JP2004143551A - Vacuum treatment method - Google Patents

Vacuum treatment method Download PDF

Info

Publication number
JP2004143551A
JP2004143551A JP2002311191A JP2002311191A JP2004143551A JP 2004143551 A JP2004143551 A JP 2004143551A JP 2002311191 A JP2002311191 A JP 2002311191A JP 2002311191 A JP2002311191 A JP 2002311191A JP 2004143551 A JP2004143551 A JP 2004143551A
Authority
JP
Japan
Prior art keywords
reaction vessel
reaction
vacuum processing
exhaust
abnormality
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002311191A
Other languages
Japanese (ja)
Inventor
Toshiyasu Shirasago
白砂 寿康
Yoshio Seki
瀬木 好雄
Kazuyoshi Akiyama
秋山 和敬
Takahisa Taniguchi
谷口 貴久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2002311191A priority Critical patent/JP2004143551A/en
Publication of JP2004143551A publication Critical patent/JP2004143551A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To reduce the cost of equipment and to minimize the degradation in yield and operation rate without adversely affecting other reaction vessels when abnormality occurs in one reaction vessel in a vacuum treatment method and apparatus for simultaneously performing a number of vacuum treatments by using a plurality of the reaction vessels. <P>SOLUTION: The respective reaction vessels 100 internally installed with substrates are moved by movable means 104 to connect mechanisms 107 and gate valves 102. The gate valves 102, slow exhaust valves 110, etc., of the respective reaction vessels 100 are opened and the evacuation in the plurality of the reaction vessels 100 is simultaneously started. When the valves 110 are opened, the measurement of the evacuation rates are started and whether the exhaust rates are within prescribed ranges or not is discriminated. Further, the slow evacuating is carried out and when the internal pressures of the reaction vessels 100 attain prescribed values, a main evacuating valve 106 is opened to put the interior of the reaction vessels 100 further into the evacuation state. When the internal pressures of the reaction vessels 100 attain the prescribed values, the leak check of the reaction vessels 100 is started. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、半導体デバイス、電子写真用感光体、画像入力用ラインセンサー、撮影デバイス、光起電力デバイス等の形成に用いる、堆積膜形成、エッチング等の真空処理方法に関する。
【0002】
【従来の技術】
従来、半導体デバイス、電子写真用感光体、画像入力用ラインセンサー、撮影デバイス、光起電力デバイス、その他各種エレクトロニクス素子、光学素子等を作成する際に用いられる真空処理方法として、真空蒸着法、スパッタリング法、イオンプレーティング法、熱CVD法、光CVD法、プラズマCVD法等、多数知られており、そのための装置も実用に付されている。中でも高周波電力を用いたプラズマプロセスは、様々な材料を用いた堆積膜作成やエッチングに用いることができ、酸化膜や窒化膜の絶縁性の材料形成にも使用できる等様々な利点より使用されている。プラズマプロセスの好適な使用例としては、例えば電子写真用水素化アモルファスシリコン(以下、a−Si:Hと表記する)堆積膜の形成等、現在実用化が非常に進んでおり、そのための形成方法も各種提案されている。
【0003】
加えて、更に低コストで高品質な堆積膜を製造するために様々な工夫が為されている。
【0004】
例えば、特開平10−168574号公報には、堆積膜形成装置のクリーニング方法を工夫することで、製造に費やされる合計時間を短縮する技術が開示され、その中で、複数の反応容器を単一の排気手段によって排気する堆積膜形成装置の一例が開示されている。また、特公平7−13947号公報には、原料ガス供給手段と排気手段が共通化された複数の反応容器を用いて複数枚の薄膜トランジスタアレイを作成する技術が開示されている。このように複数の反応容器を単一の排気手段や単一のガス供給手段に接続することで、ガス供給手段や排気手段への設備投資を低減できる。
【0005】
また、特開平10−168576号公報には、真空容器が排気手段、原料ガス供給手段と着脱可能な接続機構を介して接続する堆積膜形成装置、及び着脱機構に関する詳細が開示されている。このように着脱可能とすることで、例えば種類の異なる堆積膜を製造する際に、反応容器のみ変えればよく、設備投資額、装置のダウンタイムなどの点で有利である。
【0006】
【特許文献1】
特開平10−168574号公報
【特許文献2】
特公平7−13947号公報
【特許文献3】
特開平10−168576号公報
【0007】
【発明が解決しようとする課題】
上記従来の方法及び装置により、同時に実施できる真空処理の数量は多く、またガス流量制御手段やガス排気手段といった付帯設備を共通化できるというメリットがあり、コストダウンに有利である。
【0008】
しかし、上記のように、ガス流量制御手段やガス排気手段といった付帯設備を共有し、複数の反応容器で同時に多数の真空処理を実施する構成の場合、複数個の反応容器のうち、ある1つの反応容器内で異常が発生したときには、付帯設備を共有化している関係から、正常に処理を行っている他の反応容器にも悪影響が及ぼされてしまうことがある。
【0009】
真空処理における異常の一つとして、処理容器内への外部リークが挙げられる。真空処理中に外部リークが有ると、処理容器内が汚染され処理特性に悪影響を及ぼす。
【0010】
この場合、前述のように複数個の反応容器のうち、1つの反応容器で外部リークが発生しても、例えば共通の排気配管を介して酸素等の汚染源が拡散し、他の反応容器の処理特性に悪影響を及ぼす。さらに、前述の電子写真用感光体の処理に際しては、後述するように処理中はもとより、処理開始以前、さらには減圧処理を開始し、暫くして1つの反応容器に異常が発生しても、他の反応容器に悪影響を及ぼす場合がある。
【0011】
以上のように、1度に大量の堆積膜を処理できる量産型の装置形態においては、コスト的に大変有利である反面、一旦トラブルが発生すると、最悪の場合、付帯設備を共有する全ての反応容器で実施した全ての真空処理品が不良品となる可能性があるという問題があった。
【0012】
本発明は上記課題の解決を目的とするものである。即ち、複数の反応容器を用いて多数の真空処理を同時に実施可能な真空処理方法及び真空処理装置において、ガス供給手段や排気手段などの付帯設備を共有することで設備の大幅なコストダウンを図り、且つ1つの反応容器で異常が発生した際に、正常に動作している他の反応容器に悪影響を及ぼさず、歩留まり、及び稼働率の低下を最小限にくい止めることができる真空処理方法を提供することを目的としている。
【0013】
【課題を解決するための手段】
上記目的を達成するために本発明は、減圧可能な複数の反応容器部内に被処理物を設置し、それぞれの反応容器部を、同一の排気手段に繋がった配管に接続して排気し、前記被処理物を同時に処理する真空処理方法において、前記複数の反応容器部を減圧状態にする際に、前記排気手段により、前記複数の反応容器部を同時に排気し、排気開始後減圧速度(Δ圧力/Δ時間)が、所定の範囲内であるかを判別する工程1と、前記工程1の後に、さらに前記複数の反応容器部を減圧状態にし前記各反応容器部内の圧力が所定の値に達したら前記複数の反応容器部を同時にリークチェックする工程2とを少なくとも経た後に、所定の真空処理を実施することを特徴とする。
【0014】
更に、前記工程1において、減圧速度が所定の範囲外にあるときは、前記複数の反応容器部の減圧処理を停止し、前記複数の反応容器部に対し、個別に異常個所を検知する工程を実施し、異常が発生した反応容器部のみを前記排気手段から断絶した後、残りの反応容器部について継続して次の工程に移行することが好ましい。
【0015】
更に、前記工程2において、異常が検知された場合には、前記複数の反応容器部の減圧処理を停止し、前記複数の反応容器部に対し、個別に異常個所を検知する工程を実施し、異常が発生した反応容器部のみを前記排気手段から断絶した後、残りの反応容器部について継続して次の工程に移行することが好ましい。
【0016】
更に、前記工程1において、減圧速度の検出を前記複数の反応容器部に対して、個別に且つ同時に行い、減圧速度が所定の範囲外の反応容器部を前記排気手段から断絶した後、残りの反応容器部について継続して次の工程に移行することが好ましい。
【0017】
更に、前記工程2において、異常の検出を前記複数の反応容器部に対して、個別に且つ同時に行い、異常が発生した反応容器部を前記排気手段から断絶した後、残りの反応容器部について継続して次の工程に移行することが好ましい。
【0018】
【発明の実施の形態】
以下、本発明の実施の形態について図面を参照して説明する。
【0019】
本発明者らは上記目的を達成すべく鋭意検討を行った結果、複数の反応容器を同一の排気手段、同一のガス供給手段に接続した、大量の真空処理を同時に行うことが出来る真空処理方法において、ある反応容器で異常が発生した際に、上記のような真空処理方法を用いることで、他の反応容器に不具合が拡大するのを防止し、製品の歩留まり率の低下を極力さけることを可能にした。
【0020】
このような本発明の実施の形態について、以下に詳述する。
【0021】
図1(a)、(b)は本発明の真空処理方法を実施する装置の一例の模式図であり、電子写真感光体の形成装置の一例を示した模式図である。図1(a)は、横断面図、図1(b)は、上面図である。
【0022】
本実施形態の真空処理方法に好適な、電子写真感光体の製造装置は、図1に示すように移動可能な反応容器部100を備えており、反応容器部100は、被処理基体(図示せず)が配置される反応容器101と、ゲートバルブ102と、架台103と、移動可能手段104としてのキャスターとからなる。
【0023】
移動可能手段104は、反応容器部100を移動可能にするものであれば良く、キャスター移動、ベルト移動、磁気浮動移動、空気浮動移動等の移動方式を利用できるが、取り扱い易さ、コストの点からキャスター移動が望ましい。
【0024】
反応容器101内を排気するための排気手段150には、反応容器101に繋がる集合排気管105と、メイン排気バルブ106と、集合排気管105を反応容器部100に接続させる接続機構107と、内圧測定器108と、反応容器部100の内部の圧力を調整するために、排気コンダクタンス制御手段109、スロー排気バルブ110、スロー排気ライン111が接続されている。
【0025】
反応容器部100は、接続機構107、ゲートバルブ102および集合排気管105を介して排気手段150に接続されている。排気手段150は、ロータリーポンプ、メカニカルブースターポンプ、油拡散ポンプ、ターボ分子ポンプなど、所望の排気速度を得られる排気手段であればいかなるポンプ、あるいはそれらのいかなる組み合わせでも構わない。
【0026】
反応容器部100のガス供給及び流量制御手段160は、真空処理に必要となる複数のガスボンベ、レギュレータ、バルブ類、マスフローコントローラーなどを含んでいることが望ましく、所望のガスを所望の流量、混合比で供給することが出来れば、いかなる構成でも構わない。また、更に好ましくはパージ用のガスボンベ、パージラインを含んでいることが望ましく、このことによりガスを安全に運用することが可能となる。真空処理に必要な原料ガスは、ガス供給及び流量制御手段160より、流量可変バルブ161、接続機構107を介し、反応容器101内に供給される。
【0027】
また、反応容器部100と流量可変バルブ161との間にガス接続機構を設けることが望ましく、接続機構107にガス接続機構を組み込んである。
【0028】
また、図1では反応容器部100は3つであるが、この数については排気手段150の排気能力あるいは、反応容器部100を排気手段150に取り付け、取り外しの際の、作業効率等を勘案して任意に定めてよい。
【0029】
接続機構107は、真空保持のためフランジ構造をとることが望ましく、真空シールとしてはOリングシール、メタルシールなどいずれでもよい。接続機構107とゲートバルブ102の固定方法としてはボルト、カプラ、クランプなどを用いたいずれの方法でも良いが、着脱を容易に行える方がより好ましい。
【0030】
図1の電子写真感光体の製造装置を用いた、本発明の真空処理方法は、概略以下のようにして行うことができる。
【0031】
まず、基体を基体投入エリア(図示せず)にて、反応容器部100の反応容器101内に設置する。
【0032】
基体は、前もって精密に洗浄されており、基体の設置は、クリーンルーム等のダスト管理された環境下で実施される。次に、各反応容器部100を基体投入エリアから、移動可能手段104であるキャスターを駆動させて、接続機構107まで移動し、接続機構107とゲートバルブ102とを接続する。各反応容器部100のゲートバルブ102を開け、スロー排気バルブ110を開け、スロー排気ライン111を使用し、複数の反応容器部100内の減圧を同時に開始する。
【0033】
スロー排気を実施するのは、メイン排気バルブ106を開き、一気に反応容器部100内を減圧にすると、反応容器部100内の気体が排気管の接続端開口部に一気に引き寄せられて、反応容器部100内に大きな乱気流が発生し、反応容器部100内の壁面や、底面に堆積していたパーティクルが舞い上がり、パーティクルが基体表面に付着するのを防止するためである。
【0034】
排気手段150により、反応容器部100の排気が開始されたら、本発明の特徴の一つである、工程1が実施される。スロー排気バルブ110が開いたら、減圧速度(Δ圧力/Δ時間)の計測を開始する。減圧速度の計測は、内圧測定器108により、反応容器部100が接続されている集合排気管105の圧力をモニターする。そして、排気速度が所定の範囲内にあるかを判別する。判別の仕方は、予め外部リークの無い状態で排気時間と、圧力の変化をモニターしておき、それをリファレンス(基準値)とし、該レファレンスに対し、どの程度ずれが生じているかで判別される。例えば、排気時間をTと固定しておき、そのTの時間が経過した時の圧力がリファレンス付近か否かで判別する。あるいは、排気時間と圧力の変化を数回観察し、その平均をリファレンスとしてもよい。
【0035】
前記工程1は、排気開始から時間的にはあまり経過していない状態、つまり低真空状態で実施される。外部リークが発生している状況で、時間が経過すると、以下の様な問題が発生する。リーク個所からエアーが反応容器部100内に排出され、その結果、リーク個所近傍に乱気流が発生し、反応容器部100内でパーティクルが舞う場合がある。排気を開始して暫くは、低真空状態のため、パーティクルは浮遊し、やがて、共通の排気配管を介して隣の反応容器部100内まで浮遊し、反応容器部100内を汚染する場合がある。特に電子写真感光体の生産においては、基体上にダストなどが付着することによって生じる欠陥の発生率が生産性に極めて大きく関与する。電子写真感光体に上記の欠陥が発生した場合、欠陥をリペアすることができないため、電子写真感光体の歩留まりに大きく影響するためである。一方、高真空状態になると、パーティクルは浮遊できなくなるため、前述の様にパーティクルが隣接する反応容器部100に影響を及ぼすことはほとんどない。
【0036】
つまり、高真空状態でリークチェックし、異常が発見されても、特に電子写真感光体のように、基板に付着したパーティクル起因の欠陥に関しては、異常発生が発見された反応容器部以外にも既に、悪影響を及ぼしている場合があるため、低真空状態でリークチェックすることが非常に有効と成る。
【0037】
前記工程1を実施する低真空状態というのは、装置の形状、容積あるいは排気配管の接続の仕方、長さ、さらには外部リーク量により一概に規定できるものではないが、本発明者らの実験からは、大気圧力から、133Pa(1Torr)までに実施するほうが好ましく、13330Pa(100Torr)までに実施するほうが、歩留まりの面からより好ましい。
【0038】
また、前記工程1での、リーク検出法としては、本発明の排気速度を検出する方法が最良となる。前記工程1は、前述のように低真空状態で実施されるため、ガイスラー管法や、ヘリウムリークデテクタを用いたリーク検出手法は使用できない。また、真空放置法は、減圧状態で排気バルブを閉じて行うため、反応容器部内で気体の流れが無くなり、パーティクルが拡散し易くなる。本発明の排気速度の検出は、常に、反応容器部から排気手段へと、気体の流れが生じているため、隣接する反応容器部へパーティクルが拡散し難い状況で検出することができる。
【0039】
次に、排気速度が所定の範囲内にあることを確認した後、前記工程2に移行する。更にスロー排気を実施し、反応容器部100の内圧が所定の値に達したら、メイン排気バルブ106を開け、反応容器部100内を更に減圧状態とする。次に、反応容器部100の内圧が所定の値に達したら、反応容器部100のリークチェックを開始する。リークチェックの方法は特に制限は無く、ガイスラー管法や、ヘリウムリークデテクタを用いたリーク検出手法、また、真空放置法等が用いられる。
【0040】
また、前記工程2は高真空状態で実施されることになるが、実施される条件としては、真空処理される条件(例えばCVD時)時の内圧より低圧で実施されるほうが、好ましい。
【0041】
そして、異常が無いことを確認した後、次の工程に移行する。
【0042】
前記工程1において、排気速度が所定に範囲外の場合、および前記工程2において、異常が発見された場合には、処理を中断し、反応容器部100を排気手段150から切り離し、次に準備されている別の反応容器部100を新たに排気手段150に接続し、再び基体の設置から開始する。また、切り離された反応容器部100は、別のエリアに移動され、異常の原因の特定、及び異常の修理がなされる。
【0043】
このように本発明の真空処理方法を実施することで、常に正常な状態で複数の真空処理が同時に可能となり、歩留まりの低下を抑制することが可能となる。
【0044】
さらに、本発明の好ましい真空処理方法として、前記工程1において、減圧速度が所定の範囲外にあるときは、前記複数の反応容器部の減圧処理を停止し、前記複数の反応容器部に対し、個別に異常個所を検知する工程を実施し、異常が発生した反応容器部のみを前記排気手段から断絶した後、残りの反応容器部について継続して次の工程に移行することで、さらに稼働率の低下を抑制することが可能となる。
【0045】
前述のような、異常が発生時の対応(処理を中断し、反応容器部100を排気手段150から切り離し、次に準備されている別の反応容器部100を新たに排気手段150に接続し、再び基体の設置から開始する。また、切り離された反応容器部100は、別のエリアに移動され、異常の原因の特定、及び異常の修理がなされる。)の場合、正常な反応容器部100も排気手段150から切り離されてしまい、異常の対応にある程度の時間が必要となるため、装置の稼働率が低下してしまう。
【0046】
本発明の真空処理方法によれば、異常を検知した場合、複数の反応容器部に対し、個別に異常個所を検知する工程を実施し、異常が発生した反応容器部のみを前記排気手段から切り離すため、正常な反応容器部は継続して使用することが可能となり、装置の稼働率が向上する。この場合、異常が発生した反応容器部のみを、別の反応容器部と交換すれば良く、また、異常が発生した反応容器部が接続されていた排気手段との接続部を封止することで、残りの正常な反応容器部のみで継続して真空処理を実施することも可能であるため、さらに稼働率を向上させることが可能となる。
【0047】
さらに、本発明の好ましい真空処理方法として、前記工程2において、異常が検知された場合には、前記複数の反応容器部の減圧処理を停止し、前記複数の反応容器部に対し、個別に異常個所を検知する工程を実施し、異常が発生した反応容器部のみを前記排気手段から断絶した後、残りの反応容器部について継続して次の工程に移行することで、前述と同様に稼働率の低下を抑制することが可能となる。
【0048】
さらに、本発明の好ましい真空処理方法として、前記工程1において、減圧速度の検出を前記複数の反応容器部に対して、個別に且つ同時に行い、減圧速度が所定の範囲外の反応容器部を前記排気手段から断絶した後、残りの反応容器部について継続して次の工程に移行することで、更に稼働率の低下を抑制することが可能となる。このような真空処理方法を実施することで、異常の検知と、異常個所(異常のある反応容器部)の特定を同時に実施可能となり、更に稼働率の向上が可能となる。
【0049】
さらに、本発明の好ましい真空処理方法として、前記工程2において、異常の検出を前記複数の反応容器部に対して、個別に且つ同時に行い、異常が発生した反応容器部を前記排気手段から断絶した後、残りの反応容器部について継続して次の工程に移行することで、更に稼働率の低下を抑制することが可能となる。このような真空処理方法を実施することで、異常の検知と、異常個所(異常のある反応容器部)の特定を同時に実施可能となり、更に稼働率の向上が可能となる。
【0050】
以上、電子写真感光体形成装置、形成方法を例にとって本発明の説明を行ってきたが、本発明はこれに限ったものではなく、例えばスパッタリング法、熱CVD法等の他の真空処理方法にも用いることができる。
【0051】
【実施例】
以下、実施例により本発明を更に詳細に説明するが、本発明はこれらによって何ら限定されるものではない。
【0052】
[実施例1]
図1、図4に示した真空処理装置において、移動可能な反応容器部100内に設置した長さ358mm、外径φ108mmの鏡面加工を施したAl製シリンダー(円筒状基体120)上にa−Si膜を、高周波電源121の発振周波数を105MHzとして表1に示す条件で成膜し、電子写真感光体を作製した。
【0053】
図1(a)、(b)は前述の電子写真感光体形成装置を示した模式図であり、図1(a)は、横断面図、図1(b)は、上面図である。
【0054】
図4はVHFプラズマCVD法による電子写真感光体の形成装置の一例を示す模式的な構成図である。移動可能な反応容器部100は、SUS製の円筒状高周波シールド122、アルミナセラミックスからなる円筒状の反応容器101、反応容器支持台123、上蓋124、ゲートバルブ102、キャスター等の移動可能手段104からなる。
反応容器101内には、基体加熱用ヒーター125、および原料ガス導入管126が同心円上に3本設置されている。またSUS製の棒状の高周波電極127は、高周波シールド122と反応容器101の間に同心円上に等間隔で3本設置されており、高周波整合器(マッチィングボックス)128を介して、高周波電源121が接続されている。
前述の棒状の高周波電極127は絶縁部材129により、高周波シールド122、反応容器支持台123から絶縁されている。
【0055】
本実施例において、電子写真感光体の作製は以下のように行った。
【0056】
クリーンルームからなる基体投入エリア(図示せず)で反応容器101内に基体ホルダー130に装着された円筒状基体120を設置する。次に上蓋124を取り付け、反応容器部100を作業員による手動搬送で図1の成膜ステージの接続機構107まで移動し、ゲートバルブ102と接続機構107とを接続させる。ここで接続方法は、ゲートバルブ102と接続機構107の間にOリングを介して接続した。本実施例においては、図1に示すように反応容器部100は3台用いた。
【0057】
3台の反応容器部100の接続を終了した後、各反応容器部100のゲートバルブ102を開け、スロー排気バルブ110を開け、スロー排気ライン111を使用し、複数の反応容器部100内の減圧を同時に開始する。次に本発明の特徴である工程1を実施した。前記工程1の判別基準として、スロー排気バルブ110を開いた後、30分後に内圧測定器108の値が20000Pa以下なら異常無し、20000Paより圧力が高い場合は異常有りとした。本実施例では、スロー排気バルブ110を開けた後、30分後に内圧測定器108の値が18000Paに達していたので、引き続きスロー排気を実施した。次に内圧測定器108の値が400Paに達した時、スロー排気バルブ110を閉じ、メイン排気バルブ106を開けて、更に反応容器内に真空度を高くした。内圧測定器108の値が0.65Paに達した時、本発明の特徴である工程2を実施した。内圧測定器108の値が0.65Paに達した時、メイン排気バルブ106を閉め、5分間放置した。5分後の内圧測定器108の値が1.3Pa以下のときは、異常無しとし、1.3Paより高い場合は異常有りとした。本実施例では、5分後の内圧測定器108の値が1.0Paだったので、次の工程に移行した。メイン排気バルブ106を開け、基体加熱用ヒーター125を駆動させ、円筒状基体120を230℃になるように加熱し制御した。
【0058】
この加熱中に、前述の高周波電極127、高周波シールド122、高周波整合器128を反応容器101の周囲に設置し、さらに高周波整合器128と高周波電源121とを同軸ケーブルで接続した。
【0059】
円筒状基体120が所定の温度となったところで、原料ガス導入管126を介して、原料ガスを反応容器101内に導入する。原料ガスの流量が設定流量となり、また、反応容器101内の圧力が安定したのを確認した後、105MHzの高周波電源121より高周波整合器128を介して高周波電極127へ所定の高周波電力を供給する。これら堆積膜形成の条件は表1に示す。堆積膜形成中は、モーター131を駆動させ円筒状基体120を回転させた。
【0060】
堆積膜形成終了後、反応容器部100を接続機構107から切り離し、円筒状基体取り出しステージ(図示せず)まで移動させ、堆積膜が形成された円筒状基体120を取り出した。その後、反応容器101内の構成部品を交換し、再度堆積膜形成可能な状態としたところで一連の工程を終了した。
【0061】
以上の様な電子写真感光体の形成を連続して、20回実施した。
【0062】
このとき、8回目に、前記工程1おいて、スロー排気バルブ110を開いて、30分後に圧力測定器108の値が20000Paより圧力が高いかったため、先ず、スロー排気バルブ110、ゲートバルブ102を3個全て同時に閉じ、一旦真空処理を停止した。
そして、集合排気管105の内圧を内圧測定器108で20000Paに調整し、1個のゲートバルブ102を開した。そして、その時の内圧測定器108の圧力の変化を観察した。この検査を各反応容器部100に対して行ったところ、ある一つの反応容器部で実施した際に、内圧測定器108の圧力が大幅に上昇しその反応容器部に異常があることが確認された。そこで、その異常が発生した反応容器部100を、接続機構107から切り離し、反応容器部100の代わりに、接続機構107に封止フランジを取付けた。その後、残りの2つの反応容器部100で、引き続きスロー排気を実施した。その後は、前記工程2を実施し、前述のように電子写真感光体を作製した。
【0063】
また、18回目に前記工程2おいて、5分間真空放置後の内圧測定器108の値が1.3Paより高かったので、先ず、メイン排気バルブ106、ゲートバルブ102を3個全て同時に閉じ、一旦真空処理を停止した。そして、集合排気管105の内圧を内圧測定器108で1.3Paに調整し、1個のゲートバルブ102を開いた。そして、その時の内圧測定器108の圧力の変化を観察した。この検査を反応容器部100に対して行ったところ、ある一つの反応容器部で実施した際に、内圧測定器の圧力が大幅に上昇し、その反応容器部に異常があることが確認された。そこで、その異常が発生した反応容器部100を、接続機構107から切り離し、反応容器部100の代わりに、接続機構107に封止フランジを取付けた。その後、残り2つの反応容器部100で引き続き排気を実施した。その後は、前述のように電子写真感光体を作製した。
【0064】
作製した電子写真感光体に対し、「感度」「感度のバラツキ」「球状突起数」「球状突起数のバラツキ」の評価を以下のように実施した。
【0065】
「感度」「感度のバラツキ」
作製した電子写真感光体を本テスト用に改造したキヤノン製複写機GP−605に設置した。そして、プロセススピード300mm/sec、前露光(波長680nmのLED)、光量4lx・s、像露光(波長660nmのレーザー)をOFFにした条件で、電子写真装置の帯電器位置にセットした表面電位計(TREK社Model344)の電位センサーにより電子写真感光体の表面電位が400Vになるように帯電器の電流を調整する。その後、像露光を照射し、像露光光源の光量を調整して、表面電位が50Vとなるようにし、そのときの露光量を測定する。作製した全ての電子写真感光体に関し、測定を行い、その平均をもって感度とし、最大値と最小値の差をもって感度のバラツキとした。
【0066】
「球状突起数」 「球状突起数のバラツキ」
作製した電子写真感光体の表面を光学顕微鏡で観察し、10cm当たりでの15μm以上の球状突起の個数を調べた。値が小さいほど画像欠陥が少なく画質に優れていることを示す。
【0067】
作製した全ての電子写真感光体に関し、測定を行い、その平均をもって球状突起数とし、最大値と最小値の差をもって球状突起数のバラツキとした。
【0068】
「感度」「感度のバラツキ」「球状突起数」「球状突起数のバラツキ」に対して、以下の比較例1の結果に対して相対評価を行った。
【0069】
[比較例1]
本比較例においては、実施例1での工程1、工程2を実施しなかった以外は、実施例1と同様に電子写真感光体を作製し、同様の評価を行った。
【0070】
実施例1、比較例1で得られた結果を表2に示す。表2においては、比較例1の結果を100とした相対評価を示す。
【0071】
比較例では、感度及び球状突起数が悪化する電子写真感光体が数回観察され、その感光体と同一Lotで作製した感光体も感度及び球状突起数がやや悪化していた。一方、本発明の真空処理方法によれば、いずれのLotも、感度及び球状突起数の優れた電子写真感光体が作製された。
【0072】
この結果、本発明の真空処理方法によれば、再現性が向上し、歩留まりが上がることが判った。
【0073】
【表1】

Figure 2004143551
(反応容器1つ当たりの流量)
【0074】
【表2】
Figure 2004143551
【0075】
[実施例2]
図2、図4に示した真空処理装置において、反応容器部100内に設置した長さ358mm、外径φ108mmの鏡面加工を施したAl製シリンダー(円筒状基体120)上にa−Si膜を、高周波電源121の発振周波数を105MHzとして表1に示す条件で成膜し、電子写真感光体を作製した。
【0076】
図2(a)、(b)は本実施例の真空処理方法を実施する装置の一例の模式図であり、電子写真感光体の形成装置の一例を示した模式図である。図2(a)は、横断面図、図2(b)は、上面図である。
【0077】
本実施例による電子写真感光体の製造装置は、図2に示すように移動可能な反応容器部100A〜Cを備えており、反応容器部100A〜Cの各々は、被処理基体(図示せず)が配置される反応容器101と、ゲートバルブ102A〜Cと、架台103と、移動可能手段104としてのキャスターとからなる。
【0078】
反応容器101内を排気するために排気手段150,151が備えられており、排気手段150には、反応容器101に繋がる集合排気管105と、メイン排気バルブ106A〜Cと、集合排気管105を反応容器部100A〜Cに接続させる接続機構107A〜Cと、内圧測定器108A〜Cと、反応容器部100の内部の圧力を調整するために、排気コンダクタンス制御手段109A〜Cが接続されている。また、排気手段151には、集合排気管140、スロー排気ライン111、スロー排気バルブ110、メイン排気バルブ141、バルブ142A〜Cが接続されている。
【0079】
反応容器部100のガス供給及び流量制御手段160は、真空処理に必要となる複数のガスボンベ、レギュレータ、バルブ類、マスフローコントローラーなどを含んでいることが望ましく、所望のガスを所望の流量、混合比で供給することが出来れば、いかなる構成でも構わない。また、更に好ましくはパージ用のガスボンベ、パージラインを含んでいることが望ましく、このことによりガスを安全に運用することが可能となる。真空処理に必要な原料ガスは、ガス供給及び流量制御手段160より、流量可変バルブ161A〜C、接続機構107A〜Cを介し、反応容器101内に供給される。
【0080】
本実施例において、電子写真感光体の作製は以下のように行った。なお、本実施例の反応容器部100も上記の実施例1と同じで、図4に示したとおりである。
【0081】
クリーンルームからなる基体投入エリア(図示せず)で反応容器101内に基体ホルダー130に装着された円筒状基体120を設置する。次に上蓋124を取り付け、反応容器部100A〜Cを作業員による手動搬送で図2の成膜エリアの接続機構107A〜Cまで移動し、ゲートバルブ102A〜Cと接続機構107A〜Cとを接続させる。ここで接続方法は、ゲートバルブ102A〜Cと接続機構107A〜Cの間にOリングを介して接続した。本実施例においては、図2に示すように3台の反応容器部100A〜Cを用いた。
【0082】
3台の反応容器部100A〜Cの接続を終了した後、各反応容器部100A〜Cのゲートバルブ102A〜C、バルブ142A〜Cを開け、スロー排気バルブ110を開け、スロー排気ライン111を使用し、複数の反応容器部100内の減圧を同時に開始する。次に本発明の特徴である工程1を実施した。前記工程1の判別基準として、スロー排気バルブ110を開いた後、30分後に各内圧測定器108A〜Cの値が11000Pa以下なら異常無し、11000Paより圧力が高い場合は異常有りとした。本実施例では、スロー排気バルブ110を開いた後、30分後に各内圧測定器108A〜Cの値が10000Paに達していたので、引き続きスロー排気を実施した。次に内圧測定器108A〜Cの値が400Paに達した時、スロー排気バルブ110を閉じ、メイン排気バルブ141を開けて、更に反応容器内の真空度を高くした。内圧測定器108A〜Cの値が0.65Paに達した時、本発明の特徴である工程2を実施した。内圧測定器108A〜Cの値が0.65Paに達した時、各バルブ142A〜Cを閉め、5分間放置した。5分後の各内圧測定器108A〜Cの値が1.0Pa以下のときは、異常無しとし、1.0Paより高い場合は異常有りとした。本実施例では、5分後の各内圧測定器108A〜Cの値が0.85Paだったので、次の工程に移行した。バルブ142A〜Cを開け、基体加熱用ヒーター125を駆動させ、円筒状基体120を280℃に加熱し制御した。
【0083】
この加熱中に、前述の高周波電極127、高周波シールド122、高周波整合器128を反応容器101の周囲に設置し、さらに高周波整合器128と高周波電源127とを同軸ケーブルで接続した。
【0084】
円筒状基体120が所定の温度となったところで、バルブ142A〜Cを閉じ、ゲートバルブ102A〜Cを全て開けた。次に、原料ガス導入管126を介して、原料ガスを反応容器101内に導入する。原料ガスの流量が設定流量となり、また、反応容器101内の圧力が安定したのを確認した後、105MHzの高周波電源121より高周波整合器128を介して高周波電極127へ所定の高周波電力を供給する。これら堆積膜形成の条件は表1に示す。堆積膜形成中は、モーター131を駆動させ円筒状基体120を回転させた。
【0085】
堆積膜形成終了後、反応容器部100A〜Cを接続機構107A〜Cから切り離し、円筒状基体取り出しステージ(図示せず)まで移動させ、堆積膜が形成された円筒状基体120を取り出した。その後、反応容器101内の構成部品を交換し、再度堆積膜形成可能な状態としたところで一連の工程を終了した。
【0086】
以上の様な電子写真感光体の形成を連続して、20回実施した。
【0087】
このとき、3回目に、前記工程1おいて、スロー排気バルブ110を開いて、30分後に内圧測定器108Aの値が11000Paより圧力が高かった。そこで、バルブ142Aを閉じ、反応容器100Aを大気圧力に戻し、接続機構107Aから切り離した。そして、切り離した接続機構107Aに封止フランジを取り付けた。一方、残りの2つの反応容器部100B,100Cは、内圧測定器108B,108Cが9000Paになった時点でバルブ142B,142Cを閉じ、真空保持状態を維持した。その後、バルブ142Aを開け、内圧測定器108Aの値が9000Paになったところで、バルブ142B,142Cを開け、引き続きスロー排気を実施した。その後は、前記工程2を実施し、前述のように電子写真感光体を作製した。
【0088】
また、10回目に前記工程2おいて、5分間真空放置後の内圧測定器108Cの値が1.0Paより高かったので、反応容器100Cを大気圧力に戻し、接続機構107Cから切り離した。そして、切り離した接続機構107Cにメクラ・フランジを取付けた。そして、バルブ142Cを開け、内圧測定器108Cの値が、内圧測定器108A,108Bと同じになったところで、バルブ142A〜Cを全て開け、次の工程に移行し、前述のように電子写真感光体を作製した。
【0089】
作製した電子写真感光体に対し、実施例1と同様に評価を行ったところ、実施例1と同様、再現性良く電子写真感光体を作製できた。また、実施例1に対し、異常の検出と異常個所の特定を同時に実施可能なため、装置の稼働率を向上できることが判った。
【0090】
[実施例3]
図3、図4に示した真空処理装置において、反応容器部100内に設置した長さ358mm、外径φ108mmの鏡面加工を施したAl製シリンダー(円筒状基体120)上にa−Si膜を、高周波電源121の発振周波数を105MHzとして表1に示す条件で成膜し、電子写真感光体を作製した。
【0091】
図3は本実施例の真空処理方法を実施する装置の一例の模式図であり、電子写真感光体の形成装置の一例を示した模式図である。
【0092】
本実施例による電子写真感光体の製造装置は、図3に示すように移動可能な反応容器部100A〜Cを備えており、反応容器部100A〜Cの各々は、被処理基体(図示せず)が配置される反応容器101と、ゲートバルブ102A〜Cと、架台103と、移動可能手段104としてのキャスターとからなる。
【0093】
反応容器101内を排気するために排気手段150,250,251が備えられており、排気手段150には、反応容器101に繋がる集合排気管105と、メイン排気バルブ106と、集合排気管105を反応容器部100A〜Cに接続させる接続機構107A〜Cと、内圧測定器108と、スロー排気ライン111と、スロー排気バルブ110とが接続されている。
【0094】
排気手段250には、集合排気管205、メイン排気バルブ206A〜C、接続機構207A〜C、内圧測定器208A〜C、反応容器部100A〜Cの内部の圧力を調整するために、排気コンダクタンス制御手段209A〜Cが接続されている。また、排気手段251には、集合排気管240、メイン排気バルブ241、バルブ242A〜Cが接続されている。
【0095】
反応容器部100のガス供給及び流量制御手段260は、真空処理に必要となる複数のガスボンベ、レギュレータ、バルブ類、マスフローコントローラーなどを含んでいる。真空処理に必要な原料ガスは、ガス供給及び流量制御手段260より、流量可変バルブ261A〜C、接続機構207A〜Cを介し、反応容器101内に供給される。
【0096】
本実施例において、電子写真感光体の作製は以下のように行った。なお、本実施例の反応容器部100も上記の実施例1と同じで、図4に示したとおりである。
【0097】
クリーンルームからなる基体投入エリアにある、接続機構107A〜Cに反応容器部100A〜Cを作業員による手動搬送移動し、ゲートバルブ102A〜Cと接続機構107A〜Cとを接続させる。そして、各反応容器101内に基体ホルダー130に装着された円筒状基体120を設置する。上蓋124を取り付けた後、各反応容器部100A〜Cのゲートバルブ102A〜Cを開け、スロー排気バルブ110を開け、スロー排気ライン111を使用し、複数の反応容器部100内の減圧を同時に開始する。次に本発明の特徴である工程1を実施した。
【0098】
前記工程1の判別基準として、スロー排気バルブ110を開いた後、30分後に内圧測定器108の値が20000Pa以下なら異常無し、20000Paより圧力が高い場合は異常有りとした。本実施例では、スロー排気バルブ110を開いた後、30分後に内圧測定器108の値が18000Paに達していたので、引き続きスロー排気を実施した。次に内圧測定器108の値が400Paに達した時、スロー排気バルブ110を閉じ、メイン排気バルブ106を開けて、更に反応容器内の真空度を高くした。内圧測定器108の値が0.65Paに達した時、本発明の特徴である工程2を実施した。内圧測定器108の値が0.65Paに達した時、メイン排気バルブ106を閉め、5分間放置した。5分後の内圧測定器108の値が1.3Pa以下のときは、問題無しとし、1.3Paより高い場合は異常とした。本実施例では、5分後の内圧測定器108の値が1.0Paだったので、次の工程に移行した。
【0099】
ゲートバルブ102A〜C、メイン排気バルブ106を閉じ、リークバルブ161を開き、集合排気管105を大気圧力に戻した。その後、反応容器部100A〜Cを接続機構107A〜Cから切り離し、成膜エリアにある、接続機構207A〜Cに反応容器部100A〜Cを作業員による手動搬送で移動し、ゲートバルブ102A〜Cと接続機構207A〜Cとを接続させる。バルブ242A〜C、メイン排気バルブ241を開け、ゲートバルブ102A〜Cとゲートバルブ206A〜Cの間を、内圧測定器208A〜Cの値が0.6Paに達するまで、真空引きした。その後バルブ242A〜Cを閉じ、2分間真空放置試験を実施し、接続機構207A〜Cとゲートバルブ102A〜Cの接続に問題が無いことを確認した。そして、ゲートバルブ102A〜C、バルブ242A〜Cを開け、基体加熱用ヒーター125を駆動させ、円筒状基体120を250℃に加熱し制御した。
【0100】
この加熱中に、前述の高周波電極127、高周波シールド122、高周波整合器128を反応容器101の周囲に設置し、さらに高周波整合器128と高周波電源127とを同軸ケーブルで接続した。
【0101】
円筒状基体120が所定の温度となったところで、バルブ242A〜Cを閉じ、ゲートバルブ206A〜Cを全て開けた。次に、原料ガス導入管126を介して、原料ガスを反応容器101内に導入する。原料ガスの流量が設定流量となり、また、反応容器101内の圧力が安定したのを確認した後、105MHzの高周波電源121より高周波整合器128を介して高周波電極127へ所定の高周波電力を供給する。これら堆積膜形成の条件は表1に示す。堆積膜形成中は、モーター131を駆動させ円筒状基体120を回転させた。
【0102】
堆積膜形成終了後、反応容器部100A〜Cを接続機構107A〜Cから切り離し、円筒状基体取り出しステージ(図示せず)まで移動させ、堆積膜が形成された円筒状基体120を取り出した。その後、反応容器101内の構成部品を交換し、再度堆積膜形成可能な状態としたところで一連の工程を終了した。
【0103】
以上の様な電子写真感光体の形成を連続して、30回実施した。
【0104】
また、本実施例において、減圧速度の判定、真空放置試験の判定において、異常と判定された場合は、実施例1、2と同様な対処を行い、工程を進めた。
【0105】
作製した電子写真感光体に対し、実施例1、2と同様に評価を行ったところ、実施例1、2と同様、再現性良く電子写真感光体を作製できた。
【0106】
【発明の効果】
以上説明したように、本発明によれば、排気手段、ガス供給手段を共有した複数の反応容器を用いて同時に多数の被処理物に真空処理を行う場合、ある反応容器で異常が発生した際に、この異常が発生した反応容器のみを排気手段から断絶することで、正常に真空処理を行っている反応容器内の被処理物への影響を抑制することができ、製品の歩留まり低下を最小限にくい止めることが可能となる。
また、ガス供給系を共有することで、非常に複雑で高価な付帯設備であるガス供給及び流量制御手段を反応容器毎に設ける必要がなく、設備コストを低減することが可能となる。
【0107】
また、本発明によれば、異常が発生した反応容器を排気手段から直ちに切り離して次の真空処理の準備などを迅速に行うことができ、生産装置のデッドタイムを最小限に抑えることが可能である。以上の点から、高品質な真空処理をより安価に供給することが可能となる。
【図面の簡単な説明】
【図1】本発明の真空処理方法を実施する装置の例であり、電子写真感光体の形成装置の一例を示した模式図であって、(a)は横断面図、(b)は上面図である。
【図2】本発明の実施例2である、電子写真感光体の形成装置の一例を示した模式図であって、(a)は横断面図、(b)は上面図である。
【図3】本発明の実施例3である、電子写真感光体の形成装置の一例を示した模式図であって、(a)は横断面図、(b)は上面図である。
【図4】VHF帯の高周波電力を好適に使用可能なプラズマCVD法を用いた電子写真感光体の製造装置の模式図である。
【符号の説明】
100、100A〜C      反応容器部
101      反応容器
102、102A〜C      ゲートバルブ
103      架台
104      移動可能手段
105、205、140、240      集合排気配管
106、106A〜C、206A〜C      メイン排気バルブ
107、107A〜C、207A〜C      接続機構
108、208A〜C      内圧測定器
109、109A〜C、209A〜C      排気コンダクタンス制御手段
110      スロー排気バルブ
111      スロー排気ライン
120      基体
121      高周波電源
122      高周波シールド
123      反応容器支持台
124      上蓋
125      基体加熱用ヒーター
126      原料ガス導入管
127      高周波電極
128      高周波整合器
129      絶縁体
130      基体ホルダー
131      モーター
150、151、250、251      排気手段
160、260      ガス供給及び流量制御手段
161、161A〜C      流量可変バルブ
141、241、142A〜C、242A〜C、161、261      バルブ及び真空処理装置[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a vacuum processing method such as deposition film formation and etching used for forming a semiconductor device, an electrophotographic photosensitive member, an image input line sensor, a photographing device, a photovoltaic device, and the like.
[0002]
[Prior art]
Conventionally, as a vacuum processing method used for producing a semiconductor device, an electrophotographic photoreceptor, a line sensor for image input, an imaging device, a photovoltaic device, other various electronic elements, optical elements, etc., a vacuum deposition method, a sputtering method, and the like. There are many known methods, such as an ion plating method, an ion plating method, a thermal CVD method, an optical CVD method, and a plasma CVD method, and an apparatus for the method has been put to practical use. Among them, a plasma process using high-frequency power is used for various advantages such as being able to be used for forming and etching a deposited film using various materials, and also for forming an insulating material such as an oxide film and a nitride film. I have. Preferable examples of the use of the plasma process include, for example, formation of a hydrogenated amorphous silicon for electrophotography (hereinafter, referred to as a-Si: H) deposited film and the like. Various proposals have been made.
[0003]
In addition, various devices have been devised to produce a high-quality deposited film at a lower cost.
[0004]
For example, Japanese Patent Application Laid-Open No. H10-168574 discloses a technique for shortening the total time spent for manufacturing by devising a cleaning method for a deposited film forming apparatus. An example of a deposition film forming apparatus that exhausts gas by means of the exhaust means is disclosed. Japanese Patent Publication No. 7-13947 discloses a technique for producing a plurality of thin film transistor arrays using a plurality of reaction vessels in which a source gas supply unit and an exhaust unit are shared. By connecting a plurality of reaction vessels to a single exhaust unit or a single gas supply unit in this manner, it is possible to reduce capital investment in the gas supply unit and the exhaust unit.
[0005]
Further, Japanese Patent Application Laid-Open No. 10-168576 discloses details of a deposition film forming apparatus in which a vacuum vessel is connected to an exhaust unit, a source gas supply unit via a detachable connection mechanism, and an attachment / detachment mechanism. By being detachable in this way, for example, when manufacturing different types of deposited films, only the reaction container needs to be changed, which is advantageous in terms of capital investment, equipment downtime, and the like.
[0006]
[Patent Document 1]
JP-A-10-168574
[Patent Document 2]
Japanese Patent Publication No. 7-13947
[Patent Document 3]
JP-A-10-168576
[0007]
[Problems to be solved by the invention]
The conventional method and apparatus have the advantages that the number of vacuum processes that can be performed simultaneously is large, and that additional equipment such as gas flow control means and gas exhaust means can be shared, which is advantageous in cost reduction.
[0008]
However, as described above, in the case of a configuration in which ancillary equipment such as a gas flow control unit and a gas exhaust unit is shared and a large number of vacuum processes are simultaneously performed in a plurality of reaction vessels, a certain one of the plurality of reaction vessels is used. When an abnormality occurs in the reaction vessel, the related equipment may be adversely affected due to the sharing of the auxiliary equipment.
[0009]
One of the abnormalities in the vacuum processing is an external leak into the processing container. If there is an external leak during the vacuum processing, the inside of the processing container is contaminated and adversely affects the processing characteristics.
[0010]
In this case, as described above, even if an external leak occurs in one of the plurality of reaction vessels, for example, a contamination source such as oxygen diffuses through a common exhaust pipe, and the processing of the other reaction vessels proceeds. Affects properties. Further, when processing the above-described electrophotographic photoreceptor, not only during processing as described later, but also before processing is started, and further, decompression processing is started, and even if an abnormality occurs in one reaction vessel for a while, It may adversely affect other reaction vessels.
[0011]
As described above, a mass-production type apparatus capable of processing a large amount of deposited films at one time is very advantageous in terms of cost, but once a trouble occurs, in the worst case, all reactions sharing the incidental facilities are performed. There is a problem that all the vacuum-processed products performed in the container may be defective.
[0012]
An object of the present invention is to solve the above problems. In other words, in a vacuum processing method and a vacuum processing apparatus capable of simultaneously performing a large number of vacuum processes using a plurality of reaction vessels, the auxiliary equipment such as a gas supply unit and an exhaust unit is shared to greatly reduce the cost of the equipment. In addition, a vacuum processing method is provided in which, when an abnormality occurs in one reaction vessel, it does not adversely affect other normally operating reaction vessels and can minimize a decrease in yield and operation rate. It is intended to be.
[0013]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides an object to be treated is installed in a plurality of reaction vessel sections that can be decompressed, each of the reaction vessel sections is connected to a pipe connected to the same exhaust means and exhausted, In the vacuum processing method for simultaneously processing an object to be processed, when the plurality of reaction vessel sections are depressurized, the plurality of reaction vessel sections are simultaneously evacuated by the exhaust means, and a decompression rate (Δ pressure / Δ time) is within a predetermined range, and after the step 1, the plurality of reaction vessel sections are further depressurized, and the pressure in each reaction vessel section reaches a predetermined value. Then, a predetermined vacuum process is performed after at least the step 2 of simultaneously leak-checking the plurality of reaction vessel sections.
[0014]
Further, in the step 1, when the pressure reduction rate is out of the predetermined range, the step of stopping the pressure reduction processing of the plurality of reaction vessel sections and individually detecting an abnormal portion for the plurality of reaction vessel sections. It is preferable that, after the operation is performed and only the reaction vessel part in which an abnormality occurs is disconnected from the exhaust unit, the remaining reaction vessel parts are continuously shifted to the next step.
[0015]
Further, in the step 2, when an abnormality is detected, decompression processing of the plurality of reaction vessel sections is stopped, and for the plurality of reaction vessel sections, a step of individually detecting an abnormal portion is performed, After disconnecting only the reaction vessel part in which the abnormality has occurred from the exhaust means, it is preferable to continue to the next step for the remaining reaction vessel parts.
[0016]
Further, in the step 1, the detection of the decompression rate is performed individually and simultaneously on the plurality of reaction vessel parts, and after the reaction vessel parts whose decompression rate is out of a predetermined range are disconnected from the exhaust unit, the remaining pressure is reduced. It is preferable to continue to the next step for the reaction vessel section.
[0017]
Further, in the step 2, the abnormality is detected individually and simultaneously for the plurality of reaction vessel sections, and after the reaction vessel section in which the abnormality has occurred is disconnected from the exhaust means, the remaining reaction vessel sections are continued. Then, it is preferable to proceed to the next step.
[0018]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0019]
The present inventors have conducted intensive studies to achieve the above object, and as a result, a vacuum processing method capable of simultaneously performing a large amount of vacuum processing by connecting a plurality of reaction vessels to the same exhaust unit and the same gas supply unit. In the event that an abnormality occurs in a certain reaction vessel, by using the vacuum processing method as described above, it is possible to prevent the problem from spreading to other reaction vessels and minimize the decrease in the product yield rate. Made it possible.
[0020]
Such an embodiment of the present invention will be described in detail below.
[0021]
FIGS. 1A and 1B are schematic views of an example of an apparatus for performing the vacuum processing method of the present invention, and are schematic views showing an example of an apparatus for forming an electrophotographic photosensitive member. FIG. 1A is a cross-sectional view, and FIG. 1B is a top view.
[0022]
An electrophotographic photoreceptor manufacturing apparatus suitable for the vacuum processing method of the present embodiment includes a movable reaction container section 100 as shown in FIG. 1, and the reaction container section 100 includes a substrate to be processed (not shown). (1), a reaction vessel 101 in which a grease is disposed, a gate valve 102, a gantry 103, and casters as movable means 104.
[0023]
The movable means 104 may be any means capable of moving the reaction container section 100, and may employ a moving method such as caster movement, belt movement, magnetic floating movement, or air floating movement. It is desirable to move the casters from.
[0024]
The exhaust means 150 for exhausting the inside of the reaction vessel 101 includes a collective exhaust pipe 105 connected to the reaction vessel 101, a main exhaust valve 106, a connection mechanism 107 for connecting the collective exhaust pipe 105 to the reaction vessel section 100, an internal pressure An exhaust conductance control unit 109, a slow exhaust valve 110, and a slow exhaust line 111 are connected to adjust the pressure inside the reaction container 100 with the measuring device 108.
[0025]
The reaction vessel section 100 is connected to an exhaust unit 150 via a connection mechanism 107, a gate valve 102, and a collective exhaust pipe 105. The pumping means 150 may be any pump, such as a rotary pump, a mechanical booster pump, an oil diffusion pump, a turbo molecular pump, or any combination thereof as long as the pumping means can obtain a desired pumping speed.
[0026]
The gas supply and flow rate control means 160 of the reaction vessel section 100 desirably includes a plurality of gas cylinders, regulators, valves, mass flow controllers, and the like required for vacuum processing. Any configuration can be used as long as it can be supplied. Further, it is more desirable to include a gas cylinder for purging and a purge line, so that the gas can be operated safely. The source gas required for the vacuum processing is supplied from the gas supply and flow rate control means 160 into the reaction vessel 101 via the variable flow rate valve 161 and the connection mechanism 107.
[0027]
Further, it is desirable to provide a gas connection mechanism between the reaction container section 100 and the variable flow rate valve 161, and the connection mechanism 107 incorporates a gas connection mechanism.
[0028]
In FIG. 1, the number of the reaction vessel portions 100 is three, but the number is determined in consideration of the exhaust capacity of the exhaust means 150 or the work efficiency at the time of attaching and detaching the reaction vessel section 100 to the exhaust means 150. May be arbitrarily determined.
[0029]
The connection mechanism 107 preferably has a flange structure for holding a vacuum, and the vacuum seal may be any of an O-ring seal, a metal seal, and the like. As a method for fixing the connection mechanism 107 and the gate valve 102, any method using a bolt, a coupler, a clamp, or the like may be used, but it is more preferable to be able to easily attach and detach.
[0030]
The vacuum processing method of the present invention using the apparatus for manufacturing an electrophotographic photoreceptor shown in FIG. 1 can be generally performed as follows.
[0031]
First, the substrate is placed in the reaction container 101 of the reaction container section 100 in a substrate charging area (not shown).
[0032]
The substrate is precisely cleaned in advance, and the substrate is installed in a dust-controlled environment such as a clean room. Next, each reaction vessel unit 100 is moved from the substrate charging area to the connection mechanism 107 by driving a caster as the movable means 104, and the connection mechanism 107 and the gate valve 102 are connected. The gate valve 102 of each reaction vessel part 100 is opened, the slow exhaust valve 110 is opened, and the pressure in the plurality of reaction vessel parts 100 is simultaneously started using the slow exhaust line 111.
[0033]
Slow exhaust is performed by opening the main exhaust valve 106 and reducing the pressure inside the reaction vessel 100 at a stretch, whereby the gas in the reaction vessel 100 is drawn at a stretch to the connection end opening of the exhaust pipe, and the reaction vessel This is because a large turbulence is generated in the inside 100 and particles deposited on the wall surface and the bottom surface in the reaction container portion 100 soar up to prevent the particles from adhering to the substrate surface.
[0034]
When the evacuation unit 150 starts evacuation of the reaction container unit 100, step 1 which is one of the features of the present invention is performed. When the slow exhaust valve 110 is opened, measurement of the pressure reduction rate (Δpressure / Δtime) is started. In measuring the pressure reduction rate, the internal pressure measuring device 108 monitors the pressure of the collective exhaust pipe 105 to which the reaction vessel section 100 is connected. Then, it is determined whether the exhaust speed is within a predetermined range. The determination is made in advance by monitoring the exhaust time and the change in pressure in a state where there is no external leak, using the monitored values as a reference (reference value), and determining the degree of deviation from the reference. . For example, the evacuation time is fixed to T, and it is determined whether or not the pressure when the time of T elapses is near the reference. Alternatively, changes in the evacuation time and pressure may be observed several times, and the average thereof may be used as a reference.
[0035]
The step 1 is performed in a state where little time has passed since the start of evacuation, that is, in a low vacuum state. The following problems occur when the time elapses in a situation where an external leak is occurring. Air is discharged from the leak location into the reaction vessel section 100, and as a result, turbulence is generated near the leak location, and particles may flow in the reaction vessel section 100. For a while after the evacuation is started, the particles float due to a low vacuum state, and eventually float to the inside of the adjacent reaction vessel part 100 via a common exhaust pipe, and may contaminate the inside of the reaction vessel part 100. . In particular, in the production of an electrophotographic photoreceptor, the rate of occurrence of defects caused by the attachment of dust and the like on a substrate greatly affects productivity. This is because, when the above-described defect occurs in the electrophotographic photosensitive member, the defect cannot be repaired, which greatly affects the yield of the electrophotographic photosensitive member. On the other hand, in a high vacuum state, the particles can no longer float, so that the particles hardly affect the adjacent reaction vessel section 100 as described above.
[0036]
In other words, even if a leak is checked in a high vacuum state and an abnormality is found, especially for defects caused by particles attached to the substrate, such as an electrophotographic photoreceptor, the defect has already been found in the reaction vessel part where the occurrence of the abnormality was found. In some cases, this has an adverse effect, so that it is very effective to perform a leak check in a low vacuum state.
[0037]
The low vacuum state in which the step 1 is performed cannot be unconditionally defined by the shape and volume of the apparatus or the connection method and length of the exhaust pipe, and furthermore, the amount of external leakage. From the atmospheric pressure, it is preferable to perform the process up to 133 Pa (1 Torr) from the atmospheric pressure, and it is more preferable to perform the process up to 13330 Pa (100 Torr) from the viewpoint of yield.
[0038]
Further, as the leak detection method in the above step 1, the method of detecting the exhaust speed of the present invention is the best. Since the step 1 is performed in a low vacuum state as described above, a Geisler tube method or a leak detection method using a helium leak detector cannot be used. Further, in the vacuum standing method, since the exhaust valve is closed in a reduced pressure state, the gas flow is eliminated in the reaction vessel, and particles are easily diffused. The exhaust speed of the present invention can be detected in a situation where particles are unlikely to be diffused into an adjacent reaction container because a gas flow always occurs from the reaction container to the exhaust unit.
[0039]
Next, after confirming that the pumping speed is within a predetermined range, the process proceeds to the step 2. Further, slow exhaust is performed, and when the internal pressure of the reaction container 100 reaches a predetermined value, the main exhaust valve 106 is opened to further reduce the pressure inside the reaction container 100. Next, when the internal pressure of the reaction container 100 reaches a predetermined value, a leak check of the reaction container 100 is started. The method of the leak check is not particularly limited, and a Geisler tube method, a leak detection method using a helium leak detector, a vacuum leaving method, or the like is used.
[0040]
Step 2 is performed in a high vacuum state, but it is preferable that the step 2 is performed at a lower pressure than the internal pressure under vacuum processing conditions (for example, during CVD).
[0041]
After confirming that there is no abnormality, the process proceeds to the next step.
[0042]
If the pumping speed is out of the predetermined range in the step 1, and if an abnormality is found in the step 2, the process is interrupted, the reaction vessel unit 100 is disconnected from the exhaust unit 150, and the next preparation is performed. Another reaction vessel unit 100 is newly connected to the exhaust unit 150, and the process is started again from the installation of the base. Further, the separated reaction container unit 100 is moved to another area, where the cause of the abnormality is specified and the abnormality is repaired.
[0043]
By performing the vacuum processing method of the present invention in this way, a plurality of vacuum processes can be simultaneously performed in a normal state at all times, and a decrease in yield can be suppressed.
[0044]
Further, as a preferred vacuum processing method of the present invention, in the step 1, when the pressure reduction rate is outside a predetermined range, the pressure reduction processing of the plurality of reaction vessel sections is stopped, and for the plurality of reaction vessel sections, The process of individually detecting an abnormal location is performed, and only the reaction vessel part in which the abnormality has occurred is disconnected from the exhaust means, and then the remaining reaction vessel parts are continuously shifted to the next step, thereby further increasing the operation rate. Can be reduced.
[0045]
As described above, when an abnormality occurs (the process is interrupted, the reaction container unit 100 is disconnected from the exhaust unit 150, and another prepared reaction container unit 100 is newly connected to the exhaust unit 150, Again, the installation is started again, and the separated reaction container 100 is moved to another area to identify the cause of the abnormality and repair the abnormality.) Is also separated from the exhaust means 150, and a certain amount of time is required to deal with the abnormality, so that the operation rate of the apparatus is reduced.
[0046]
According to the vacuum processing method of the present invention, when an abnormality is detected, a step of individually detecting an abnormal portion is performed for a plurality of reaction container portions, and only the reaction container portion where the abnormality has occurred is separated from the exhaust unit. Therefore, the normal reaction container can be used continuously, and the operation rate of the apparatus is improved. In this case, only the reaction vessel part in which the abnormality has occurred may be replaced with another reaction vessel part, and the connection part with the exhaust means to which the reaction vessel part in which the abnormality has occurred was connected may be sealed. Since the vacuum processing can be continuously performed only in the remaining normal reaction vessel section, the operation rate can be further improved.
[0047]
Further, as a preferable vacuum processing method of the present invention, when an abnormality is detected in the step 2, the decompression process of the plurality of reaction vessel sections is stopped, and the plurality of reaction vessel sections are individually abnormally treated. After performing the step of detecting the location and disconnecting only the reaction vessel part in which an abnormality has occurred from the exhaust means, the remaining reaction vessel parts are continuously shifted to the next step, so that the operation rate is the same as described above. Can be reduced.
[0048]
Further, as a preferable vacuum processing method of the present invention, in the step 1, the detection of the pressure reduction rate is performed individually and simultaneously on the plurality of reaction vessel parts, and the reaction vessel parts whose pressure reduction rate is out of a predetermined range are subjected to After disconnection from the evacuation unit, by continuing to the next step with respect to the remaining reaction vessel portions, it is possible to further suppress a decrease in the operation rate. By performing such a vacuum processing method, it is possible to simultaneously detect an abnormality and specify an abnormal location (a reaction vessel part having an abnormality), and it is possible to further improve the operation rate.
[0049]
Further, as a preferable vacuum processing method of the present invention, in the step 2, the detection of the abnormality is individually and simultaneously performed on the plurality of reaction vessel sections, and the reaction vessel section in which the abnormality has occurred is disconnected from the exhaust unit. After that, by continuing to the next step with respect to the remaining reaction vessel sections, it is possible to further suppress a decrease in the operation rate. By performing such a vacuum processing method, it is possible to simultaneously detect an abnormality and specify an abnormal location (a reaction vessel part having an abnormality), and it is possible to further improve the operation rate.
[0050]
As described above, the present invention has been described by taking the electrophotographic photoreceptor forming apparatus and the forming method as examples, but the present invention is not limited to this, and may be applied to other vacuum processing methods such as a sputtering method and a thermal CVD method. Can also be used.
[0051]
【Example】
Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited thereto.
[0052]
[Example 1]
In the vacuum processing apparatus shown in FIGS. 1 and 4, a-a cylinder is placed on a mirror-finished Al cylinder (cylindrical substrate 120) having a length of 358 mm and an outer diameter of 108 mm, which is installed in a movable reaction vessel section 100. An Si film was formed under the conditions shown in Table 1 with the oscillation frequency of the high-frequency power supply 121 set to 105 MHz, to produce an electrophotographic photosensitive member.
[0053]
1A and 1B are schematic views showing the above-described electrophotographic photoreceptor forming apparatus. FIG. 1A is a cross-sectional view, and FIG. 1B is a top view.
[0054]
FIG. 4 is a schematic diagram showing an example of an apparatus for forming an electrophotographic photosensitive member by a VHF plasma CVD method. The movable reaction vessel section 100 is provided by a movable high-frequency shield 122 made of SUS, a cylindrical reaction vessel 101 made of alumina ceramics, a reaction vessel support base 123, an upper lid 124, a gate valve 102, and a movable means 104 such as a caster. Become.
In the reaction vessel 101, three heaters 125 for heating the substrate and three source gas introduction pipes 126 are provided concentrically. Also, three SUS rod-shaped high-frequency electrodes 127 are installed concentrically at equal intervals between the high-frequency shield 122 and the reaction vessel 101, and the high-frequency power supply 121 is connected via a high-frequency matching box (matching box) 128. It is connected.
The above-mentioned rod-shaped high-frequency electrode 127 is insulated from the high-frequency shield 122 and the reaction vessel support base 123 by an insulating member 129.
[0055]
In this example, the production of the electrophotographic photosensitive member was performed as follows.
[0056]
A cylindrical substrate 120 mounted on a substrate holder 130 is set in a reaction container 101 in a substrate charging area (not shown) formed of a clean room. Next, the upper lid 124 is attached, and the reaction container unit 100 is moved to the connection mechanism 107 of the film forming stage in FIG. 1 by manual transfer by an operator, and the gate valve 102 and the connection mechanism 107 are connected. Here, the connection method was that the gate valve 102 and the connection mechanism 107 were connected via an O-ring. In the present embodiment, three reaction vessel units 100 were used as shown in FIG.
[0057]
After the connection of the three reaction container units 100 is completed, the gate valve 102 of each reaction container unit 100 is opened, the slow exhaust valve 110 is opened, and the pressure in the plurality of reaction container units 100 is reduced using the slow exhaust line 111. Start at the same time. Next, Step 1 which is a feature of the present invention was performed. As a criterion for the step 1, after 30 minutes from the opening of the slow exhaust valve 110, if the value of the internal pressure measuring device 108 was 20,000 Pa or less, there was no abnormality. In this embodiment, the value of the internal pressure measuring device 108 reached 18000 Pa 30 minutes after the slow exhaust valve 110 was opened, so that the slow exhaust was continuously performed. Next, when the value of the internal pressure measuring device 108 reached 400 Pa, the slow exhaust valve 110 was closed, the main exhaust valve 106 was opened, and the degree of vacuum in the reaction vessel was further increased. When the value of the internal pressure measuring device 108 reached 0.65 Pa, the step 2 which is a feature of the present invention was performed. When the value of the internal pressure measuring device 108 reached 0.65 Pa, the main exhaust valve 106 was closed and left for 5 minutes. When the value of the internal pressure measuring device 108 after 5 minutes was 1.3 Pa or less, no abnormality was determined, and when it was higher than 1.3 Pa, abnormality was determined. In the present embodiment, the value of the internal pressure measuring device 108 after 5 minutes was 1.0 Pa, so that the process was shifted to the next step. The main exhaust valve 106 was opened, the heater 125 for substrate heating was driven, and the cylindrical substrate 120 was heated to 230 ° C. and controlled.
[0058]
During the heating, the above-described high-frequency electrode 127, high-frequency shield 122, and high-frequency matching device 128 were installed around the reaction vessel 101, and the high-frequency matching device 128 and the high-frequency power supply 121 were connected by a coaxial cable.
[0059]
When the temperature of the cylindrical substrate 120 reaches a predetermined temperature, the source gas is introduced into the reaction vessel 101 via the source gas introduction pipe 126. After confirming that the flow rate of the raw material gas has reached the set flow rate and that the pressure in the reaction vessel 101 has been stabilized, predetermined high-frequency power is supplied from the high-frequency power supply 121 of 105 MHz to the high-frequency electrode 127 via the high-frequency matching device 128. . Table 1 shows the conditions for forming these deposited films. During the formation of the deposited film, the motor 131 was driven to rotate the cylindrical substrate 120.
[0060]
After the formation of the deposited film, the reaction container section 100 was separated from the connection mechanism 107 and moved to a cylindrical substrate take-out stage (not shown) to take out the cylindrical substrate 120 on which the deposited film was formed. Thereafter, the components in the reaction vessel 101 were replaced, and a series of steps were completed when the state in which the deposited film could be formed again was completed.
[0061]
The formation of the electrophotographic photosensitive member as described above was continuously performed 20 times.
[0062]
At this time, at the eighth time, in the above step 1, the slow exhaust valve 110 was opened, and after 30 minutes, the value of the pressure measuring device 108 was higher than 20000 Pa, so the slow exhaust valve 110 and the gate valve 102 were first opened. All three were closed at the same time, and the vacuum processing was stopped once.
Then, the internal pressure of the collective exhaust pipe 105 was adjusted to 20000 Pa by the internal pressure measuring device 108, and one gate valve 102 was opened. Then, a change in the pressure of the internal pressure measuring device 108 at that time was observed. When this inspection was performed on each of the reaction vessel parts 100, it was confirmed that, when the reaction was carried out on one of the reaction vessel parts, the pressure of the internal pressure measuring device 108 increased significantly and the reaction vessel part was abnormal. Was. Then, the reaction vessel part 100 in which the abnormality occurred was disconnected from the connection mechanism 107, and a sealing flange was attached to the connection mechanism 107 instead of the reaction vessel part 100. After that, slow exhaust was continuously performed in the remaining two reaction container sections 100. Thereafter, the above-described step 2 was performed, and an electrophotographic photosensitive member was manufactured as described above.
[0063]
In the 18th process, since the value of the internal pressure measuring device 108 after leaving for 5 minutes in vacuum in Step 2 was higher than 1.3 Pa, first, the main exhaust valve 106 and the gate valve 102 were all closed at the same time. The vacuum processing was stopped. Then, the internal pressure of the collective exhaust pipe 105 was adjusted to 1.3 Pa by the internal pressure measuring device 108, and one gate valve 102 was opened. Then, a change in the pressure of the internal pressure measuring device 108 at that time was observed. When this inspection was performed on the reaction container unit 100, it was confirmed that, when the test was performed on a certain reaction container unit, the pressure of the internal pressure measuring device increased significantly and the reaction container unit was abnormal. . Then, the reaction vessel part 100 in which the abnormality occurred was disconnected from the connection mechanism 107, and a sealing flange was attached to the connection mechanism 107 instead of the reaction vessel part 100. After that, the remaining two reactors 100 were evacuated continuously. Thereafter, an electrophotographic photosensitive member was manufactured as described above.
[0064]
Evaluations of “sensitivity”, “variation in sensitivity”, “number of spherical projections”, and “variation in number of spherical projections” were performed on the produced electrophotographic photosensitive members as follows.
[0065]
“Sensitivity” “Sensitivity variation”
The produced electrophotographic photosensitive member was installed in a Canon copier GP-605 modified for this test. A surface voltmeter set at the charger position of the electrophotographic apparatus under the conditions that the process speed is 300 mm / sec, the pre-exposure (LED with a wavelength of 680 nm), the light amount is 4 lx · s, and the image exposure (laser with a wavelength of 660 nm) is OFF. The current of the charger is adjusted by a potential sensor (TREK Model 344) so that the surface potential of the electrophotographic photosensitive member becomes 400 V. Thereafter, an image exposure is applied, the light amount of the image exposure light source is adjusted so that the surface potential becomes 50 V, and the exposure amount at that time is measured. Measurements were performed on all the produced electrophotographic photoreceptors, and the average was used as the sensitivity, and the difference between the maximum value and the minimum value was used as the sensitivity variation.
[0066]
"Number of spherical protrusions""Variation in number of spherical protrusions"
Observe the surface of the prepared electrophotographic photoreceptor with an optical microscope, 2 The number of spherical protrusions having a diameter of 15 μm or more was determined. The smaller the value, the smaller the number of image defects and the higher the image quality.
[0067]
Measurements were performed on all the produced electrophotographic photoreceptors, and the average was used as the number of spherical projections, and the difference between the maximum value and the minimum value was used as the variation in the number of spherical projections.
[0068]
Relative evaluations were made on the results of Comparative Example 1 below for "sensitivity", "variation in sensitivity", "number of spherical protrusions", and "variation in number of spherical protrusions".
[0069]
[Comparative Example 1]
In this comparative example, an electrophotographic photosensitive member was produced in the same manner as in Example 1 except that Steps 1 and 2 in Example 1 were not performed, and the same evaluation was performed.
[0070]
Table 2 shows the results obtained in Example 1 and Comparative Example 1. In Table 2, relative evaluations are shown with the result of Comparative Example 1 taken as 100.
[0071]
In the comparative example, an electrophotographic photosensitive member having deteriorated sensitivity and the number of spherical protrusions was observed several times, and the photosensitive member manufactured with the same Lot as the photosensitive member had slightly deteriorated sensitivity and the number of spherical protrusions. On the other hand, according to the vacuum processing method of the present invention, an electrophotographic photoreceptor having excellent sensitivity and the number of spherical projections was produced for each Lot.
[0072]
As a result, according to the vacuum processing method of the present invention, it was found that reproducibility was improved and the yield was increased.
[0073]
[Table 1]
Figure 2004143551
(Flow rate per reaction vessel)
[0074]
[Table 2]
Figure 2004143551
[0075]
[Example 2]
In the vacuum processing apparatus shown in FIGS. 2 and 4, an a-Si film is formed on a mirror-finished Al cylinder (cylindrical substrate 120) having a length of 358 mm and an outer diameter of φ108 mm, which is installed in the reaction vessel unit 100. The film was formed under the conditions shown in Table 1 with the oscillation frequency of the high-frequency power supply 121 set to 105 MHz, to produce an electrophotographic photosensitive member.
[0076]
FIGS. 2A and 2B are schematic diagrams illustrating an example of an apparatus for performing the vacuum processing method of the present embodiment, and are schematic diagrams illustrating an example of an apparatus for forming an electrophotographic photosensitive member. FIG. 2A is a cross-sectional view, and FIG. 2B is a top view.
[0077]
The apparatus for manufacturing an electrophotographic photosensitive member according to the present embodiment includes movable reaction container portions 100A to 100C as shown in FIG. 2, and each of the reaction container portions 100A to 100C includes a substrate to be processed (not shown). ) Are arranged, a reaction vessel 101, gate valves 102A to 102C, a pedestal 103, and a caster as a movable means 104.
[0078]
Exhaust means 150 and 151 are provided for exhausting the inside of the reaction vessel 101. The exhaust means 150 includes a collective exhaust pipe 105 connected to the reaction vessel 101, main exhaust valves 106A to 106C, and a collective exhaust pipe 105. Connecting mechanisms 107A-C for connecting to the reaction vessels 100A-C, internal pressure measuring devices 108A-C, and exhaust conductance control means 109A-C for adjusting the pressure inside the reaction vessel 100 are connected. . The exhaust means 151 is connected to the collective exhaust pipe 140, the slow exhaust line 111, the slow exhaust valve 110, the main exhaust valve 141, and the valves 142A to 142C.
[0079]
The gas supply and flow rate control means 160 of the reaction vessel section 100 desirably includes a plurality of gas cylinders, regulators, valves, mass flow controllers, and the like required for vacuum processing. Any configuration can be used as long as it can be supplied. Further, it is more desirable to include a gas cylinder for purging and a purge line, so that the gas can be operated safely. The source gas required for the vacuum processing is supplied from the gas supply and flow control means 160 into the reaction vessel 101 via the flow rate variable valves 161A-C and the connection mechanisms 107A-C.
[0080]
In this example, the production of the electrophotographic photosensitive member was performed as follows. The reaction vessel section 100 of this embodiment is the same as that of the first embodiment, and is as shown in FIG.
[0081]
A cylindrical substrate 120 mounted on a substrate holder 130 is set in a reaction container 101 in a substrate charging area (not shown) formed of a clean room. Next, the upper cover 124 is attached, and the reaction container units 100A to 100C are moved to the connection mechanisms 107A to 107C in the film formation area in FIG. 2 by manual transfer by an operator, and the gate valves 102A to 102C are connected to the connection mechanisms 107A to 107C. Let it. Here, the connection method was that an O-ring was connected between the gate valves 102A to 102C and the connection mechanisms 107A to 107C. In the present embodiment, three reaction vessel units 100A to 100C were used as shown in FIG.
[0082]
After terminating the connection of the three reaction vessels 100A-C, the gate valves 102A-C and valves 142A-C of each reaction vessel 100A-C are opened, the slow exhaust valve 110 is opened, and the slow exhaust line 111 is used. Then, the pressure reduction in the plurality of reaction container units 100 is started at the same time. Next, Step 1 which is a feature of the present invention was performed. As a criterion in the step 1, 30 minutes after the slow exhaust valve 110 was opened, there was no abnormality if the value of each of the internal pressure measuring devices 108A to 108C was 11000 Pa or less, and there was abnormality if the pressure was higher than 11000 Pa. In this embodiment, since the values of the internal pressure measuring devices 108A to 108C reached 10000 Pa 30 minutes after the slow exhaust valve 110 was opened, slow exhaust was continuously performed. Next, when the values of the internal pressure measuring devices 108A to 108C reached 400 Pa, the slow exhaust valve 110 was closed, the main exhaust valve 141 was opened, and the degree of vacuum in the reaction vessel was further increased. When the values of the internal pressure measuring devices 108A to 108C reached 0.65 Pa, the step 2 which is a feature of the present invention was performed. When the values of the internal pressure measuring devices 108A to 108C reached 0.65 Pa, the valves 142A to 142C were closed and left for 5 minutes. When the value of each of the internal pressure measuring devices 108A to 108C after 5 minutes was 1.0 Pa or less, there was no abnormality, and when it was higher than 1.0 Pa, there was abnormality. In the present example, the values of the internal pressure measuring devices 108A to 108C after 5 minutes were 0.85 Pa, so the process was shifted to the next step. The valves 142A to 142C were opened, the substrate heating heater 125 was driven, and the cylindrical substrate 120 was heated to 280 ° C. and controlled.
[0083]
During this heating, the high-frequency electrode 127, the high-frequency shield 122, and the high-frequency matching device 128 were installed around the reaction vessel 101, and the high-frequency matching device 128 and the high-frequency power supply 127 were connected by a coaxial cable.
[0084]
When the temperature of the cylindrical substrate 120 reached a predetermined temperature, the valves 142A to 142C were closed, and all the gate valves 102A to 102C were opened. Next, the source gas is introduced into the reaction vessel 101 via the source gas introduction pipe 126. After confirming that the flow rate of the raw material gas has reached the set flow rate and that the pressure in the reaction vessel 101 has been stabilized, predetermined high-frequency power is supplied from the high-frequency power supply 121 of 105 MHz to the high-frequency electrode 127 via the high-frequency matching device 128. . Table 1 shows the conditions for forming these deposited films. During the formation of the deposited film, the motor 131 was driven to rotate the cylindrical substrate 120.
[0085]
After the formation of the deposited film, the reaction vessels 100A to 100C were separated from the connection mechanisms 107A to 107C, and moved to a cylindrical substrate take-out stage (not shown) to take out the cylindrical substrate 120 on which the deposited film was formed. Thereafter, the components in the reaction vessel 101 were replaced, and a series of steps were completed when the state in which the deposited film could be formed again was completed.
[0086]
The formation of the electrophotographic photosensitive member as described above was continuously performed 20 times.
[0087]
At this time, the third time, in the above step 1, the slow exhaust valve 110 was opened, and after 30 minutes, the pressure of the internal pressure measuring device 108A was higher than 11000 Pa. Then, the valve 142A was closed, the reaction vessel 100A was returned to the atmospheric pressure, and the reaction vessel 100A was disconnected from the connection mechanism 107A. Then, a sealing flange was attached to the disconnected connection mechanism 107A. On the other hand, when the internal pressure measuring devices 108B and 108C reach 9000 Pa, the valves 142B and 142C of the remaining two reaction container units 100B and 100C are closed, and the vacuum holding state is maintained. Thereafter, the valve 142A was opened, and when the value of the internal pressure measuring device 108A became 9000 Pa, the valves 142B and 142C were opened, and then slow exhaust was performed. Thereafter, the above-described step 2 was performed, and an electrophotographic photosensitive member was manufactured as described above.
[0088]
In addition, in Step 10 of the above, since the value of the internal pressure measuring device 108C after leaving for 5 minutes in vacuum was higher than 1.0 Pa, the reaction container 100C was returned to the atmospheric pressure and disconnected from the connection mechanism 107C. Then, a mesh flange was attached to the disconnected connection mechanism 107C. Then, the valve 142C is opened, and when the value of the internal pressure measuring device 108C becomes the same as that of the internal pressure measuring devices 108A and 108B, all the valves 142A to 142C are opened, and the process proceeds to the next step. The body was made.
[0089]
The produced electrophotographic photosensitive member was evaluated in the same manner as in Example 1. As in Example 1, the electrophotographic photosensitive member was produced with good reproducibility. Further, as compared with the first embodiment, it was found that the operation rate of the apparatus can be improved because the detection of the abnormality and the specification of the abnormal part can be performed simultaneously.
[0090]
[Example 3]
In the vacuum processing apparatus shown in FIGS. 3 and 4, an a-Si film is formed on a mirror-finished Al cylinder (cylindrical substrate 120) having a length of 358 mm and an outer diameter of φ108 mm, which is installed in the reaction vessel unit 100. The film was formed under the conditions shown in Table 1 with the oscillation frequency of the high-frequency power supply 121 set to 105 MHz, to produce an electrophotographic photosensitive member.
[0091]
FIG. 3 is a schematic view of an example of an apparatus for performing the vacuum processing method of the present embodiment, and is a schematic view showing an example of an apparatus for forming an electrophotographic photosensitive member.
[0092]
The apparatus for manufacturing an electrophotographic photoreceptor according to the present embodiment includes movable reaction container portions 100A to 100C as shown in FIG. 3, and each of the reaction container portions 100A to 100C includes a substrate to be processed (not shown). ) Are arranged, a reaction vessel 101, gate valves 102A to 102C, a pedestal 103, and a caster as a movable means 104.
[0093]
Exhaust means 150, 250, and 251 are provided for exhausting the inside of the reaction vessel 101. The exhaust means 150 includes a collective exhaust pipe 105 connected to the reaction vessel 101, a main exhaust valve 106, and a collective exhaust pipe 105. Connection mechanisms 107A to 107C to be connected to the reaction vessels 100A to 100C, an internal pressure measuring device 108, a slow exhaust line 111, and a slow exhaust valve 110 are connected.
[0094]
The exhaust means 250 includes an exhaust conductance control for adjusting the internal pressure of the collective exhaust pipe 205, the main exhaust valves 206A to 206C, the connection mechanisms 207A to 207C, the internal pressure measuring devices 208A to 208C, and the reaction vessels 100A to 100C. Means 209A to 209C are connected. The exhaust means 251 is connected to a collective exhaust pipe 240, a main exhaust valve 241, and valves 242A to 242C.
[0095]
The gas supply and flow control means 260 of the reaction container section 100 includes a plurality of gas cylinders, regulators, valves, mass flow controllers, and the like necessary for vacuum processing. The source gas required for the vacuum processing is supplied from the gas supply and flow rate control means 260 into the reaction vessel 101 via the flow rate variable valves 261A to 261C and the connection mechanisms 207A to 207C.
[0096]
In this example, the production of the electrophotographic photosensitive member was performed as follows. The reaction vessel section 100 of this embodiment is the same as that of the first embodiment, and is as shown in FIG.
[0097]
The operator manually transports and moves the reaction vessels 100A to 100C to the connection mechanisms 107A to 107C in the substrate input area formed by the clean room, and connects the gate valves 102A to 102C to the connection mechanisms 107A to 107C. Then, the cylindrical substrate 120 mounted on the substrate holder 130 is set in each reaction vessel 101. After the upper lid 124 is attached, the gate valves 102A to 102C of each of the reaction vessel parts 100A to 100C are opened, the slow exhaust valve 110 is opened, and the pressure in the plurality of reaction vessel parts 100 is simultaneously started using the slow exhaust line 111. I do. Next, Step 1 which is a feature of the present invention was performed.
[0098]
As a criterion for the step 1, after 30 minutes from the opening of the slow exhaust valve 110, if the value of the internal pressure measuring device 108 was 20,000 Pa or less, there was no abnormality. In this embodiment, after the slow exhaust valve 110 was opened, the value of the internal pressure measuring device 108 reached 18000 Pa 30 minutes after the slow exhaust valve 110 was opened. Next, when the value of the internal pressure measuring device 108 reached 400 Pa, the slow exhaust valve 110 was closed, the main exhaust valve 106 was opened, and the degree of vacuum in the reaction vessel was further increased. When the value of the internal pressure measuring device 108 reached 0.65 Pa, the step 2 which is a feature of the present invention was performed. When the value of the internal pressure measuring device 108 reached 0.65 Pa, the main exhaust valve 106 was closed and left for 5 minutes. When the value of the internal pressure measuring device 108 after 5 minutes was 1.3 Pa or less, there was no problem, and when it was higher than 1.3 Pa, it was regarded as abnormal. In the present embodiment, the value of the internal pressure measuring device 108 after 5 minutes was 1.0 Pa, so that the process was shifted to the next step.
[0099]
The gate valves 102A to 102C and the main exhaust valve 106 were closed, the leak valve 161 was opened, and the collective exhaust pipe 105 was returned to the atmospheric pressure. Thereafter, the reaction container units 100A to 100C are separated from the connection mechanisms 107A to 107C, and the reaction container units 100A to 100C are moved to the connection mechanisms 207A to 207C in the film formation area by manual conveyance by an operator, and the gate valves 102A to 102C are operated. And the connection mechanisms 207A to 207C. The valves 242A-C and the main exhaust valve 241 were opened, and the space between the gate valves 102A-C and the gate valves 206A-C was evacuated until the value of the internal pressure measuring devices 208A-C reached 0.6 Pa. Thereafter, the valves 242A to 242C were closed, and a vacuum standing test was performed for 2 minutes, and it was confirmed that there was no problem in the connection between the connection mechanisms 207A to 207C and the gate valves 102A to 102C. Then, the gate valves 102A to 102C and the valves 242A to 242C were opened, the substrate heating heater 125 was driven, and the cylindrical substrate 120 was heated to 250 ° C. and controlled.
[0100]
During this heating, the high-frequency electrode 127, the high-frequency shield 122, and the high-frequency matching device 128 were installed around the reaction vessel 101, and the high-frequency matching device 128 and the high-frequency power supply 127 were connected by a coaxial cable.
[0101]
When the temperature of the cylindrical substrate 120 reached a predetermined temperature, the valves 242A to 242C were closed, and all the gate valves 206A to 206C were opened. Next, the source gas is introduced into the reaction vessel 101 via the source gas introduction pipe 126. After confirming that the flow rate of the raw material gas has reached the set flow rate and that the pressure in the reaction vessel 101 has been stabilized, predetermined high-frequency power is supplied from the high-frequency power supply 121 of 105 MHz to the high-frequency electrode 127 via the high-frequency matching device 128. . Table 1 shows the conditions for forming these deposited films. During the formation of the deposited film, the motor 131 was driven to rotate the cylindrical substrate 120.
[0102]
After the formation of the deposited film, the reaction vessels 100A to 100C were separated from the connection mechanisms 107A to 107C, and moved to a cylindrical substrate take-out stage (not shown) to take out the cylindrical substrate 120 on which the deposited film was formed. Thereafter, the components in the reaction vessel 101 were replaced, and a series of steps were completed when the state in which the deposited film could be formed again was completed.
[0103]
The formation of the electrophotographic photosensitive member as described above was continuously performed 30 times.
[0104]
Further, in this embodiment, when it was determined that the pressure reduction rate and the vacuum standing test were abnormal, the same measures as in Examples 1 and 2 were taken, and the process was advanced.
[0105]
The produced electrophotographic photoreceptor was evaluated in the same manner as in Examples 1 and 2, and as in Examples 1 and 2, an electrophotographic photoreceptor was produced with good reproducibility.
[0106]
【The invention's effect】
As described above, according to the present invention, when performing vacuum processing on a large number of workpieces simultaneously using a plurality of reaction vessels sharing an exhaust unit and a gas supply unit, when an abnormality occurs in a certain reaction vessel In addition, by disconnecting only the reaction vessel in which this abnormality has occurred from the exhaust means, it is possible to suppress the influence on the workpiece in the reaction vessel that is normally performing vacuum processing, and to minimize the reduction in product yield. It is possible to stop it as difficult as possible.
Further, by sharing the gas supply system, it is not necessary to provide a gas supply and flow rate control means, which is an extremely complicated and expensive auxiliary equipment, for each reaction vessel, so that the equipment cost can be reduced.
[0107]
Further, according to the present invention, the reaction vessel in which an abnormality has occurred can be immediately disconnected from the exhaust means to quickly prepare for the next vacuum processing and the like, and the dead time of the production apparatus can be minimized. is there. From the above points, it is possible to supply high-quality vacuum processing at lower cost.
[Brief description of the drawings]
FIG. 1 is an example of an apparatus for performing a vacuum processing method of the present invention, and is a schematic view showing an example of an apparatus for forming an electrophotographic photosensitive member, wherein (a) is a cross-sectional view and (b) is a top view. FIG.
FIGS. 2A and 2B are schematic views showing an example of an electrophotographic photosensitive member forming apparatus according to a second embodiment of the present invention, wherein FIG. 2A is a cross-sectional view and FIG.
FIGS. 3A and 3B are schematic diagrams illustrating an example of an electrophotographic photosensitive member forming apparatus according to a third embodiment of the present invention, wherein FIG. 3A is a cross-sectional view and FIG.
FIG. 4 is a schematic diagram of an apparatus for manufacturing an electrophotographic photosensitive member using a plasma CVD method that can suitably use high-frequency power in a VHF band.
[Explanation of symbols]
100, 100A-C Reaction vessel part
101 reaction vessel
102, 102A-C Gate valve
103 stand
104 Movable means
105, 205, 140, 240 Collective exhaust piping
106, 106A-C, 206A-C Main exhaust valve
107, 107A-C, 207A-C Connection mechanism
108, 208A-C Internal pressure measuring device
109, 109A-C, 209A-C Exhaust conductance control means
110 Slow exhaust valve
111 Slow exhaust line
120 base
121 High frequency power supply
122 High frequency shield
123 Reaction vessel support base
124 top lid
125 Heater for substrate heating
126 Source gas inlet pipe
127 High frequency electrode
128 high frequency matching box
129 Insulator
130 Substrate holder
131 motor
150, 151, 250, 251 exhaust means
160, 260 Gas supply and flow control means
161, 161A-C Variable flow rate valve
141, 241, 142A-C, 242A-C, 161, 261 Valve and vacuum processing device

Claims (5)

減圧可能な複数の反応容器部内に被処理物を設置し、それぞれの反応容器部を、同一の排気手段に繋がった配管に接続して排気し、前記被処理物を同時に処理する真空処理方法において、
前記複数の反応容器部を減圧状態にする際に、前記排気手段により、前記複数の反応容器部を同時に排気し、排気開始後減圧速度(Δ圧力/Δ時間)が、所定の範囲内であるかを判別する工程1と、
前記工程1の後に、さらに前記複数の反応容器部を減圧状態にし前記各反応容器部内の圧力が所定の値に達したら前記複数の反応容器部を同時にリークチェックする工程2とを少なくとも経た後に、所定の真空処理を実施することを特徴とする真空処理方法。
In a vacuum processing method in which an object to be processed is installed in a plurality of reaction vessel sections that can be decompressed, and each of the reaction vessel sections is connected to a pipe connected to the same exhaust unit and evacuated, and the object to be processed is simultaneously processed. ,
When the plurality of reaction vessel sections are brought into a reduced pressure state, the plurality of reaction vessel sections are simultaneously evacuated by the exhaust means, and a decompression rate (Δpressure / Δtime) after the start of evacuation is within a predetermined range. Step 1 of determining whether
After the step 1, after further passing through the plurality of reaction vessel sections at a reduced pressure state and the step 2 of simultaneously leak-checking the plurality of reaction vessel sections when the pressure in each of the reaction vessel sections reaches a predetermined value, A vacuum processing method, wherein a predetermined vacuum processing is performed.
前記工程1において、減圧速度が所定の範囲外にあるときは、前記複数の反応容器部の減圧処理を停止し、前記複数の反応容器部に対し、個別に異常個所を検知する工程を実施し、異常が発生した反応容器部のみを前記排気手段から断絶した後、残りの反応容器部について継続して次の工程に移行する、請求項1に記載の真空処理方法。In the step 1, when the pressure reduction rate is out of a predetermined range, a step of stopping the pressure reduction processing of the plurality of reaction vessel sections and individually detecting an abnormal portion for the plurality of reaction vessel sections is performed. 2. The vacuum processing method according to claim 1, wherein, after disconnecting only the reaction vessel part in which the abnormality has occurred from the exhaust means, the remaining reaction vessel parts are continuously shifted to the next step. 前記工程2において、異常が検知された場合には、前記複数の反応容器部の減圧処理を停止し、前記複数の反応容器部に対し、個別に異常個所を検知する工程を実施し、異常が発生した反応容器部のみを前記排気手段から断絶した後、残りの反応容器部について継続して次の工程に移行する、請求項1または2に記載の真空処理方法。In the step 2, when an abnormality is detected, the step of depressurizing the plurality of reaction container sections is stopped, and a step of individually detecting an abnormal portion is performed for the plurality of reaction container sections. 3. The vacuum processing method according to claim 1, wherein, after disconnecting only the generated reaction vessel section from the exhaust unit, the remaining reaction vessel section is continuously shifted to the next step. 4. 前記工程1において、減圧速度の検出を前記複数の反応容器部に対して、個別に且つ同時に行い、減圧速度が所定の範囲外の反応容器部を前記排気手段から断絶した後、残りの反応容器部について継続して次の工程に移行する、請求項1に記載の真空処理方法。In the step 1, the detection of the decompression rate is performed individually and simultaneously on the plurality of reaction vessel parts, and after the reaction vessel parts whose decompression rate is out of a predetermined range are disconnected from the exhaust unit, the remaining reaction vessels are removed. The vacuum processing method according to claim 1, wherein the part is continuously shifted to the next step. 前記工程2において、異常の検出を前記複数の反応容器部に対して、個別に且つ同時に行い、異常が発生した反応容器部を前記排気手段から断絶した後、残りの反応容器部について継続して次の工程に移行する、請求項1または4に記載の真空処理方法。In the step 2, the detection of the abnormality is performed individually and simultaneously on the plurality of reaction container portions, and after the reaction container portion in which the abnormality has occurred is disconnected from the exhaust means, the remaining reaction container portions are continuously performed. The vacuum processing method according to claim 1, wherein the method proceeds to a next step.
JP2002311191A 2002-10-25 2002-10-25 Vacuum treatment method Pending JP2004143551A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002311191A JP2004143551A (en) 2002-10-25 2002-10-25 Vacuum treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002311191A JP2004143551A (en) 2002-10-25 2002-10-25 Vacuum treatment method

Publications (1)

Publication Number Publication Date
JP2004143551A true JP2004143551A (en) 2004-05-20

Family

ID=32456488

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002311191A Pending JP2004143551A (en) 2002-10-25 2002-10-25 Vacuum treatment method

Country Status (1)

Country Link
JP (1) JP2004143551A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6063374A (en) * 1983-09-14 1985-04-11 Canon Inc Apparatus for producing deposited film by vapor phase method
JPH10168576A (en) * 1996-12-12 1998-06-23 Canon Inc Device for forming deposited film and method for forming deposited film
JPH11335843A (en) * 1998-05-27 1999-12-07 Ebara Corp Airtightness testing device and film forming device
JP2000273616A (en) * 1999-03-24 2000-10-03 Shinko Seiki Co Ltd Film forming device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6063374A (en) * 1983-09-14 1985-04-11 Canon Inc Apparatus for producing deposited film by vapor phase method
JPH10168576A (en) * 1996-12-12 1998-06-23 Canon Inc Device for forming deposited film and method for forming deposited film
JPH11335843A (en) * 1998-05-27 1999-12-07 Ebara Corp Airtightness testing device and film forming device
JP2000273616A (en) * 1999-03-24 2000-10-03 Shinko Seiki Co Ltd Film forming device

Similar Documents

Publication Publication Date Title
JP4005229B2 (en) Chemical vapor deposition apparatus for semiconductor device manufacturing and cleaning method thereof
JPH05275519A (en) Multi-chamber type substrate treating device
KR101990333B1 (en) Plasma processing apparatus
JPH09143742A (en) Cvd apparatus and method for cleaning chamber
US6238488B1 (en) Method of cleaning film forming apparatus, cleaning system for carrying out the same and film forming system
JP3748473B2 (en) Deposited film forming equipment
JP3619119B2 (en) Vacuum processing method
JP2004143551A (en) Vacuum treatment method
JP2000306838A (en) Treatment method and apparatus for semiconductor substrate
TWI720520B (en) Semiconductor device manufacturing method, substrate processing device and program
US20090038540A1 (en) Method for Manufacturing Epitaxial Wafer and Epitaxial Wafer Manufactured by this Method
JP2022152644A (en) Semiconductor manufacturing device and method for manufacturing semiconductor device
JP2004119572A (en) Vacuum treatment apparatus
JP2004131760A (en) Vacuum treatment apparatus
JP2019147989A (en) Formation method of deposition film
JP2006070299A (en) Deposited film forming method
JP2001329369A (en) System and method for vacuum treatment
JP2925291B2 (en) Deposition film forming equipment
JPH08260152A (en) Plasma cvd method and device therefor
JP2004143545A (en) Treatment method
JP2002153746A (en) Atmospheric air leakage method
US20200194234A1 (en) Vacuum chamber opening system
JPH05275510A (en) Substrate treating device
JP2008216774A (en) Mounting method of electrophotographic photoreceptor base body and mounting device thereof
JP5936481B2 (en) Deposited film forming apparatus and method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051007

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20051007

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080507

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080701

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081022

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081217

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090415