾性部材は良熱伝導性の材料からなることを特徴とする請求項2に記載の太陽電池アレイ。The solar cell array according to claim 2, wherein the elastic member is made of a material having good thermal conductivity.
JP2003009844A 2002-08-30 2003-01-17 Solar cell array Pending JP2004146765A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003009844A JP2004146765A (en) 2002-08-30 2003-01-17 Solar cell array

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002253871 2002-08-30
JP2003009844A JP2004146765A (en) 2002-08-30 2003-01-17 Solar cell array

Publications (1)

Publication Number Publication Date
JP2004146765A true JP2004146765A (en) 2004-05-20

Family

ID=32472855

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003009844A Pending JP2004146765A (en) 2002-08-30 2003-01-17 Solar cell array

Country Status (1)

Country Link
JP (1) JP2004146765A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008136095A1 (en) * 2007-04-24 2008-11-13 Mitsubishi Electric Corporation Solar battery module
WO2009107776A1 (en) * 2008-02-28 2009-09-03 京セラ株式会社 Solar power generation system
WO2010122638A1 (en) * 2009-04-21 2010-10-28 三菱電機株式会社 Solar battery module
JP2011188002A (en) * 2011-07-01 2011-09-22 Mitsubishi Electric Corp Solar cell module
JP2014055506A (en) * 2008-02-11 2014-03-27 R West John Method and device for forming and installing photovoltaic array

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8347564B2 (en) 2007-04-24 2013-01-08 Mitsubishi Electric Corporation Solar cell module
WO2008136095A1 (en) * 2007-04-24 2008-11-13 Mitsubishi Electric Corporation Solar battery module
JP2014055506A (en) * 2008-02-11 2014-03-27 R West John Method and device for forming and installing photovoltaic array
WO2009107776A1 (en) * 2008-02-28 2009-09-03 京セラ株式会社 Solar power generation system
US8404968B2 (en) 2008-02-28 2013-03-26 Kyocera Corporation Photovoltaic power generating system
EP2423971A4 (en) * 2009-04-21 2013-05-15 Mitsubishi Electric Corp Solar battery module
EP2469607A3 (en) * 2009-04-21 2012-10-24 Mitsubishi Electric Corporation Solar cell module
JPWO2010122638A1 (en) * 2009-04-21 2012-10-22 三菱電機株式会社 Solar cell module
EP2423971A1 (en) * 2009-04-21 2012-02-29 Mitsubishi Electric Corporation Solar battery module
JP5289560B2 (en) * 2009-04-21 2013-09-11 三菱電機株式会社 Solar cell module
WO2010122638A1 (en) * 2009-04-21 2010-10-28 三菱電機株式会社 Solar battery module
US9040810B2 (en) 2009-04-21 2015-05-26 Mitsubishi Electric Corporation Solar cell module
JP2011188002A (en) * 2011-07-01 2011-09-22 Mitsubishi Electric Corp Solar cell module

Similar Documents

Publication Publication Date Title
JP6034427B2 (en) Solar array
US20150155819A1 (en) Hole-thru-laminate mounting supports for photovoltaic modules
KR100735129B1 (en) Photovoltaic module fixation system
JP2004006625A (en) Solar cell module and solar cell array
US20120031473A1 (en) Photovoltaic System and Wind Deflector Structure
JP5294184B2 (en) Solar power system
JP5938584B2 (en) Solar cell module
KR20190015143A (en) Groove Type Mounting Bracket, Photovoltaic Power Generation Unit and Method for Mounting Photovoltaic Power Generation Assembly
KR20200123838A (en) Double glass photovoltaic assembly
US20150107670A1 (en) Concentrating solar cell module panel having stiffness and concentrating photovoltaic generation system comprising same
JP5927948B2 (en) Concentrating solar power generation panel and concentrating solar power generation device
US7928316B2 (en) Solar concentrator backpan
KR20140062039A (en) Resilient mounting assembly for photovoltaic modules
JP6350859B2 (en) Solar power plant
US20120031472A1 (en) Support for Photovoltaic Module and Photovoltaic Module
JP2004146765A (en) Solar cell array
KR101437903B1 (en) Concentrating photovoltaic module panel improving stiffness and assembly of baseplate
KR20180071311A (en) Back Element for Solar Module
KR101373629B1 (en) Concentrating photovoltaic module panel having stiffness and concentraing photovoltaic system including the same
KR101437914B1 (en) Concentrating photovoltaic module panel having stiffness and concentraing photovoltaic system including the same
KR101357197B1 (en) Concentrating photovoltaic module including heat pipe
CN213340391U (en) BIPV tile-shaped plate, frame of photovoltaic module, mounting structure and photovoltaic equipment
KR101976347B1 (en) Integrated ESS enclosure
KR20150026824A (en) Photoelectric panel assembly
JPH1113130A (en) Handrail structure of building