JP2004143003A - Method for manufacturing copper red glass - Google Patents

Method for manufacturing copper red glass Download PDF

Info

Publication number
JP2004143003A
JP2004143003A JP2002311137A JP2002311137A JP2004143003A JP 2004143003 A JP2004143003 A JP 2004143003A JP 2002311137 A JP2002311137 A JP 2002311137A JP 2002311137 A JP2002311137 A JP 2002311137A JP 2004143003 A JP2004143003 A JP 2004143003A
Authority
JP
Japan
Prior art keywords
glass
copper
weight
base glass
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002311137A
Other languages
Japanese (ja)
Inventor
Hiroki Sugie
椙江 弘樹
Yoshihisa Kobayashi
小林 芳久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ishizuka Glass Co Ltd
Original Assignee
Ishizuka Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ishizuka Glass Co Ltd filed Critical Ishizuka Glass Co Ltd
Priority to JP2002311137A priority Critical patent/JP2004143003A/en
Publication of JP2004143003A publication Critical patent/JP2004143003A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • C03C4/02Compositions for glass with special properties for coloured glass

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a copper red glass by which stable copper red is developed in mass production scale by paying attention to the oxidation/reduction atmosphere of a base glass and the content of iron and adding various kinds of metals and the oxides to stabilize the color development of copper and copper oxide being coloring components. <P>SOLUTION: In the method for manufacturing the colored glass by adding a colorant to the base glass fused in a fusing furnace in a colorant forehearth, the base glass is constituted so that the existing ratio formed between Fe<SP>2+</SP>and Fe<SP>3+</SP>in the glass satisfies Fe<SP>2+</SP>/(Fe<SP>2+</SP>Fe<SP>3+</SP>)≥0.4 and the content of iron in the glass is 0.01-0.5 wt.% expressed in terms of ferric oxide. The colorant is a flit or a pellet prepared by blending one or both of copper and copper oxide as the coloring components with one or more kinds of metals such as tin, selenium, cobalt, chromium, nickel or manganese or the metallic oxides. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
この発明は、銅赤色ガラスの製造方法に関し、特にカララントフォアハースにおいて、着色材を添加することにより銅赤色を発色させる色ガラスの製造方法に関する。
【0002】
【従来の技術】
従来の製法によると、銅赤色のガラスを製造する際、原料ガラス(ベースガラス)を溶融したバッチに着色成分として銅、酸化第一銅を加え、還元成分としてカーボンを添加することにより発色させていた。
【0003】
一般に銅赤色の発色をさせるためには、原料ガラス(ベースガラス)内を還元雰囲気にする必要がある。しかしながら、前記ガラス原料として多用されるフリントガラスは本来酸化雰囲気であるため、カーボン等の還元剤によりフリントガラスを強制的に還元雰囲気にすると、図4に示すように硫黄の酸化数が(6+)から(4+)に変化し、ガラスに不溶なSOガスがリボイル泡として発生する。このため、気泡混じりの製品となり、銅赤色の発色も一様ではなく不良品率が高かった。そのため、カララントフォアハース等を用いた製造方法には不向きとされ、小規模のバッチ毎の生産が主体となり、量産はなされてこなかった。
【0004】
前述したようにベースガラスを還元雰囲気に調整する煩雑さや発色の再現性の低さを解消するため、所定の原料からなる基本ガラスを溶融し、成形後に塩化第一銅の蒸気に曝すことにより赤色を発色させる製法が報告されている(例えば、特許文献1参照)。この製法にあっては、所定の原料からなる基本ガラスを予め調整しなければならず、成形後に塩化第一銅の蒸気に曝す煩雑さから、コスト高になりやすい。
【0005】
その一方で、前記リボイル泡の発生を防ぐため、予め還元性を有する原料ガラス(ベースガラス)に前出の着色成分を添加し、発色させる方法が検討されてきた。還元性を有するベースガラスとしては、ビール瓶等に多用されリサイクル効率の良いアンバーガラスを用い、該アンバーガラスを溶融後、銅、酸化第一銅等の着色剤をフリット等としてカララントフォアハースにおいて添加する製法が報告されている(例えば、特許文献2参照)。しかしながら、前記製法にあっては、淡色から濃色のアンバーガラスが得られるものの銅赤色が得られたわけではなかった。
【0006】
【特許文献1】
特開平6−191898号公報 (第2−4頁)
【特許文献2】
特許第3276893号公報 (第1−2頁)
【0007】
【発明が解決しようとする課題】
そこで、本発明者は、原料となるベースガラスの酸化・還元雰囲気と鉄分の含有量に着目し、銅赤色を発色するのに好適なベースガラス中の鉄分の含有量を見出したことによって、着色材として銅を含むフリット等をカララントフォアハースにおいて添加し量産規模で銅赤色の発色を得る銅赤色ガラスの製造方法を得るに至った。
【0008】
この発明は前記の点に鑑みなされたものであり、原料となるベースガラスの酸化・還元雰囲気と鉄分の含有量に着目し、着色成分である銅、銅酸化物の発色を安定させるべく、各種金属及びその酸化物を添加することにより、量産規模で安定した銅赤色の発色を得る銅赤色ガラスの製造方法を提供するものである。
【0009】
【課題を解決するための手段】
すなわち、この発明は、溶融窯で溶融したベースガラスに対し、カララントフォアハースにおいて、着色材を添加する色ガラスの製造方法であって、前記ベースガラスは、当該ガラス中におけるFe2+及びFe3+の間に成立する存在比をFe2+/(Fe2++Fe3+)≧0.4とし、かつ当該ガラス中の総鉄分の含有量を酸化第二鉄に換算して0.01〜0.5重量%であるベースガラスとし、前記着色材は、着色成分として銅又は銅酸化物の一方もしくは両方と、発色安定成分として錫、セレン、コバルト、クロム、ニッケル、マンガンの金属又は該金属酸化物のいずれか1種以上とを配合したフリットもしくはペレットとすることを特徴とする銅赤色ガラスの製造方法に係る。
【0010】
【発明の実施の形態】
本発明の規定する銅赤色ガラスの製造方法は、原料であるベースガラスを溶融窯において溶融後、これに接続するカララントフォアハース内で発色のための金属、金属酸化物を含む着色成分及び着色成分とは異なる発色安定成分の両者をフリットもしくはペレットの形態として添加混合する。続いて、成形機により適宜の形状に成形した後、600℃前後の加熱が行われる徐冷工程を経ることにより製品化するものである。
【0011】
一般に、ベースガラス中に含まれるFe2+(II価の鉄)の総鉄分(Fe2++Fe3+)に占める相対比率が高まると当該ベースガラス中の酸化・還元雰囲気は次第に還元雰囲気(還元性)になることが知られている。このため、図1に示すFe2+の相対比率(横軸)と酸化・還元雰囲気のなす関係において、Fe2+の相対比率の上昇に伴い、ガラスの色調は、概ね(1):白素地ガラス、(2):緑色ガラス、(3):枯れ葉色ガラス、(4):アンバー色ガラスの順に変化する。
【0012】
従って、原料であるベースガラスは、従来技術に述べたとおり、還元性成分の添加により、ガラスに不溶なSOガス(リボイル泡)発生を防ぐため、なるべく還元雰囲気のベースガラスとすることが好ましい。そこで、当該ガラス中のFe2+の相対比率を総鉄分中の40%以上、すなわち、Fe2+/(Fe2++Fe3+)≧0.4を満たすことが望ましい。なお、リボイル泡の発生を防ぐためには、より還元雰囲気であることが望ましいため、Fe2+の相対比率がおおよそ70〜80%である(4):アンバー色のベースガラスを使用することが特に好ましい。
【0013】
そこで、発明者らは、ベースガラスの還元雰囲気を維持しつつ、良好な銅赤色の発色を得るベースガラスとして、主に食器類に用いられる淡色のアンバー色ガラス、ビール瓶、清涼飲料水用の瓶、試薬瓶等に利用される濃色のアンバー色ガラスの利用(カレットとしての再生利用を含む)が好適であることを見出した。
【0014】
前記淡色のアンバー色ガラス及び濃色のアンバー色ガラスにおいて、そのアンバー色の濃淡は含有される総鉄分の量に依存することが知られ、当該両アンバー色ガラス中の総鉄分の含有量は、酸化第二鉄(Fe)に換算して0.01〜0.5重量%の範囲に相当する。
【0015】
請求項に規定する着色材は、銅又は銅酸化物からなる着色成分と銅以外の金属又はその金属酸化物からなる発色安定成分を所定濃度ずつ含有し、ガラス質により両成分を溶着したフリットもしくはペレットの形態である。前記フリットもしくはペレットは、前出のカララントフォアハース内においてベースガラスに対し添加される。
【0016】
着色成分は、銅又は銅酸化物の一方もしくは両方を含み、金属銅(Cu)、酸化第二銅(CuO)、酸化第一銅(CuO)が用いられる。良好な発色のためにはベースガラスに酸化第二銅(CuO)換算で0.01〜0.70重量%、好ましくは0.14〜0.21重量%になるように調整のうえフリットもしくはペレットとして添加される。
【0017】
発色安定成分は、錫、セレン、コバルト、クロム、ニッケル、マンガンの金属又は該列記した金属酸化物のいずれか1種以上とする。前記発色安定成分は、ベースガラス中において還元剤、酸化剤として働き、銅による発色の安定化(銅のコロイド発達)に寄与することが類推される。また、これらの金属又はその酸化物を加えることによって、補色用着色剤及び色調調整剤としても有効に作用するものと考えられる。実施例における発色安定成分には、酸化第一錫(SnO)、金属セレン(Se)、一酸化コバルト(CoO)、酸化クロム(III)(Cr)、一酸化ニッケル(NiO)、二酸化マンガン(MnO)を用いたものである。各金属又は金属酸化物は、良好な発色のため、ベースガラスに対しそれぞれ以下の相対比率となるように添加されることが好ましい。酸化第一錫(SnO)は0.0061〜1.3重量%、金属セレン(Se)は0.00001〜0.05重量%、一酸化コバルト(CoO)は0.000002〜0.2重量%、酸化クロム(III)(Cr)は0.0001重量%〜0.1重量%、一酸化ニッケル(NiO)は0.0001〜0.3重量%、二酸化マンガン(MnO)は0.0001〜0.2重量%である。なお、炭素も0.000005〜0.16重量%、好ましくは0.0005〜0.10重量%添加することができる。また、上記金属に加えて、エルビウム(Er)、ネオジム(Nd)、バナジウム(V)、鉄(Fe)、モリブデン(Mo)、チタン(Ti)、セリウム(Ce)、銀(Ag)、金(Au)、カドミウム(Cd)を用いることもできる。さらには、金属及びその酸化物の他に塩化物、硝酸塩、硫酸塩、硫化物を利用することもできる。
【0018】
前出のフリットもしくはペレットにおいて、着色・発色安定成分のうち前記の金属及び金属酸化物はフリット化もしくはペレット化される過程中、種々の反応により酸化数の変化が起こりうるため、上記以外の酸化物を含む場合もある。
【0019】
カララントフォアハース内において、着色成分及び発色安定成分を含む着色材(フリットもしくはペレット)の添加されたベースガラスは、瓶、食器、装飾品、自動車用赤色管球、信号機等の種々の形状に成形後、徐冷窯において最高温度:550〜600℃のもと、60〜120分間かけて熱処理が行われる。前記ベースガラスの色は、成形段階でアンバー色が喪失し、無色透明あるいは若干の緑色、若干の青色をおびている。その後、徐冷(熱処理)を経ることにより、鮮やかな、かつ安定した銅赤色が発色する。
【0020】
【実施例】
以下の実施例において使用したベースガラスは、実施例1ないし3においては、当該ガラス中の総鉄分の含有量を酸化第二鉄(Fe)に換算して0.015重量%とし、厚さ5mmにおいて、明度82%、主波長574nm、刺激純度20%の淡アンバー色のベースガラスである。実施例4ないし6においては、当該ガラス中の総鉄分の含有量を酸化第二鉄(Fe)に換算して0.257重量%とし、厚さ5mmにおいて、明度17.1%、主波長586.2nm、刺激純度98.1%である濃アンバー色のベースガラスである。なお、以下の実施例に示すガラスの色調の値は、全てガラスの厚みを5mmとしたものである。
【0021】
(実施例1)
酸化第二銅(CuO)を13.965重量%、酸化第一錫(SnO)を5.98重量%、炭素を0.05重量%含むフリット(以下、文中においてフリットAと表記する)と、金属セレン(Se)を1.344重量%含む2種類のフリットを作成した。前記淡アンバー色のベースガラスを溶融窯で溶融し、当該ベースガラス中において、前記フリットAが1.0重量%、前記金属セレン(Se)を含むフリットが0.15重量%となるように、両フリットを均一に混合し着色材とした。前記着色材をカララントフォアハースにおいて添加し、成形後、最高温度600℃において、60分間徐冷(熱処理)を行った。結果、明度14.2%、主波長607nm、刺激純度66.9%の銅赤色ガラスを得た。
【0022】
(実施例2)
一酸化コバルト(CoO)を発色安定成分として1.0重量%含むフリットを作成した。前記淡アンバー色のベースガラスを溶融窯で溶融し、当該ベースガラス中において、前記フリットAが1.0重量%、前記一酸化コバルト(CoO)を含むフリットが0.1重量%となるように、両フリットを均一に混合し着色材とした。前記着色材をカララントフォアハースにおいて添加し、成形後、最高温度600℃において、60分間除冷(熱処理)を行った。結果、明度13.5%、主波長607nm、刺激純度65.7%の紫色に近い銅赤色ガラスを得た。
【0023】
(実施例3)
酸化クロム(III)(Cr)を1.786重量%と酸化第二銅(CuO)を1.0重量%発色安定成分として含むフリットを作成した。前記淡アンバー色のベースガラスを溶融窯で溶融し、当該ベースガラス中において、前記フリットAが1.0重量%、前記酸化クロム(III)(Cr)と酸化第二銅(CuO)を含むフリットが0.112重量%となるように、両フリットを均一に混合し着色材とした。前記着色材をカララントフォアハースにおいて添加し、成形後、最高温度600℃において、60分間除冷(熱処理)を行った。結果、明度14.0%、主波長607nm、刺激純度66.8%の黄味を含んだ銅赤色ガラスを得た。
【0024】
(実施例4)
酸化第一錫(SnO)を20重量%、炭素を3重量%含むペレットを作成した。前記濃アンバー色のベースガラスを溶融窯で溶融し、ベースガラス中において、前記フリットAが1.0重量%、前記ペレットが1.0重量%、金属セレン(Se)を1.344重量%含むフリットが0.15重量%となるように、前記フリットA,前記ペレット,前記金属セレン(Se)を含むフリットの3種類を均一に混合し着色材とした。前記着色材をカララントフォアハースにおいて添加し、成形後、最高温度600℃において、60分間徐冷(熱処理)を行った。結果、明度10.6%、主波長605nm、刺激純度59.1%の銅赤色ガラスを得た。
【0025】
(実施例5)
前記濃アンバー色のベースガラスを溶融窯で溶融し、ベースガラス中において、前記フリットAが1.0重量%、前記ペレットが1.0重量%、一酸化ニッケル(NiO)を10重量%含むフリットが0.05重量%となるように、前記フリットA,前記ペレット,前記一酸化ニッケル(NiO)を含むフリットの3種類を均一に混合し着色材とした。前記着色材をカララントフォアハースにおいて添加し、成形後、最高温度600℃において、60分間徐冷(熱処理)を行った。結果、明度10.3%、主波長604nm、刺激純度60.1%の黒味を帯びた銅赤色ガラスを得た。
【0026】
(実施例6)
二酸化マンガン(MnO)を9.765重量%と一酸化コバルト(CoO)を0.326重量%と酸化クロム(III)(Cr)を0.842重量%含むフリットを作成した。前記の濃アンバー色のベースガラスを溶融窯で溶融し、ベースガラス中において、前記フリットAが1.0重量%、前記ペレットが1.0重量%、前記二酸化マンガン(MnO)と一酸化コバルト(CoO)と酸化クロム(III)(Cr)を含むフリットが0.082重量%となるように、前記フリットA,前記ペレット,前記二酸化マンガンと一酸化コバルトと酸化クロム(III)を含むフリットの3種類を均一に混合し着色材とした。前記着色材をカララントフォアハースにおいて添加し、成形後、最高温度600℃において、60分間徐冷(熱処理)を行った。結果、明度9.5%、主波長605nm、刺激純度60.3%の黒味を帯びた銅赤色ガラスを得た。
【0027】
実施例1ないし6における各波長(nm)と透過率(%)の関係は図2及び図3に示すとおりである。
【0028】
なお、フリット、ペレットの含有成分は実施例に用いた割合に限定されるものではなく、フリット、ペレット中に含有される成分の量及びベースガラスに対する添加量は、目標とする銅赤色ガラスの明度により適宜変更される。
【0029】
【発明の効果】
以上説明したように、この発明の銅赤色ガラスの製造方法によると、当該ガラス中におけるFe2+及びFe3+の間に成立する存在比がFe2+/(Fe2++Fe3+)≧0.4(還元雰囲気)であるベースガラスを使用したため、カララントフォアハースにおいて酸化還元反応を伴ったリボイル泡の発生を減少させることができ、鉄分(酸化第二鉄(Fe)に換算)の含有量を0.01〜0.5重量%以下にすることにより、食器、瓶、自動車用赤色管球、信号機、サイドマーカーランプ等の種々のガラス製品において、着色成分としての銅(酸化物を含む)による銅赤色の良好な発色を実現することができた。
【0030】
また、着色材は、着色成分である銅(銅酸化物)と発色安定成分である錫、セレン等の金属及びその酸化物を含むため、当該ベースガラス中において、銅及び銅酸化物による発色に際し、より好適となるべく酸化還元雰囲気の調整を行うことができる。
【0031】
さらに、カララントフォアハースにおいて、着色成分、発色安定成分をフリットもしくはペレットの形状として添加するため、量産化が容易となり、適宜含有成分量及び添加量を調整することにより所望の銅赤色ガラスを得ることが可能となる。
【図面の簡単な説明】
【図1】総鉄分に占めるFe2+の相対比率とガラスの色調を表現する模式図である。
【図2】実施例1ないし3の銅赤色ガラスの透過率曲線である。
【図3】実施例4ないし6の銅赤色ガラスの透過率曲線である。
【図4】硫黄の酸化数の変化と硫黄のガラス中の状態を表現する概略図である。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for producing a copper-red glass, and more particularly to a method for producing a colored glass for coloring copper red by adding a coloring material in a colorant foreheart.
[0002]
[Prior art]
According to a conventional manufacturing method, when producing copper-red glass, a color is formed by adding copper and cuprous oxide as coloring components to a batch obtained by melting a raw glass (base glass) and adding carbon as a reducing component. Was.
[0003]
Generally, in order to develop copper red color, it is necessary to make the inside of the raw material glass (base glass) a reducing atmosphere. However, since flint glass, which is frequently used as the glass material, is originally in an oxidizing atmosphere, if the flint glass is forcibly brought into a reducing atmosphere with a reducing agent such as carbon, the oxidation number of sulfur becomes (6+) as shown in FIG. To (4+), and SO 2 gas insoluble in glass is generated as reboil bubbles. As a result, the product was mixed with air bubbles, and the color of copper red was not uniform, and the defective product ratio was high. Therefore, it is unsuitable for a manufacturing method using a colorant forehearth or the like, and the production is mainly performed in small batches, and mass production has not been performed.
[0004]
As described above, in order to eliminate the complexity of adjusting the base glass to a reducing atmosphere and the low reproducibility of color development, a basic glass made of a predetermined raw material is melted, and after molding, is exposed to a cuprous chloride vapor to obtain a red color. Has been reported (for example, see Patent Document 1). In this manufacturing method, the basic glass made of a predetermined raw material must be adjusted in advance, and the cost is likely to increase due to the complexity of exposing the glass to cuprous chloride vapor after molding.
[0005]
On the other hand, in order to prevent the generation of the reboil bubbles, a method has been studied in which the above-mentioned coloring component is added to a raw material glass (base glass) having a reducing property in advance to form a color. As a reducing base glass, amber glass which is frequently used in beer bottles and the like and has high recycling efficiency is used, and after melting the amber glass, a coloring agent such as copper, cuprous oxide or the like is added as a frit or the like in the colorant foreheart. (See, for example, Patent Document 2). However, in the above-mentioned production method, although amber to dark-colored amber glass was obtained, copper red was not obtained.
[0006]
[Patent Document 1]
JP-A-6-191898 (pages 2-4)
[Patent Document 2]
Japanese Patent No. 3276893 (page 1-2)
[0007]
[Problems to be solved by the invention]
Therefore, the present inventor focused on the oxidation / reduction atmosphere and the iron content of the base glass as a raw material, and found the iron content in the base glass suitable for developing a copper red color. By adding a frit containing copper as a material in a colorant forehearth, a method for producing a copper-red glass capable of producing a copper-red color on a mass production scale has been obtained.
[0008]
The present invention has been made in view of the above points, and pays attention to the oxidation / reduction atmosphere and the iron content of the base glass as a raw material. In order to stabilize the coloring of copper and copper oxide as coloring components, various inventions have been proposed. An object of the present invention is to provide a method for producing a copper-red glass which can obtain a stable copper-red color on a mass production scale by adding a metal and an oxide thereof.
[0009]
[Means for Solving the Problems]
That is, the present invention is a method for producing a color glass in which a coloring material is added to a base glass melted in a melting furnace in a colorant forehearth, wherein the base glass contains Fe 2+ and Fe 3+ in the glass. Is the ratio of Fe 2+ / (Fe 2+ + Fe 3+ ) ≧ 0.4, and the total iron content in the glass is 0.01 to 0.5 weight in terms of ferric oxide. % Of the base glass, and the coloring material includes one or both of copper and copper oxide as a coloring component, and any of tin, selenium, cobalt, chromium, nickel, and manganese or a metal oxide as a coloring stabilizing component. The present invention relates to a method for producing a copper red glass, characterized in that the frit or the pellet is blended with at least one of them.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
The method for producing a copper red glass defined by the present invention is that, after melting a base glass as a raw material in a melting furnace, a metal for coloring, a coloring component containing a metal oxide and a coloring in a colorant forehearth connected thereto. Both the color development stable components different from the components are added and mixed in the form of frit or pellets. Subsequently, after being formed into an appropriate shape by a molding machine, the product is produced by passing through a slow cooling step in which heating is performed at about 600 ° C.
[0011]
Generally, when the relative ratio of Fe 2+ (II-valent iron) contained in the base glass to the total iron (Fe 2+ + Fe 3+ ) increases, the oxidation / reduction atmosphere in the base glass gradually becomes a reducing atmosphere (reducing property). It is known to be. Therefore, in the form relationship relative proportions (horizontal axis) and oxidation-reduction atmosphere Fe 2+ as shown in FIG. 1, with the increase in the relative proportion of Fe 2+, color tone of the glass is generally (1): White matrix glass, (2): green glass, (3): dead leaf glass, (4): amber glass.
[0012]
Therefore, as described in the prior art, the base glass as a raw material is preferably a base glass in a reducing atmosphere as much as possible in order to prevent the generation of SO 2 gas (reboil bubbles) insoluble in glass by adding a reducing component. . Therefore, it is desirable that the relative proportion of Fe 2+ in the glass be 40% or more of the total iron content, that is, Fe 2+ / (Fe 2+ + Fe 3+ ) ≧ 0.4. In order to prevent the generation of reboil bubbles, it is more preferable to use a reducing atmosphere. Therefore, the relative ratio of Fe 2+ is approximately 70 to 80%. (4): It is particularly preferable to use an amber base glass. .
[0013]
Therefore, the present inventors have proposed a base glass for obtaining good copper red coloration while maintaining the reducing atmosphere of the base glass, as a light-colored amber glass mainly used for tableware, a beer bottle, and a bottle for soft drinks. It has been found that it is preferable to use dark amber glass (including recycling as cullet) used for reagent bottles and the like.
[0014]
In the light-colored amber-colored glass and the dark-colored amber-colored glass, the density of the amber color is known to depend on the amount of total iron contained, and the content of total iron in both the amber-colored glasses is: in terms of ferric oxide (Fe 2 O 3) corresponds to the range of 0.01 to 0.5 wt%.
[0015]
The coloring material defined in the claims contains a coloring component composed of copper or copper oxide and a color development stable component composed of a metal other than copper or a metal oxide thereof at predetermined concentrations, and a frit or a frit obtained by welding both components by vitreousness. It is in the form of a pellet. The frit or pellet is added to the base glass in the aforementioned colorant foreheart.
[0016]
The coloring component contains one or both of copper and copper oxide, and metallic copper (Cu), cupric oxide (CuO), and cuprous oxide (Cu 2 O) are used. For good color development, the base glass is adjusted to 0.01 to 0.70% by weight, preferably 0.14 to 0.21% by weight in terms of cupric oxide (CuO), and then frit or pellet is prepared. Is added as
[0017]
The color development stabilizing component is any one or more of the metals of tin, selenium, cobalt, chromium, nickel, and manganese or the listed metal oxides. It is presumed that the color development stabilizing component acts as a reducing agent and an oxidizing agent in the base glass and contributes to stabilization of color development by copper (copper colloid development). It is also considered that the addition of these metals or their oxides effectively acts as a colorant for complementary colors and a color tone adjuster. In the examples, stabilizing components include stannous oxide (SnO), metallic selenium (Se), cobalt monoxide (CoO), chromium (III) oxide (Cr 2 O 3 ), nickel monoxide (NiO), and carbon dioxide. Manganese (MnO 2 ) is used. Each metal or metal oxide is preferably added in the following relative ratio to the base glass for good color development. Stannous oxide (SnO) is 0.0061 to 1.3% by weight, metallic selenium (Se) is 0.00001 to 0.05% by weight, and cobalt monoxide (CoO) is 0.000002 to 0.2% by weight. , Chromium (III) oxide (Cr 2 O 3 ) is 0.0001% to 0.1% by weight, nickel monoxide (NiO) is 0.0001 to 0.3% by weight, and manganese dioxide (MnO 2 ) is 0%. 0.0001 to 0.2% by weight. In addition, carbon can be added in an amount of 0.000005 to 0.16% by weight, preferably 0.0005 to 0.10% by weight. In addition to the above metals, erbium (Er), neodymium (Nd), vanadium (V), iron (Fe), molybdenum (Mo), titanium (Ti), cerium (Ce), silver (Ag), gold ( Au) and cadmium (Cd) can also be used. Further, chlorides, nitrates, sulfates, and sulfides can be used in addition to metals and their oxides.
[0018]
In the above-mentioned frit or pellet, among the coloring and coloring stable components, the above-mentioned metal and metal oxide can undergo a change in oxidation number due to various reactions during the fritting or pelletizing process. It may contain things.
[0019]
In the colorant fore hearth, the base glass to which a coloring material (frit or pellet) containing a coloring component and a color stabilizing component is added can be formed into various shapes such as bottles, tableware, decorative articles, red tubes for automobiles, traffic lights, and the like. After the molding, heat treatment is performed in an annealing furnace at a maximum temperature of 550 to 600 ° C. for 60 to 120 minutes. In the color of the base glass, the amber color is lost in the molding stage, and the base glass is colorless and transparent, or slightly green or slightly blue. Thereafter, a vivid and stable copper red color is developed by slow cooling (heat treatment).
[0020]
【Example】
In Examples 1 to 3, the base glass used in the following Examples was 0.015% by weight in terms of the total iron content in the glasses in terms of ferric oxide (Fe 2 O 3 ). It is a light amber base glass with a thickness of 5 mm, a lightness of 82%, a dominant wavelength of 574 nm, and a stimulus purity of 20%. In Examples 4 to 6, the content of the total iron content in the glass was 0.257% by weight in terms of ferric oxide (Fe 2 O 3 ). It is a dark amber base glass having a dominant wavelength of 586.2 nm and a stimulus purity of 98.1%. In addition, the values of the color tone of the glass shown in the following examples are all based on the assumption that the thickness of the glass is 5 mm.
[0021]
(Example 1)
A frit containing 13.965% by weight of cupric oxide (CuO), 5.98% by weight of stannous oxide (SnO), and 0.05% by weight of carbon (hereinafter referred to as frit A in the text); Two types of frit containing 1.344% by weight of metal selenium (Se) were prepared. The light amber base glass is melted in a melting furnace, and in the base glass, the frit A is 1.0% by weight, and the frit containing the metal selenium (Se) is 0.15% by weight. Both frits were uniformly mixed to obtain a coloring material. The coloring material was added in a colorant fore hearth, and after molding, gradual cooling (heat treatment) was performed at a maximum temperature of 600 ° C. for 60 minutes. As a result, a copper red glass having a lightness of 14.2%, a main wavelength of 607 nm, and an excitation purity of 66.9% was obtained.
[0022]
(Example 2)
A frit containing 1.0% by weight of cobalt monoxide (CoO) as a color development stable component was prepared. The light amber base glass is melted in a melting furnace, so that the frit A is 1.0% by weight and the frit containing the cobalt monoxide (CoO) is 0.1% by weight in the base glass. The two frits were uniformly mixed to obtain a coloring material. The coloring material was added in a colorant fore hearth, and after molding, cooling (heat treatment) was performed at a maximum temperature of 600 ° C. for 60 minutes. As a result, a copper-red glass near purple with a brightness of 13.5%, a main wavelength of 607 nm, and an excitation purity of 65.7% was obtained.
[0023]
(Example 3)
A frit containing 1.786% by weight of chromium (III) oxide (Cr 2 O 3 ) and 1.0% by weight of cupric oxide (CuO) as a color development stable component was prepared. The light amber base glass is melted in a melting furnace. In the base glass, the frit A contains 1.0% by weight, the chromium (III) oxide (Cr 2 O 3 ), and cupric oxide (CuO). The two frit were uniformly mixed so that the frit containing 0.1% by weight was used as a coloring material. The coloring material was added in a colorant fore hearth, and after molding, cooling (heat treatment) was performed at a maximum temperature of 600 ° C. for 60 minutes. As a result, a copper-red glass containing yellowish color having a lightness of 14.0%, a main wavelength of 607 nm, and an excitation purity of 66.8% was obtained.
[0024]
(Example 4)
Pellets containing 20% by weight of stannous oxide (SnO) and 3% by weight of carbon were prepared. The dark amber base glass is melted in a melting furnace, and the base glass contains 1.0% by weight of the frit A, 1.0% by weight of the pellets, and 1.344% by weight of metallic selenium (Se). The frit A, the pellets, and the frit containing the metal selenium (Se) were uniformly mixed to form a coloring material such that the frit was 0.15% by weight. The coloring material was added in a colorant fore hearth, and after molding, gradual cooling (heat treatment) was performed at a maximum temperature of 600 ° C. for 60 minutes. As a result, a copper red glass having a lightness of 10.6%, a main wavelength of 605 nm, and an excitation purity of 59.1% was obtained.
[0025]
(Example 5)
The dark amber base glass is melted in a melting furnace, and a frit containing 1.0% by weight of the frit A, 1.0% by weight of the pellets, and 10% by weight of nickel monoxide (NiO) in the base glass. The frit A, the pellets, and the frit containing the nickel monoxide (NiO) were uniformly mixed so as to be 0.05% by weight to obtain a coloring material. The coloring material was added in a colorant fore hearth, and after molding, gradual cooling (heat treatment) was performed at a maximum temperature of 600 ° C. for 60 minutes. As a result, a blackish copper-red glass having a lightness of 10.3%, a main wavelength of 604 nm, and an excitation purity of 60.1% was obtained.
[0026]
(Example 6)
A frit containing 9.765% by weight of manganese dioxide (MnO 2 ), 0.326% by weight of cobalt monoxide (CoO), and 0.842% by weight of chromium (III) oxide (Cr 2 O 3 ) was prepared. The dark amber base glass is melted in a melting furnace. In the base glass, the frit A is 1.0% by weight, the pellets are 1.0% by weight, the manganese dioxide (MnO 2 ) and cobalt monoxide are contained. The frit A, the pellets, the manganese dioxide, the cobalt monoxide, and the chromium (III) are mixed such that the frit containing (CoO) and chromium (III) oxide (Cr 2 O 3 ) becomes 0.082% by weight. The three types of frit contained were uniformly mixed to obtain a coloring material. The coloring material was added in a colorant fore hearth, and after molding, gradual cooling (heat treatment) was performed at a maximum temperature of 600 ° C. for 60 minutes. As a result, a blackish copper red glass having a lightness of 9.5%, a main wavelength of 605 nm, and a stimulating purity of 60.3% was obtained.
[0027]
The relationship between each wavelength (nm) and transmittance (%) in Examples 1 to 6 is as shown in FIGS.
[0028]
The components contained in the frit and the pellets are not limited to the proportions used in the examples, and the amounts of the components contained in the frit and the pellets and the amount added to the base glass are determined based on the lightness of the target copper red glass. Is changed as appropriate.
[0029]
【The invention's effect】
As described above, according to the copper red glass manufacturing method of the present invention, the abundance ratio between Fe 2+ and Fe 3+ in the glass is Fe 2+ / (Fe 2+ + Fe 3+ ) ≧ 0.4 (reduction Since the base glass is used, the generation of reboil bubbles accompanied by a redox reaction in the colorant forehearth can be reduced, and the content of iron (converted to ferric oxide (Fe 2 O 3 )) To 0.01 to 0.5% by weight or less, copper (including oxides) as a coloring component in various glass products such as tableware, bottles, red tubes for automobiles, traffic lights, side marker lamps, and the like. , A good coloration of copper red was achieved.
[0030]
In addition, since the coloring material includes copper (copper oxide) as a coloring component and metals and oxides thereof such as tin and selenium as coloring stabilizing components, the coloring material may be colored with copper and copper oxide in the base glass. The adjustment of the oxidation-reduction atmosphere can be performed more preferably.
[0031]
Furthermore, in the colorant forehearth, a coloring component and a coloring stable component are added in the form of a frit or a pellet, which facilitates mass production, and a desired copper red glass is obtained by appropriately adjusting the content and the content of the components. It becomes possible.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing a relative ratio of Fe 2+ to total iron and a color tone of glass.
FIG. 2 is a transmittance curve of the copper red glasses of Examples 1 to 3.
FIG. 3 is a transmittance curve of copper red glass of Examples 4 to 6.
FIG. 4 is a schematic diagram showing a change in the oxidation number of sulfur and a state of sulfur in the glass.

Claims (1)

溶融窯で溶融したベースガラスに対し、カララントフォアハースにおいて、着色材を添加する色ガラスの製造方法であって、
前記ベースガラスは、当該ガラス中におけるFe2+及びFe3+の間に成立する存在比をFe2+/(Fe2++Fe3+)≧0.4とし、かつ当該ガラス中の総鉄分の含有量を酸化第二鉄に換算して0.01〜0.5重量%であるベースガラスとし、
前記着色材は、着色成分として銅又は銅酸化物の一方もしくは両方と、発色安定成分として錫、セレン、コバルト、クロム、ニッケル、マンガンの金属又は該金属酸化物のいずれか1種以上とを配合したフリットもしくはペレットとすることを特徴とする銅赤色ガラスの製造方法。
For a base glass melted in a melting furnace, in a colorant foreheart, a method of manufacturing a colored glass to which a coloring material is added,
The base glass has an existence ratio of Fe 2+ / (Fe 2+ + Fe 3+ ) ≧ 0.4, which is established between Fe 2+ and Fe 3+ in the glass, and reduces the total iron content in the glass by oxidation. Base glass which is 0.01 to 0.5% by weight in terms of ferrous iron,
The coloring material contains one or both of copper and copper oxide as a coloring component, and one or more of tin, selenium, cobalt, chromium, nickel, and manganese metals or the metal oxide as a coloring stability component. A method for producing a copper-red glass, characterized in that the frit or the pellet is formed.
JP2002311137A 2002-10-25 2002-10-25 Method for manufacturing copper red glass Pending JP2004143003A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002311137A JP2004143003A (en) 2002-10-25 2002-10-25 Method for manufacturing copper red glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002311137A JP2004143003A (en) 2002-10-25 2002-10-25 Method for manufacturing copper red glass

Publications (1)

Publication Number Publication Date
JP2004143003A true JP2004143003A (en) 2004-05-20

Family

ID=32456451

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002311137A Pending JP2004143003A (en) 2002-10-25 2002-10-25 Method for manufacturing copper red glass

Country Status (1)

Country Link
JP (1) JP2004143003A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007055889A (en) * 2005-07-22 2007-03-08 Vermont Red glass, process for manufacturing red glass, and tinted bulb and tube obtained with such glass
FR2911868A1 (en) * 2007-01-26 2008-08-01 Saint Gobain Emballage Sa Producing copper ruby glass from colorless molten glass comprises adding copper and tin oxides at a defined oxygen partial pressure
WO2010148041A1 (en) * 2009-06-19 2010-12-23 Ferro Corporation Copper red frits and pigments
US9061939B2 (en) 2010-04-28 2015-06-23 D. Swarovski Kg Red-dyed glass and method for producing same

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007055889A (en) * 2005-07-22 2007-03-08 Vermont Red glass, process for manufacturing red glass, and tinted bulb and tube obtained with such glass
FR2911868A1 (en) * 2007-01-26 2008-08-01 Saint Gobain Emballage Sa Producing copper ruby glass from colorless molten glass comprises adding copper and tin oxides at a defined oxygen partial pressure
WO2008104653A3 (en) * 2007-01-26 2008-11-27 Saint Gobain Emballage Glass making method
EA015723B1 (en) * 2007-01-26 2011-10-31 Сэн-Гобэн Амбаллаж A process for manufacturing objects from red copper glass
US8464558B2 (en) 2007-01-26 2013-06-18 Saint-Gobain Emballage Glass making method
WO2010148041A1 (en) * 2009-06-19 2010-12-23 Ferro Corporation Copper red frits and pigments
CN102803172A (en) * 2009-06-19 2012-11-28 费罗公司 Copper Red Frits And Pigments
US8946102B2 (en) 2009-06-19 2015-02-03 Ferro Corporation Copper red frits and pigments comprising silica and at least one of cupric oxide and cuprous oxide
US9334189B2 (en) 2009-06-19 2016-05-10 Ferro Corporation Copper red frits and pigments comprising silica and at least one of cupric oxide and cuprous oxide
US9061939B2 (en) 2010-04-28 2015-06-23 D. Swarovski Kg Red-dyed glass and method for producing same

Similar Documents

Publication Publication Date Title
CN1043569C (en) Gray glas composition
JP2544035B2 (en) High iron content / high reduction rate frit glass and blue heat ray absorbing glass using the same
JP5474489B2 (en) Lead free amber coloring lamp
JP5183600B2 (en) Blue green glass
JP3086165B2 (en) UV-infrared absorbing green glass
WO2000012441A1 (en) Ultraviolet-absorbing, colorless, transparent soda-lime silica glass
JPH03153543A (en) Neutral ash-colored low transmittable glass composition
JP2007529400A5 (en)
JP4662919B2 (en) Gray soda lime silicate glass composition for glazing production
US10246370B2 (en) Color-strikable glass containers
JP3959061B2 (en) Gray and bronze glass composition
US20020059811A1 (en) Photochromic float glasses and methods of making the same
JP2004143003A (en) Method for manufacturing copper red glass
JP2003165741A (en) Glass for lighting and colored glass bulb, and method for manufacturing the same
JPH11217234A (en) Deep gray color glass
JPH10316450A (en) Batch composition for producing soda lime silica-based copper red glass and production of the glass
JP2004026560A (en) Method for manufacturing copper red colored glass
WO2006110131A1 (en) High performance blue glass
JP4195595B2 (en) Chrome-free green private glass composition with improved UV absorption
WO2016039252A1 (en) Ultraviolet-absorbing glass article
JPH0825770B2 (en) Green glass for containers that blocks near-ultraviolet visible light and method for manufacturing the same
JP6386236B2 (en) Black glass container
JP2000344543A (en) Yellowish-brown-colored glass and its production
JP5142131B2 (en) Lead-free red glass
JP3592577B2 (en) Method for producing dead leaf brown glass

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050805

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080327

A131 Notification of reasons for refusal

Effective date: 20081111

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20090310

Free format text: JAPANESE INTERMEDIATE CODE: A02