JP2004141863A - Method of producing palladium-containing catalyst - Google Patents

Method of producing palladium-containing catalyst Download PDF

Info

Publication number
JP2004141863A
JP2004141863A JP2003337628A JP2003337628A JP2004141863A JP 2004141863 A JP2004141863 A JP 2004141863A JP 2003337628 A JP2003337628 A JP 2003337628A JP 2003337628 A JP2003337628 A JP 2003337628A JP 2004141863 A JP2004141863 A JP 2004141863A
Authority
JP
Japan
Prior art keywords
palladium
catalyst
producing
carboxylic acid
olefin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003337628A
Other languages
Japanese (ja)
Inventor
Ko Ninomiya
二宮 航
Akio Takeda
竹田 明男
Seiichi Kato
河藤 誠一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP2003337628A priority Critical patent/JP2004141863A/en
Publication of JP2004141863A publication Critical patent/JP2004141863A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

<P>PROBLEM TO BE SOLVED: To provide a palladium-containing catalyst for producing an α, β-unsaturated carboxylic acid from an olefin or α, β-unsaturated aldehyde with high selectivity, a method of producing the catalyst, and a method of producing α, β-unsaturated carboxylic acid with high selectivity. <P>SOLUTION: In this production process of the palladium-containing catalyst for producing α, β-unsaturated carboxylic acid from the olefin or α, β-unsaturated aldehyde, a compound containing a palladium atoms in an oxidized state is reduced at -5 to 50°C. By using thus produced palladium-containing catalyst, the α, β-unsaturated carboxylic acid is produced by liquid phase oxidation of the olefin or α, β-unsaturated aldehyde by molecular oxygen. <P>COPYRIGHT: (C)2004,JPO

Description

 本発明は、オレフィンまたはα,β−不飽和アルデヒドからα,β−不飽和カルボン酸を製造するためのパラジウム含有触媒の製造方法に関する。また本発明はα,β−不飽和カルボン酸製造用触媒およびα,β−不飽和カルボン酸の製造方法に関する。 << The present invention relates to a method for producing a palladium-containing catalyst for producing an α, β-unsaturated carboxylic acid from an olefin or an α, β-unsaturated aldehyde. The present invention also relates to a catalyst for producing an α, β-unsaturated carboxylic acid and a method for producing an α, β-unsaturated carboxylic acid.

 オレフィンを分子状酸素により液相酸化してα,β−不飽和カルボン酸を製造するためのパラジウム含有触媒の製造方法として、例えば、特許文献1には酸化されたパラジウムを炭素数が3〜6のオレフィンで還元する方法が記載されている。また、特許文献1には前記の方法で担持触媒が製造できることも記載されている。
特開昭60−155148号公報
As a method for producing a palladium-containing catalyst for producing an α, β-unsaturated carboxylic acid by subjecting an olefin to liquid phase oxidation with molecular oxygen, for example, Patent Document 1 discloses that oxidized palladium has 3 to 6 carbon atoms. A method for reduction with an olefin is described. Patent Document 1 also describes that a supported catalyst can be produced by the above method.
JP-A-60-155148

 本願発明者が特許文献1の実施例に記載された方法に準じて製造したパラジウム含有触媒を用いてプロピレンからアクリル酸を製造したところ、特許文献1に記載されている副生成物(アセトアルデヒド、アセトン、アクロレイン、酢酸、二酸化炭素)以外に多様なポリマーやオリゴマーが多く副生することを見出した。特許文献1ではこれらのポリマーやオリゴマーを捕捉しておらず、これらの副生成物を含めた実際の選択率は特許文献1の実施例に記載されたものより低くなることが判明した。このように、特許文献1記載の方法で製造した触媒のα,β−不飽和カルボン酸の選択率は未だ十分ではなく、より選択率の高いα,β−不飽和カルボン酸製造用触媒の製造方法が望まれている。 When the inventor of the present application produced acrylic acid from propylene using a palladium-containing catalyst produced according to the method described in the example of Patent Document 1, the by-products (acetaldehyde, acetone , Acrolein, acetic acid, carbon dioxide) in addition to various polymers and oligomers. In Patent Document 1, these polymers and oligomers were not captured, and it was found that the actual selectivity including these by-products was lower than that described in Examples of Patent Document 1. As described above, the selectivity of the α, β-unsaturated carboxylic acid of the catalyst produced by the method described in Patent Document 1 is not yet sufficient, and the production of a catalyst for producing an α, β-unsaturated carboxylic acid having a higher selectivity is not yet completed. A method is desired.

 したがって本発明の目的は、オレフィンまたはα,β−不飽和アルデヒドからα,β−不飽和カルボン酸を高選択率で製造するためのパラジウム含有触媒、その触媒の製造方法、およびα,β−不飽和カルボン酸を高選択率で製造する方法を提供することにある。 Accordingly, an object of the present invention is to provide a palladium-containing catalyst for producing an α, β-unsaturated carboxylic acid from an olefin or an α, β-unsaturated aldehyde with high selectivity, a method for producing the catalyst, and an α, β-unsaturated catalyst. It is to provide a method for producing a saturated carboxylic acid with high selectivity.

 本発明は、酸化状態のパラジウム原子を含む化合物を−5〜50℃で還元する工程を有するオレフィンまたはα,β−不飽和アルデヒドからα,β−不飽和カルボン酸を製造するためのパラジウム含有触媒の製造方法である。 The present invention relates to a palladium-containing catalyst for producing an α, β-unsaturated carboxylic acid from an olefin or an α, β-unsaturated aldehyde having a step of reducing a compound containing a palladium atom in an oxidized state at −5 to 50 ° C. Is a manufacturing method.

 酸化状態のパラジウム原子を含む化合物の還元に用いる還元剤は、エタノール、2−プロパノール、ヒドラジン、ホルマリン、水素化ホウ素ナトリウム、水素、エチレン、プロピレン、1−ブテン、2−ブテンおよびイソブチレンからなる群から選ばれる少なくとも1種の化合物が好ましい。 The reducing agent used for the reduction of the compound containing a palladium atom in the oxidation state is selected from the group consisting of ethanol, 2-propanol, hydrazine, formalin, sodium borohydride, hydrogen, ethylene, propylene, 1-butene, 2-butene and isobutylene. At least one compound selected is preferred.

 製造されるパラジウム含有触媒は、パラジウム原子を含む化合物を還元して得られる還元物を担体に担持した担持触媒であることが好ましい。 パ ラ ジ ウ ム The produced palladium-containing catalyst is preferably a supported catalyst in which a reduced product obtained by reducing a compound containing a palladium atom is supported on a carrier.

 また、本発明は前記の方法で製造されたオレフィンまたはα,β−不飽和アルデヒドからα,β−不飽和カルボン酸を製造するためのパラジウム含有触媒である。 The present invention is also a palladium-containing catalyst for producing an α, β-unsaturated carboxylic acid from an olefin or an α, β-unsaturated aldehyde produced by the above method.

 さらに、本発明は前記の触媒を用いて、オレフィンまたはα,β−不飽和アルデヒドを分子状酸素により液相酸化するα,β−不飽和カルボン酸の製造方法である。 The present invention is also a method for producing an α, β-unsaturated carboxylic acid in which an olefin or an α, β-unsaturated aldehyde is liquid-phase oxidized with molecular oxygen using the above catalyst.

 本発明のパラジウム含有触媒の製造方法によれば、オレフィンまたはα,β−不飽和アルデヒドからα,β−不飽和カルボン酸を製造した場合に、副生物であるポリマーおよびオリゴマーの生成が少なく、α,β−不飽和カルボン酸を高選択率で製造できるパラジウム含有触媒を製造することができる。 According to the method for producing a palladium-containing catalyst of the present invention, when an α, β-unsaturated carboxylic acid is produced from an olefin or an α, β-unsaturated aldehyde, the production of polymers and oligomers as by-products is small, and α , Β-unsaturated carboxylic acid can be produced at a high selectivity.

 また、本発明のオレフィンまたはα,β−不飽和アルデヒドからα,β−不飽和カルボン酸を製造するためのパラジウム含有触媒を用いると、副生物であるポリマーおよびオリゴマーの生成が少なく、α,β−不飽和カルボン酸を高選択率で製造することができる。 When a palladium-containing catalyst for producing an α, β-unsaturated carboxylic acid from the olefin or α, β-unsaturated aldehyde of the present invention is used, the production of polymers and oligomers as by-products is small, and α, β It is possible to produce unsaturated carboxylic acids with high selectivity.

 さらに、本発明のオレフィンまたはα,β−不飽和アルデヒドを分子状酸素により液相酸化するα,β−不飽和カルボン酸の製造方法によれば、副生物であるポリマーおよびオリゴマーの生成が少なく、α,β−不飽和カルボン酸を高選択率で製造することができる。 Further, according to the method of the present invention for producing an α, β-unsaturated carboxylic acid in which liquid phase oxidation of an olefin or an α, β-unsaturated aldehyde with molecular oxygen, the production of polymers and oligomers as by-products is reduced, α, β-unsaturated carboxylic acids can be produced with high selectivity.

 本発明のパラジウム含有触媒の製造方法では、酸化状態のパラジウム原子を含む化合物を−5〜50℃で還元する。触媒原料である酸化状態のパラジウム原子を含む化合物としては、例えば、パラジウム塩、酸化パラジウム、酸化パラジウム合金等を挙げることができるが、中でもパラジウム塩が好ましい。パラジウム塩としては、例えば、塩化パラジウム、酢酸パラジウム、硝酸パラジウム、硫酸パラジウム、テトラアンミンパラジウム塩化物およびビス(アセチルアセトナト)パラジウム等を挙げることができるが、中でも塩化パラジウム、酢酸パラジウム、テトラアンミンパラジウム塩化物が好ましい。 In the method for producing a palladium-containing catalyst of the present invention, the compound containing a palladium atom in an oxidized state is reduced at -5 to 50C. Examples of the compound containing a palladium atom in an oxidized state, which is a catalyst raw material, include a palladium salt, palladium oxide, a palladium oxide alloy and the like, and among them, a palladium salt is preferable. Examples of the palladium salt include palladium chloride, palladium acetate, palladium nitrate, palladium sulfate, tetraammine palladium chloride, bis (acetylacetonato) palladium, and the like. Among them, palladium chloride, palladium acetate, tetraammine palladium chloride Is preferred.

 触媒原料の還元は気相で行ってもよいが、本発明では液相中で行うことが好ましい。以下、液相中でパラジウム塩を還元する方法について説明する。 還 元 The reduction of the catalyst raw material may be performed in the gas phase, but is preferably performed in the liquid phase in the present invention. Hereinafter, a method for reducing a palladium salt in a liquid phase will be described.

 パラジウム塩は溶媒に溶解し、還元剤を用いて還元する。これにより目的とするパラジウム金属含有触媒が析出する。還元剤の添加方法は特に限定されないが、例えば、還元剤を滴下しながら還元を行う方法、還元剤を全量加えた後に還元を行う方法等が挙げられる。中でも還元剤を滴下しながら還元を行う方法が好ましい。 Palladium salt is dissolved in a solvent and reduced using a reducing agent. As a result, the desired palladium metal-containing catalyst is deposited. The method for adding the reducing agent is not particularly limited, and examples thereof include a method of performing reduction while dropping the reducing agent, and a method of performing reduction after adding the entire amount of the reducing agent. Among them, a method of performing reduction while dropping a reducing agent is preferable.

 本発明では、パラジウム塩を−5〜50℃で還元することが特に重要であり、中でも0〜45℃が好ましく、10〜40℃がより好ましく、15〜35℃が特に好ましい。還元温度が50℃を超えると得られる触媒のα,β−不飽和カルボン酸の選択性が低くなる。還元処理の時間は特に限定されないが、通常0.1〜4時間、好ましくは0.25〜3時間、より好ましくは0.5〜2時間である。 In the present invention, it is particularly important to reduce the palladium salt at −5 to 50 ° C., preferably 0 to 45 ° C., more preferably 10 to 40 ° C., and particularly preferably 15 to 35 ° C. If the reduction temperature exceeds 50 ° C., the selectivity of the resulting catalyst for α, β-unsaturated carboxylic acid will decrease. The time of the reduction treatment is not particularly limited, but is usually 0.1 to 4 hours, preferably 0.25 to 3 hours, more preferably 0.5 to 2 hours.

 還元剤としては、触媒原料中の酸化状態にあるパラジウム原子を還元する能力を有するものであれば何れも使用できる。触媒原料がパラジウム塩の場合の還元剤としては、例えば、エタノール、2−プロパノール、ヒドラジン、ホルマリン、ギ酸、シュウ酸、水素化ホウ素ナトリウム、水素化リチウムアルミニウム、水素化カルシウム、水素、エチレン、プロピレン、1−ブテン、2−ブテン、イソブチレン等が挙げられる。中でも、エタノール、2−プロパノール、ヒドラジン、ホルマリン、水素化ホウ素ナトリウム、水素、エチレン、プロピレン、1−ブテン、2−ブテンおよびイソブチレンが好ましく、特にヒドラジン、ホルマリン、水素およびプロピレンが好ましい。還元には2種類以上の還元剤を併用してもよい。 As the reducing agent, any one can be used as long as it has the ability to reduce the oxidized palladium atoms in the catalyst raw material. As the reducing agent when the catalyst raw material is a palladium salt, for example, ethanol, 2-propanol, hydrazine, formalin, formic acid, oxalic acid, sodium borohydride, lithium aluminum hydride, calcium hydride, hydrogen, ethylene, propylene, Examples thereof include 1-butene, 2-butene, and isobutylene. Among them, ethanol, 2-propanol, hydrazine, formalin, sodium borohydride, hydrogen, ethylene, propylene, 1-butene, 2-butene and isobutylene are preferred, and hydrazine, formalin, hydrogen and propylene are particularly preferred. Two or more reducing agents may be used in combination for the reduction.

 また、還元剤には硫黄が含まれていない化合物が好ましい。ここで、硫黄が含まれていない化合物とは、化合物の構造中に硫黄元素が含まれないこと、即ち硫黄含有化合物でないことを意味し、硫黄や硫黄化合物が少量の不純物として還元剤に含まれる場合を意味しない。本発明では還元を比較的低温で行うため、硫黄を含む還元剤を使用すると、担体あるいはパラジウムに硫黄が強く吸着するため、触媒が被毒されることがある。 化合物 Further, a compound containing no sulfur in the reducing agent is preferable. Here, the compound containing no sulfur means that no sulfur element is contained in the structure of the compound, that is, it is not a sulfur-containing compound, and the sulfur or the sulfur compound is contained in the reducing agent as a small amount of impurities. Does not mean the case. In the present invention, since the reduction is performed at a relatively low temperature, when a reducing agent containing sulfur is used, the sulfur is strongly adsorbed on the carrier or palladium, so that the catalyst may be poisoned.

 担持触媒を調製する場合は、パラジウム塩溶液に担体を分散させること以外は担体を使用しない場合と同様に還元すればよい。担体としては、例えば、活性炭、カーボンブラック、シリカ、アルミナ、マグネシア、カルシア、チタニアおよびジルコニア等を挙げることができるが、中でも活性炭、シリカ、アルミナが好ましい。担体の表面積は担体の種類等により異なるので一概に言えないが、活性炭の場合、通常100〜5000m/g、好ましくは300〜4000m/gである。担体の表面積は小さいほど有用成分がより表面に担持された触媒の製造が可能となり、大きいほど有用成分が多く担持された触媒の製造が可能となる。 When a supported catalyst is prepared, reduction may be performed in the same manner as when no carrier is used, except that the carrier is dispersed in a palladium salt solution. Examples of the carrier include activated carbon, carbon black, silica, alumina, magnesia, calcia, titania, zirconia, and the like. Among them, activated carbon, silica, and alumina are preferable. Since the surface area of the support varies depending on the type of the support and the like, it cannot be said unconditionally. In the case of activated carbon, it is usually 100 to 5000 m 2 / g, preferably 300 to 4000 m 2 / g. The smaller the surface area of the carrier, the more the useful component can be produced on the surface of the catalyst. The larger the surface area of the carrier, the more the useful component can be produced.

 活性炭担持触媒の調製では、還元剤と接触する前にパラジウム塩を含む溶液と担体が接触すると、担体の外表面に存在する活性基との反応によりパラジウムが還元されて析出し、パラジウムが担体の外表面に偏在した触媒となることがある。このような意図しない還元を防ぎ、パラジウムが担体内部まで均一に分散した担持触媒を得るためには、還元剤と接触する前のパラジウム塩溶液中に、例えば過酸化水素、硝酸、次亜塩素酸等の酸化剤を存在させておくことが好ましい。また、担体を使用しない場合でも調製条件よってはパラジウムが意図せず還元することがある。この場合も同様にして還元を防ぐことができる。 In the preparation of the activated carbon-supported catalyst, when the carrier and the solution containing the palladium salt come into contact with each other before contacting with the reducing agent, palladium is reduced and precipitated by the reaction with the active group present on the outer surface of the carrier, and the palladium is deposited on the carrier. The catalyst may be unevenly distributed on the outer surface. In order to prevent such unintended reduction and to obtain a supported catalyst in which palladium is uniformly dispersed in the inside of the carrier, for example, hydrogen peroxide, nitric acid, hypochlorous acid, etc. are added to the palladium salt solution before contacting with the reducing agent. Preferably, an oxidizing agent such as Even when no carrier is used, palladium may be reduced unintentionally depending on the preparation conditions. Also in this case, reduction can be prevented in the same manner.

 担持触媒の場合、パラジウム金属の担持率は担体質量に対して通常0.1〜40%であり、好ましくは1〜30%、より好ましくは2〜20%、特に好ましくは4〜15%である。 In the case of a supported catalyst, the loading ratio of palladium metal is usually 0.1 to 40%, preferably 1 to 30%, more preferably 2 to 20%, and particularly preferably 4 to 15% based on the weight of the carrier. .

 還元の際に使用する溶媒としては、水が一般的であるが、パラジウム塩や還元剤の溶解性あるいは担体の分散性によっては、エタノール、1−プロパノール、2−プロパノール、n−ブタノール、t−ブタノール等のアルコール、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン、酢酸、n−吉草酸、iso−吉草酸等の有機酸およびヘプタン、ヘキサン、シクロヘキサン等の炭化水素等の有機溶媒、あるいはこれらと水との混合溶媒も用いることができる。触媒原料が塩化パラジウムの場合、エタノールと水の混合溶媒、アセトンと水との混合溶媒、酢酸と水との混合溶媒が好ましい。 As a solvent used in the reduction, water is generally used, but depending on the solubility of the palladium salt or the reducing agent or the dispersibility of the carrier, ethanol, 1-propanol, 2-propanol, n-butanol, t-butanol, Alcohols such as butanol, ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone and cyclohexanone; organic acids such as acetic acid, n-valeric acid and iso-valeric acid; and organic solvents such as hydrocarbons such as heptane, hexane and cyclohexane, or these. A mixed solvent of water and water can also be used. When the catalyst raw material is palladium chloride, a mixed solvent of ethanol and water, a mixed solvent of acetone and water, and a mixed solvent of acetic acid and water are preferable.

 還元により析出したパラジウム金属含有触媒(以下、触媒と言う。)は、通常、温水で洗浄され、ろ別される。温水での洗浄により、例えば、塩化物、酢酸根、硝酸根、硫酸根等のパラジウム塩由来の不純物が除去される。洗浄の方法および回数は特に限定されないが、不純物によってはオレフィンまたはα,β−不飽和アルデヒドの液相酸化反応を阻害する恐れがあるため、不純物を十分除去できる程度に洗浄することが好ましい。例えば、塩化パラジウムを触媒原料として使用した場合の不純物は塩化物イオンであるが、この検出には硝酸銀が使用できる。具体的には、パラジウム金属含有触媒を温水で洗浄し、触媒をろ別した後の洗浄ろ液に少量の硝酸銀を添加し、塩化銀の白色沈殿あるいは白濁が生じるか否かで洗浄の終点を判断できる。 パ ラ ジ ウ ム A palladium metal-containing catalyst (hereinafter, referred to as a catalyst) precipitated by reduction is usually washed with warm water and filtered. Washing with warm water removes, for example, impurities derived from palladium salts such as chloride, acetate, nitrate, and sulfate. Although the washing method and the number of washing are not particularly limited, there is a possibility that the liquid phase oxidation reaction of the olefin or the α, β-unsaturated aldehyde may be inhibited depending on the impurities. Therefore, it is preferable that the washing is performed to such an extent that the impurities can be sufficiently removed. For example, when palladium chloride is used as a catalyst raw material, impurities are chloride ions, and silver nitrate can be used for this detection. Specifically, the palladium metal-containing catalyst is washed with warm water, a small amount of silver nitrate is added to the washing filtrate after filtering off the catalyst, and the end point of the washing is determined based on whether white precipitation or cloudiness of silver chloride occurs. I can judge.

 次いで、ろ別された触媒は乾燥される。乾燥方法は特に限定されないが、通常は乾燥機を用いて空気中で乾燥する。乾燥した触媒は、液相酸化反応に使用する前に活性化する必要がある。活性化の方法には特に限定されないが、例えば、水素気流中の還元雰囲気下で熱処理する方法が挙げられる。この方法によれば、パラジウム金属表面の酸化皮膜と洗浄で取り除けなかった不純物を除去することができる。調製した触媒の物性は、BET表面積測定、XRD測定、COパルス吸着法、TEM測定等により確認できる。 Next, the filtered catalyst is dried. The drying method is not particularly limited, but is usually dried in the air using a dryer. The dried catalyst must be activated before it can be used in a liquid phase oxidation reaction. The method of activation is not particularly limited, and includes, for example, a method of performing heat treatment in a reducing atmosphere in a hydrogen stream. According to this method, it is possible to remove the oxide film on the surface of the palladium metal and impurities that cannot be removed by washing. The physical properties of the prepared catalyst can be confirmed by BET surface area measurement, XRD measurement, CO pulse adsorption method, TEM measurement and the like.

 次に、オレフィンまたはα,β−不飽和アルデヒドを分子状酸素により液相酸化してα,β−不飽和カルボン酸を製造する方法について説明する。原料のオレフィンとしては、例えば、プロピレン、イソブチレン、1−ブテン、2−ブテン等が挙げられるが、中でもプロピレンおよびイソブチレンが好適である。また、原料のα,β−不飽和アルデヒドとしては、例えば、アクロレイン、メタクロレイン、クロトンアルデヒド(β−メチルアクロレイン)、シンナムアルデヒド(β−フェニルアクロレイン)等が挙げられるが、中でもアクロレインおよびメタクロレインが好適である。原料のオレフィンあるいはα,β−不飽和アルデヒドは、不純物として飽和炭化水素および低級飽和アルデヒド等を少量含んでいてもよい。 Next, a method for producing an α, β-unsaturated carboxylic acid by subjecting an olefin or an α, β-unsaturated aldehyde to liquid phase oxidation with molecular oxygen will be described. Examples of the starting olefin include propylene, isobutylene, 1-butene, 2-butene and the like. Among them, propylene and isobutylene are preferable. Examples of the α, β-unsaturated aldehyde as a raw material include acrolein, methacrolein, crotonaldehyde (β-methylacrolein), cinnamaldehyde (β-phenylacrolein), and among others, acrolein and methacrolein are included. It is suitable. The raw material olefin or α, β-unsaturated aldehyde may contain a small amount of a saturated hydrocarbon, a lower saturated aldehyde, or the like as an impurity.

 液相酸化反応は連続式、バッチ式の何れの形式で行ってもよいが、生産性を考慮すると工業的には連続式が好ましい。 (4) The liquid phase oxidation reaction may be carried out in any of a continuous system and a batch system. However, in view of productivity, the continuous system is preferably used industrially.

 液相酸化反応の反応溶媒としては、例えば、ターシャリーブタノール、シクロヘキサノール、アセトン、メチルエチルケトン、メチルイソブチルケトン、酢酸、プロピオン酸、n−酪酸、iso−酪酸、n−吉草酸、iso−吉草酸、酢酸エチルおよびプロピオン酸メチルからなる群から選ばれる少なくとも1つの化合物を用いることが好ましい。中でも、ターシャリーブタノール、メチルイソブチルケトン、酢酸、プロピオン酸、n−酪酸、iso−酪酸、n−吉草酸およびiso−吉草酸がより好ましい。また、α,β−不飽和カルボン酸を選択率よく製造するためには、これら有機溶媒に水を共存させることが好ましい。共存させる水の量は特に限定されないが、有機溶媒と水の合計質量に対して通常2〜70%、好ましくは5〜50%である。有機溶媒と水の混合物は均一な状態であることが望ましいが、水との相溶性が高くない有機溶媒の場合には、不均一な状態であっても差し支えない。 As a reaction solvent for the liquid phase oxidation reaction, for example, tertiary butanol, cyclohexanol, acetone, methyl ethyl ketone, methyl isobutyl ketone, acetic acid, propionic acid, n-butyric acid, iso-butyric acid, n-valeric acid, iso-valeric acid, It is preferable to use at least one compound selected from the group consisting of ethyl acetate and methyl propionate. Among them, tertiary butanol, methyl isobutyl ketone, acetic acid, propionic acid, n-butyric acid, iso-butyric acid, n-valeric acid and iso-valeric acid are more preferred. Further, in order to produce the α, β-unsaturated carboxylic acid with good selectivity, it is preferable to make water coexist with these organic solvents. The amount of coexisting water is not particularly limited, but is usually 2 to 70%, preferably 5 to 50% based on the total mass of the organic solvent and water. It is desirable that the mixture of the organic solvent and water is in a uniform state. However, in the case of an organic solvent having low compatibility with water, the mixture may be in a non-uniform state.

 反応の原料であるオレフィンあるいはα,β−不飽和アルデヒドの濃度は、反応器内に存在する溶媒に対して通常0.1〜20質量%、好ましくは0.5〜10質量%である。分子状酸素の量は、原料オレフィンあるいは原料α,β−不飽和アルデヒド1モルに対して通常0.1〜20モル、好ましくは0.3〜15モル、より好ましくは0.5〜10モルである。 濃度 The concentration of the olefin or α, β-unsaturated aldehyde as a raw material for the reaction is usually 0.1 to 20% by mass, preferably 0.5 to 10% by mass, based on the solvent present in the reactor. The amount of molecular oxygen is usually from 0.1 to 20 mol, preferably from 0.3 to 15 mol, more preferably from 0.5 to 10 mol, per mol of the starting olefin or the starting α, β-unsaturated aldehyde. is there.

 触媒の使用量は、反応器内に存在する溶媒に対して通常0.1〜30質量%であり、0.5〜20質量%がより好ましく、1〜15質量%がさらに好ましい。 The amount of the catalyst used is usually 0.1 to 30% by mass, preferably 0.5 to 20% by mass, and more preferably 1 to 15% by mass, based on the solvent present in the reactor.

 反応温度および反応圧力は、用いる溶媒および反応原料によって適宜選択される。反応温度は一般的に30〜200℃であり、好ましくは50〜150℃である。また、反応圧力は一般的に大気圧〜10MPaであり、好ましくは0.5〜5MPaである。 The reaction temperature and the reaction pressure are appropriately selected depending on the solvent and the reaction raw materials used. The reaction temperature is generally from 30 to 200C, preferably from 50 to 150C. The reaction pressure is generally from atmospheric pressure to 10 MPa, preferably from 0.5 to 5 MPa.

 以下、本発明について実施例、比較例を挙げて更に具体的に説明するが、本発明は実施例に限定されるものではない。下記の実施例および比較例中の「部」は質量部であり、原料および生成物の分析はガスクロマトグラフィーを用いて行った。なお、オレフィンまたはα,β−不飽和アルデヒドの反応率、生成するα,β−不飽和アルデヒドの選択率、生成するポリマーおよびオリゴマーの選択率、生成するα,β−不飽和カルボン酸の選択率および収率は以下のように定義される。 Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples, but the present invention is not limited to the examples. "Parts" in the following Examples and Comparative Examples are parts by mass, and the analysis of the raw materials and products was performed using gas chromatography. The reaction rate of the olefin or the α, β-unsaturated aldehyde, the selectivity of the formed α, β-unsaturated aldehyde, the selectivity of the formed polymer and oligomer, and the selectivity of the formed α, β-unsaturated carboxylic acid And yield are defined as follows:

 オレフィンあるいはα,β−不飽和アルデヒドの反応率(%)
                    =(B/A)×100
 α,β−不飽和アルデヒドの選択率(%)=(C/B)×100
 α,β−不飽和カルボン酸の選択率(%)=(D/B)×100
 ポリマーおよびオリゴマーの選択率(%)=(E/B)×100
 α,β−不飽和カルボン酸の収率(%) =(D/A)×100
 ここで、Aは供給したオレフィンあるいはα,β−不飽和アルデヒドのモル数、Bは反応したオレフィンあるいはα,β−不飽和アルデヒドのモル数、Cは生成したα,β−不飽和アルデヒドのモル数、Dは生成したα,β−不飽和カルボン酸のモル数、Eはポリマーおよびオリゴマーの総質量(単位:g)を供給したオレフィンあるいはα,β−不飽和アルデヒドの分子量で除して算出したオレフィンあるいはα,β−不飽和アルデヒド換算のポリマーおよびオリゴマーのモル数である。
Reaction rate of olefin or α, β-unsaturated aldehyde (%)
= (B / A) × 100
Selectivity of α, β-unsaturated aldehyde (%) = (C / B) × 100
Selectivity (%) of α, β-unsaturated carboxylic acid = (D / B) × 100
Selectivity (%) of polymer and oligomer = (E / B) × 100
α, β-unsaturated carboxylic acid yield (%) = (D / A) × 100
Here, A is the number of moles of the supplied olefin or α, β-unsaturated aldehyde, B is the number of moles of the reacted olefin or α, β-unsaturated aldehyde, and C is the mole of the generated α, β-unsaturated aldehyde. Number, D is the number of moles of the formed α, β-unsaturated carboxylic acid, and E is calculated by dividing the total mass (unit: g) of the polymer and oligomer by the molecular weight of the supplied olefin or α, β-unsaturated aldehyde. Of olefins or polymers and oligomers in terms of α, β-unsaturated aldehyde.

 また、検出された他の生成物の選択率(%)=100×{1−(C/B)−(D/B)−(E/B)}である。ここで、α,β−不飽和アルデヒド酸化反応の場合には、C/B=0である。 {Selectivity (%) of other detected products = 100 × {1− (C / B) − (D / B) − (E / B)}. Here, in the case of the α, β-unsaturated aldehyde oxidation reaction, C / B = 0.

 [実施例1]
(触媒調製)
 滴下漏斗、冷却管および温度計を備えた三口丸底フラスコに触媒担体となる活性炭粉末(表面積3081m/g)24.0部を入れ、エタノール103.9部と純水400部を加えてマグネチックスターラーで攪拌しながら85℃で30分間還流した後、氷浴を用いて20℃まで冷却した。
[Example 1]
(Catalyst preparation)
In a three-necked round-bottom flask equipped with a dropping funnel, a condenser and a thermometer, 24.0 parts of activated carbon powder (surface area: 3081 m 2 / g) serving as a catalyst carrier were added, and 103.9 parts of ethanol and 400 parts of pure water were added thereto, followed by magnetism. After refluxing at 85 ° C. for 30 minutes while stirring with a tick stirrer, the mixture was cooled to 20 ° C. using an ice bath.

 塩化パラジウム2.0部を1M塩酸23.7部に加熱溶解した後、30%過酸化水素水25.6部と純水100部を加え、得られた塩化パラジウム溶液を滴下漏斗に仕込んだ。フラスコ内を攪拌しながら塩化パラジウム溶液を20℃において15分かけて滴下し、そのまま20℃で1時間攪拌を続けた。 2.0 After 2.0 parts of palladium chloride was dissolved in 23.7 parts of 1M hydrochloric acid by heating, 25.6 parts of 30% hydrogen peroxide solution and 100 parts of pure water were added, and the obtained palladium chloride solution was charged into a dropping funnel. While stirring the inside of the flask, a palladium chloride solution was added dropwise at 20 ° C. over 15 minutes, and stirring was continued at 20 ° C. for 1 hour.

 ヒドラジン1水和物11.3部を純水100部に溶解し、得られたヒドラジン水溶液を滴下漏斗に仕込んだ。フラスコ内を攪拌しながらヒドラジン水溶液を20℃において10分かけて滴下し、そのまま20℃で1時間攪拌を続けた。 1111.3 parts of hydrazine monohydrate was dissolved in 100 parts of pure water, and the obtained hydrazine aqueous solution was charged into a dropping funnel. While stirring the inside of the flask, an aqueous hydrazine solution was added dropwise at 20 ° C. over 10 minutes, and stirring was continued at 20 ° C. for 1 hour.

 その後、攪拌を止め、吸引ろ過により黒色沈殿をろ別した。この際、ろ液に少量のヒドラジン1水和物を添加し、パラジウムの析出がないことを確認した。ろ別した粉末状の黒色沈殿は、塩化銀が出なくなるまで温水で洗浄した。なお、塩化銀の有無は洗浄後のろ液に少量の硝酸銀を添加して、塩化銀の白色沈殿あるいは白濁の有無により確認した。 Thereafter, the stirring was stopped, and a black precipitate was separated by suction filtration. At this time, a small amount of hydrazine monohydrate was added to the filtrate, and it was confirmed that palladium did not precipitate. The powdery black precipitate that had been filtered off was washed with warm water until no silver chloride appeared. In addition, the presence or absence of silver chloride was confirmed by adding a small amount of silver nitrate to the filtrate after washing and by the presence or absence of white precipitation or cloudiness of silver chloride.

 洗浄した沈殿は100℃で1晩乾燥した。得られた乾燥粉を水素気流下にて200℃で3時間熱処理し、パラジウム担持触媒を得た。この触媒のパラジウム担持率は5質量%であった。 The washed precipitate was dried at 100 ° C overnight. The obtained dried powder was heat-treated at 200 ° C. for 3 hours under a hydrogen stream to obtain a palladium-supported catalyst. The palladium loading of this catalyst was 5% by mass.

(反応評価)
 オートクレーブに反応溶媒として75%ターシャリーブタノール水溶液120部を入れ、上記の触媒10.0部と原料としてメタクロレイン1.7部を添加してオートクレーブを密閉した。次いで、攪拌を開始し、90℃まで昇温した。オートクレーブに窒素を内圧1.0MPaまで導入した後、空気を内圧3.5MPaまで導入した。この状態で40分間メタクロレインの酸化反応を行った。反応中は反応器内の圧力変化挙動を追跡した。
(Reaction evaluation)
120 parts of a 75% tertiary-butanol aqueous solution was added as a reaction solvent to the autoclave, 10.0 parts of the above catalyst and 1.7 parts of methacrolein as a raw material were added, and the autoclave was sealed. Next, stirring was started and the temperature was raised to 90 ° C. After introducing nitrogen into the autoclave to an internal pressure of 1.0 MPa, air was introduced to an internal pressure of 3.5 MPa. In this state, an oxidation reaction of methacrolein was performed for 40 minutes. During the reaction, the pressure change behavior in the reactor was tracked.

 反応終了後、氷浴でオートクレーブ内を20℃まで冷却した。オートクレーブのガス出口にガス捕集袋を取り付け、ガス出口を開栓して出てくるガスを回収しながら反応器内の圧力を開放した。オートクレーブから触媒入りの反応液を取り出し、遠心分離により触媒を分離して、反応液だけを回収した。回収した反応液と捕集したガスはガスクロマトグラフィーにより分析した。 終了 After the reaction was completed, the inside of the autoclave was cooled to 20 ° C in an ice bath. A gas collection bag was attached to the gas outlet of the autoclave, and the pressure in the reactor was released while opening the gas outlet and collecting the coming out gas. The reaction solution containing the catalyst was taken out of the autoclave, the catalyst was separated by centrifugation, and only the reaction solution was recovered. The collected reaction solution and the collected gas were analyzed by gas chromatography.

 この結果、メタクロレイン反応率77.2%、メタクリル酸選択率69.5%、ポリマー・オリゴマー選択率20.3%およびメタクリル酸収率53.7%であった。 As a result, the methacrolein conversion was 77.2%, the methacrylic acid selectivity was 69.5%, the polymer / oligomer selectivity was 20.3%, and the methacrylic acid yield was 53.7%.

 [実施例2]
 触媒担体に表面積3230m/gの活性炭粉末を使用し、メタクロレインの酸化反応で窒素を導入せずに空気だけを内圧3.5MPaまで導入して行ったこと以外は、実施例1と同様にして触媒調製および反応評価を行った。この結果、メタクロレイン反応率77.7%、メタクリル酸選択率68.1%、ポリマー・オリゴマー選択率23.2%およびメタクリル酸収率52.9%であった。
[Example 2]
The same procedure as in Example 1 was carried out except that activated carbon powder having a surface area of 3230 m 2 / g was used as the catalyst carrier and only air was introduced up to an internal pressure of 3.5 MPa without introducing nitrogen in the oxidation reaction of methacrolein. The catalyst was prepared and the reaction was evaluated. As a result, the conversion of methacrolein was 77.7%, the selectivity of methacrylic acid was 68.1%, the selectivity of polymer / oligomer was 23.2%, and the yield of methacrylic acid was 52.9%.

 [実施例3]
 触媒調製における水素気流下の熱処理時間を1時間とし、メタクロレインの酸化反応の反応溶媒として70%酢酸水溶液120部用いたこと以外は、実施例2と同様にして触媒調製および反応評価を行った。この結果、メタクロレイン反応率79.7%、メタクリル酸選択率69.3%、ポリマー・オリゴマー選択率24.3%およびメタクリル酸収率55.2%であった。
[Example 3]
Catalyst preparation and reaction evaluation were performed in the same manner as in Example 2 except that the heat treatment time under a hydrogen stream in the catalyst preparation was set to 1 hour, and 120 parts of a 70% aqueous acetic acid solution was used as a reaction solvent for the oxidation reaction of methacrolein. . As a result, the methacrolein conversion was 79.7%, the methacrylic acid selectivity was 69.3%, the polymer / oligomer selectivity was 24.3%, and the methacrylic acid yield was 55.2%.

 [実施例4]
 洗浄後の沈殿を水素還元する代わりに、70%酢酸水溶液75部に分散し、オートクレーブ中で0.5MPaのプロピレン加圧下にて50℃で1時間熱処理し、ろ別したものを触媒とした以外は実施例2と同様にして触媒を調製した。この触媒を用いて、実施例3と同様の条件で反応評価を行った。この結果、メタクロレイン反応率65.2%、メタクリル酸選択率73.0%、ポリマー・オリゴマー選択率22.3%およびメタクリル酸収率47.6%であった。
[Example 4]
Instead of hydrogen-reducing the precipitate after washing, the precipitate was dispersed in 75 parts of a 70% acetic acid aqueous solution, heat-treated in an autoclave under a propylene pressure of 0.5 MPa at 50 ° C. for 1 hour, and filtered to obtain a catalyst. A catalyst was prepared in the same manner as in Example 2. Using this catalyst, a reaction was evaluated under the same conditions as in Example 3. As a result, the conversion of methacrolein was 65.2%, the selectivity of methacrylic acid was 73.0%, the selectivity of polymer / oligomer was 22.3%, and the yield of methacrylic acid was 47.6%.

 [実施例5]
 滴下漏斗、冷却管および温度計を備えた三口丸底フラスコに触媒担体となる球状活性炭(表面積930m/g)12.0部を入れ、エタノール31.2部と純水150部を加えてマグネチックスターラーで攪拌しながら85℃で30分間還流した後、氷浴を用いて40℃まで冷却した。
[Example 5]
In a three-necked round-bottom flask equipped with a dropping funnel, a condenser, and a thermometer, 12.0 parts of spherical activated carbon (surface area: 930 m 2 / g) serving as a catalyst carrier was added, and 31.2 parts of ethanol and 150 parts of pure water were added thereto to form a magnet. After refluxing at 85 ° C for 30 minutes while stirring with a tick stirrer, the mixture was cooled to 40 ° C using an ice bath.

 塩化パラジウム2.0部を1M塩酸14.2部に加熱溶解した後、30%過酸化水素水15.3部と純水50部を加え、得られた塩化パラジウム溶液を滴下漏斗に仕込んだ。フラスコ内を攪拌しながら塩化パラジウム溶液を40℃において15分かけて滴下し、そのまま40℃で1時間攪拌を続けた。 2.0 After 2.0 parts of palladium chloride was dissolved in 14.2 parts of 1M hydrochloric acid by heating, 15.3 parts of 30% hydrogen peroxide solution and 50 parts of pure water were added, and the obtained palladium chloride solution was charged into a dropping funnel. A palladium chloride solution was added dropwise at 40 ° C. over 15 minutes while stirring the flask, and stirring was continued at 40 ° C. for 1 hour.

 ホルマリン3.4部を純水50部に溶解し、得られたホルマリン水溶液を滴下漏斗に仕込んだ。フラスコ内を攪拌しながらホルマリン水溶液を40℃において10分かけて滴下した後、水酸化ナトリウム0.5部を純水50部に溶解した溶液を同様に滴下し、そのまま40℃で1時間攪拌を続けた。 3.4 parts of formalin was dissolved in 50 parts of pure water, and the obtained aqueous solution of formalin was charged into a dropping funnel. An aqueous formalin solution was added dropwise at 40 ° C. over 10 minutes while stirring the inside of the flask, then a solution of 0.5 part of sodium hydroxide dissolved in 50 parts of pure water was similarly added dropwise, and the mixture was stirred at 40 ° C. for 1 hour. Continued.

 その後、攪拌を止め、吸引ろ過により黒色沈殿をろ別した。この際、ろ液に少量のヒドラジン1水和物を添加し、パラジウムの析出がないことを確認した。ろ別した粉末状の黒色沈殿は、塩化銀が出なくなるまで温水で洗浄した。 Thereafter, the stirring was stopped, and a black precipitate was separated by suction filtration. At this time, a small amount of hydrazine monohydrate was added to the filtrate, and it was confirmed that palladium did not precipitate. The powdery black precipitate that had been filtered off was washed with warm water until no silver chloride appeared.

 洗浄した沈殿は100℃で1晩乾燥した。得られた乾燥粉を水素気流下にて200℃で1時間熱処理し、パラジウム担持触媒を得た。この触媒のパラジウム担持率は10質量%であった。 The washed precipitate was dried at 100 ° C overnight. The obtained dry powder was heat-treated at 200 ° C. for 1 hour under a hydrogen stream to obtain a palladium-supported catalyst. The palladium loading of this catalyst was 10% by mass.

 実施例1と同様にして反応評価を行った結果、メタクロレイン反応率35.6%、メタクリル酸選択率68.1%、ポリマー・オリゴマー選択率23.8%およびメタクリル酸収率24.3%であった。 The reaction was evaluated in the same manner as in Example 1. As a result, the methacrolein conversion was 35.6%, the methacrylic acid selectivity was 68.1%, the polymer / oligomer selectivity was 23.8%, and the methacrylic acid yield was 24.3%. Met.

 [実施例6]
 反応評価に使用した触媒の量を2.0部に変えた以外は実施例1と同様にして反応評価を行った。この結果、メタクロレイン反応率45.7%、メタクリル酸選択率72.0%、ポリマー・オリゴマー選択率18.9%およびメタクリル酸収率32.9%であった。
[Example 6]
The reaction was evaluated in the same manner as in Example 1, except that the amount of the catalyst used for the reaction evaluation was changed to 2.0 parts. As a result, the conversion of methacrolein was 45.7%, the selectivity of methacrylic acid was 72.0%, the selectivity of polymer / oligomer was 18.9%, and the yield of methacrylic acid was 32.9%.

 [実施例7]
 オートクレーブに反応溶媒として75%ターシャリーブタノール水溶液120部を入れ、実施例1で調製した触媒10.0部を添加してオートクレーブを密閉し、液化イソブチレン6.6部をオートクレーブに導入した。次いで、攪拌を開始し、90℃まで昇温した。オートクレーブに空気を3.5MPaまで導入し、この状態で40分間イソブチレンの酸化反応を行った。反応中は反応器内の圧力変化挙動を追跡した。
[Example 7]
The autoclave was charged with 120 parts of a 75% tertiary-butanol aqueous solution as a reaction solvent, 10.0 parts of the catalyst prepared in Example 1 was added, the autoclave was sealed, and 6.6 parts of liquefied isobutylene was introduced into the autoclave. Next, stirring was started and the temperature was raised to 90 ° C. Air was introduced into the autoclave up to 3.5 MPa, and isobutylene oxidation reaction was performed for 40 minutes in this state. During the reaction, the pressure change behavior in the reactor was tracked.

 反応終了後、氷浴でオートクレーブ内を20℃まで冷却した。オートクレーブのガス出口にガス捕集袋を取り付け、ガス出口を開栓して出てくるガスを回収しながら反応器内の圧力を開放した。オートクレーブから触媒入りの反応液を取り出し、遠心分離により触媒を分離して、反応液だけを回収した。回収した反応液と捕集したガスはガスクロマトグラフィーにより分析した。 終了 After the reaction was completed, the inside of the autoclave was cooled to 20 ° C in an ice bath. A gas collection bag was attached to the gas outlet of the autoclave, and the pressure in the reactor was released while opening the gas outlet and collecting the coming out gas. The reaction solution containing the catalyst was taken out of the autoclave, the catalyst was separated by centrifugation, and only the reaction solution was recovered. The collected reaction solution and the collected gas were analyzed by gas chromatography.

 この結果、イソブチレン反応率38.2%、メタクロレイン選択率61.9%、メタクリル酸選択率13.7%、ポリマー・オリゴマー選択率14.5%およびメタクリル酸収率5.2%であった。 As a result, the conversion of isobutylene was 38.2%, the selectivity of methacrolein was 61.9%, the selectivity of methacrylic acid was 13.7%, the selectivity of polymer / oligomer was 14.5%, and the yield of methacrylic acid was 5.2%. .

 [比較例1]
 塩化パラジウム溶液を60℃で滴下し、60℃で攪拌を続け、ヒドラジン1水和物溶液を60℃で滴下し、60℃で攪拌を続けたこと以外は実施例5と同様にして触媒調製を行った。このようにして得られた触媒を用いて実施例1と同様にして反応評価を行った。この結果、メタクロレイン反応率12.6%、メタクリル酸選択率6.9%、ポリマー・オリゴマー選択率90.7%およびメタクリル酸収率0.9%であった。
[Comparative Example 1]
A catalyst was prepared in the same manner as in Example 5 except that a palladium chloride solution was added dropwise at 60 ° C and stirring was continued at 60 ° C, and a hydrazine monohydrate solution was added dropwise at 60 ° C and stirring was continued at 60 ° C. went. The reaction evaluation was performed in the same manner as in Example 1 using the catalyst thus obtained. As a result, the methacrolein conversion was 12.6%, the methacrylic acid selectivity was 6.9%, the polymer / oligomer selectivity was 90.7%, and the methacrylic acid yield was 0.9%.

 [比較例2]
 洗浄後の沈殿を水素還元する代わりに、70%酢酸水溶液75部に分散し、オートクレーブ中で0.5MPaのプロピレン加圧下にて80℃で1時間熱処理し、ろ別したものを触媒とした以外は比較例1と同様にして触媒を調製した。この触媒を用いて、実施例3と同様の条件で反応評価を行った。この結果、メタクロレイン反応率39.1%、メタクリル酸選択率17.0%、ポリマー・オリゴマー選択率76.9%およびメタクリル酸収率6.7%であった。
[Comparative Example 2]
Instead of hydrogen reducing the precipitate after washing, the precipitate was dispersed in 75 parts of a 70% aqueous acetic acid solution, heat-treated at 80 ° C. for 1 hour under a propylene pressure of 0.5 MPa in an autoclave, and filtered to obtain a catalyst. A catalyst was prepared in the same manner as in Comparative Example 1. Using this catalyst, a reaction was evaluated under the same conditions as in Example 3. As a result, the conversion of methacrolein was 39.1%, the selectivity of methacrylic acid was 17.0%, the selectivity of polymer / oligomer was 76.9%, and the yield of methacrylic acid was 6.7%.

 [比較例3]
 比較例1での触媒を用いた以外は実施例7と同様にして反応評価を行った。この結果、イソブチレン反応率30.1%、メタクロレイン選択率28.0%、メタクリル酸選択率3.0%、ポリマー・オリゴマー選択率61.3%およびメタクリル酸収率0.9%であった。
[Comparative Example 3]
The reaction was evaluated in the same manner as in Example 7 except that the catalyst in Comparative Example 1 was used. As a result, the conversion of isobutylene was 30.1%, the selectivity of methacrolein was 28.0%, the selectivity of methacrylic acid was 3.0%, the selectivity of polymer / oligomer was 61.3%, and the yield of methacrylic acid was 0.9%. .

Claims (5)

 酸化状態のパラジウム原子を含む化合物を−5〜50℃で還元する工程を有するオレフィンまたはα,β−不飽和アルデヒドからα,β−不飽和カルボン酸を製造するためのパラジウム含有触媒の製造方法。 (4) A method for producing a palladium-containing catalyst for producing an α, β-unsaturated carboxylic acid from an olefin or an α, β-unsaturated aldehyde, comprising a step of reducing a compound containing a palladium atom in an oxidized state at −5 to 50 ° C.  酸化状態のパラジウム原子を含む化合物の還元に用いる還元剤が、エタノール、2−プロパノール、ヒドラジン、ホルマリン、水素化ホウ素ナトリウム、水素、エチレン、プロピレン、1−ブテン、2−ブテンおよびイソブチレンからなる群から選ばれる少なくとも1種の化合物であることを特徴とする請求項1記載のパラジウム含有触媒の製造方法。 A reducing agent used for reduction of a compound containing a palladium atom in an oxidized state is selected from the group consisting of ethanol, 2-propanol, hydrazine, formalin, sodium borohydride, hydrogen, ethylene, propylene, 1-butene, 2-butene and isobutylene. The method for producing a palladium-containing catalyst according to claim 1, which is at least one compound selected.  製造されるパラジウム含有触媒がパラジウム原子を含む化合物を還元して得られる還元物を担体に担持した担持触媒であることを特徴とする請求項1または2記載のパラジウム含有触媒の製造方法。 3. The method for producing a palladium-containing catalyst according to claim 1, wherein the produced palladium-containing catalyst is a supported catalyst in which a reduced product obtained by reducing a compound containing a palladium atom is supported on a carrier.  請求項1〜3記載の方法で製造されたオレフィンまたはα,β−不飽和アルデヒドからα,β−不飽和カルボン酸を製造するためのパラジウム含有触媒。 A palladium-containing catalyst for producing an α, β-unsaturated carboxylic acid from an olefin or an α, β-unsaturated aldehyde produced by the method according to claim 1.  請求項4記載の触媒を用いて、オレフィンまたはα,β−不飽和アルデヒドを分子状酸素により液相酸化するα,β−不飽和カルボン酸の製造方法。 A process for producing an α, β-unsaturated carboxylic acid, comprising subjecting an olefin or an α, β-unsaturated aldehyde to liquid phase oxidation with molecular oxygen using the catalyst according to claim 4.
JP2003337628A 2002-09-30 2003-09-29 Method of producing palladium-containing catalyst Pending JP2004141863A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003337628A JP2004141863A (en) 2002-09-30 2003-09-29 Method of producing palladium-containing catalyst

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002285943 2002-09-30
JP2003337628A JP2004141863A (en) 2002-09-30 2003-09-29 Method of producing palladium-containing catalyst

Publications (1)

Publication Number Publication Date
JP2004141863A true JP2004141863A (en) 2004-05-20

Family

ID=32473260

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003337628A Pending JP2004141863A (en) 2002-09-30 2003-09-29 Method of producing palladium-containing catalyst

Country Status (1)

Country Link
JP (1) JP2004141863A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006000814A (en) * 2004-06-21 2006-01-05 Mitsubishi Rayon Co Ltd Palladium-containing supported catalyst and its production method and production method for alpha, beta-unsaturated carboxylic acid using it
JP2006137729A (en) * 2004-11-15 2006-06-01 Mitsubishi Rayon Co Ltd METHOD FOR PRODUCING alpha,beta-UNSATURATED CARBOXYLIC ACID
JP2006167709A (en) * 2004-11-17 2006-06-29 Mitsubishi Rayon Co Ltd Method for manufacturing palladium-containing supported catalyst
JP2006219403A (en) * 2005-02-09 2006-08-24 Mitsubishi Rayon Co Ltd METHOD FOR PRODUCING alpha,beta-UNSATURATED CARBOXYLIC ACID
JP2006224022A (en) * 2005-02-18 2006-08-31 Mitsubishi Rayon Co Ltd NOBLE METAL CONTAINING CATALYST AND METHOD FOR MANUFACTURING alpha,beta-UNSATURATED CARBOXYLIC ACID USING THE SAME
JP2006265227A (en) * 2005-02-22 2006-10-05 Mitsubishi Rayon Co Ltd METHOD FOR PRODUCING alpha,beta-UNSATURATED ALDEHYDE AND/OR alpha,beta-UNSATURATED CARBOXYLIC ACID
JP2007090164A (en) * 2005-09-27 2007-04-12 Mitsubishi Rayon Co Ltd NOBLE METAL-CONTAINING CATALYST, ITS MANUFACTURING METHOD, AND MANUFACTURING METHOD OF alpha,beta-UNSATURATED CARBOXYLIC ACID AND alpha,beta-UNSATURATED CARBOXYLIC ACID ANHYDRIDE USING THE SAME
JP2007136434A (en) * 2005-10-20 2007-06-07 Mitsubishi Rayon Co Ltd Palladium-containing catalyst, its manufacturing method and method for producing alpha, beta-unsaturated carboxylic acid
WO2007074804A1 (en) * 2005-12-27 2007-07-05 Mitsubishi Rayon Co., Ltd. Method for producing palladium-containing catalyst
JP2007203284A (en) * 2006-01-04 2007-08-16 Mitsubishi Rayon Co Ltd Palladium-supported catalyst and its manufacturing method
JP2007254873A (en) * 2006-03-24 2007-10-04 Sumitomo Electric Ind Ltd Method for producing fine metallic particle
JP2007277200A (en) * 2006-04-11 2007-10-25 Mitsubishi Rayon Co Ltd METHOD FOR PRODUCING alpha,beta-UNSATURATED CARBOXYLIC ACID
JP2007290976A (en) * 2006-04-21 2007-11-08 Mitsubishi Rayon Co Ltd METHOD FOR PRODUCING alpha,beta-UNSATURATED CARBOXYLIC ACID AND ACID ANHYDRIDE CONTAINING alpha,beta-UNSATURATED CARBOXYLIC ACID BACKBONE
CN101151097B (en) * 2005-02-18 2011-01-19 三菱丽阳株式会社 Palladium-containing catalyst, method for producing the same, and method for producing alpha,beta-unsaturated carboxylic acid
US8088945B2 (en) 2005-02-18 2012-01-03 Mitsubishi Rayon Co., Ltd. Palladium-containing catalyst, method for producing same, and method for producing α,β-unsaturated carboxylic acid
US8173838B2 (en) 2006-10-03 2012-05-08 Mitsubishi Rayon Co., Ltd. Method for producing at least one of α, β-unsaturated aldehyde and α, β-unsaturated carboxylic acid
JP2012116846A (en) * 2005-02-22 2012-06-21 Mitsubishi Rayon Co Ltd METHOD FOR PRODUCING α,β-UNSATURATED ALDEHYDE AND/OR α,β-UNSATURATED CARBOXYLIC ACID

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006000814A (en) * 2004-06-21 2006-01-05 Mitsubishi Rayon Co Ltd Palladium-containing supported catalyst and its production method and production method for alpha, beta-unsaturated carboxylic acid using it
JP2006137729A (en) * 2004-11-15 2006-06-01 Mitsubishi Rayon Co Ltd METHOD FOR PRODUCING alpha,beta-UNSATURATED CARBOXYLIC ACID
JP2006167709A (en) * 2004-11-17 2006-06-29 Mitsubishi Rayon Co Ltd Method for manufacturing palladium-containing supported catalyst
US8088946B2 (en) 2004-11-17 2012-01-03 Mitsubishi Rayon Co., Ltd. Method for manufacturing palladium-containing catalyst
JP2006219403A (en) * 2005-02-09 2006-08-24 Mitsubishi Rayon Co Ltd METHOD FOR PRODUCING alpha,beta-UNSATURATED CARBOXYLIC ACID
JP4571872B2 (en) * 2005-02-18 2010-10-27 三菱レイヨン株式会社 Noble metal-containing catalyst and method for producing α, β-unsaturated carboxylic acid using the same
JP2006224022A (en) * 2005-02-18 2006-08-31 Mitsubishi Rayon Co Ltd NOBLE METAL CONTAINING CATALYST AND METHOD FOR MANUFACTURING alpha,beta-UNSATURATED CARBOXYLIC ACID USING THE SAME
US8389760B2 (en) 2005-02-18 2013-03-05 Mitsubishi Rayon Co., Ltd. Palladium-containing catalyst, method for producing same, and method for producing α, β-unsaturated carboxylic acid
US8088945B2 (en) 2005-02-18 2012-01-03 Mitsubishi Rayon Co., Ltd. Palladium-containing catalyst, method for producing same, and method for producing α,β-unsaturated carboxylic acid
CN101151097B (en) * 2005-02-18 2011-01-19 三菱丽阳株式会社 Palladium-containing catalyst, method for producing the same, and method for producing alpha,beta-unsaturated carboxylic acid
JP2006265227A (en) * 2005-02-22 2006-10-05 Mitsubishi Rayon Co Ltd METHOD FOR PRODUCING alpha,beta-UNSATURATED ALDEHYDE AND/OR alpha,beta-UNSATURATED CARBOXYLIC ACID
JP2012116846A (en) * 2005-02-22 2012-06-21 Mitsubishi Rayon Co Ltd METHOD FOR PRODUCING α,β-UNSATURATED ALDEHYDE AND/OR α,β-UNSATURATED CARBOXYLIC ACID
JP2007090164A (en) * 2005-09-27 2007-04-12 Mitsubishi Rayon Co Ltd NOBLE METAL-CONTAINING CATALYST, ITS MANUFACTURING METHOD, AND MANUFACTURING METHOD OF alpha,beta-UNSATURATED CARBOXYLIC ACID AND alpha,beta-UNSATURATED CARBOXYLIC ACID ANHYDRIDE USING THE SAME
JP4728761B2 (en) * 2005-09-27 2011-07-20 三菱レイヨン株式会社 Method for producing supported catalyst containing palladium and tellurium, and method for producing α, β-unsaturated carboxylic acid and α, β-unsaturated carboxylic acid anhydride
JP2007136434A (en) * 2005-10-20 2007-06-07 Mitsubishi Rayon Co Ltd Palladium-containing catalyst, its manufacturing method and method for producing alpha, beta-unsaturated carboxylic acid
US7994091B2 (en) 2005-12-27 2011-08-09 Mitsubishi Rayon Co., Ltd. Method for producing palladium-containing catalyst
WO2007074804A1 (en) * 2005-12-27 2007-07-05 Mitsubishi Rayon Co., Ltd. Method for producing palladium-containing catalyst
JP5049118B2 (en) * 2005-12-27 2012-10-17 三菱レイヨン株式会社 Method for producing palladium-containing catalyst
JP2007203284A (en) * 2006-01-04 2007-08-16 Mitsubishi Rayon Co Ltd Palladium-supported catalyst and its manufacturing method
JP2007254873A (en) * 2006-03-24 2007-10-04 Sumitomo Electric Ind Ltd Method for producing fine metallic particle
JP2007277200A (en) * 2006-04-11 2007-10-25 Mitsubishi Rayon Co Ltd METHOD FOR PRODUCING alpha,beta-UNSATURATED CARBOXYLIC ACID
JP2007290976A (en) * 2006-04-21 2007-11-08 Mitsubishi Rayon Co Ltd METHOD FOR PRODUCING alpha,beta-UNSATURATED CARBOXYLIC ACID AND ACID ANHYDRIDE CONTAINING alpha,beta-UNSATURATED CARBOXYLIC ACID BACKBONE
US8173838B2 (en) 2006-10-03 2012-05-08 Mitsubishi Rayon Co., Ltd. Method for producing at least one of α, β-unsaturated aldehyde and α, β-unsaturated carboxylic acid
KR101323528B1 (en) * 2006-10-03 2013-10-29 미츠비시 레이온 가부시키가이샤 METHOD OF PRODUCING α,β-UNSATURATED ALDEHYDE AND/OR α,β-UNSATURATED CARBOXYLIC ACID

Similar Documents

Publication Publication Date Title
JP4846576B2 (en) Palladium-containing catalyst and method for producing the same
JP2004141863A (en) Method of producing palladium-containing catalyst
WO2004037410A1 (en) CARBON INTERSTICED METALLIC PALLADIUM, PALLADIUM CATALYST AND METHOD FOR PREPARATION THEREOF, AND METHOD FOR PRODUCING α,β-UNSATURATED CARBOXYLIC ACID
WO2005080307A1 (en) PROCESS FOR PRODUCING α,β-UNSATURATED CARBOXYLIC ACID
JP5001543B2 (en) Method for producing palladium-containing supported catalyst
JP2007203284A (en) Palladium-supported catalyst and its manufacturing method
JP3884695B2 (en) Catalyst for production of α, β-unsaturated carboxylic acid
JP4571872B2 (en) Noble metal-containing catalyst and method for producing α, β-unsaturated carboxylic acid using the same
JP4069242B2 (en) Metal particle carrier and method for producing carboxylic acid ester
JP2005218953A (en) PALLADIUM-CONTAINING CATALYST, MANUFACTURING METHOD THEREFOR AND METHOD FOR PRODUCING alpha, beta-UNSATURATED CARBOXYLIC ACID
JP4446807B2 (en) Palladium-containing catalyst and method for producing the same, and method for producing α, β-unsaturated aldehyde and α, β-unsaturated carboxylic acid
JP4829730B2 (en) Method for producing palladium-containing supported catalyst
JP5049118B2 (en) Method for producing palladium-containing catalyst
WO2008041325A1 (en) METHOD OF PRODUCING α,β-UNSATURATED ALDEHYDE AND/OR α,β-UNSATURATED CARBOXYLIC ACID
JP2007044607A (en) Noble metal-containing catalyst and method for producing alpha,beta-unsaturated carboxylic acid and alpha,beta-unsaturated carboxylic acid anhydride by using the same
JP2011235215A (en) METHOD FOR PRODUCING PALLADIUM-CONTAINING CARRYING CATALYST, THE CATALYST, AND METHOD FOR PRODUCING α,β-UNSATURATED CARBOXYLIC ACID
JP4507247B2 (en) Catalyst for production of α, β-unsaturated aldehyde and / or α, β-unsaturated carboxylic acid, production method thereof and use thereof
JP5069412B2 (en) Palladium-containing catalyst, method for producing the same, and method for producing α, β-unsaturated carboxylic acid
JP2008212818A (en) Method of manufacturing palladium-containing supported catalyst
JP5609394B2 (en) Method for producing palladium-containing supported catalyst and method for producing α, β-unsaturated carboxylic acid
JP2005324084A (en) METHOD FOR PRODUCING PALLADIUM-CONTAINING CATALYST, PALLADIUM-CONTAINING CATALYST, AND METHOD FOR PRODUCING alpha,beta-UNSATURATED CARBOXYLIC ACID
JP2005125306A (en) CATALYST FOR PRODUCTION OF alpha,beta-UNSATURATED CARBOXYLIC ACID, PRODUCTION METHOD THEREOF AND PRODUCTION METHOD FOR alpha,beta-UNSATURATED CARBOXYLIC ACID
JP4522841B2 (en) Noble metal-containing supported catalyst and method for producing α, β-unsaturated carboxylic acid using the same
JP5006175B2 (en) Palladium-containing supported catalyst, method for producing the same, and method for producing α, β-unsaturated carboxylic acid
JP2008284440A (en) PALLADIUM-CONTAINING/CARRYING CATALYST AND alpha,beta-UNSATURATED CARBOXYLIC ACID PREPARING METHOD

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060913

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090528

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091008