JP2004143439A - Catalyst for producing polyester and method for producing the polyester by using the same - Google Patents

Catalyst for producing polyester and method for producing the polyester by using the same Download PDF

Info

Publication number
JP2004143439A
JP2004143439A JP2003333017A JP2003333017A JP2004143439A JP 2004143439 A JP2004143439 A JP 2004143439A JP 2003333017 A JP2003333017 A JP 2003333017A JP 2003333017 A JP2003333017 A JP 2003333017A JP 2004143439 A JP2004143439 A JP 2004143439A
Authority
JP
Japan
Prior art keywords
polyester
compound
catalyst
weight
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003333017A
Other languages
Japanese (ja)
Other versions
JP4285169B2 (en
Inventor
Yoshihiro Honma
本間 良宏
Jun Sakamoto
坂本 純
Masatoshi Aoyama
青山 雅俊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2003333017A priority Critical patent/JP4285169B2/en
Publication of JP2004143439A publication Critical patent/JP2004143439A/en
Application granted granted Critical
Publication of JP4285169B2 publication Critical patent/JP4285169B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Polyesters Or Polycarbonates (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a catalyst for producing a polyester having a good color tone (b-value), scarcely containing foreign matter, excellent in heat stability when molten, and suitably used in various purposes, such as a use in a fiber and another use as a film in the materials including a magnetic material, a packaging material, and an optical material, and to provide a method for producing the polyester by using the same. <P>SOLUTION: This catalyst for producing the polyester contains a reaction product of at least one kind of titanium compound with a coordination compound, wherein the titanium compound is selected from a compound expressed by the formula (1): Ti(OR)<SB>4</SB>[Rs are each a 2-10C organic residue (Rs may be identical to or different from each other)] and a compound expressed by the formula (2): Ti(OH)<SB>m</SB>(OR)<SB>4-m</SB>((m) is 1-4), and the coordination compound contains at least one kind of atom selected from the group consisting of nitrogen, sulfur, and oxygen atoms as a donor atom and is coordinated in a state of a bidentate or higher polydentate ligand. <P>COPYRIGHT: (C)2004,JPO

Description

 本発明は、良好な色調(b値)を有し、異物が少なく溶融熱安定性に優れ、繊維用途や、磁気材料、包装材料、光学材料などのフィルム用途など、各種用途に好適に使用できる優れたポリエステルを製造するための触媒、およびそれを用いるポリエステル製造方法に関する。 INDUSTRIAL APPLICABILITY The present invention has a good color tone (b value), has a small amount of foreign matter, and has excellent fusion heat stability, and can be suitably used for various uses such as a fiber use and a film use such as a magnetic material, a packaging material, and an optical material. The present invention relates to a catalyst for producing an excellent polyester, and a method for producing a polyester using the same.

 ポリエステル、特にポリエチレンテレフタレートは、優れた機械的特性、熱的特性、電気的特性を有し、産業用として広く使用され、需要量が増大している。しかしながら、用途および需要の拡大に伴い、それぞれの分野においてポリエステルに要求される特性および生産性向上の要求が、ますます厳しくなってきている。このため、ポリエステルは、多岐に渡って生産されているが、解決すべき課題も数多くある。 Polyesters, especially polyethylene terephthalate, have excellent mechanical, thermal and electrical properties, are widely used for industrial purposes, and their demand is increasing. However, with the expansion of applications and demands, the demands on the properties and productivity required for polyester in each field are becoming more and more severe. For this reason, polyesters are produced in a wide variety, but there are many problems to be solved.

 たとえば、ポリエチレンテレフタレートのポリエステルにおいてアンチモン化合物を重縮合触媒として使用した場合、ポリエステルを長時間にわたって連続的に製膜すると、口金周辺に異物が付着堆積し、フィルムとした場合に口金筋が発生したり、フィルムの表面に析出して表面欠点の原因となる問題がある。 For example, when an antimony compound is used as a polycondensation catalyst in a polyester of polyethylene terephthalate, when the polyester is continuously formed over a long period of time, foreign matter adheres and accumulates in the vicinity of the die, and when the film is formed, die streaks are generated. However, there is a problem that it is deposited on the surface of the film and causes surface defects.

 該アンチモン化合物以外の重縮合触媒としてチタンテトラブトキシドなどのようなチタン化合物を用いることも提案されているが、このようなチタン化合物を使用すると上記のような口金筋やフィルムの表面欠点などの問題は解決されるが、得られたポリエステル自身が黄色く着色し、また、溶融熱安定性も不安定となり、フィルムの破れなどが生じ、生産性の悪化を招くという問題がある。上記着色問題を解決するためにコバルト化合物をポリエステルに添加して黄味を抑えることが一般的に行われているが溶融熱安定性が不安定となり、これもまた生産性の悪化を生じる。また、チタン系触媒における色調、耐熱性の問題を改善する方法として、例えば、特許文献1にはチタンと珪素からなる複合酸化物を触媒として用いる方法や、特許文献2にはチタンハロゲン化合物を加水分解してなるチタン化合物触媒が提案されているが、たとえば、得られたポリエステルをフィルム用途に用いる場合には、触媒起因の異物によって糸切れが多発したり、ポリマーろ過の際の濾圧が上昇するなどの問題が十分に解消できない、また、色調調整剤自身の分散性が悪く異物を生じたり、飛散するなど生産性の悪化を招く、あるいは特にわずかな色調の違いが問題となるフィルムの光学用途などには色調の改善が不十分であるなどの問題があった。
国際公開第95/18839号パンフレット 特開2001−89557号
It has also been proposed to use a titanium compound such as titanium tetrabutoxide as a polycondensation catalyst other than the antimony compound. However, when such a titanium compound is used, problems such as the above-mentioned streaks and surface defects of the film are caused. However, there is a problem that the obtained polyester itself is colored yellow, the stability of the melt heat becomes unstable, the film is broken, and the productivity is deteriorated. In order to solve the above-mentioned coloring problem, it is common practice to add a cobalt compound to the polyester to suppress yellowing, but the melt heat stability becomes unstable, and this also causes a decrease in productivity. As a method for improving the color tone and heat resistance of a titanium-based catalyst, for example, Patent Literature 1 discloses a method using a composite oxide composed of titanium and silicon as a catalyst, and Patent Literature 2 discloses a method in which a titanium halide compound is hydrolyzed. A titanium compound catalyst that has been decomposed has been proposed.For example, when the obtained polyester is used for film applications, foreign matter due to the catalyst frequently causes thread breakage or increases the filtration pressure during polymer filtration. Of the film, which may not be sufficiently resolved, the dispersibility of the color tone adjuster itself may be poor, and foreign matter may be produced, or the productivity may be impaired by scattering, or a slight difference in color tone may cause a problem. There have been problems such as insufficient improvement in color tone for applications.
WO 95/18839 pamphlet JP-A-2001-89557

 本発明の目的は、上記した従来技術の問題を解決し、実質的にアンチモン化合物を含有せず、色調、耐熱性に優れ、生産性の高いポリエステルを製造するための触媒、およびそれを用いるポリエステルの製造方法を提供することにある。 An object of the present invention is to solve the above-mentioned problems of the prior art, and to substantially contain an antimony compound, to provide a color tone, an excellent heat resistance, and a catalyst for producing a highly productive polyester, and a polyester using the same. It is to provide a manufacturing method of.

 上記目的を達成するための本発明は、下記一般式(1)または(2)で表される化合物から選ばれる少なくとも1種の化合物と、ドナー原子として窒素原子、硫黄原子および酸素原子からなる群から選ばれる少なくとも1種の原子を含んでいる少なくとも2座以上で配位可能な配位化合物との反応生成物を含むポリエステル製造用触媒を特徴とする。 In order to achieve the above object, the present invention provides a compound comprising at least one compound selected from compounds represented by the following general formula (1) or (2), and a nitrogen atom, a sulfur atom and an oxygen atom as donor atoms. The catalyst for polyester production contains a reaction product with a coordination compound capable of coordinating at least bidentate containing at least one atom selected from the group consisting of:

 Ti(OR)4         (1)
 Ti(OH)m(OR)4-m    (2)
(R:炭素原子の数が2〜10の有機基(互いに同一でも異なっていてもよい)
 m:1〜4の整数)
 また、前記触媒の配位化合物が、無金属フタロシアニン、インダンスロン、アンスラキノンおよびメチンからなる群から選ばれる少なくとも1種の化合物である場合も好ましく、さらに前記一般式(1)または(2)で表される化合物がテトラアルコキシチタン化合物またはチタンキレート化合物である場合も好ましい。また、上記一般式(1)、(2)において、Rは、炭素原子の数が2〜10のアルキル基(互いに同一でも異なっていてもよい)である場合も好ましい。
Ti (OR) 4 (1)
Ti (OH) m (OR) 4-m (2)
(R: an organic group having 2 to 10 carbon atoms (which may be the same or different)
m: an integer from 1 to 4)
It is also preferable that the coordination compound of the catalyst is at least one compound selected from the group consisting of metal-free phthalocyanine, indanthrone, anthraquinone and methine, and furthermore, the above-mentioned general formula (1) or (2) It is also preferable that the compound represented by is a tetraalkoxytitanium compound or a titanium chelate compound. In the above general formulas (1) and (2), R is also preferably an alkyl group having 2 to 10 carbon atoms (which may be the same or different).

 さらに、上記触媒を用いてポリエステルを製造する方法も好ましい。 Further, a method for producing a polyester using the above catalyst is also preferable.

 以下説明するように、異物発生の少ない上述した本触媒を使用することにより、異物が少なく、口金筋やフィルムの表面欠点などの問題を解決し、磁気材料フィルム用途などには好適であり、さらに良好な色調(b値)を有しており、得られたポリエステル自身が黄色く着色するために困難であった包装材料、光学材料などの用途に好適に使用できる優れたポリエステルを製造するための触媒、およびそれを用いるポリエステル製造方法を提供することができる。 As will be described below, by using the above-described catalyst with less foreign matter generation, the foreign matter is less, and problems such as die streaks and film surface defects are solved, which is suitable for magnetic material film applications and the like. Catalyst for producing an excellent polyester which has a good color tone (b value) and which can be suitably used for applications such as packaging materials and optical materials in which the obtained polyester itself was difficult to color yellow. , And a method for producing polyester using the same.

 本発明のポリエステル製造用触媒は、下記一般式(1)または(2)で表される化合物から選ばれる少なくとも1種の化合物(α)と、ドナー原子として窒素原子、硫黄原子および酸素原子からなる群から選ばれる少なくとも1種の原子を含んでいる少なくとも2座以上で配位可能な配位化合物(β)との反応生成物を含んでいる。 The catalyst for polyester production of the present invention comprises at least one compound (α) selected from the compounds represented by the following general formulas (1) and (2), and a nitrogen atom, a sulfur atom and an oxygen atom as donor atoms. And a reaction product with a coordination compound (β) capable of coordinating at least bidentate containing at least one atom selected from the group.

 Ti(OR)4       (1)
 Ti(OH)m(OR)4-m  (2)
 (但し、式(1)、(2)中、Rは、2〜10個の炭素原子を有する有機基を表し、mは1〜4の整数を表し、R基は互いに同一であってもよく、或いは異なっていてもよい。)
 また、配位化合物βが無金属フタロシアニン、インダンスロン、アンスラキノンおよびメチンからなる群から選ばれる少なくとも1種の化合物であることも好ましく、さらに前記一般式(1)または(2)で表される化合物がテトラアルコキシチタン化合物またはチタンキレート化合物であることも好ましい。さらに、上記式(1)、(2)において、Rは、炭素原子の数が2〜10のアルキル基(互いに同一でも異なっていてもよい)である場合も好ましい。
Ti (OR) 4 (1)
Ti (OH) m (OR) 4-m (2)
(However, in the formulas (1) and (2), R represents an organic group having 2 to 10 carbon atoms, m represents an integer of 1 to 4, and the R groups may be the same as each other. Or may be different.)
It is also preferable that the coordination compound β is at least one compound selected from the group consisting of metal-free phthalocyanine, indanthrone, anthraquinone and methine, and is further represented by the general formula (1) or (2). It is also preferred that the compound is a tetraalkoxytitanium compound or a titanium chelate compound. Further, in the above formulas (1) and (2), it is also preferable that R is an alkyl group having 2 to 10 carbon atoms (which may be the same or different).

 化合物αとして用いられる化合物としては、例えばチタンアセチルアセトネート、チタンテトラアセチルアセトネート、チタンオクチレングリコレート、チタンラクテート、チタンエチルアセトアセテート、クエン酸チタン、チタンペルオキソクエン酸チタンアンモニウムなどのチタンキレートやテトライソプロピルチタネート、テトラブチルチタネート、テトラ(2−エチルヘキシル)チタネート、テトラメチルチタネートなどのアルキルチタネートなどを挙げることができるが、なかでも、チタンキレート、テトラブチルチタネートを用いることが好ましく、特に本発明において使用される配位化合物βとの反応性の良好なチタンアセチルアセトネート、クエン酸チタン、チタンペルオキソクエン酸チタンアンモニウムなどを用いることがより好ましい。 Examples of the compound used as the compound α include titanium chelates such as titanium acetylacetonate, titanium tetraacetylacetonate, titanium octylene glycolate, titanium lactate, titanium ethyl acetoacetate, titanium citrate, titanium ammonium peroxocitrate, and the like. Examples thereof include alkyl titanates such as tetraisopropyl titanate, tetrabutyl titanate, tetra (2-ethylhexyl) titanate, and tetramethyl titanate. Among them, it is preferable to use titanium chelates and tetrabutyl titanates. Use of titanium acetylacetonate, titanium citrate, titanium ammonium peroxocitrate, etc. having good reactivity with the used coordination compound β Is more preferred.

 配位化合物βとして用いられる化合物としては、Aのような構造式を有するインダンスロン、B、C、D、E、Fのような構造式を有するアンスラキノン、Gのような構造式を有するメチン、Hのような構造式を有する無金属フタロシアニンなどから選ばれる。 Examples of the compound used as the coordination compound β include indanthrone having a structural formula such as A, anthraquinone having a structural formula such as B, C, D, E, and F, and a structural formula such as G It is selected from methine, metal-free phthalocyanine having a structural formula such as H, and the like.

Figure 2004143439
Figure 2004143439

Figure 2004143439
Figure 2004143439

Figure 2004143439
Figure 2004143439

Figure 2004143439
Figure 2004143439

Figure 2004143439
Figure 2004143439

Figure 2004143439
Figure 2004143439

Figure 2004143439
Figure 2004143439

Figure 2004143439
 化合物αと配位化合物βの触媒調製は、たとえば、エチレングリコールに配位化合物βを溶解し、化合物αを加え、反応系を0〜200℃の温度に10分以上、好ましくは40〜150℃の温度に30分〜2時間、加熱することによって行うことができる。また、常温〜150℃の温度で混合してもよい。ここでエチレングリコールの代わりにプロピレングリコール、テトラメチレングリコール、酢酸などを用いても良く、ポリエステルの原料に親和性の高い化合物が特に好ましい。化合物αと配位化合物βとの反応生成物は、エバポレーターや遠心分離機やろ過法などを用いて分離した後、再結晶し精製し、その精製物を触媒として用いるとよい。また、混合して添加しても効果がある。ここで、この反応生成物は化合物αに配位化合物βを配位させており、そのまま配位化合物βをポリエステルに添加させた場合と明らかに異なる。このような反応生成物にすることにより配位化合物βをポリエステルに添加したときに問題となる分散性の悪さや反応系外に飛散して生産性を悪化させることを防ぐ。この反応生成物は予め所定時間混合することにより調製することが可能である。また、この反応生成物中の化合物αと配位化合物βのモル比については0.001≦(配位化合物β/化合物α)≦1が好ましい。モル比が0.001未満であると配位化合物βによる配位効果がうまく得られない場合があり、また、色調改善効果が乏しくなる。また、1を超えるとポリマーの青味が強くなりすぎて問題となりやすい。さらにチタン金属量としての添加量は重量基準で1〜30ppmが好ましい。1ppm未満であると十分な触媒活性が得られず、30ppmを超えると良好なポリマーの色調および耐熱性を維持できなくなる傾向にある。
Figure 2004143439
The catalyst preparation of the compound α and the coordination compound β is performed, for example, by dissolving the coordination compound β in ethylene glycol, adding the compound α, and bringing the reaction system to a temperature of 0 to 200 ° C. for 10 minutes or more, preferably 40 to 150 ° C. For 30 minutes to 2 hours. Moreover, you may mix at the temperature of normal temperature-150 degreeC. Here, propylene glycol, tetramethylene glycol, acetic acid or the like may be used instead of ethylene glycol, and a compound having a high affinity for the raw material of the polyester is particularly preferable. The reaction product of the compound α and the coordination compound β may be separated using an evaporator, a centrifuge, a filtration method, or the like, and then recrystallized and purified, and the purified product may be used as a catalyst. It is also effective to mix and add. Here, this reaction product coordinates the coordination compound β to the compound α, which is clearly different from the case where the coordination compound β is directly added to the polyester. By using such a reaction product, it is possible to prevent poor dispersibility, which is a problem when the coordinating compound β is added to the polyester, and prevent the productivity from being deteriorated due to scattering outside the reaction system. This reaction product can be prepared by mixing in advance for a predetermined time. The molar ratio of compound α to coordination compound β in the reaction product is preferably 0.001 ≦ (coordination compound β / compound α) ≦ 1. If the molar ratio is less than 0.001, the coordination effect of the coordination compound β may not be obtained well, and the color tone improving effect may be poor. On the other hand, if it exceeds 1, the bluish tint of the polymer becomes too strong, which tends to cause a problem. Further, the amount of titanium metal added is preferably 1 to 30 ppm on a weight basis. If it is less than 1 ppm, sufficient catalytic activity cannot be obtained, and if it exceeds 30 ppm, it tends to be impossible to maintain good color tone and heat resistance of the polymer.

 また、本触媒を用いて製造するポリエステルの色調改善剤としてリン化合物を併用することもできる。このようなリン化合物としてはリン酸、モノメチルリン酸、モノエチルリン酸、トリメチルリン酸などのリン酸や亜リン酸、ジメチルホスファイト、トリメチルホスファイト、ジエチルホスホノ酢酸エチルなどの亜リン酸、フェニルホスホン酸、ジメチルフェニルホスホネート、ジメチルベンジルホスホネート、ジメチルメチルホスホネート、ジプロピニルメチルホスホネートなどのホスホン酸やジフェニルホスフィン酸などのホスフィン酸などが挙げられる。このような化合物の添加量は重量基準で1〜50ppmが好ましい。さらに好ましくは5〜20ppmである。5ppm未満では配位子量が少なすぎてチタンによる色の変化を抑えることが難しく、20ppm以上では重合活性を抑制しすぎて生産性が悪化してしまう。 リ ン Also, a phosphorus compound can be used in combination as a color tone improver for polyester produced using the present catalyst. Examples of such phosphorus compounds include phosphoric acid such as phosphoric acid, monomethyl phosphoric acid, monoethyl phosphoric acid, and trimethyl phosphoric acid, phosphorous acid such as dimethyl phosphite, trimethyl phosphite, and ethyl diethylphosphonoacetate; Examples include acids, phosphonic acids such as dimethylphenylphosphonate, dimethylbenzylphosphonate, dimethylmethylphosphonate and dipropynylmethylphosphonate, and phosphinic acids such as diphenylphosphinic acid. The addition amount of such a compound is preferably 1 to 50 ppm on a weight basis. More preferably, it is 5 to 20 ppm. If the amount is less than 5 ppm, it is difficult to suppress a change in color due to titanium because the amount of the ligand is too small. If the amount is 20 ppm or more, the polymerization activity is excessively suppressed and productivity is deteriorated.

 本発明のポリエステル組成物はアルカリ土類金属化合物をポリエステルに対するアルカリ土類金属原子重量の合計量で0〜80ppm含有していることが好ましい。特に、1〜60ppmの範囲とすると、生産性が良好で耐熱性も維持できるため好ましい。 ポ リ エ ス テ ル The polyester composition of the present invention preferably contains an alkaline earth metal compound in an amount of 0 to 80 ppm in terms of the total weight of the alkaline earth metal atom weight with respect to the polyester. In particular, when the content is in the range of 1 to 60 ppm, it is preferable because productivity is good and heat resistance can be maintained.

 本発明のポリエステル組成物をフィルムとして使用する場合、ポリエステル組成物の溶融比抵抗値が1×106Ω・cm〜1×109Ω・cmであることが好ましい。特に好ましくは1×107Ω・cm〜5×108Ω・cmである。この範囲を満たすことにより静電印加キャスト性が良好となり、溶融押し出しキャスト時にフィルムとキャスティングドラムとの間の密着性がよく空気が入りにくくなり、製膜速度を上げることができる。 When the polyester composition of the present invention is used as a film, the polyester composition preferably has a melting specific resistance of 1 × 10 6 Ω · cm to 1 × 10 9 Ω · cm. Particularly preferably, it is 1 × 10 7 Ω · cm to 5 × 10 8 Ω · cm. By satisfying this range, the castability of the electrostatic application is improved, the adhesion between the film and the casting drum is improved during the melt-extrusion casting, the air is hard to enter, and the film forming speed can be increased.

 本発明において用いる原料の一つである芳香族ジカルボン酸またはそのエステル形成性誘導体のジカルボン酸成分としては、例えば、テレフタル酸、イソフタル酸、フタル酸、1,4−ナフタレンジカルボン酸、1,5−ナフタレンジカルボン酸、2,6−ナフタレンジカルボン酸、4,4’−ジフェニルジカルボン酸、4,4’−ジフェニルエーテルジカルボン酸、4,4’−ジフェニルスルホンジカルボン酸もしくはこれらのエステル形成性誘導体等を用いることができる。また、ジオール成分としては、エチレングリコール、1,2−プロパンジオール、ネオペンチルグリコール、1,3−ブタンジオール、1,4−ブタンジオール、1,5−ペンタンジオール、1,6−ヘキサンジオール、1,2−シクロヘキサンジメタノール、1,3−シクロヘキサンジメタノール、1,4−シクロヘキサンジメタノール、ジエチレングリコール、トリエチレングリコール、ポリアルキレングリコール、2,2−ビス(4’−β−ヒドロキシエトキシフェニル)プロパン等の脂肪族、脂環族、芳香族ジオール等を挙げることができる。これらの成分は1種のみ用いてもよく、また2種以上併用してもよい。 Examples of the dicarboxylic acid component of the aromatic dicarboxylic acid or an ester-forming derivative thereof as one of the raw materials used in the present invention include terephthalic acid, isophthalic acid, phthalic acid, 1,4-naphthalenedicarboxylic acid, 1,5- Use of naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, 4,4'-diphenyldicarboxylic acid, 4,4'-diphenyletherdicarboxylic acid, 4,4'-diphenylsulfonedicarboxylic acid, or an ester-forming derivative thereof, or the like Can be. The diol component includes ethylene glycol, 1,2-propanediol, neopentyl glycol, 1,3-butanediol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, , 2-cyclohexanedimethanol, 1,3-cyclohexanedimethanol, 1,4-cyclohexanedimethanol, diethylene glycol, triethylene glycol, polyalkylene glycol, 2,2-bis (4′-β-hydroxyethoxyphenyl) propane, etc. And aliphatic, alicyclic and aromatic diols. These components may be used alone or in combination of two or more.

 その他、共重合し得る脂環族ジカルボン酸成分としては、1,4−シクロヘキサンジカルボン酸等を挙げることができる。また、セバシン酸、ダイマー酸等の脂肪族ジカルボン酸、その他のジカルボン酸も共重合成分として用いることができる。 Other examples of the alicyclic dicarboxylic acid component that can be copolymerized include 1,4-cyclohexanedicarboxylic acid. In addition, aliphatic dicarboxylic acids such as sebacic acid and dimer acid, and other dicarboxylic acids can be used as the copolymerization component.

 また、エステル化およびエステル交換反応には、各種の触媒を用いることができる。例えば、酢酸カルシウム、酢酸マグネシウム、酢酸リチウムなどの酢酸塩やなどを用いることができる。 各種 Various catalysts can be used for the esterification and transesterification reactions. For example, acetates such as calcium acetate, magnesium acetate, and lithium acetate can be used.

 本発明では、重縮合工程においてポリエステルの熱分解などの副反応を防止するために安定剤を添加しても良い。安定剤としては、ジエチル[[3,5−ビス(1,1−ジメチルエチル)−4−ヒドロキシフェニル]メチル]フォスフォネート、テトラキス{メチレン−3−(ドデシルチオ)プロピオネート}メタン、テトラキス{メチレン−(3,5−t−ブチル−4−ヒドロキシハイドロシンナメート)}メタン、トリデシルフォスフェート、トリス(2,4−ジブチルフェニル)フォスファイト、テトラキス{メチレン−3−(3’,5’−ジ−t−ブチル−4’−ヒドロキシフェニル)プロピオネート}メタン、ビス(2,6−ジ−t−ブチル−4−メチルフェニル)ペンタエリスリトール−ジ−ホスファイトなどが挙げられ、これらを単独あるいは2種以上を組み合わせて使用することができる。安定剤の添加量は得られるポリエステル樹脂組成物に対して好ましくは0.03〜2重量%であり、より好ましくは0.05〜1.9重量%である。安定剤の添加量が0.03重量%未満では酸化安定性向上の効果が少なく、逆に2重量%を超えると重縮合反応を阻害する虞がある。 In the present invention, a stabilizer may be added in the polycondensation step in order to prevent side reactions such as thermal decomposition of the polyester. Examples of the stabilizer include diethyl [[3,5-bis (1,1-dimethylethyl) -4-hydroxyphenyl] methyl] phosphonate, tetrakismethylene-3- (dodecylthio) propionate} methane, and tetrakismethylene- (3,5-t-butyl-4-hydroxyhydrocinnamate)} methane, tridecyl phosphate, tris (2,4-dibutylphenyl) phosphite, tetrakis {methylene-3- (3 ′, 5′-di -T-butyl-4'-hydroxyphenyl) propionate @ methane, bis (2,6-di-t-butyl-4-methylphenyl) pentaerythritol-di-phosphite, and the like. These can be used in combination. The amount of the stabilizer added is preferably 0.03 to 2% by weight, more preferably 0.05 to 1.9% by weight, based on the obtained polyester resin composition. If the amount of the stabilizer is less than 0.03% by weight, the effect of improving the oxidation stability is small, and if it exceeds 2% by weight, the polycondensation reaction may be inhibited.

 しかしながら、安定剤を予め前記触媒と混合して添加した場合、0.003〜1重量%でも効果がある。特にジエチル[[3,5−ビス(1,1−ジメチルエチル)−4−ヒドロキシフェニル]メチル]フォスフォネ−ト、ビス(2,6−ジ−t−ブチル−4−メチルフェニル)ペンタエリスリトール−ジ−ホスファイトが好ましく、0.003〜0.1重量%添加することで耐熱性、異物、色調の点で優れたポリエステル組成物となる。 場合 However, when the stabilizer is mixed with the catalyst in advance and added, it is effective even at 0.003 to 1% by weight. Particularly, diethyl [[3,5-bis (1,1-dimethylethyl) -4-hydroxyphenyl] methyl] phosphonate and bis (2,6-di-t-butyl-4-methylphenyl) pentaerythritol-di -Phosphite is preferable, and adding 0.003 to 0.1% by weight results in a polyester composition excellent in heat resistance, foreign matter, and color tone.

 本発明では、エステル化工程において塩基性化合物を少量添加すると、副反応生成物の少ないポリエステル樹脂組成物が得られる。このような塩基性化合物として、トリエチルアミン、トリブチルアミン、ベンジルメチルアミンなどの三級アミン、水酸化テトラエチルアンモニウム、水酸化テトラブチルアンモニウム、水酸化トリメチルベンジルアンモニウムなどの四級アミン、また、水酸化カリウム、水酸化ナトリウム、酢酸カリウム、酢酸ナトリウムなどが挙げられる。 In the present invention, when a small amount of a basic compound is added in the esterification step, a polyester resin composition having a small amount of by-products can be obtained. As such a basic compound, triethylamine, tributylamine, tertiary amines such as benzylmethylamine, tetraethylammonium hydroxide, tetrabutylammonium hydroxide, quaternary amines such as trimethylbenzylammonium hydroxide, potassium hydroxide, Examples include sodium hydroxide, potassium acetate, and sodium acetate.

 本発明の製造方法をポリエチレンテレフタレートを例にして説明する。繊維やフィルムなどに使用するうポリエチレンテレフタレートは通常、次のいずれかのプロセスで製造される。すなわち、(1)テレフタル酸とエチレングリコールを原料とし、直接エステル化反応によって低分子量のポリエチレンテレフタレートをまたはオリゴマーを得、さらにその後の重縮合反応によって高分子量ポリマーを得るプロセス、(2)ジメチルテレフタレートとエチレングリコールを原料とし、エステル交換反応によって低分子量体を得、さらにその後の重縮合反応によって高分子量ポリマーを得るプロセスである。ここでエステル化は無触媒でも反応は進行するが、エステル交換反応においては、通常、マンガン、カルシウム、マグネシウム、亜鉛、リチウム、チタンなどの化合物を触媒に用いて進行させ、またエステル交換反応が実質的に完結した後に、該反応に用いた触媒を不活性化する目的でリン化合物を添加する場合もある。 製造 The production method of the present invention will be described using polyethylene terephthalate as an example. Polyethylene terephthalate used for fibers, films and the like is usually produced by any of the following processes. That is, (1) a process in which terephthalic acid and ethylene glycol are used as raw materials to obtain a low-molecular-weight polyethylene terephthalate or an oligomer by a direct esterification reaction and further obtain a high-molecular-weight polymer by a subsequent polycondensation reaction; In this process, ethylene glycol is used as a raw material to obtain a low-molecular-weight product by a transesterification reaction, and then to obtain a high-molecular-weight polymer by a polycondensation reaction. Here, the esterification proceeds without a catalyst, but the transesterification reaction usually proceeds using a compound such as manganese, calcium, magnesium, zinc, lithium, or titanium as a catalyst. After completion of the reaction, a phosphorus compound may be added for the purpose of inactivating the catalyst used in the reaction.

 本発明の製造方法は上記(1)または(2)の一連の反応の任意の段階、好ましくは(1)または(2)の一連の反応の前半で得られた低重合体に、重縮合触媒として本発明の触媒、またはリン化合物、さらに必要に応じて、粒子として酸化チタン、塩基性化合物、酸化防止剤を添加して重縮合を行い、高分子量のポリエチレンテレフタレートを得るというものである。 The production method of the present invention comprises adding a polycondensation catalyst to the low polymer obtained in any stage of the series of reactions (1) or (2), preferably in the first half of the series of reactions (1) or (2). And a polycondensation by adding titanium oxide, a basic compound, and an antioxidant as particles as needed to obtain a high molecular weight polyethylene terephthalate.

 上記の反応は回分式、半回分式あるいは連続式などの形式で実施されるが、本発明の製造方法はそのいずれの形式にも適応し得る。 The above reaction is carried out in a batch system, a semi-batch system or a continuous system, but the production method of the present invention can be applied to any of these systems.

 本発明のポリエステル組成物は、たとえば、溶融押出製膜方法により製膜し、フィルムとすることができる。すなわち、ポリエステル組成物を乾燥後、T型口金を備えた1軸もしくは2軸の溶融押出機に供給、ポリエステル溶融温度にてキャスティングドラム上に押し出し、静電印加キャストして未延伸フィルムを得る。また、配向ポリエステルフィルムを得るためには、さらにこれを逐次2軸延伸、あるいは同時2軸延伸、熱処理することにより、配向ポリエステルフィルムを得ることができる。 ポ リ エ ス テ ル The polyester composition of the present invention can be formed into a film by, for example, a melt extrusion film forming method. That is, after drying the polyester composition, it is supplied to a single-screw or twin-screw extruder equipped with a T-type die, extruded at a polyester melting temperature onto a casting drum, and subjected to electrostatic application casting to obtain an unstretched film. In addition, in order to obtain an oriented polyester film, it can be successively biaxially stretched or simultaneously biaxially stretched and heat-treated to obtain an oriented polyester film.

 この際、本発明のポリエステル単独で製膜してもよいし、また他のポリエステル組成物に本発明のポリエステル組成物を1重量%以上混合して、金属濃度を変化させたフィルムを得る方法も、他品種の生産性や耐熱性の向上の観点から好ましい。 At this time, a film may be formed using the polyester of the present invention alone, or a method in which the polyester composition of the present invention is mixed at 1% by weight or more with another polyester composition to obtain a film having a changed metal concentration. It is preferable from the viewpoint of improving the productivity and heat resistance of other varieties.

 また、本発明のポリエステル組成物からなる層と、他のポリエステル組成物からなる層との積層構成とすることにより、それぞれの層の特性を併せ持った積層フィルムとすることもできる。本発明の積層フィルムは、例えば、本発明のポリエステル組成物と他のポリエステル組成物を乾燥後、常法にしたがって、矩形積層部を備えた2層またはそれ以上の合流ブロックにて、各層が目的の厚み比および構成となって積層するように、口金より溶融押出して未延伸シートとし、続いて2軸延伸、熱処理することにより、製造することができる。 こ と Further, by forming a layered structure of the layer composed of the polyester composition of the present invention and a layer composed of another polyester composition, a laminated film having the characteristics of each layer can also be obtained. The laminated film of the present invention, for example, after drying the polyester composition of the present invention and another polyester composition, according to a conventional method, two or more confluent blocks having a rectangular laminated portion, each layer is intended for It can be manufactured by melt-extruding from a die to form an unstretched sheet, followed by biaxial stretching and heat treatment so that the sheets are laminated with the thickness ratio and configuration described above.

 2軸延伸フィルムとする場合、その延伸倍率は、とくに制限のあるものではないが、通常は縦、横それぞれ2〜5倍の範囲内が適当である。あるいは縦、横延伸後、縦、横方向のいずれかに再延伸してもよいし、もちろん同時二軸延伸を行っても構わない。また、易接着層、粒子層等を形成する場合は、延伸前、または縦延伸と横延伸の間でコーティング成分をインラインで塗布してもよいし、延伸後オフラインコーティングしてもよい。 In the case of a biaxially stretched film, the stretching ratio is not particularly limited, but usually, a range of 2 to 5 times each in the vertical and horizontal directions is appropriate. Alternatively, after stretching in the longitudinal and transverse directions, the film may be stretched again in any of the longitudinal and transverse directions, or, of course, may be simultaneously biaxially stretched. When an easy-adhesion layer, a particle layer, or the like is formed, a coating component may be applied in-line before stretching or between longitudinal stretching and transverse stretching, or may be offline-coated after stretching.

 本発明は、良好な色調(b値)を有し、異物が少なく溶融熱安定性に優れ、繊維用途や、磁気材料、包装材料、光学材料などのフィルム用途など、各種用途に好適に使用できる優れたポリエステルを製造するための触媒、およびそれを用いるポリエステル製造方法である。 INDUSTRIAL APPLICABILITY The present invention has a good color tone (b value), has a small amount of foreign matter, and has excellent fusion heat stability, and can be suitably used for various uses such as a fiber use and a film use such as a magnetic material, a packaging material, and an optical material. A catalyst for producing an excellent polyester and a method for producing a polyester using the same.

 以下、本発明を実施例によりさらに詳細に説明する。なお、実施例中の各特性は、次の方法により測定した。 Hereinafter, the present invention will be described in more detail with reference to examples. In addition, each characteristic in an Example was measured by the following method.

 (1)ポリマーの固有粘度([η](dL/g))
 o−クロロフェノールを溶媒として、25℃で測定した。
(1) Intrinsic viscosity of polymer ([η] (dL / g))
It measured at 25 degreeC using o-chlorophenol as a solvent.

 (2)ポリマーの色調
 スガ試験機(株)社製の色差計(SMカラーコンピュータ形式SM−3)を用いて、ハンター値(L、a、b値)として測定した。
(2) Polymer Color Tone Hunter values (L, a, b values) were measured using a color difference meter (SM Color Computer Model SM-3) manufactured by Suga Test Instruments Co., Ltd.

 (3)ポリエステル中のチタン、コバルト、リンなど各元素の含有量
 理学電機社製蛍光X線装置(型番3270)を用い、ポリマ8gを溶融し板状に成型し、蛍光X線の強度を測定した。この値を既知含有量のサンプルで予め作成した検量線を用い、金属含有量に換算した。
(3) Content of each element such as titanium, cobalt, and phosphorus in polyester Using a fluorescent X-ray apparatus (Model No. 3270) manufactured by Rigaku Corporation, 8 g of the polymer is melted and molded into a plate shape, and the intensity of the fluorescent X-ray is measured. did. This value was converted to a metal content using a calibration curve prepared in advance with a sample having a known content.

 (4)ポリエステル中のリチウムなどアルカリ金属の含有量(原子吸光法)
 日立製作所社製偏光ゼーマン原子吸光光度計型番180−80(フレーム:アセチレン−空気)アルカリ金属は原子吸光法により測定した。ポリマ8gを光源として中空陰極ランプを用いて、フレーム方式の原子化で原子化し、測光部により検出して予め作成した検量線を用いて、金属含有量に換算した。
(4) Content of alkali metals such as lithium in polyester (atomic absorption method)
Polarized Zeeman atomic absorption spectrometer manufactured by Hitachi, Ltd. Model No. 180-80 (frame: acetylene-air) Alkali metal was measured by an atomic absorption method. Using a hollow cathode lamp as a light source, 8 g of the polymer was atomized by flame-type atomization, detected by a photometry unit, and converted into a metal content using a calibration curve prepared in advance.

 (5)ポリエステルのカルボキシル末端基量(COOH)
 Mauriceらの方法「Anal.Chim.Acta,22,p363(1960)」によった。
(5) Carboxyl end group content of polyester (COOH)
Maurice et al., Anal. Chim. Acta, 22, p363 (1960).

 (6)ポリマーの熱安定性(%BB)
 ポリマー8gを試験管に入れ、窒素雰囲気中0.1MPaの加圧下、300℃にて、10分間(t0)、6時間(t)の熱処理を行い、そのときのηを測定し、以下の式により算出した。
(6) Thermal stability of polymer (% BB)
8 g of the polymer was placed in a test tube and subjected to a heat treatment at 300 ° C. for 10 minutes (t 0 ) and 6 hours (t) under a pressure of 0.1 MPa in a nitrogen atmosphere. It was calculated by the equation.

 %BBt=(1/[η]t (1/0.75)−1/[η]t0 (1/0.75)
 ただし、[η]tは6時間熱処理時の値、[η]t0は10分間熱処理時の値である。
% BB t = (1 / [η] t (1 / 0.75) −1 / [η] t0 (1 / 0.75) )
Here, [η] t is the value at the time of heat treatment for 6 hours, and [η] t0 is the value at the time of heat treatment for 10 minutes.

 (7)異物数
 ポリエステル中の異物はポリエステルチップを塩酸で洗浄し、その後、精製水で洗浄した後、10mgを採集し、それを260℃に加熱したプレパラート上で溶解するとおよそ500視野観察できるが、そのうち10視野観察し、最大直径が1μm以上の異物数をカウントし、その平均を取った。
(7) Number of foreign substances Foreign substances in the polyester can be observed in about 500 fields by washing the polyester chip with hydrochloric acid and then with purified water, collecting 10 mg, and dissolving it on a preparation heated to 260 ° C. The number of foreign substances having a maximum diameter of 1 μm or more was counted, and the average was taken.

 (8)フィルムの粗大突起数H1、H2
 測定面(100cm2)同士を2枚重ね合わせて静電気力(印加電圧5.4kV)で密着させた後、2枚のフィルム間で粗大突起の光の干渉によって生じるニュートン環から粗大突起の高さを判定し、1重環以上の粗大突起数をH1、2重環以上の粗大突起数をH2とした。なお、光源はハロゲンランプに564nmのバンドパスフィルタをかけて用いた。
(8) Number of coarse protrusions H1 and H2 on film
After two measurement surfaces (100 cm 2 ) are superimposed on each other and brought into close contact with each other by electrostatic force (applied voltage: 5.4 kV), the height of the coarse projections from the Newton ring generated by interference of light of the coarse projections between the two films Was determined, and the number of coarse projections having a single ring or more was designated as H1, and the number of coarse projections having a double ring or more was designated as H2. The light source used was a halogen lamp with a 564 nm band-pass filter.

 ただし、上記測定面積で測定困難である場合には、測定面積を適宜変更し、100cm2に換算しても良い。(例えば、測定面積1cm2として、50視野について測定し、100cm2に換算する。)
 また、上記手法での測定が困難である場合は、3次元粗さ計(小坂研究所製SE−3AK:下記条件で、フィルム幅方向に走査して50回測定を行う。触針先端半径2μm、触針荷重0.07g、測定面積幅0.5mm×長さ15mm(ピッチ0.1mm)、カットオフ値0.08mm)を用いて、高さ0.28μm以上の突起個数と高さ0.56μm以上の突起個数を測定し、100cm2に換算することによって、H1、H2を求めても良い。さらに、必要に応じて、原子間力顕微鏡(AFM)や4検出式SEMなど公知のフィルム表面の突起個数測定手法を併用しても良い。
However, when it is difficult to measure with the above measurement area, the measurement area may be appropriately changed and converted to 100 cm 2 . (For example, assuming that the measurement area is 1 cm 2 , measurement is performed for 50 visual fields and converted to 100 cm 2. )
When it is difficult to perform measurement by the above method, a three-dimensional roughness meter (SE-3AK manufactured by Kosaka Laboratories: scanning is performed in the film width direction under the following conditions, and measurement is performed 50 times. Using a stylus load of 0.07 g, a measurement area width of 0.5 mm × length of 15 mm (pitch of 0.1 mm), and a cutoff value of 0.08 mm), the number of protrusions having a height of 0.28 μm or more and a height of 0.08 μm were used. H1 and H2 may be obtained by measuring the number of protrusions of 56 μm or more and converting the number to 100 cm 2 . Further, if necessary, a known method for measuring the number of protrusions on the film surface such as an atomic force microscope (AFM) or a four-detection SEM may be used in combination.

 (9)溶融比抵抗
 銅板2枚を電極として、間にテフロン(登録商標)のスペーサーを挟んで銅板22cm2、銅板間隔9mmの電極を作成する。この電極を290℃で溶融したポリマー中に沈め、電極間に5,000Vの電圧を加えたときの電流量から抵抗値を算出した。
(9) Melt specific resistance Two copper plates are used as electrodes, and a Teflon (registered trademark) spacer is interposed therebetween to form electrodes having a copper plate of 22 cm 2 and a copper plate interval of 9 mm. The electrode was immersed in a polymer melted at 290 ° C., and the resistance was calculated from the amount of current when a voltage of 5,000 V was applied between the electrodes.

 (10)静電印加キャスト性
 溶融押し出ししたフィルムの上部に設置した電極と回転冷却体間に6kvの直流電圧を印加し、キャスト速度を少しずつ上昇させ、印加ムラが発生したときのキャスト速度(m/min)を判定し、次の基準に従って判定した。B以上を合格とした。
(10) Casting performance by electrostatic application A DC voltage of 6 kv was applied between the electrode placed on the melt-extruded film and the rotary cooling body, and the casting speed was gradually increased. m / min) and according to the following criteria. A score of B or higher was regarded as a pass.

  60     m/min  S
  50〜60  m/min  A
  40〜50  m/min  B
  30〜40  m/min  C
  30未満   m/min  D
 (実施例1)
 (触媒の調製)
 エチレングリコール94.95重量部に、配位化合物βとして構造式Dで表される化合物0.05重量部を150℃で30分加熱して溶解した。このエチレングリコール溶液に化合物αとしてチタンアセチルアセトナート(イソプロピルアルコール溶液:チタン濃度10重量%)を5重量部加え、150℃で1時間溶解させ、触媒スラリーを得た(チタン含量は5,000ppmであった)。
60 m / min S
50-60 m / min A
40-50 m / min B
30-40 m / min C
Less than 30 m / min D
(Example 1)
(Preparation of catalyst)
In 94.95 parts by weight of ethylene glycol, 0.05 part by weight of a compound represented by the structural formula D as a coordination compound β was dissolved by heating at 150 ° C. for 30 minutes. To this ethylene glycol solution, 5 parts by weight of titanium acetylacetonate (isopropyl alcohol solution: titanium concentration of 10% by weight) was added as compound α and dissolved at 150 ° C. for 1 hour to obtain a catalyst slurry (titanium content of 5,000 ppm). there were).

 (ポリエステルの製造)
 テレフタル酸86重量部、およびエチレングリコール39重量部とのエステル化反応物を貯留分として、これにテレフタル酸86重量部、およびエチレングリコール39重量部を加え、250℃でエステル化反応を続け、反応率が97%以上に達したエステル化反応物からテレフタル酸86重量部に相当する反応物を重縮合缶に移し、次いで、上記触媒を0.1重量部、ジメチルメチルホスホネートを0.004重量部添加し、重縮合反応層に移行した。次いで、加熱昇温しながら反応系を徐々に減圧して133Paの減圧下、285℃で常法により撹拌速度一定下で3時間重合し、固有粘度[η]=0.630のポリエステル組成物「I」を得た。結果を表1に示す。
(Manufacture of polyester)
The esterification reaction product with 86 parts by weight of terephthalic acid and 39 parts by weight of ethylene glycol was used as a reserve, and 86 parts by weight of terephthalic acid and 39 parts by weight of ethylene glycol were added thereto. The esterification reaction was continued at 250 ° C. A reaction product corresponding to 86 parts by weight of terephthalic acid was transferred from the esterification reaction product having a conversion of 97% or more to a polycondensation reactor, and then 0.1 parts by weight of the above catalyst and 0.004 parts by weight of dimethylmethylphosphonate were added. Was added and the mixture was transferred to a polycondensation reaction layer. Then, the reaction system was gradually depressurized while heating and raising the temperature, and polymerized under a reduced pressure of 133 Pa at 285 ° C. for 3 hours under a constant stirring speed by a conventional method to obtain a polyester composition having an intrinsic viscosity [η] = 0.630. I "was obtained. Table 1 shows the results.

 (実施例2〜4)
 実施例2〜4は、実施例1と同様にして上記触媒を用いてポリエステルを製造した。但し、触媒調製、添加量は表1記載のように変更している。結果を表1に示す。固有粘度[η]=0.630〜0.640のポリエステル組成物「II、III、IV」を得た。結果を表1に示す。
(Examples 2 to 4)
In Examples 2 to 4, polyester was produced using the above catalyst in the same manner as in Example 1. However, the catalyst preparation and addition amount were changed as shown in Table 1. Table 1 shows the results. Polyester compositions “II, III, IV” having an intrinsic viscosity [η] of 0.630 to 0.640 were obtained. Table 1 shows the results.

 (実施例5)
 (触媒の調製)
 エチレングリコール94.975重量部に、配位化合物βとして構造式Dで表される化合物0.025重量部を150℃で30分加熱して溶解した。このエチレングリコール溶液に化合物αとしてテトラブチルチタネート(イソプロピルアルコール溶液:チタン濃度10重量%)を5重量部加え、150℃で1時間溶解させ、触媒スラリーを得た(チタン含量は5,000ppmであった)。
(Example 5)
(Preparation of catalyst)
In 25.975 parts by weight of ethylene glycol, 0.025 parts by weight of a compound represented by the structural formula D as a coordination compound β was dissolved by heating at 150 ° C. for 30 minutes. To this ethylene glycol solution, 5 parts by weight of tetrabutyl titanate (isopropyl alcohol solution: titanium concentration: 10% by weight) was added as compound α and dissolved at 150 ° C. for 1 hour to obtain a catalyst slurry (titanium content was 5,000 ppm). T).

 (ポリエステルの製造)
 テレフタル酸86重量部、およびエチレングリコール39重量部とのエステル化反応物を貯留分として、これにテレフタル酸86重量部、およびエチレングリコール39重量部を加え、250℃でエステル化反応を続け、反応率が97%以上に達したエステル化反応物からテレフタル酸86重量部に相当する反応物を重縮合缶に移し、次いで、上記触媒を0.1重量部、ジプロピニルメチルホスホネートを0.005重量部添加し、重縮合反応層に移行した。次いで、加熱昇温しながら反応系を徐々に減圧して133Paの減圧下、285℃で常法により撹拌速度一定下で3時間重合し、固有粘度[η]=0.630のポリエステル組成物「V」を得た。結果を表1に示す。
(Manufacture of polyester)
The esterification reaction product with 86 parts by weight of terephthalic acid and 39 parts by weight of ethylene glycol was used as a reserve, and 86 parts by weight of terephthalic acid and 39 parts by weight of ethylene glycol were added thereto. The esterification reaction was continued at 250 ° C. The reaction product corresponding to 86 parts by weight of terephthalic acid was transferred to the polycondensation reactor from the esterification reaction product whose ratio reached 97% or more, and then 0.1 parts by weight of the above catalyst and 0.005 parts by weight of dipropynylmethylphosphonate. And the mixture was transferred to a polycondensation reaction layer. Then, the reaction system was gradually depressurized while heating and raising the temperature, and polymerized under a reduced pressure of 133 Pa at 285 ° C. for 3 hours under a constant stirring speed by a conventional method to obtain a polyester composition having an intrinsic viscosity [η] = 0.630. V "was obtained. Table 1 shows the results.

 (実施例6)
 (触媒の調製)
 エチレングリコール94.7重量部に、配位化合物βとして構造式Dで表される化合物0.3重量部を25℃で混合した。このエチレングリコール溶液に化合物αとしてクエン酸チタンキレート(イソプロピルアルコール溶液:チタン濃度10重量%)を5重量部加え、常温で混合し、触媒スラリーを得た(チタン含量は5,000ppmであった)。
(Example 6)
(Preparation of catalyst)
0.3 parts by weight of a compound represented by the structural formula D as a coordination compound β was mixed at 25 ° C. with 94.7 parts by weight of ethylene glycol. To this ethylene glycol solution, 5 parts by weight of titanium citrate chelate (isopropyl alcohol solution: titanium concentration 10% by weight) was added as compound α and mixed at room temperature to obtain a catalyst slurry (titanium content was 5,000 ppm). .

 (ポリエステルの製造)
 テレフタル酸86重量部、およびエチレングリコール39重量部とのエステル化反応物を貯留分として、これにテレフタル酸86重量部、およびエチレングリコール39重量部を加え、250℃でエステル化反応を続け、反応率が97%以上に達したエステル化反応物からテレフタル酸86重量部に相当する反応物を重縮合缶に移し、次いで、上記触媒を0.16重量部、ジエチルホスホノ酢酸エチルを0.004重量部、酢酸マグネシウム4水塩を0.03重量部添加し、重縮合反応層に移行した。次いで、加熱昇温しながら反応系を徐々に減圧して133Paの減圧下、285℃で常法により撹拌速度一定下で3時間重合し、固有粘度[η]=0.63のポリエステル組成物「VI」を得た。結果を表1に示す。
(Manufacture of polyester)
The esterification reaction product with 86 parts by weight of terephthalic acid and 39 parts by weight of ethylene glycol was used as a reserve, and 86 parts by weight of terephthalic acid and 39 parts by weight of ethylene glycol were added thereto. The esterification reaction was continued at 250 ° C. A reaction product corresponding to 86 parts by weight of terephthalic acid was transferred from the esterification reaction product having a conversion of 97% or more to a polycondensation reactor, and then 0.16 parts by weight of the above catalyst and 0.004 parts of ethyl diethylphosphonoacetate were added. 0.03 parts by weight of magnesium acetate tetrahydrate was added to the polycondensation reaction layer. Then, the reaction system was gradually depressurized while increasing the temperature by heating, and polymerized under a reduced pressure of 133 Pa at 285 ° C. for 3 hours under a constant stirring speed by a conventional method to obtain a polyester composition having an intrinsic viscosity [η] = 0.63. VI "was obtained. Table 1 shows the results.

 (実施例7)
 実施例6と同様にしてポリエステルを製造した。但し、チタン化合物としてチタンペルオキソクエン酸アンモニウム水溶液:チタン濃度10重量%を用いている。結果を表1に示す。固有粘度[η]=0.64のポリエステル組成物「VII」を得た。結果を表1に示す。
(Example 7)
A polyester was produced in the same manner as in Example 6. However, an aqueous solution of titanium ammonium peroxocitrate: a titanium concentration of 10% by weight was used as the titanium compound. Table 1 shows the results. A polyester composition “VII” having an intrinsic viscosity [η] of 0.64 was obtained. Table 1 shows the results.

 (実施例8)
 実施例5で得られたポリエステル組成物「V」を充分に乾燥して押出機に供給し、キャスティングドラム上に溶融押出して、キャストドラム上に静電印加をかけながら融着させて急冷固化し、単層未延伸フィルムとした後、これを90℃で縦に3.5倍、105℃で横に3.5倍ずつ延伸し、厚み10μmのポリエステルフィルムを得た。製膜性は良好であった。こうして得られたフィルムは、粗大突起が少なく、色調が良好であった。結果を表2に示す。
(Example 8)
The polyester composition "V" obtained in Example 5 was sufficiently dried, supplied to an extruder, melt-extruded on a casting drum, and fused and quenched and solidified on a cast drum while applying static electricity. After forming a single-layer unstretched film, the film was stretched 3.5 times vertically at 90 ° C. and 3.5 times horizontally at 105 ° C. to obtain a polyester film having a thickness of 10 μm. The film forming property was good. The film thus obtained had few coarse projections and had a good color tone. Table 2 shows the results.

 (実施例9)
 実施例3で得られたポリエステル組成物「III」を充分に乾燥し、主層(A層)押出機に供給した。また、実施例4で得られたポリエステル組成物「IV」を乾燥した後、副層(B層)押出機に供給して、二層ダイからキャスティングドラム上に溶融押出して、キャストドラム上に静電印加をかけながら融着させて急冷固化し、A/B型(厚み比6/1)の二層未延伸フィルムとした。次いで、この未延伸フィルムを90℃で縦に3.5倍、105℃で横に3.5倍ずつ延伸し、厚み8μmの積層ポリエステルフィルムを得た(B層の積層厚み1.33μm)。製膜性は良好であった。こうして得られたフィルムは、粗大突起が少なく、色調が良好であった。結果を表2に示す。
(実施例10)
 実施例3で得られたポリエステル組成物「III」を充分に乾燥し、主層(A層)押出機に供給した。また、実施例4で得られたポリエステル組成物「V」を乾燥した後、副層(B層)押出機に供給して、二層ダイからキャスティングドラム上に溶融押出して、キャストドラム上に静電印加をかけながら融着させて急冷固化し、A/B型(厚み比6/1)の二層未延伸フィルムとした。次いで、この未延伸フィルムを90℃で縦に3.5倍、105℃で横に3.5倍ずつ延伸し、厚み8μmの積層ポリエステルフィルムを得た(B層の積層厚み1.33μm)。製膜性は良好であった。こうして得られたフィルムは、粗大突起が少なく、色調が良好であった。結果を表2に示す。
(Example 9)
The polyester composition "III" obtained in Example 3 was sufficiently dried and supplied to a main layer (layer A) extruder. Further, after drying the polyester composition “IV” obtained in Example 4, the polyester composition “IV” was supplied to a sub-layer (layer B) extruder, melt-extruded from a two-layer die onto a casting drum, and placed on a cast drum. It was fused and quenched and solidified while applying an electric voltage to obtain an A / B type (thickness ratio: 6/1) two-layer unstretched film. Next, this unstretched film was stretched 3.5 times vertically at 90 ° C. and 3.5 times horizontally at 105 ° C. to obtain a laminated polyester film having a thickness of 8 μm (laminated thickness of layer B: 1.33 μm). The film forming property was good. The film thus obtained had few coarse projections and had a good color tone. Table 2 shows the results.
(Example 10)
The polyester composition "III" obtained in Example 3 was sufficiently dried and supplied to a main layer (layer A) extruder. Further, after drying the polyester composition "V" obtained in Example 4, it was supplied to a sub-layer (layer B) extruder, and was melt-extruded from a two-layer die onto a casting drum, and was statically placed on a cast drum. It was fused and quenched and solidified while applying an electric voltage to obtain an A / B type (thickness ratio: 6/1) two-layer unstretched film. Next, this unstretched film was stretched 3.5 times vertically at 90 ° C. and 3.5 times horizontally at 105 ° C. to obtain a laminated polyester film having a thickness of 8 μm (laminated thickness of layer B: 1.33 μm). The film forming property was good. The film thus obtained had few coarse projections and had a good color tone. Table 2 shows the results.

 (実施例11)
 実施例5で得られたポリエステル組成物「VI」を充分に乾燥して押出機に供給し、キャスティングドラム上に溶融押出して、キャストドラム上に静電印加をかけながら融着させて急冷固化し、単層未延伸フィルムとした後、これを90℃で縦に3.5倍、105℃で横に3.5倍ずつ延伸し、厚み10μmのポリエステルフィルムを得た。製膜性は非常に良好であった。こうして得られたフィルムは、粗大突起が少なく、色調が良好であった。結果を表2に示す。
(Example 11)
The polyester composition "VI" obtained in Example 5 was sufficiently dried, supplied to an extruder, melt-extruded on a casting drum, and fused and quenched on a cast drum while applying static electricity. After forming a single-layer unstretched film, the film was stretched 3.5 times vertically at 90 ° C. and 3.5 times horizontally at 105 ° C. to obtain a polyester film having a thickness of 10 μm. The film forming properties were very good. The film thus obtained had few coarse projections and had a good color tone. Table 2 shows the results.

 (比較例1)
 テレフタル酸86重量部、およびエチレングリコール39重量部とのエステル化反応物を貯留分として、これにテレフタル酸86重量部、およびエチレングリコール39重量部を加え、250℃でエステル化反応を続け、反応率が97%以上に達したエステル化反応物からテレフタル酸86重量部に相当する反応物を重縮合缶に移し、次いで、テトラブチルチタネートを0.0035重量部、ジプロピニルメチルホスホネートを0.005重量部添加し、重縮合反応層に移行した。次いで、加熱昇温しながら反応系を徐々に減圧して133Paの減圧下、285℃で常法により撹拌速度一定下で3時間重合し、固有粘度[η]=0.630のポリエステル組成物「VIII」を得た。結果を表1に示す。
(Comparative Example 1)
The esterification reaction product with 86 parts by weight of terephthalic acid and 39 parts by weight of ethylene glycol was used as a reserve, and 86 parts by weight of terephthalic acid and 39 parts by weight of ethylene glycol were added thereto. The esterification reaction was continued at 250 ° C. From the esterification reaction product whose conversion reached 97% or more, a reaction product corresponding to 86 parts by weight of terephthalic acid was transferred to a polycondensation reactor, and then 0.0035 parts by weight of tetrabutyl titanate and 0.005 parts by weight of dipropynylmethylphosphonate were added. By weight, the mixture was transferred to the polycondensation reaction layer. Then, the reaction system was gradually depressurized while heating and raising the temperature, and polymerized under a reduced pressure of 133 Pa at 285 ° C. for 3 hours under a constant stirring speed by a conventional method to obtain a polyester composition having an intrinsic viscosity [η] = 0.630. VIII ". Table 1 shows the results.

 (比較例2)
 ジプロピニルメチルホスホネートを添加しない以外は比較例1と同様の方法により、固有粘度[η]=0.63のポリエチレンテレフタレート「IX」のチップを得た。結果を表1に示す。
(Comparative Example 2)
A polyethylene terephthalate “IX” chip having an intrinsic viscosity [η] of 0.63 was obtained in the same manner as in Comparative Example 1 except that dipropynylmethylphosphonate was not added. Table 1 shows the results.

 (比較例3)
 上記触媒の代わりに三酸化二アンチモンを0.012重量部添加する以外は実施例1と同様の方法により、固有粘度[η]=0.63のポリエチレンテレフタレートのチップ「X」を得た。結果を表1に示す。
(Comparative Example 3)
A polyethylene terephthalate chip “X” having an intrinsic viscosity [η] of 0.63 was obtained in the same manner as in Example 1 except that 0.012 part by weight of diantimony trioxide was added instead of the above catalyst. Table 1 shows the results.

 (比較例4)
 比較例2で得られたポリエステル組成物「IX」を充分に乾燥して押出機に供給し、キャスティングドラム上に溶融押出して、キャストドラム上に静電印加をかけながら融着させて急冷固化し、単層未延伸フィルムとした後、これを90℃で縦に3.5倍、105℃で横に3.5倍ずつ延伸し、厚み10μmのポリエステルフィルムを得た。製膜性は良好であった。こうして得られたフィルムは、粗大突起は少ないものの、色調が悪く、さらに熱安定性が悪く生産性が悪化した。結果を表2に示す。
(Comparative Example 4)
The polyester composition "IX" obtained in Comparative Example 2 was sufficiently dried, supplied to an extruder, melt-extruded on a casting drum, and fused and quenched and solidified on a cast drum while applying static electricity. After forming a single-layer unstretched film, the film was stretched 3.5 times vertically at 90 ° C. and 3.5 times horizontally at 105 ° C. to obtain a polyester film having a thickness of 10 μm. The film forming property was good. Although the film thus obtained had few coarse projections, the color tone was poor, the thermal stability was poor, and the productivity was poor. Table 2 shows the results.

 (比較例5)
 比較例3で得られたポリエステル組成物「X」を充分に乾燥し、主層(A層)押出機に供給した。また、比較例2で得られたポリエステル組成物「IX」を乾燥した後、副層(B層)押出機に供給して、二層ダイからキャスティングドラム上に溶融押出して、キャストドラム上に静電印加をかけながら融着させて急冷固化し、A/B型(厚み比6/1)の二層未延伸フィルムとした。次いで、この未延伸フィルムを90℃で縦に3.5倍、105℃で横に3.5倍ずつ延伸し、厚み8μmの積層ポリエステルフィルムを得た(B層の積層厚み1.33μm)。製膜性は良好であった。こうして得られたフィルムは、粗大突起は多く、色調が悪く、さらに熱安定性が悪く生産性が悪化した。結果を表2に示す。
(Comparative Example 5)
The polyester composition "X" obtained in Comparative Example 3 was sufficiently dried and supplied to a main layer (layer A) extruder. Further, after drying the polyester composition “IX” obtained in Comparative Example 2, it was supplied to a sub-layer (B-layer) extruder, melt-extruded from a two-layer die onto a casting drum, and was statically placed on a cast drum. It was fused and quenched and solidified while applying an electric voltage to obtain an A / B type (thickness ratio: 6/1) two-layer unstretched film. Next, this unstretched film was stretched 3.5 times vertically at 90 ° C. and 3.5 times horizontally at 105 ° C. to obtain a laminated polyester film having a thickness of 8 μm (laminated thickness of layer B: 1.33 μm). The film forming property was good. The film thus obtained had many coarse projections, poor color tone, poor thermal stability, and reduced productivity. Table 2 shows the results.

Figure 2004143439
Figure 2004143439

Figure 2004143439
Figure 2004143439

Claims (6)

下記一般式(1)または(2)で表される化合物から選ばれる少なくとも1種の化合物と、ドナー原子として窒素原子、硫黄原子および酸素原子からなる群から選ばれる少なくとも1種の原子を含んでいる少なくとも2座以上で配位可能な配位化合物との反応生成物を含むポリエステル製造用触媒。
 Ti(OR)4         (1)
 Ti(OH)m(OR)4-m    (2)
(R:炭素原子の数が2〜10の有機基(互いに同一でも異なっていてもよい)
 m:1〜4の整数)
At least one compound selected from the compounds represented by the following general formulas (1) and (2) and at least one atom selected from the group consisting of nitrogen, sulfur and oxygen as donor atoms A catalyst for producing polyester comprising a reaction product with a coordination compound capable of coordinating at least bidentate.
Ti (OR) 4 (1)
Ti (OH) m (OR) 4-m (2)
(R: an organic group having 2 to 10 carbon atoms (which may be the same or different)
m: an integer from 1 to 4)
配位化合物が無金属フタロシアニン、インダンスロン、アンスラキノンおよびメチンからなる群から選ばれる少なくとも1種の化合物である、請求項1に記載のポリエステル製造用触媒。 The polyester production catalyst according to claim 1, wherein the coordination compound is at least one compound selected from the group consisting of metal-free phthalocyanine, indanthrone, anthraquinone and methine. 一般式(1)または(2)で表される化合物がテトラアルコキシチタン化合物またはチタンキレート化合物である、請求項1または2に記載のポリエステル製造用触媒。 The polyester production catalyst according to claim 1 or 2, wherein the compound represented by the general formula (1) or (2) is a tetraalkoxytitanium compound or a titanium chelate compound. 下記一般式(1)または(2)で表される化合物から選ばれる少なくとも1種の化合物と、ドナー原子として窒素原子、硫黄原子および酸素原子からなる群から選ばれる少なくとも1種の原子を含んでいる少なくとも2座以上で配位可能な配位化合物との反応生成物を含むポリエステル製造用触媒。
 Ti(OR)4         (1)
 Ti(OH)m(OR)4-m    (2)
(R:炭素原子の数が2〜10のアルキル基(互いに同一でも異なっていてもよい)
 m:1〜4の整数)
At least one compound selected from the compounds represented by the following general formulas (1) and (2) and at least one atom selected from the group consisting of a nitrogen atom, a sulfur atom and an oxygen atom as a donor atom A catalyst for producing polyester comprising a reaction product with a coordination compound capable of coordinating at least bidentate.
Ti (OR) 4 (1)
Ti (OH) m (OR) 4-m (2)
(R: an alkyl group having 2 to 10 carbon atoms (which may be the same or different)
m: an integer from 1 to 4)
請求項1〜4のいずれかに記載のポリエステル製造用触媒を用いるポリエステルの製造方法。 A method for producing polyester using the catalyst for producing polyester according to any one of claims 1 to 4. 請求項5に記載の製造方法により得られるポリエステルを含んでいるポリエステルフィルム。 A polyester film containing the polyester obtained by the production method according to claim 5.
JP2003333017A 2002-10-03 2003-09-25 Catalyst for producing polyester and method for producing polyester using the same Expired - Lifetime JP4285169B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003333017A JP4285169B2 (en) 2002-10-03 2003-09-25 Catalyst for producing polyester and method for producing polyester using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002291092 2002-10-03
JP2003333017A JP4285169B2 (en) 2002-10-03 2003-09-25 Catalyst for producing polyester and method for producing polyester using the same

Publications (2)

Publication Number Publication Date
JP2004143439A true JP2004143439A (en) 2004-05-20
JP4285169B2 JP4285169B2 (en) 2009-06-24

Family

ID=32473414

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003333017A Expired - Lifetime JP4285169B2 (en) 2002-10-03 2003-09-25 Catalyst for producing polyester and method for producing polyester using the same

Country Status (1)

Country Link
JP (1) JP4285169B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006016423A (en) * 2004-06-30 2006-01-19 Toray Ind Inc Polyester resin composition and film
JP2006188667A (en) * 2004-12-10 2006-07-20 Toray Ind Inc Polyester composition
EA014016B1 (en) * 2004-09-24 2010-08-30 Лурги Циммер Гмбх Method for manufacture polyester composition, obtained composition comprising a film, solution for manufacture composition and a method therefor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006016423A (en) * 2004-06-30 2006-01-19 Toray Ind Inc Polyester resin composition and film
JP4710260B2 (en) * 2004-06-30 2011-06-29 東レ株式会社 Polyester resin composition and film
EA014016B1 (en) * 2004-09-24 2010-08-30 Лурги Циммер Гмбх Method for manufacture polyester composition, obtained composition comprising a film, solution for manufacture composition and a method therefor
JP2006188667A (en) * 2004-12-10 2006-07-20 Toray Ind Inc Polyester composition

Also Published As

Publication number Publication date
JP4285169B2 (en) 2009-06-24

Similar Documents

Publication Publication Date Title
JP5369387B2 (en) Process for producing polymethylene terephthalate composition and film
KR100843397B1 (en) Polyester Resin Compositions, Catalyst for Polyester Production, Polyester Film, and Magnetic Recording Medium
JPH06170911A (en) Manufacture of polyester film
JP2003238673A (en) Method for producing polyester
JP2007161840A (en) Polyethylene terephthalate resin composition, and resin molded product and laminated product thereof
JPH04270727A (en) Polyester composition
JP4285169B2 (en) Catalyst for producing polyester and method for producing polyester using the same
JP4665389B2 (en) Polyester composition and polyester film
JP3793441B2 (en) 2,6-polyethylene naphthalate resin composition and method for producing the same
TW202222927A (en) Method for producing polyester resin composition
JP2005314660A (en) Polyester composition and polyester film
JP2001261806A (en) Polyester excellent in moldability
JP2004043540A (en) Polyethylene terephthalate resin composition and method for producing the same
WO1991004856A1 (en) A composite polyester film
JP5069434B2 (en) Polyester composition and method for producing the same
JP4817648B2 (en) Polyester composition and molded article comprising the same
WO2002044275A1 (en) Polyester composition, films made thereof and process for producing the composition
JP4266484B2 (en) Polyalkylene naphthalate for film, process for producing the same and film comprising the same
JP2003096280A (en) Polyester composition and film
JP5002878B2 (en) Copolyester
JP3997460B2 (en) Method for producing copolyester
WO2022054670A1 (en) Polyester resin composition, method for manufacturing same, and polyester film using same
JP2002332336A (en) Polyalkylene naphthalate composition and film comprising the same
JP2004269601A (en) Polyester composition and film
JP2004091585A (en) Polyethylene terephthalate resin composition and its production method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080327

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080930

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090303

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090316

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120403

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4285169

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120403

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120403

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130403

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130403

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140403

Year of fee payment: 5