JP2004144824A - Image shake corrector - Google Patents

Image shake corrector Download PDF

Info

Publication number
JP2004144824A
JP2004144824A JP2002306958A JP2002306958A JP2004144824A JP 2004144824 A JP2004144824 A JP 2004144824A JP 2002306958 A JP2002306958 A JP 2002306958A JP 2002306958 A JP2002306958 A JP 2002306958A JP 2004144824 A JP2004144824 A JP 2004144824A
Authority
JP
Japan
Prior art keywords
image
image blur
optical system
lens
blur correction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002306958A
Other languages
Japanese (ja)
Other versions
JP3951177B2 (en
Inventor
Aiko Higure
日暮 愛子
Kenji Hishinuma
菱沼 兼次
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujinon Corp
Original Assignee
Fuji Photo Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Optical Co Ltd filed Critical Fuji Photo Optical Co Ltd
Priority to JP2002306958A priority Critical patent/JP3951177B2/en
Priority to DE10348567A priority patent/DE10348567A1/en
Priority to US10/689,950 priority patent/US7292270B2/en
Publication of JP2004144824A publication Critical patent/JP2004144824A/en
Priority to US11/709,799 priority patent/US20070146488A1/en
Application granted granted Critical
Publication of JP3951177B2 publication Critical patent/JP3951177B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Adjustment Of Camera Lenses (AREA)
  • Studio Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an image shake corrector which determines panning/tilting performed by a camera and stops image shake correction while carrying out the image shake correction, and which changes the speed of returning a vibration isolating lens to a reference position in the case of such return according to focal lengths and lowers the speed particularly when the lens is set on a wide side, thereby preventing the sense of incongruity by swingback during panning/tilting operation. <P>SOLUTION: A CPU 24 determines the position of the vibration isolating lens 10 for correcting the image shake according to the angular velocity signal from an angular speed sensor 14. Also, the CPU stops the image shake correction and returns the lens 10 to the reference position when decision is made that the angular velocity signal is due to panning/tilting. At this time, the speed to return the lens 10 is changed according to focal lengths by changing the filter characteristics of an LPF (low pass filter) 34. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は像振れ補正装置に係り、特に振動によるカメラの像振れを補正(防止)する像振れ補正装置に関する。
【0002】
【従来の技術】
例えば、テレビカメラの像振れ補正装置として、撮影光学系に防振レンズを光軸と直交する面内で移動自在に配置し、カメラ(カメラの撮影光学系)に振動が加わると、その振動を打ち消す方向に防振レンズをアクチュエータで駆動して像振れを補正するようにしたものが知られている。このような像振れ補正装置では、カメラに加わった振動を振れ検出センサ(角速度センサや加速度センサ等)によって検出し、その振れ検出センサから出力される振れ信号に基づいて像振れを補正するための防振レンズの変位量が求められるようになっている(例えば、特許文献1参照)。
【0003】
ところで、振れ検出センサから出力される振れ信号には、手ぶれのような補正すべき振動に起因する信号の他に、パン操作やチルト操作のような撮影者の意図的なカメラ操作に起因する信号等も含まれている。従って、単に振れ信号に基づいて防振レンズを駆動すると、パン/チルト操作時にも像振れ補正が行われる。しかしながら、パン/チルト操作時に像振れ補正が行われると、パン/チルト動作終了後に像振れが生じ、カメラ操作や映像に違和感が生じるため好ましくない。
【0004】
そこで、従来、振れ検出センサから出力された振れ信号がパン/チルト操作によるものか否かを自動で判断し、パン/チルト操作によるものと判断した場合には像振れ補正を停止し、防振レンズを可動範囲の中心(変位量0とする基準位置)に戻して停止させておくようにしたものが提案されている(例えば、特許文献2参照)。
【0005】
【特許文献1】
特開2002−229089
【0006】
【特許文献2】
特開平5−142624号公報
【0007】
【発明が解決しようとする課題】
しかしながら、上述のようにパン/チルト操作時に像振れ補正を停止させる場合であっても、防振レンズを変位量0の位置に戻す動作によってパン/チルト操作の速度があたかも瞬間的に変化したように像がゆれる現象(ゆれ戻し)が生じるという不具合があった。ゆれ戻しは、ズームをテレ側に設定してパン/チルト操作している時には、画像の移り変わりが速いためにあまり違和感を生じさせない。しかしながら、ズームをワイド側に設定している場合には、ズームをテレ側に設定している時と同じ速度でパン/チルト操作しても映像としてゆれ戻しが顕著に現れカメラ操作や映像に違和感が生じるという問題があった。
【0008】
本発明はこのような事情に鑑みてなされたもので、パン/チルト操作時にゆれ戻しによる違和感が生じる不具合を解消する像振れ補正装置を提供することを目的とする。
【0009】
【課題を解決するための手段】
前記目的を達成するために、請求項1に記載の発明は、焦点距離の変更が可能なカメラの撮影光学系と、該撮影光学系により結像された像の像振れを検出する像振れ検出手段と、該像振れ検出手段により検出された像振れに基づいて前記撮影光学系の撮影範囲を変位させ、像振れを補正する像振れ補正手段と、カメラがパン又はチルト動作していると判断した場合に前記像振れ補正手段による像振れの補正を停止すると共に、前記像振れ補正手段によって変位した前記撮影光学系の撮影範囲を基準位置に戻す像振れ補正停止手段と、を備えた像振れ補正装置において、前記像振れ補正停止手段は、前記撮影光学系の焦点距離に基づいて前記撮影光学系の撮影範囲を基準位置に戻す速さを変更することを特徴としている。
【0010】
また、請求項2に記載の発明は、請求項1に記載の発明において、前記像振れ補正手段は、前記撮影光学系の焦点距離が短い場合には、焦点距離が長い場合に比べて、前記撮影範囲を基準位置に戻す速さを遅くすることを特徴としている。
【0011】
また、請求項3に記載の発明は、請求項1又は請求項2に記載の発明において、前記像振れ補正手段は、前記撮影光学系に配置された補正レンズを光軸に対して直交する面内で変位させることにより前記撮影範囲を変位させることを特徴としている。
【0012】
本発明によれば、カメラがパン又はチルト動作していると判断し、像振れ補正によって変位した撮影範囲を基準位置に戻す場合に、その速度を焦点距離に応じて変更し、特にワイド側に設定されている場合には遅くするようにしたため、パン/チルト操作時においてゆれ戻しによって違和感が生じる不具合が防止される。
【0013】
【発明の実施の形態】
以下添付図面に従って本発明に係る像振れ補正装置の好ましい実施の形態について詳述する。
【0014】
図1は、本発明に係る像振れ補正装置の実施の形態を示した構成図である。像振れ補正装置は、例えば、テレビカメラ用のレンズ装置(撮影レンズ)、ムービカメラ、又は、スチルカメラ等に搭載され、同図に示す防振レンズ10は、本装置が搭載されるレンズ装置又はカメラの撮影光学系において、光軸に対して垂直な面内で上下(鉛直方向)、左右(水平方向)に移動自在に配置される。また、防振レンズ10は、モータ12により上下、又は、左右に駆動されるようになっており、カメラ(撮影光学系)に振動が生じた場合には、このモータ12により像振れを防止する位置(振動を打ち消す位置)に移動するようになっている。尚、防振レンズ10が上下、左右に移動すると撮影光学系の撮影範囲が上下、左右に変位する。また、防振レンズ10は上下方向と左右方向のいずれの方向についても各方向に生じた振動に基づいて同様に駆動されるため、本実施の形態では、一方向(以下、上下方向)に対する像振れ補正を行う構成についてのみ説明し、他方向に対して同様に構成されるものとする。
【0015】
同図に示す角速度センサ14は、例えばジャイロセンサであり、カメラの振動を検出するための振れ検出センサとして用いられる。この角速度センサ14は、例えばレンズ鏡胴の上面に設置され、レンズ鏡胴の上下方向の振動の角速度を検出し、検出した角速度に応じた電圧の電気信号を出力する。尚、角速度センサ14から出力される信号を以下、角速度信号という。
【0016】
角速度センサ14から出力された角速度信号は、2つの線路に分岐され、一方は、ハイパスフィルタ15によって低周波ノイズが除去された後、A/D変換器16によってデジタル信号に変換される。そして、CPU24に与えられる。他方は、角速度センサ14から出力された角速度信号がそのままA/D変換器18によってデジタル信号に変換されてCPU24に与えられる。
【0017】
また、本実施の形態における撮影レンズは、ズーム倍率(焦点距離)の変更が可能であり、その設定位置(ズーム位置)に対応する電圧の検出信号がズーム位置検出器20から出力され、A/D変換器22によってデジタル信号に変換された後、CPU24に与えられるようになっている。
【0018】
CPU24の処理内容については後述するが、CPU24からは、目標とする防振レンズ10の位置、即ち、防振レンズ10の基準位置に対する変位量を示す位置指令信号がD/A変換器26に出力されるようになっている。D/A変換器26に出力された位置指令信号は、アナログの電圧信号に変換された後、加算器30に入力される。尚、防振レンズ10の基準位置は、例えば可動範囲の中心(振れ中心)とし、そのときの位置を示す信号値を零とする。ただし、基準位置は振れ中心でなくてもよい。
【0019】
加算器30には、防振レンズ10の現在位置を示す位置信号としてモータ12の回転位置を検出するポテンショメータ28からの電圧信号が与えられており、CPU24からの位置指令信号とポテンショメータ28からの位置信号との差を示す電圧信号が生成される。そして、その電圧信号がアンプ(サーボアンプ)32に与えられる。
【0020】
アンプ32は、加算器30から与えられた電圧信号を所定のゲインで増幅してモータ12に印加する。これにより加算器30から与えられる電圧信号が零となるようにモータ12が駆動され、CPU24からの位置指令信号により指令された位置に防振レンズ10が移動する。
【0021】
続いて、CPU24の処理について説明する。図1のCPU24のブロックにはCPU24で行われる各処理に対応する機能ブロックで示されており、CPU24の処理を各機能ブロックの処理として説明する。
【0022】
CPU24において、上記A/D変換器16から与えられた角速度信号は、ローパスフィルタ34によって低周波成分のみが抽出される。尚、この処理は角速度信号を積分する処理に相当する。そして、ローパスフィルタ34によって抽出された信号は、ゲイン部36によって所定のゲインで増幅され、その信号が上記位置指令信号としてD/A変換器26に出力される。尚、ゲイン部36におけるゲインはズーム位置検出器20から得られるズーム位置に応じた値に設定される。このようなCPU24における処理により、A/D変換器16から与えられた角速度信号に基づいて、カメラに加わった振動に対して像振れを補正(防止)するための防振レンズ10の位置、即ち、防振レンズ10の振れ中心に対する変位量を示す位置指令信号が求められ、D/A変換器26に出力される。
【0023】
一方、上記A/D変換器18から与えられた角速度信号は、パン/チルト検出部38に読み取られ、角速度センサ14から出力された角速度信号が、パン/チルト動作によるものか否かが判断される。例えば、角速度センサ14によって図2に示すような角速度信号が得られるとする。このとき、角速度信号の値が閾値Vより大きくなったことを検出すると、その角速度信号がパン/チルト動作によるものと判断される。尚、角速度信号の値が閾値―Vより値が小さくなった場合も同様である。
【0024】
パン/チルト検出部38によりパン/チルト動作が検出された場合には、像振れ補正を停止する処理が実行される。即ち、ローパスフィルタ34のフィルタ特性が変更される。ここで、ローパスフィルタ34はパラメータの変更によりフィルタ特性の変更が可能なフィルタで、パン/チルト動作が検出されると、防振レンズ10を基準位置(振れ中心)に戻して停止させるようなフィルタ特性に変更される。即ち、位置指令信号の値が徐々に0に近づくようなフィルタ特性に変更される。尚、像振れ補正を実行している間のフィルタ特性をノーマルの特性とする。
【0025】
また、フィルタ特性をノーマルの特性から防振レンズ10を基準位置に戻す特性に変更する場合、ズーム位置検出器20から与えられるズーム位置信号の値が考慮される。ローパスフィルタ34の出力信号の例を図3に示すと、図中A点でパン/チルト動作と判断されてフィルタ特性がノーマルの特性から防振レンズ10を基準位置に戻す特性に変更されるものとする。このとき、ズーム位置に応じて▲1▼から▲3▼まで出力特性を有するいずれか3つのフィルタ特性に設定される。
【0026】
図4に示すようにズーム位置(ズーム位置信号の値)がテレ側閾値ZTよりも大きい(テレ側)場合には▲1▼のフィルタ特性に設定され、ズーム位置がワイド側閾値ZWよりも小さい(ワイド側)場合には▲2▼のフィルタ特性に設定される。これら以外の場合には▲3▼のフィルタ特性に設定される。
【0027】
従って、ズーム位置がワイド側よりに設定されている場合に、パン/チルト動作が検出されると、防振レンズ10は、テレ側よりに設定されている場合に比べて遅い速度で基準位置に戻される。即ち、焦点距離が短いほど、像振れ補正により変位していた撮影範囲が遅い速度で基準位置に戻される。このため、ワイド側で顕著となるゆれ戻しの現象が防止される。
【0028】
尚、本実施の形態ではズーム位置に応じてフィルタ特性を3つの特性で変更するようにしているが、2つの特性でもよいし、更に多数の特性に細分化してフィルタ特性を変更するようにしてもよい。
【0029】
図5は、CPU24におけるローパスフィルタ34のフィルタ特性を設定する手順を示したフローチャートである。まず、CPU24は角速度センサ14からA/D変換器18を介して与えられる角速度信号を取得する(ステップS10)。そして、その角速度信号に基づいてパン/チルト動作が行われているか否かを判定する(ステップS12)。NOと判定した場合には、ステップS10とステップS12の処理を繰り返す。尚、本フローチャートには示していないが、この間にもCPU24は像振れを補正するための処理を実行している。
【0030】
ステップS12においてYES、即ち、パン/チルト動作が行われていると判定した場合、CPU24はズーム位置検出器20からズーム位置(ズーム位置信号の値)を読み込む(ステップS14)。そして、ズーム位置がテレ側閾値ZTより大きい(テレ側)か否かを判定する(ステップS16)。ここでYESと判定した場合には、フィルタ特性を▲1▼の特性に設定する(ステップS18)。
【0031】
一方、ステップS16においてNOと判定した場合には、続いてズーム位置がワイド側閾値ZWより小さい(ワイド側)か否かを判定する(ステップS20)。ここでYESと判定した場合には、フィルタ特性を▲2▼の特性に設定する(ステップS22)。ステップS20においてNOと判定した場合には、フィルタ特性を▲3▼の特性に設定する(ステップS24)。
【0032】
ステップS18、ステップS22、ステップS24のいずれかにおいてフィルタ特性を設定すると、次にCPU24は、パン/チルト動作が終了したか否かを判定する(ステップS26)。パン/チルト動作が終了したか否かは、例えば、角速度センサ14からA/D変換器18を介して与えられる格速度信号の絶対値が所定の閾値より小さくなったか否かで判断される。このステップS26の処理でNOと判定している間、本処理の判定を繰り返す。一方、YESと判定した場合には、フィルタ特性を像振れ補正を実行する際のノーマルの特性に設定する(ステップS28)。
【0033】
以上、上記実施の形態では、撮影光学系の光軸に垂直な面内で変位する防振レンズによって像振れを防止する場合について説明したが、本発明は他の方式による像振れ補正装置にも適用できる。例えば、撮像素子から映像信号を切り出す範囲をシフトさせて像振れを補正するような電子的方法を用いた像振れ補正装置においても本発明を適用することができる。
【0034】
また、上記実施の形態ではパン/チルト動作か否かを角速度信号が所定値を超えたか否かにより判断するようにしたが、他の方法で判断してもよい。
【0035】
【発明の効果】
以上説明したように本発明に係る像振れ補正装置によれば、カメラがパン又はチルト動作していると判断し、像振れ補正によって変位した撮影範囲を基準位置に戻す場合に、その速度を焦点距離に応じて変更し、特にワイド側に設定されている場合には遅くするようにしたため、パン/チルト操作時においてゆれ戻しによって違和感が生じる不具合が防止される。
【図面の簡単な説明】
【図1】図1は、本発明に係る像振れ補正装置の実施の形態を示した構成図である。
【図2】図2は、角速度センサから出力される角速度信号の例を示した図である。
【図3】図3は、ローパスフィルタから出力される信号の例を示した図である。
【図4】図4は、フィルタ特性の設定についての説明に用いた説明図である。
【図5】図5は、CPUにおけるローパスフィルタのフィルタ特性を設定する手順を示したフローチャートである。
【符号の説明】
10…防振レンズ、12…モータ、14…角速度センサ、15…ハイパスフィルタ、16、18、22…A/D変換器、20…ズーム位置検出器、24…CPU、26…D/A変換器、28…ポテンショメータ、30…加算器、32…アンプ、34…ローパスフィルタ、36…ゲイン部、38…パン/チルト検出部
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an image blur correction device, and more particularly to an image blur correction device that corrects (prevents) image blur of a camera due to vibration.
[0002]
[Prior art]
For example, as an image blur correction device for a television camera, an anti-vibration lens is movably disposed in a plane orthogonal to the optical axis in a shooting optical system, and when vibration is applied to a camera (a shooting optical system of the camera), the vibration is reduced. There is known an image stabilizing lens in which an image blur is corrected by driving an image stabilizing lens by an actuator in a canceling direction. In such an image shake correction apparatus, a vibration applied to a camera is detected by a shake detection sensor (an angular velocity sensor, an acceleration sensor, or the like), and the image shake is corrected based on a shake signal output from the shake detection sensor. The displacement amount of the anti-vibration lens is obtained (for example, see Patent Document 1).
[0003]
By the way, the shake signal output from the shake detection sensor includes, in addition to signals due to vibration to be corrected such as camera shake, signals due to intentional camera operation of the photographer such as pan operation and tilt operation. Etc. are also included. Therefore, if the image stabilizing lens is simply driven based on the shake signal, the image shake correction is performed even during the pan / tilt operation. However, if the image shake correction is performed during the pan / tilt operation, the image shake occurs after the end of the pan / tilt operation, and the operation of the camera or the image is uncomfortable.
[0004]
Therefore, conventionally, it is automatically determined whether or not the shake signal output from the shake detection sensor is due to a pan / tilt operation, and when it is determined that the shake signal is due to a pan / tilt operation, the image shake correction is stopped, and A lens has been proposed in which the lens is returned to the center of the movable range (a reference position where the displacement amount is 0) and stopped there (for example, see Patent Document 2).
[0005]
[Patent Document 1]
JP-A-2002-229089
[0006]
[Patent Document 2]
JP-A-5-142624
[Problems to be solved by the invention]
However, even when the image blur correction is stopped during the pan / tilt operation as described above, it is as if the speed of the pan / tilt operation is instantaneously changed by the operation of returning the anti-vibration lens to the position of the displacement amount 0. In this case, there is a problem that a phenomenon in which the image is shaken (shake back) occurs. Shakeback does not cause much discomfort when the pan / tilt operation is performed while the zoom is set to the tele side because the image changes quickly. However, when the zoom is set to the wide side, even if the pan / tilt operation is performed at the same speed as when the zoom is set to the tele side, the image shakes remarkably, and the camera operation and the image become uncomfortable. There was a problem that occurs.
[0008]
The present invention has been made in view of such circumstances, and an object of the present invention is to provide an image shake correction apparatus that eliminates a problem that a sense of incongruity due to swing back occurs during a pan / tilt operation.
[0009]
[Means for Solving the Problems]
In order to achieve the above object, according to the first aspect of the present invention, there is provided an image pickup optical system of a camera capable of changing a focal length, and image shake detection for detecting image shake of an image formed by the image pickup optical system. Means, image blur correction means for displacing the imaging range of the imaging optical system based on the image blur detected by the image blur detection means, and correcting the image blur, and determining that the camera is performing a pan or tilt operation Image blur correction stopping means for stopping the correction of the image blur by the image blur correcting means, and returning the imaging range of the imaging optical system displaced by the image blur correcting means to a reference position. In the correction apparatus, the image blur correction stopping unit changes a speed of returning an imaging range of the imaging optical system to a reference position based on a focal length of the imaging optical system.
[0010]
According to a second aspect of the present invention, in the first aspect of the present invention, the image blur correction means is configured such that when the focal length of the photographing optical system is short, the image blur correction means is more effective than when the focal length is long. It is characterized in that the speed of returning the shooting range to the reference position is reduced.
[0011]
According to a third aspect of the present invention, in the first or second aspect of the present invention, the image blur correcting unit includes a correcting lens disposed in the photographing optical system, the surface being orthogonal to an optical axis. It is characterized in that the photographing range is displaced by displacing within.
[0012]
According to the present invention, when it is determined that the camera is performing a panning or tilting operation, and the shooting range displaced by the image blur correction is returned to the reference position, the speed is changed according to the focal length, and particularly to the wide side. When the setting is made, the speed is set to be slow, so that a problem that an uncomfortable feeling is caused by the swing back during the pan / tilt operation is prevented.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, preferred embodiments of an image blur correction apparatus according to the present invention will be described in detail with reference to the accompanying drawings.
[0014]
FIG. 1 is a configuration diagram showing an embodiment of an image blur correction device according to the present invention. The image blur correction device is mounted on, for example, a lens device (photographing lens) for a TV camera, a movie camera, a still camera, or the like. The anti-vibration lens 10 illustrated in FIG. 2. Description of the Related Art In a photographing optical system of a camera, it is arranged to be movable up and down (vertically) and left and right (horizontally) in a plane perpendicular to the optical axis. The anti-vibration lens 10 is driven up and down or left and right by a motor 12, and when a camera (photographing optical system) vibrates, the motor 12 prevents image blur. It moves to a position (a position to cancel the vibration). When the image stabilizing lens 10 moves up and down and left and right, the shooting range of the shooting optical system is displaced up and down and left and right. In addition, since the image stabilizing lens 10 is similarly driven in both the vertical direction and the horizontal direction based on vibrations generated in each direction, in the present embodiment, the image in one direction (hereinafter, vertical direction) is Only the configuration for performing shake correction will be described, and the configuration will be the same for other directions.
[0015]
The angular velocity sensor 14 shown in FIG. 1 is, for example, a gyro sensor, and is used as a shake detection sensor for detecting camera vibration. The angular velocity sensor 14 is installed, for example, on the upper surface of the lens barrel, detects the angular velocity of vertical vibration of the lens barrel, and outputs an electric signal of a voltage corresponding to the detected angular velocity. Note that a signal output from the angular velocity sensor 14 is hereinafter referred to as an angular velocity signal.
[0016]
The angular velocity signal output from the angular velocity sensor 14 is branched into two lines, and one of the two lines is converted into a digital signal by an A / D converter 16 after low-frequency noise is removed by a high-pass filter 15. Then, it is given to the CPU 24. On the other hand, the angular velocity signal output from the angular velocity sensor 14 is directly converted into a digital signal by the A / D converter 18 and given to the CPU 24.
[0017]
Further, the photographing lens in the present embodiment can change the zoom magnification (focal length), and a detection signal of a voltage corresponding to the set position (zoom position) is output from the zoom position detector 20, and the A / A After being converted into a digital signal by the D converter 22, the digital signal is given to the CPU 24.
[0018]
Although the processing contents of the CPU 24 will be described later, the CPU 24 outputs to the D / A converter 26 a position command signal indicating a target position of the image stabilizing lens 10, that is, a displacement amount of the image stabilizing lens 10 with respect to a reference position. It is supposed to be. The position command signal output to the D / A converter 26 is converted to an analog voltage signal and then input to the adder 30. The reference position of the anti-vibration lens 10 is, for example, the center of the movable range (shake center), and the signal value indicating the position at that time is set to zero. However, the reference position need not be the center of the shake.
[0019]
The adder 30 is supplied with a voltage signal from a potentiometer 28 for detecting the rotational position of the motor 12 as a position signal indicating the current position of the anti-vibration lens 10, and a position command signal from the CPU 24 and a position signal from the potentiometer 28. A voltage signal indicating a difference from the signal is generated. Then, the voltage signal is given to the amplifier (servo amplifier) 32.
[0020]
The amplifier 32 amplifies the voltage signal provided from the adder 30 with a predetermined gain and applies the amplified signal to the motor 12. As a result, the motor 12 is driven so that the voltage signal given from the adder 30 becomes zero, and the image stabilizing lens 10 moves to the position commanded by the position command signal from the CPU 24.
[0021]
Next, the processing of the CPU 24 will be described. The blocks of the CPU 24 shown in FIG. 1 are represented by functional blocks corresponding to the respective processes performed by the CPU 24, and the processes of the CPU 24 will be described as the processes of the respective functional blocks.
[0022]
In the CPU 24, only a low-frequency component is extracted from the angular velocity signal given from the A / D converter 16 by the low-pass filter 34. This processing corresponds to the processing for integrating the angular velocity signal. The signal extracted by the low-pass filter 34 is amplified by the gain unit 36 with a predetermined gain, and the signal is output to the D / A converter 26 as the position command signal. The gain in the gain section 36 is set to a value corresponding to the zoom position obtained from the zoom position detector 20. By the processing in the CPU 24, the position of the anti-vibration lens 10 for correcting (preventing) image blur with respect to vibration applied to the camera based on the angular velocity signal given from the A / D converter 16, that is, A position command signal indicating the amount of displacement of the image stabilizing lens 10 with respect to the shake center is obtained, and output to the D / A converter 26.
[0023]
On the other hand, the angular velocity signal provided from the A / D converter 18 is read by the pan / tilt detection unit 38, and it is determined whether or not the angular velocity signal output from the angular velocity sensor 14 is due to a pan / tilt operation. You. For example, it is assumed that an angular velocity signal as shown in FIG. At this time, when it is detected that the value of the angular velocity signal is greater than the threshold V S, the angular velocity signal is judged to be due to panning / tilting operation. The same applies if the value of the angular velocity signal value than the threshold value -V S becomes small.
[0024]
When a pan / tilt operation is detected by the pan / tilt detection unit 38, a process of stopping image blur correction is executed. That is, the filter characteristics of the low-pass filter 34 are changed. Here, the low-pass filter 34 is a filter whose filter characteristic can be changed by changing a parameter. When a pan / tilt operation is detected, the low-pass filter 34 returns the anti-vibration lens 10 to a reference position (center of vibration) and stops. Changed to characteristics. That is, the filter characteristic is changed so that the value of the position command signal gradually approaches 0. Note that the filter characteristics during the execution of the image blur correction are assumed to be normal characteristics.
[0025]
When the filter characteristic is changed from the normal characteristic to the characteristic that returns the image stabilizing lens 10 to the reference position, the value of the zoom position signal given from the zoom position detector 20 is considered. FIG. 3 shows an example of the output signal of the low-pass filter 34, in which a pan / tilt operation is determined at a point A in the figure and the filter characteristic is changed from a normal characteristic to a characteristic for returning the image stabilizing lens 10 to the reference position. And At this time, any three filter characteristics having output characteristics from (1) to (3) are set according to the zoom position.
[0026]
As shown in FIG. 4, when the zoom position (the value of the zoom position signal) is larger than the tele-side threshold value ZT (tele-side), the filter characteristic of (1) is set, and the zoom position is smaller than the wide-side threshold value ZW. In the case of (wide side), the filter characteristic is set to (2). In cases other than these, the filter characteristics are set to (3).
[0027]
Therefore, when the pan / tilt operation is detected when the zoom position is set to be wider than the wide side, the image stabilizing lens 10 is moved to the reference position at a slower speed than when the zoom position is set to be closer to the tele side. Will be returned. That is, as the focal length is shorter, the shooting range that has been displaced by the image blur correction is returned to the reference position at a lower speed. For this reason, the phenomenon of swing-back that becomes conspicuous on the wide side is prevented.
[0028]
In the present embodiment, the filter characteristics are changed by three characteristics in accordance with the zoom position. However, two characteristics may be used, or the filter characteristics may be changed by further subdividing into a large number of characteristics. Is also good.
[0029]
FIG. 5 is a flowchart showing a procedure for setting the filter characteristics of the low-pass filter 34 in the CPU 24. First, the CPU 24 acquires an angular velocity signal provided from the angular velocity sensor 14 via the A / D converter 18 (step S10). Then, it is determined whether or not a pan / tilt operation is being performed based on the angular velocity signal (step S12). If the determination is NO, the processes of step S10 and step S12 are repeated. Although not shown in this flowchart, the CPU 24 also executes a process for correcting image blur during this time.
[0030]
If YES in step S12, that is, if it is determined that the pan / tilt operation is being performed, the CPU 24 reads the zoom position (the value of the zoom position signal) from the zoom position detector 20 (step S14). Then, it is determined whether or not the zoom position is larger than the tele-side threshold value ZT (tele-side) (step S16). If the determination is YES here, the filter characteristic is set to the characteristic of (1) (step S18).
[0031]
On the other hand, if NO is determined in step S16, subsequently, it is determined whether the zoom position is smaller than the wide-side threshold value ZW (wide side) (step S20). If the determination is YES here, the filter characteristic is set to the characteristic of (2) (step S22). If NO is determined in step S20, the filter characteristic is set to the characteristic of (3) (step S24).
[0032]
After setting the filter characteristics in any of steps S18, S22, and S24, the CPU 24 next determines whether the pan / tilt operation has been completed (step S26). Whether or not the pan / tilt operation has been completed is determined, for example, based on whether or not the absolute value of the speed signal given from the angular velocity sensor 14 via the A / D converter 18 has become smaller than a predetermined threshold. While the determination in step S26 is NO, the determination in this process is repeated. On the other hand, when the determination is YES, the filter characteristics are set to the normal characteristics at the time of executing the image blur correction (step S28).
[0033]
In the above embodiment, the case where the image blur is prevented by the image stabilizing lens displaced in the plane perpendicular to the optical axis of the photographing optical system has been described. Applicable. For example, the present invention can also be applied to an image blur correction apparatus using an electronic method that corrects image blur by shifting a range from which a video signal is cut out from an image sensor.
[0034]
Further, in the above embodiment, whether or not the pan / tilt operation is performed is determined based on whether or not the angular velocity signal exceeds a predetermined value. However, the determination may be performed by another method.
[0035]
【The invention's effect】
As described above, according to the image blur correction apparatus of the present invention, when it is determined that the camera is performing a pan or tilt operation, and when the imaging range displaced by the image blur correction is returned to the reference position, the speed is focused. Since it is changed according to the distance, and particularly when it is set to the wide side, it is slowed down, so that a problem that a sense of incongruity due to swing back during pan / tilt operation is prevented.
[Brief description of the drawings]
FIG. 1 is a configuration diagram showing an embodiment of an image blur correction device according to the present invention.
FIG. 2 is a diagram illustrating an example of an angular velocity signal output from an angular velocity sensor.
FIG. 3 is a diagram illustrating an example of a signal output from a low-pass filter.
FIG. 4 is an explanatory diagram used for describing setting of filter characteristics.
FIG. 5 is a flowchart illustrating a procedure for setting filter characteristics of a low-pass filter in a CPU.
[Explanation of symbols]
10 anti-vibration lens, 12 motor, 14 angular velocity sensor, 15 high-pass filter, 16, 18, 22 A / D converter, 20 zoom position detector, 24 CPU, 26 D / A converter , 28 potentiometer, 30 adder, 32 amplifier, 34 low-pass filter, 36 gain part, 38 pan / tilt detection part

Claims (3)

焦点距離の変更が可能なカメラの撮影光学系と、該撮影光学系により結像された像の像振れを検出する像振れ検出手段と、該像振れ検出手段により検出された像振れに基づいて前記撮影光学系の撮影範囲を変位させ、像振れを補正する像振れ補正手段と、カメラがパン又はチルト動作していると判断した場合に前記像振れ補正手段による像振れの補正を停止すると共に、前記像振れ補正手段によって変位した前記撮影光学系の撮影範囲を基準位置に戻す像振れ補正停止手段と、を備えた像振れ補正装置において、
前記像振れ補正停止手段は、前記撮影光学系の焦点距離に基づいて前記撮影光学系の撮影範囲を基準位置に戻す速さを変更することを特徴とする像振れ補正装置。
A photographing optical system of a camera capable of changing a focal length, image blur detecting means for detecting image blur of an image formed by the image capturing optical system, and image blur detected by the image blur detecting means. Displacing the photographing range of the photographing optical system, an image shake correcting means for correcting the image shake, and stopping the correction of the image shake by the image shake correcting means when it is determined that the camera is performing a pan or tilt operation. An image blur correction device comprising: an image blur correction stop unit that returns a shooting range of the shooting optical system displaced by the image blur correction unit to a reference position.
The image blur correction device, wherein the image blur correction stopping unit changes a speed of returning a shooting range of the shooting optical system to a reference position based on a focal length of the shooting optical system.
前記像振れ補正手段は、前記撮影光学系の焦点距離が短い場合には、焦点距離が長い場合に比べて、前記撮影範囲を基準位置に戻す速さを遅くすることを特徴とする請求項1の像振れ補正装置。2. The image blur correction unit according to claim 1, wherein when the focal length of the photographing optical system is short, the speed of returning the photographing range to the reference position is slower than when the focal length is long. Image stabilizer. 前記像振れ補正手段は、前記撮影光学系に配置された補正レンズを光軸に対して直交する面内で変位させることにより前記撮影範囲を変位させることを特徴とする請求項1又は2の像振れ補正装置。3. The image according to claim 1, wherein the image blur correction unit displaces the photographing range by displacing a correction lens disposed in the photographing optical system in a plane orthogonal to an optical axis. 4. Image stabilizer.
JP2002306958A 2002-10-22 2002-10-22 Image blur correction device Expired - Fee Related JP3951177B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2002306958A JP3951177B2 (en) 2002-10-22 2002-10-22 Image blur correction device
DE10348567A DE10348567A1 (en) 2002-10-22 2003-10-20 Image blur correction device
US10/689,950 US7292270B2 (en) 2002-10-22 2003-10-22 Image blurring correction apparatus
US11/709,799 US20070146488A1 (en) 2002-10-22 2007-02-23 Image blurring correction apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002306958A JP3951177B2 (en) 2002-10-22 2002-10-22 Image blur correction device

Publications (2)

Publication Number Publication Date
JP2004144824A true JP2004144824A (en) 2004-05-20
JP3951177B2 JP3951177B2 (en) 2007-08-01

Family

ID=32453565

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002306958A Expired - Fee Related JP3951177B2 (en) 2002-10-22 2002-10-22 Image blur correction device

Country Status (1)

Country Link
JP (1) JP3951177B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1630595A1 (en) * 2004-08-27 2006-03-01 Fujinon Corporation Photographic apparatus and interchangeable camera lens with blur compensation means
JP2006113264A (en) * 2004-10-14 2006-04-27 Fujinon Corp Image blur correcting apparatus
JP2006208570A (en) * 2005-01-26 2006-08-10 Fujinon Corp Image blurring correcting device
KR100731193B1 (en) 2005-01-24 2007-06-22 캐논 가부시끼가이샤 Image pickup apparatus and image pickup method therefor as well as storage medium storing image pickup program implementing the method
WO2021112525A1 (en) * 2019-12-06 2021-06-10 Samsung Electronics Co., Ltd. Electronic device and method for controlling camera motion

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1630595A1 (en) * 2004-08-27 2006-03-01 Fujinon Corporation Photographic apparatus and interchangeable camera lens with blur compensation means
JP2006113264A (en) * 2004-10-14 2006-04-27 Fujinon Corp Image blur correcting apparatus
KR100731193B1 (en) 2005-01-24 2007-06-22 캐논 가부시끼가이샤 Image pickup apparatus and image pickup method therefor as well as storage medium storing image pickup program implementing the method
JP2006208570A (en) * 2005-01-26 2006-08-10 Fujinon Corp Image blurring correcting device
WO2021112525A1 (en) * 2019-12-06 2021-06-10 Samsung Electronics Co., Ltd. Electronic device and method for controlling camera motion
US11412143B2 (en) 2019-12-06 2022-08-09 Samsung Electronics Co., Ltd. Electronic device and method for controlling camera motion

Also Published As

Publication number Publication date
JP3951177B2 (en) 2007-08-01

Similar Documents

Publication Publication Date Title
EP1647859B1 (en) Image stabilizer automatically de-activating during intentional camera movements
US7292270B2 (en) Image blurring correction apparatus
US7546027B2 (en) Image stabilizer
JP5409342B2 (en) Imaging apparatus and control method thereof
KR100987590B1 (en) Hand-shake correcting control method and image pickup apparatus thereof
JP4753065B2 (en) Image blur correction device
JP4683268B2 (en) Image blur correction device
JP2006292969A (en) Image blur correcting device
JP5155625B2 (en) Image stabilizer for camera
JP2006259568A (en) Device for image blur correction
JP4536855B2 (en) Anti-vibration device, imaging device, and control method of anti-vibration device
EP2031440B1 (en) Image stabilization apparatus for camera
JP4305723B2 (en) Image blur correction device
JP3951177B2 (en) Image blur correction device
JP2006003645A (en) Image blurring correction device
JP2004184887A (en) Image blur correction apparatus
JP2002311471A (en) Vibration-proof device
JP2005326776A (en) Image blur correcting device
JPH06265962A (en) Camera-shake correction device
JP4389124B2 (en) Image blur correction device
JP2005202018A (en) Image blur correcting device
JP2006178307A (en) Image blur correction apparatus
JP4832386B2 (en) Image stabilizer for camera
JP2004302051A (en) Image blurring correction apparatus
JP2004184888A (en) Image blur correction apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050629

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070306

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070329

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070411

R150 Certificate of patent or registration of utility model

Ref document number: 3951177

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110511

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110511

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110511

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110511

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120511

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130511

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140511

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees