JP2004145145A - Method for manufacturing three-dimensional photonic crystal on curved surface and three-dimensional photonic crystal obtained by the method - Google Patents

Method for manufacturing three-dimensional photonic crystal on curved surface and three-dimensional photonic crystal obtained by the method Download PDF

Info

Publication number
JP2004145145A
JP2004145145A JP2002311816A JP2002311816A JP2004145145A JP 2004145145 A JP2004145145 A JP 2004145145A JP 2002311816 A JP2002311816 A JP 2002311816A JP 2002311816 A JP2002311816 A JP 2002311816A JP 2004145145 A JP2004145145 A JP 2004145145A
Authority
JP
Japan
Prior art keywords
photonic crystal
dimensional photonic
curved surface
particles
dispersion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002311816A
Other languages
Japanese (ja)
Inventor
Junichi Takahara
高原 淳一
Hiroshi Kawabata
川畑 弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Industrial Promotion Organization
Original Assignee
Osaka Industrial Promotion Organization
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Industrial Promotion Organization filed Critical Osaka Industrial Promotion Organization
Priority to JP2002311816A priority Critical patent/JP2004145145A/en
Publication of JP2004145145A publication Critical patent/JP2004145145A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide technology capable of forming three-dimensional photonic crystal on a curved surface. <P>SOLUTION: Colloid particulate dispersed liquid is prepared by dispersing polystyrene particulates of 0.08 to 1.2 μm in particulate size in water to a concentration of ≤0.5 mass %. In this dispersed liquid, a body which has a curved surface as an object of crystal formation, is dipped. A dispersion medium of the dispersed liquid is removed under conditions of 30 to 50°C in atmospheric temperature, 30 to 50 % in atmospheric humidity, and ≤2 mm/day in level decreasing speed of the dispersion medium to form three-dimensional photonic crystal on the curved surface. With this crystal, heat radiation can be controlled, for example, as shown by the graphs in the figure. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、曲面上において三次元フォトニック結晶を製造する方法に関する。
【0002】
【従来の技術】
近年、熱輻射コントロール技術の開発が注目されおり、熱光起電力(TPV)ディバイスにおける選択輻射エミッターや、高効率白熱電球のフィラメント(特許文献1)等、エネルギー分野への応用が期待されている。熱輻射は、熱励起された原始からの自然放出であり、個体の熱輻射は、表面近傍の原始からの自然放出が主な割合を占める。物体の表面に、フォトニック結晶のような周期構造を形成することで、熱輻射の自然放出を制御することが可能である(特許文献2、非特許文献1、2、3、4、)。そこで、大きいバンドギャップを持つフォトニック結晶を利用することにより、広範囲にわたる熱輻射抑制が試みられている(非特許文献5)。また、個体表面に作製したグレーティング構造による表面波と輻射場とのカップリングを利用した熱輻射制御も行われ、指向性のある熱輻射が得られることが知られている(非特許文献6、7、8、9、10)。マイクロキャビティアレイを持つ表面からの熱輻射では、キャビティ内の共鳴モードに対応した波長において熱輻射が増強することが報告されている(非特許文献11、12)。しかし、従来のフォトニック結晶の技術では、平面上に形成できても曲面上に形成することができず、したがって、電球やレンズ表面等の照明および光学装置への適用が実質的に困難であった。また、誘電体多層膜をガラスやレンズ表面に形成することも行われているが、誘電多層膜は、いわば1次元フォトニック結晶と呼ぶべきものであり、入射光の角度に依存するという問題がある。
【0003】
【特許文献1】
U.S.patent 5079473(1992)
【特許文献2】
特許1577615号(1982)
【0004】
【非特許文献1】
H.Yokoyama, 「physics and device application of optical microcavities」 Science 256,66−70 (1992)
【0005】
【非特許文献2】
E.Yablonovitch, 「Inhibited spontaneous emission in solid−state physicsand electronics」 Phy.Rev.Lett. 58, 2059 (1987)
【0006】
【非特許文献3】
S.John, 「Strong localization of photons in certain disordered dielectric superlattics」 Phy.Rev.Lett. 58, 2486 (1987)
【0007】
【非特許文献4】
J.D.Joannopoulos, R.D.Meade, and J.N.Winn 「photonic Crystals」 Princeton University Press Princeton, NJ, 1995
【0008】
【非特許文献5】
S.Y.Lin, J.G.Fleming, E.Chow. and J.Bur, 「Enhancement and suppression of thermal emission by a three−dimensional photonic crystal」 Phys. Rev. B. 62, R2243−R2246(2000)
【0009】
【非特許文献6】
P.J.Hesketh, J.N.Zemel, and B.Gebhart, 「Polarizesd spectral emittance from periodic micromachined surface. I. Doped silicon:The normal direction」 Phys.Rev.B 37, 10795−10802(1988)
【0010】
【非特許文献7】
P.J.Hesketh, J.N.Zemel, and B.Gebhart, 「Polarized spectral emittance from periodic micromachined surface. II. Doped silicon:Angular variation」
Phys.Rev.B 37, 10803−10813(1988)
【0011】
【非特許文献8】
J.Le Gall, M.Olivier, and J.−J.Greffet,「Experimental and theoretical study of reflection and coherent thermal emission by a SiC grating supporting a surface−phonon polariton」 Phys.Rev.B 55,10105−10114(1997)
【0012】
【非特許文献9】
F.Kusunoki, T.Tashima,A.Ueda, J.Takahara, and T.Kobayashi, 「An experimental study of thermal emission from two−dimensimal periodic microstructures」 Technical Digest of Quantum Electronics and Laser Science Conference (Optical Society of America, Washington DC,2001), paper QWA26, p.147.
【0013】
【非特許文献10】
J.−J.Greffet,R. Carminati, K.Joulain,J.−P.Mulet, S.Mainguy, and Y.Chen,「Coherent emission of light by thermal sources」 Nature 416, 61−64(2002)
【0014】
【非特許文献11】
S.Maruyama,T.Kashiwa,H.Yugami, and M.Esashi, 「Thermal radiation from two−dimensionally confined modes in microcavities」 Appl.Phys.Lett.79, 1393−1395(2001)
【0015】
【非特許文献12】
F.Kusunoki,J.Takahara, and T.Kobayashi,「Qualitative Change of resonantpeaks in thermal emission from a periodic array of microcavities」 Electron.Lett., submitted.
【0016】
【発明が解決しようとする課題】
本発明は、このような事情に鑑みなされたもので、入射光の角度依存がない三次元フォトニック結晶を曲面上に形成可能な方法を提供することを、その目的とする。
【0017】
【課題を解決するための手段】
前記目的を達成するために、本発明の曲面上において三次元フォトニック結晶を製造する方法は、コロイド粒子分散液を前記曲面に接触させ、この状態で前記分散液の分散媒を蒸発除去することにより前記コロイド粒子を自己組織化させて三次元フォトニック結晶を製造するという方法である。
【0018】
この方法によれば、入射光の角度依存がない三次元フォトニック結晶を曲面上に形成することが可能となる。この方法によれば、例えば、電球、レンズ、ミラー等の照明、光学、ガラス関連の部品や装置の曲面に三次元フォトニック結晶を形成できる。また、本発明の方法は、熱輻射の制御に限定されず、例えば、スペクトル制御、分散制御、装飾、塗装、光学部品、光学素子等の用途にも適用可能である。
【0019】
つぎに、本発明の三次元フォトニック結晶は、前記本発明の方法により製造されたものである。
【0020】
本発明の曲面は、前記三次元フォトニック結晶を有する。
【0021】
本発明の照明器具は、前記本発明の曲面(三次元フォトニック結晶が形成されたもの)を有する。前記照明器具としては、例えば、電球があり、電球のガラス球外表面や内表面に前記三次元フォトニック結晶が形成されていてもよい。
【0022】
本発明の光学素子は、前記本発明の曲面(三次元フォトニック結晶が形成されたもの)を有する。前記光学素子としては、例えば、レンズ、ミラー等があり、その表面に前記三次元フォトニック結晶が形成されている。
【0023】
【発明の実施の形態】
本発明において、前記コロイド粒子は、無機物でも、有機物であってもよく、例えば、ポリスチレン粒子、シリカ粒子、ポリメチルメタクリレート粒子、酸化チタン粒子等があり、このなかで、好ましいのは、ポリスチレン粒子、シリカ粒子であり、より好ましくは、ポリスチレン粒子である。
【0024】
本発明において、前記コロイド粒子の直径(粒子径)を調節することにより、様々な光学的特性をもつ三次元フォトニック結晶を形成できる。コロイド粒子の直径は、例えば、0.08〜1.2μmの範囲であり、好ましくは0.2〜0.6μmの範囲であり、より好ましくは0.25〜0.4μmの範囲である。例えば、0.25〜0.38μmの範囲のコロイド粒子を用いて三次元フォトニクス結晶を形成すれば、550〜900nmの光を吸収若しくは反射できる。
【0025】
本発明において、曲面上への三次元フォトニック結晶の形成のポイントは、コロイド粒子の自己組織化のスピードであり、これを左右する主なファクターは、例えば、コロイド粒子濃度および分散媒の蒸発除去のスピードである。一般的に、曲面上に三次元フォトニック結晶を形成するには、平面上に形成するよりも、コロイド粒子の濃度を低くし、かつ分散媒の蒸発除去スピードを遅くする必要がある。コロイド粒子の濃度は、例えば、0を越え0.5質量%以下、好ましくは0.37質量%以下、より好ましくは0.3質量%以下である。また、分散媒の蒸発除去のスピードは、コロイド溶液水面水位の減少速度(mm/day)で表した場合、例えば、4mm/day以下、好ましくは3mm/day以下、より好ましくは2mm/day以下である。なお、コロイド溶液水面水位の減少速度の測定若しくは条件は、特に制限されず、例えば、前記分散液の量、これを入れている容器の大きさ等は自由に設定できる。前記分散媒の蒸発除去スピードに影響を与える主なファクターは、例えば、雰囲気温度および雰囲気湿度である。前記雰囲気温度は、例えば、30〜60℃、好ましくは30〜55℃、より好ましくは30〜50℃である。また、前記雰囲気湿度は、例えば、25〜55%、好ましくは25〜50%、より好ましくは30〜50%である。分散媒の蒸発除去のスピードには、気圧も関係するが、通常の大気圧でよい。また、前記分散媒は、特に制限されず、例えば、水、低沸点分散媒が使用でき、低沸点分散媒としては、エタノール、メタノール等が使用できる。このなかで、好ましいのは、水、エタノールであり、より好ましいのは水である。水も特に制限されないが、蒸留水、イオン交換水、超純水等を使用することが好ましい。
【0026】
つぎに、本発明の曲面上への三次元フォトニック結晶の形成(製造)は、例えば、つぎのようにして実施できる。まず、ポリスチレン粒子等が分散したコロイド粒子分散液を準備する。この分散液において、コロイド粒子の濃度、粒子径、分散媒等の諸条件は、前述の通りである。この分散液を容器にいれ、この分散液中に、結晶形成対象の曲面を有した物体を浸漬する。そして、前述の雰囲気温度および雰囲気湿度に保持し、前記分散媒を蒸発除去させる。その結果、前記曲面上に三次元フォトニック結晶が形成される。
【0027】
【実施例】
つぎに、本発明の実施例について説明する。
【0028】
(実施例1)
この実施例では、800〜900nmの波長の熱輻射が制御された照明装置を作製した。
【0029】
まず、粒子径0.380μm(380nm)のポリスチレン粒子を、濃度0.5質量%で水に分散させて、コロイド粒子分散液を調製した。他方、有底円筒状のガラス容器を準備し、これを硫酸および紫外線で表面処理した。このガラス容器は、Laboran社製であり製品番号No.3若しくはNo.4を用いた。このガラス容器に前記コロイド粒子分散液を入れ、雰囲気温度40℃、雰囲気湿度40%、分散液の水位減少速度(溶媒の蒸発除去スピード)2mm/day以下の条件で、前記溶媒を蒸発除去することにより、前記ガラス容器内壁にポリスチレン粒子による三次元フォトニック結晶を形成した。なお、No.3のガラス容器において、前記分散液の蒸発面積(水面面積)は346.19cmであり、胴径は21mmであり、全高は45mmである、No.4のガラス容器において、前記分散液の蒸発面積(水面面積)は、452.16cmであり、胴径は24mmであり、全高は50mmである。また、No.3のガラス容器に前記コロイド分散液を水位19mmで入れた場合、三次元フォトニック結晶の作製日数は約8日間であり、水位29mmで入れた場合、作製日数は約13日間であった。No.4のガラス容器に前記コロイド分散液を水位41mmで入れた場合、三次元フォトニック結晶の作製日数は、約21日間であった。そして、このガラス容器の中に、白熱球を配置することにより、前記の熱輻射制御の照明装置を作製した。この照明装置について、熱輻射スペクトルを測定した。
【0030】
前記測定は、積分球を用いて行った。この積分球は、空洞で、内部は拡散反射物質でコートされている。この積分球の中央に、前記照明装置を配置した。そして、積分球のある一点での光束を検出することにより、球内で発せられた全光束に比例したものを得ることができる。測定波長は350nmから1050nmの範囲で行った。なお、対照として、通常の白熱球についても、測定を行った。これらの結果を図1(a)に示す。同図において、実線が前記照明装置のスペクトルであり、点線が前記対照の白熱球のスペクトルである。図示のように、前記照明装置において、800〜900nmの範囲で輻射強度が大きく減少した。
【0031】
つぎに、図1(a)のデータを、三次元フォトニック結晶の透過率に換算した結果を、図1(b)に示す。図示のように、前記照明装置では、光の透過率が、830nmを中心に、半値幅約100nmで減少しており、最大で約15%減少していた。
【0032】
つぎに、前記ガラス容器の曲面上の三次元フォトニック結晶を走査型電子顕微鏡(SEM)で観察した。この結果を、図2の写真に示す。なお、SEMの観察において、帯電を防止するために、結晶表面を薄く金でコーティングした後、観察した。図示のように、この結晶において、fcc構造の(111)面に特徴的な最密充填構造を示しており、ポリスチレン粒子の自己組織化により、三次元フォトニック構造が形成されていることが確認された。この結晶において、<111>方向の周期性によりブラッグ反射が起こる。反射率が最大になるブラッグ波長λmaxは、下記の式で表される。
【0033】
λmax=2d111(neff −sinθ)1/2
【0034】
前記式において、neffは実効屈折率、d111は(111)両面間の結晶面間隔、θは<111>方向からの角度である。この実施例で用いたポリスチレン粒子の粒子径Dは380nmであり、粒子の最密充填を仮定した場合、d111=0.816×Dとなる。垂直入射(θ=0°)では、前記式より、λmaxは893nmと計算される。斜め入射の場合、角度θが大きくなるほど、λmaxは短波長側に移動する。例えば、θ=60°の場合、λmaxは、713nmと計算される。この実施例では、前記ガラス容器内壁の三次元フォトニック結晶に対し、白熱球からの熱輻射があらゆる角度で入射するため、透過率が、ある波長においてのみではなく、ブロードに減少している。図1(b)の透過率が減少している波長と、前記式により計算で得られた波長λmaxとは、ほぼ一致した。この結果から、前記三次元フォトニック結晶の構造の周期性によるブッラグ反射が、白熱球の光の透過率を減少させているといえる。なお、図1において、500nm付近でも透過率の減少が確認されたが、これは第2のフォトニックバンドによるものと推察される。
【0035】
(実施例2)
電球のガラス球外表面上に、以下のようにして三次元フォトニック結晶を形成した。用いた電球は、朝日電気株式会社製の型番G−74H(C)スペース球(口金サイズ12mm、全長70mm、バルブ径19mm)である。100mlのビーカ(内径55mm、高さ70mm)に、前記実施例1のコロイド分散液を、蒸発表面面積(水面面積)2091.25cmで入れた。この分散液中に前記電球を浸漬し、前記実施例1と同じ条件で、分散媒を蒸発除去することにより、図3の写真に示すように、前記電球のガラス球外表面上にポリスチレン粒子製の三次元フォトニクス結晶を形成した。
【0036】
【発明の効果】
以上のように、本発明によれば、入射光の角度依存がない三次元フォトニック結晶を曲面上に形成することが可能となる。この方法によれば、例えば、熱の発生が抑制された電球等の照明装置が簡単に作製できる。この他にも、本発明によれば、例えば、レンズ、ミラー等の照明、光学、ガラス関連の部品や装置の曲面に三次元フォトニック結晶を形成できる。また、本発明の用途は、熱輻射の制御に限定されず、例えば、スペクトル制御、分散制御、装飾等の用途にも適用可能である。
【図面の簡単な説明】
【図1】図1(a)および図1(b)は、本発明の一実施例の三次元フォトニック結晶による熱輻射の制御の例を示すグラフである。
【図2】前記実施例の三次元フォトニック結晶のSEM写真である。
【図3】本発明のその他の実施例において、電球のガラス球表面上に三次元フォトニック結晶を形成した状態を示す写真である。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for manufacturing a three-dimensional photonic crystal on a curved surface.
[0002]
[Prior art]
In recent years, attention has been paid to the development of thermal radiation control technology, and application to the energy field, such as selective radiation emitters in thermophotovoltaic (TPV) devices and filaments of high efficiency incandescent lamps (Patent Document 1), is expected. . Thermal radiation is spontaneous emission from a thermally-excited primordial element, and thermal radiation of an individual is mainly occupied by primordial element near the surface. By forming a periodic structure such as a photonic crystal on the surface of an object, it is possible to control spontaneous emission of thermal radiation (Patent Document 2, Non-Patent Documents 1, 2, 3, and 4). Thus, suppression of thermal radiation over a wide range has been attempted by using a photonic crystal having a large band gap (Non-Patent Document 5). It is also known that thermal radiation control using coupling between a surface wave and a radiation field by a grating structure fabricated on the surface of an individual is performed, and directional thermal radiation is obtained (Non-Patent Document 6, 7, 8, 9, 10). It has been reported that thermal radiation from a surface having a microcavity array increases at a wavelength corresponding to a resonance mode in a cavity (Non-Patent Documents 11 and 12). However, conventional photonic crystal technology cannot be formed on a curved surface even if it can be formed on a flat surface, and therefore, it is substantially difficult to apply it to lighting and optical devices such as electric bulbs and lens surfaces. Was. Also, a dielectric multilayer film is formed on the surface of glass or a lens, but the dielectric multilayer film should be called a one-dimensional photonic crystal, and has a problem that it depends on the angle of incident light. is there.
[0003]
[Patent Document 1]
U. S. patent 5079473 (1992)
[Patent Document 2]
Patent No. 1577615 (1982)
[0004]
[Non-patent document 1]
H. Yokoyama, "physics and device application of optical microcavities", Science 256, 66-70 (1992).
[0005]
[Non-patent document 2]
E. FIG. Yablonovitch, "Inhibited spontaneous emission in solid-state physicsand electronics" Phys. Rev .. Lett. 58, 2059 (1987)
[0006]
[Non-Patent Document 3]
S. John, "Strong localization of photos in certain disordered dielectric superlattics" Phys. Rev .. Lett. 58, 2486 (1987)
[0007]
[Non-patent document 4]
J. D. Joannopoulos, R.A. D. Meade, and J.M. N. Winn "photonic Crystals" Princeton University Press Princeton, NJ, 1995.
[0008]
[Non-Patent Document 5]
S. Y. Lin, J.A. G. FIG. Fleming, E .; Chow. and J.J. Bur, "Enhancement and suppression of thermal emission by a three-dimensional photonic crystal" Phys. Rev .. B. 62, R2243-R2246 (2000)
[0009]
[Non-Patent Document 6]
P. J. Hesketh, J .; N. Zemel, and B.S. Gebhart, "Polarized spectral emission from periodic micromachined surface. I. Doped silicon: The normal direction" Phys. Rev .. B 37, 10795-10802 (1988)
[0010]
[Non-Patent Document 7]
P. J. Hesketh, J .; N. Zemel, and B.S. Gehart, "Polarized spectral emission from periodic micromachined surface. II. Doped silicon: Angular variation."
Phys. Rev .. B 37, 10803-10813 (1988)
[0011]
[Non-Patent Document 8]
J. Le Gall, M .; Olivier, and J.M. -J. Greffet, "Experimental and theoretic study of reflexion and coherent thermal emission by a SiC grating supporting a surfacing porpoon-ponho-porpoon." Rev .. B 55, 10105-10114 (1997)
[0012]
[Non-Patent Document 9]
F. Kusunoki, T .; Tashima, A .; Ueda, J.M. Takahara, and T.C. Kobayashi, "An experimental study of thermal emission from two-dimensimal periodic microstructures" Technical Digest of Quantum Electronics and Laser Science Conference (Optical Society of America, Washington DC, 2001), paper QWA26, p. 147.
[0013]
[Non-Patent Document 10]
J. -J. Greffet, R .; Carminati, K .; Jourain, J. et al. -P. Mulet, S.M. Mainguy, and Y. Chen, "Coherent emission of light by thermal sources" Nature 416, 61-64 (2002).
[0014]
[Non-Patent Document 11]
S. Maruyama, T .; Kashiwa, H .; Yugami, and M.S. Esashi, "Thermal radiation from two-dimensionally defined modes in microcavities," Appl. Phys. Lett. 79, 1393-1395 (2001)
[0015]
[Non-Patent Document 12]
F. Kusunoki, J .; Takahara, and T.C. Kobayashi, "Qualitive Change of Resonant Peaks in thermal Emission from a Periodic Array of Microcavities," Electron. Lett. , Submitted.
[0016]
[Problems to be solved by the invention]
The present invention has been made in view of such circumstances, and an object of the present invention is to provide a method capable of forming a three-dimensional photonic crystal having no angle dependence on incident light on a curved surface.
[0017]
[Means for Solving the Problems]
In order to achieve the above object, a method for producing a three-dimensional photonic crystal on a curved surface according to the present invention includes contacting a colloidal particle dispersion with the curved surface, and evaporating and removing a dispersion medium of the dispersion in this state. A self-assembly of the colloidal particles to produce a three-dimensional photonic crystal.
[0018]
According to this method, it is possible to form a three-dimensional photonic crystal having no angle dependence on incident light on a curved surface. According to this method, for example, a three-dimensional photonic crystal can be formed on a curved surface of a component or apparatus related to illumination, optics, and glass, such as a light bulb, a lens, and a mirror. Further, the method of the present invention is not limited to control of thermal radiation, but can be applied to applications such as spectrum control, dispersion control, decoration, painting, optical components, and optical elements.
[0019]
Next, the three-dimensional photonic crystal of the present invention is manufactured by the method of the present invention.
[0020]
The curved surface of the present invention has the three-dimensional photonic crystal.
[0021]
The lighting fixture of the present invention has the curved surface of the present invention (where the three-dimensional photonic crystal is formed). As the lighting fixture, for example, there is a light bulb, and the three-dimensional photonic crystal may be formed on an outer surface or an inner surface of a glass bulb of the light bulb.
[0022]
The optical element of the present invention has the curved surface of the present invention (the surface on which the three-dimensional photonic crystal is formed). Examples of the optical element include a lens and a mirror, and the three-dimensional photonic crystal is formed on the surface thereof.
[0023]
BEST MODE FOR CARRYING OUT THE INVENTION
In the present invention, the colloid particles may be inorganic or organic, for example, polystyrene particles, silica particles, polymethyl methacrylate particles, titanium oxide particles and the like, among which, preferred are polystyrene particles, Silica particles, more preferably polystyrene particles.
[0024]
In the present invention, three-dimensional photonic crystals having various optical characteristics can be formed by adjusting the diameter (particle diameter) of the colloid particles. The diameter of the colloid particles is, for example, in the range of 0.08 to 1.2 μm, preferably in the range of 0.2 to 0.6 μm, and more preferably in the range of 0.25 to 0.4 μm. For example, if a three-dimensional photonics crystal is formed using colloidal particles in the range of 0.25 to 0.38 μm, light of 550 to 900 nm can be absorbed or reflected.
[0025]
In the present invention, the point of formation of a three-dimensional photonic crystal on a curved surface is the speed of self-assembly of colloid particles, and the main factors affecting this are, for example, the concentration of colloid particles and the evaporation and removal of the dispersion medium. Speed. Generally, in order to form a three-dimensional photonic crystal on a curved surface, it is necessary to lower the concentration of colloidal particles and to lower the speed of evaporating and removing the dispersion medium, as compared to forming a three-dimensional photonic crystal on a flat surface. The concentration of the colloid particles is, for example, more than 0 and 0.5% by mass or less, preferably 0.37% by mass or less, and more preferably 0.3% by mass or less. In addition, the speed of evaporation and removal of the dispersion medium is, for example, 4 mm / day or less, preferably 3 mm / day or less, and more preferably 2 mm / day or less, when expressed as a decreasing speed (mm / day) of the colloid solution water level. is there. The measurement or condition of the rate of decrease in the water level of the colloid solution is not particularly limited, and for example, the amount of the dispersion, the size of the container in which the dispersion is placed, and the like can be freely set. The main factors affecting the speed of evaporation and removal of the dispersion medium are, for example, ambient temperature and ambient humidity. The ambient temperature is, for example, 30 to 60C, preferably 30 to 55C, and more preferably 30 to 50C. The atmospheric humidity is, for example, 25 to 55%, preferably 25 to 50%, and more preferably 30 to 50%. Although the atmospheric pressure is related to the speed at which the dispersion medium is removed by evaporation, normal atmospheric pressure may be used. The dispersion medium is not particularly limited, and for example, water and a low-boiling dispersion medium can be used. As the low-boiling dispersion medium, ethanol, methanol, and the like can be used. Among them, preferred are water and ethanol, and more preferred is water. Although water is not particularly limited, it is preferable to use distilled water, ion-exchanged water, ultrapure water and the like.
[0026]
Next, the formation (production) of a three-dimensional photonic crystal on a curved surface according to the present invention can be performed, for example, as follows. First, a colloid particle dispersion in which polystyrene particles and the like are dispersed is prepared. In this dispersion, various conditions such as the concentration of colloid particles, the particle diameter, and the dispersion medium are as described above. The dispersion is placed in a container, and an object having a curved surface on which a crystal is to be formed is immersed in the dispersion. Then, the dispersion medium is kept at the above-mentioned atmospheric temperature and atmospheric humidity, and the dispersion medium is removed by evaporation. As a result, a three-dimensional photonic crystal is formed on the curved surface.
[0027]
【Example】
Next, examples of the present invention will be described.
[0028]
(Example 1)
In this example, a lighting device in which thermal radiation of a wavelength of 800 to 900 nm was controlled was manufactured.
[0029]
First, polystyrene particles having a particle diameter of 0.380 μm (380 nm) were dispersed in water at a concentration of 0.5% by mass to prepare a colloid particle dispersion. On the other hand, a bottomed cylindrical glass container was prepared, and this was surface-treated with sulfuric acid and ultraviolet rays. This glass container is manufactured by Laboran and has a product number No. 3 or No. 4 was used. Putting the colloidal particle dispersion in this glass container, and evaporating and removing the solvent under conditions of an ambient temperature of 40 ° C., an atmospheric humidity of 40%, and a water level decreasing speed of the dispersion (evaporation removal speed of the solvent) of 2 mm / day or less. Thereby, a three-dimensional photonic crystal of polystyrene particles was formed on the inner wall of the glass container. In addition, No. In the glass container of No. 3 , the evaporation area (water surface area) of the dispersion was 346.19 cm 2 , the trunk diameter was 21 mm, and the total height was 45 mm. In the glass container of No. 4, the evaporation area (water surface area) of the dispersion is 452.16 cm 2 , the body diameter is 24 mm, and the total height is 50 mm. No. When the colloidal dispersion liquid was placed in the glass container of No. 3 at a water level of 19 mm, the number of days for preparing a three-dimensional photonic crystal was about 8 days, and when the colloidal dispersion liquid was charged at a water level of 29 mm, the preparation days was about 13 days. No. When the colloidal dispersion liquid was placed in the glass container of No. 4 at a water level of 41 mm, the number of days for producing the three-dimensional photonic crystal was about 21 days. Then, an incandescent bulb was placed in the glass container to produce the above-described illumination device for controlling heat radiation. The thermal radiation spectrum of this lighting device was measured.
[0030]
The measurement was performed using an integrating sphere. The integrating sphere is hollow and the inside is coated with a diffuse reflective material. The lighting device was arranged in the center of the integrating sphere. Then, by detecting the light beam at a certain point on the integrating sphere, a beam proportional to the total light beam emitted within the sphere can be obtained. The measurement wavelength was in the range of 350 nm to 1050 nm. As a control, measurement was also performed on a normal incandescent bulb. These results are shown in FIG. In the figure, the solid line is the spectrum of the lighting device, and the dotted line is the spectrum of the incandescent sphere of the control. As shown in the drawing, in the lighting device, the radiation intensity was significantly reduced in the range of 800 to 900 nm.
[0031]
Next, FIG. 1B shows the result of converting the data of FIG. 1A into the transmittance of the three-dimensional photonic crystal. As shown in the drawing, in the lighting device, the light transmittance decreased at a half-width of about 100 nm centered at 830 nm, and decreased by about 15% at the maximum.
[0032]
Next, the three-dimensional photonic crystal on the curved surface of the glass container was observed with a scanning electron microscope (SEM). The result is shown in the photograph of FIG. In the SEM observation, the crystal surface was thinly coated with gold in order to prevent electrification and then observed. As shown, in this crystal, a characteristic close-packed structure is shown on the (111) plane of the fcc structure, and it was confirmed that a three-dimensional photonic structure was formed by self-organization of polystyrene particles. Was done. In this crystal, Bragg reflection occurs due to the periodicity in the <111> direction. The Bragg wavelength λmax at which the reflectance is maximized is represented by the following equation.
[0033]
λmax = 2d 111 (n eff 2 −sin 2 θ) 1/2
[0034]
In the above equation, n eff is the effective refractive index, d 111 is the crystal plane spacing between both (111) surfaces, and θ is the angle from the <111> direction. The particle diameter D of the polystyrene particles used in this example is 380 nm, and d 111 = 0.816 × D assuming the closest packing of the particles. At normal incidence (θ = 0 °), λmax is calculated to be 893 nm from the above equation. In the case of oblique incidence, λmax moves to the shorter wavelength side as the angle θ increases. For example, when θ = 60 °, λmax is calculated as 713 nm. In this embodiment, since the thermal radiation from the incandescent sphere is incident on the three-dimensional photonic crystal on the inner wall of the glass container at any angle, the transmittance is reduced not only at a certain wavelength but also broadly. The wavelength at which the transmittance is reduced in FIG. 1B substantially coincides with the wavelength λmax calculated by the above equation. From this result, it can be said that the Bragg reflection due to the periodicity of the structure of the three-dimensional photonic crystal reduces the light transmittance of the incandescent sphere. In FIG. 1, a decrease in the transmittance was confirmed even at around 500 nm, which is presumed to be due to the second photonic band.
[0035]
(Example 2)
A three-dimensional photonic crystal was formed on the outer surface of a glass bulb of a bulb as follows. The bulb used was a model G-74H (C) space bulb (base size 12 mm, total length 70 mm, bulb diameter 19 mm) manufactured by Asahi Electric Co., Ltd. The colloidal dispersion liquid of Example 1 was placed in a 100 ml beaker (inner diameter 55 mm, height 70 mm) with an evaporation surface area (water surface area) of 2091.25 cm 2 . By immersing the bulb in this dispersion and evaporating and removing the dispersion medium under the same conditions as in Example 1, polystyrene particles were formed on the outer surface of the glass bulb of the bulb as shown in the photograph of FIG. A three-dimensional photonics crystal was formed.
[0036]
【The invention's effect】
As described above, according to the present invention, it is possible to form a three-dimensional photonic crystal on a curved surface that does not depend on the angle of incident light. According to this method, for example, a lighting device such as a light bulb in which generation of heat is suppressed can be easily manufactured. In addition, according to the present invention, for example, a three-dimensional photonic crystal can be formed on a curved surface of a component or device related to illumination, optics, and glass such as a lens and a mirror. Further, the application of the present invention is not limited to the control of heat radiation, but is also applicable to, for example, applications such as spectrum control, dispersion control, and decoration.
[Brief description of the drawings]
FIGS. 1A and 1B are graphs showing an example of control of thermal radiation by a three-dimensional photonic crystal according to one embodiment of the present invention.
FIG. 2 is an SEM photograph of the three-dimensional photonic crystal of the example.
FIG. 3 is a photograph showing a state in which a three-dimensional photonic crystal is formed on the surface of a glass bulb of a light bulb in another example of the present invention.

Claims (10)

曲面上において三次元フォトニック結晶を製造する方法であって、コロイド粒子分散液を前記曲面に接触させ、この状態で前記分散液の分散媒を蒸発除去することにより前記コロイド粒子を自己組織化させて三次元フォトニック結晶を製造する方法。A method for producing a three-dimensional photonic crystal on a curved surface, wherein a colloid particle dispersion is brought into contact with the curved surface, and in this state, the colloid particles are self-organized by evaporating and removing a dispersion medium of the dispersion. To produce a three-dimensional photonic crystal. コロイド粒子が、ポリスチレン粒子、シリカ粒子、ポリメチルメタクリレート粒子および酸化チタン粒子からなる群から選択される少なくとも一つの粒子である請求項1記載の方法。The method according to claim 1, wherein the colloid particles are at least one particle selected from the group consisting of polystyrene particles, silica particles, polymethyl methacrylate particles and titanium oxide particles. コロイド粒子の粒径が、0.08〜1.2μmの範囲にある請求項1または2記載の方法。3. The method according to claim 1, wherein the colloid particles have a particle size in the range of 0.08 to 1.2 [mu] m. コロイド粒子の濃度が、0.5質量%以下である請求項1から3のいずれかに記載の方法。4. The method according to claim 1, wherein the concentration of the colloid particles is 0.5% by mass or less. 分散媒を蒸発除去する際の雰囲気温度が30〜50℃の範囲にあり、雰囲気湿度が30〜50%の範囲にある請求項1から4のいずれかに記載の方法。The method according to any one of claims 1 to 4, wherein an atmosphere temperature in evaporating and removing the dispersion medium is in a range of 30 to 50 ° C, and an atmosphere humidity is in a range of 30 to 50%. 前記分散媒の蒸発除去の速度が、コロイド粒子分散液水面水位の減少速度(mm/day)で表した場合、2mm/day以下である請求項1から5のいずれかに記載の方法。The method according to any one of claims 1 to 5, wherein the rate at which the dispersion medium is removed by evaporation is 2 mm / day or less when the rate of decrease (mm / day) of the water level of the colloidal particle dispersion liquid is used. 請求項1から6のいずれかの方法で製造された三次元フォトニック結晶。A three-dimensional photonic crystal manufactured by the method according to claim 1. 請求項8に記載の三次元フォトニック結晶を有する曲面。A curved surface having the three-dimensional photonic crystal according to claim 8. 請求項9に記載の曲面を有する照明器具。A lighting fixture having the curved surface according to claim 9. 請求項9に記載の曲面を有する光学素子。An optical element having a curved surface according to claim 9.
JP2002311816A 2002-10-25 2002-10-25 Method for manufacturing three-dimensional photonic crystal on curved surface and three-dimensional photonic crystal obtained by the method Withdrawn JP2004145145A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002311816A JP2004145145A (en) 2002-10-25 2002-10-25 Method for manufacturing three-dimensional photonic crystal on curved surface and three-dimensional photonic crystal obtained by the method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002311816A JP2004145145A (en) 2002-10-25 2002-10-25 Method for manufacturing three-dimensional photonic crystal on curved surface and three-dimensional photonic crystal obtained by the method

Publications (1)

Publication Number Publication Date
JP2004145145A true JP2004145145A (en) 2004-05-20

Family

ID=32456924

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002311816A Withdrawn JP2004145145A (en) 2002-10-25 2002-10-25 Method for manufacturing three-dimensional photonic crystal on curved surface and three-dimensional photonic crystal obtained by the method

Country Status (1)

Country Link
JP (1) JP2004145145A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006064931A (en) * 2004-08-26 2006-03-09 Dainippon Ink & Chem Inc Photonic crystal, optical waveguide, optical resonance circuit, optical recording medium, and method for manufacturing photonic crystal
WO2006081427A2 (en) * 2005-01-28 2006-08-03 Hewlett-Packard Development Company, L.P. Apparatus having a photonic crystal
JP2006251709A (en) * 2005-03-14 2006-09-21 Ricoh Co Ltd Image forming apparatus
US7394587B2 (en) * 2005-01-28 2008-07-01 Hewlett-Packard Development Company, L.P. Apparatus having a photonic crystal
CN106929915A (en) * 2017-04-26 2017-07-07 北京市环境保护科学研究院 A kind of opal photonic crystal of curved-surface structure and the preparation method of molecularly imprinted polymer inverse opal film
CN107201690A (en) * 2017-02-23 2017-09-26 苏州贝彩纳米科技有限公司 A kind of method of utilization microballoon preparation structure color coating

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006064931A (en) * 2004-08-26 2006-03-09 Dainippon Ink & Chem Inc Photonic crystal, optical waveguide, optical resonance circuit, optical recording medium, and method for manufacturing photonic crystal
JP4595445B2 (en) * 2004-08-26 2010-12-08 Dic株式会社 Photonic crystal, optical waveguide, optical resonant circuit, optical recording medium, and photonic crystal manufacturing method
WO2006081427A2 (en) * 2005-01-28 2006-08-03 Hewlett-Packard Development Company, L.P. Apparatus having a photonic crystal
US7394587B2 (en) * 2005-01-28 2008-07-01 Hewlett-Packard Development Company, L.P. Apparatus having a photonic crystal
WO2006081427A3 (en) * 2005-01-28 2008-07-03 Hewlett Packard Development Co Apparatus having a photonic crystal
JP2006251709A (en) * 2005-03-14 2006-09-21 Ricoh Co Ltd Image forming apparatus
JP4584746B2 (en) * 2005-03-14 2010-11-24 株式会社リコー Image forming apparatus
CN107201690A (en) * 2017-02-23 2017-09-26 苏州贝彩纳米科技有限公司 A kind of method of utilization microballoon preparation structure color coating
CN106929915A (en) * 2017-04-26 2017-07-07 北京市环境保护科学研究院 A kind of opal photonic crystal of curved-surface structure and the preparation method of molecularly imprinted polymer inverse opal film
CN106929915B (en) * 2017-04-26 2019-01-11 北京市环境保护科学研究院 A kind of opal photonic crystal of curved-surface structure and the preparation method of molecularly imprinted polymer inverse opal film

Similar Documents

Publication Publication Date Title
Choudhury et al. Material platforms for optical metasurfaces
Almeida et al. Photonic band gap structures by sol–gel processing
Proust et al. All-dielectric colored metasurfaces with silicon Mie resonators
US20030148088A1 (en) Light emitting photonic crystals
US20120206805A1 (en) Nanowire grid polarizers and methods for fabricating the same
Charconnet et al. Mechanically Tunable Lattice‐Plasmon Resonances by Templated Self‐Assembled Superlattices for Multi‐Wavelength Surface‐Enhanced Raman Spectroscopy
Lin et al. Large‐Scale Robust Quantum Dot Microdisk Lasers with Controlled High Quality Cavity Modes
Wang et al. Innovative high-performance nanowire-grid polarizers and integrated isolators
JP2004145145A (en) Method for manufacturing three-dimensional photonic crystal on curved surface and three-dimensional photonic crystal obtained by the method
Jaiswal et al. Design of a nanoscale silicon laser
Tang et al. Micro–Nanostructure‐Assisted Luminescence in Perovskite Devices
Almeida et al. Sol–gel photonic bandgap materials and structures
Lin et al. Toward chiral lasing from all‐solution‐processed flexible perovskite‐nanocrystal–liquid‐crystal membranes
US11017186B2 (en) Optical devices enabled by vertical dielectric Mie resonators
DeSilva et al. Reflectivity of 88% for four-period hybrid Bragg mirror from spin coating process
EP2692031B1 (en) Plasmonic laser and its fabrication process
Nia et al. Efficient luminescence extraction strategies and anti-reflective coatings to enhance optical refrigeration of semiconductors
Blanco et al. Photonic crystals: fundamentals and applications
CN114486816B (en) Method for exciting nano-cavity surface plasmon resonance by optical waveguide
Hah Shell-shaped active layers for omnidirectional organic photovoltaic cells
Zhou Photonic devices fabricated with photonic area lithographically mapped process
Liu et al. Athermal photonic crystal membrane reflectors on diamond
Adamo Giorgio Adamo, Jingyi Tian, Harish NS Krishnamoorthy, Daniele Cortecchia, Guankui Long, and Cesare Soci
Sutherland The development of layered photonic band gap structures using a micro-transfer molding technique
Li Design and fabrication of perovskite based frequency-upconverted nano/micro lasers

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060110