JP2004141741A - Method for cleaning waste water containing metallic component - Google Patents

Method for cleaning waste water containing metallic component Download PDF

Info

Publication number
JP2004141741A
JP2004141741A JP2002308042A JP2002308042A JP2004141741A JP 2004141741 A JP2004141741 A JP 2004141741A JP 2002308042 A JP2002308042 A JP 2002308042A JP 2002308042 A JP2002308042 A JP 2002308042A JP 2004141741 A JP2004141741 A JP 2004141741A
Authority
JP
Japan
Prior art keywords
iron
waste water
wastewater
metal
surfactant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002308042A
Other languages
Japanese (ja)
Inventor
Noboru Nakada
中田 暢
Hiroshi Horiuchi
堀内 裕志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Frontier Co Ltd
Original Assignee
Teijin Fibers Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Fibers Ltd filed Critical Teijin Fibers Ltd
Priority to JP2002308042A priority Critical patent/JP2004141741A/en
Publication of JP2004141741A publication Critical patent/JP2004141741A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Physical Water Treatments (AREA)
  • Removal Of Specific Substances (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Manufacture Of Iron (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for removing iron and metallic components other than iron efficiently from waste water containing these metallic components. <P>SOLUTION: The waste water containing the iron and the metallic components other than the iron is cleaned by adjusting the pH of the waste water to precipitate the metallic components other than the iron by the coprecipitation action of the iron contained in the waste water, adding a surfactant to the metallic component-precipitated waste water and collecting the metals precipitated and/or dissolved in the waste water on the bubbles formed by bubbling the waste water with a gas. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、鉄と鉄以外の金属成分とを含有する排水の浄化方法に関し、さらに詳しくは、鉄と鉄以外の金属成分とを含んだ排水からこれら金属成分を除去する方法に関する。
【0002】
【従来の技術】
従来、製鉄所や鋼鈑処理場等において鉄を大量に処理する際には、大量の冷却水、表面処理水等が発生し、これらの排水中には多量の鉄の他に、亜鉛、カドミウム、錫、ニッケル、アルミニウム、銅等が含有されており、排水の放出あるいは再使用に際しては、これらの溶存金属を充分に除去することが要求されている。
【0003】
上記溶存金属の従来の除去方法としては、金属含有排水を反応槽に導き、沈澱槽で沈降分離したスラッジの一部にアルカリ剤を加えてアルカリスラッジとし、該アルカリスラッジを上記反応槽に導き、pHをアルカリ性に調整して、溶存金属を水酸化物として析出させ、該析出した水酸化物を凝集剤で凝集させ、凝集フロックを沈澱槽で沈降分離する方法が行われている(特許文献1参照。)。
【0004】
しかし、該方法では排水中の金属濃度を低濃度になるようにするまで処理するためにはpHを高アルカリにする必要があること、また低濃度になるようにするまで処理するためには、多量の薬剤が必要となり、必然的に生じる廃棄物も多量になり、大規模な沈降槽が必要となるなど、廃棄物の処理が問題となる。
【0005】
一方、他の排水処理方法として、活性炭、イオン交換樹脂などによってイオン状態のまま吸着除去する吸着法が存在する(特許文献2参照。)。活性炭を用いれば、比較的安価に高度処理できること、イオン交換樹脂を用いれば溶離することによって有価物質の回収ができることといった利点がある。しかし、金属を吸着した液相活性炭は精製が困難であり、排水処理量が多くなると廃棄物が大量に発生する問題点がある。また、イオン交換樹脂は高価であるため、吸着物質を溶離することで、繰り返し利用することが前提となるが、溶離時に発生する再生廃液の処理が必要であり、イオン交換樹脂のコスト、再生剤の使用などを総合すると処理費用は高くなり、大規模な排水処理には適さない。
【0006】
【特許文献1】
特開平11−221575号公報
【0007】
【特許文献2】
特開平8−168798号公報
【0008】
【発明が解決しようとする課題】
本発明は、上記のような従来技術の課題を背景になされたもので、その目的は、鉄と鉄以外の金属成分とを含んだ排水からこれら金属成分を効率的に除去する方法を提供することにある。
【0009】
【課題を解決するための手段】
本発明者らは、上記従来技術に鑑み、鋭意検討を重ねた結果、本発明を完成するに至った。
【0010】
即ち、本発明の目的は、
鉄および鉄以外の金属成分を含有する排水の浄化方法であって、該排水を下記工程(a)〜(b)を逐次的に通過させて排水中の金属を除去することを特徴とする、金属成分を含有する排水の浄化方法により達成される。
(a)鉄および鉄以外の金属成分を含有する排水に、アルカリ剤を添加して、該排水のpHを3.0以上となるように調整し、鉄沈殿を生じさせるとともに鉄以外の金属成分を共沈させる工程。
(b)工程(a)通過後の排水に界面活性剤を添加し、起泡させ、発生した泡に鉄および共沈した金属成分の沈殿及び/または排水中に溶解している金属成分を捕集する工程。
【0011】
【発明の実施の形態】
本発明において浄化対象とする排水は鉄と鉄以外の金属成分とを含有する排水である。ここで、鉄以外の金属成分としては、カドミウム、銅、アルミニウム、カルシウム、カリウム、アンチモンを挙げることができる。
【0012】
以下、本発明について図面を以って詳細に説明するが、本発明はこれにより何ら限定を受けるものでは無い。
【0013】
図1は、本発明を実施するための一態様を模式的に表した概略図である。処理対象となる金属含有排水は経路(図中3)を経て、pH調整装置(図中1)に送られる。該装置では、水酸化ナトリウムまたは水酸化カリウムなどのアルカリ剤(図中A)を添加し、液のpHを3.0以上、好ましくは5〜9に調整する。これにより排水中に含まれる鉄の共沈効果を利用して、排水中の一部の金属成分も沈殿させる。
【0014】
鉄及び鉄以外の金属沈殿ならびに溶存金属を含む排水は経路(図中4)を経て、浮選装置(図中2)に送られる。該装置では界面活性剤(図中B)を添加し、気体(図中C)の封入により、排水中に気泡を発生させ、気泡に鉄及び鉄以外の沈殿ならびに溶存金属を吸着させ、経路(図中6)を通じて回収する。
【0015】
ここで、用いる界面活性剤としては、1分子鎖の中に親水基と疎水基とを併せ持つ有機化合物であればいずれも用いることができるが、対象とする金属成分によって、用いる界面活性剤を選択することが好ましい。
【0016】
なお、界面活性剤による金属の捕集は排水中に存在する金属と界面活性剤の有する電荷との静電的な相互作用によるものと考えることができ、例えば、鉄沈殿は正の電荷を有することから、オレイン酸ナトリウムのようなマイナスの電荷を有する界面活性剤を用いると効率よく捕集できる。
【0017】
また、排水中に溶解しているカドミニウムは、キレートを形成し易い金属であるため、例えば、アミノ基を有する界面活性剤を用いると、アミンの窒素の非共有電子対と金属が配位結合することにより界面活性剤に金属を捕集できる。
【0018】
なお、起泡させるために気体を用いる場合には、運転費用を抑制できることから、空気を用いることが好ましい。
【0019】
金属の種類、排水中の金属濃度、必要な除去率によって最適な界面活性剤濃度、通気流量、及び処理時間があり、これらは適宜設定すればよい。
【0020】
次いで、発生した泡は、オーバーフロー、掻取り、真空吸引などの方法を用いることで捕集可能であり、泡中には、鉄沈殿をはじめとする、排水中に含まれていた金属成分が含まれており、最終的に、浮選装置からの排水は、経路(図中5)を経由して排水する。
【0021】
【実施例】
下実施例により本発明の内容をさらに具体的に説明するが本発明はこれにより何等限定を受けるものではない。
【0022】
なお、実施例に示される排水中の金属濃度は、原子吸光光度計(株式会社日立製作所製、Z−8100)を用いて求めた。
【0023】
[実施例1]
金属含有排水(鉄1219ppm、カドミウム38ppm、銅40ppm、アルミニウム122ppm、カルシウム714ppm、カリウム7ppm、アンチモン8.2ppm)を処理対象水とした。
【0024】
容量50ミリリットルの反応槽に処理水25mlを入れ、5wt%水酸化ナトリウム水溶液を用いて処理水のpHを7.0に調整し、鉄沈殿を形成させた。
【0025】
このようにして得られた液に、界面活性剤として、オレイン酸ナトリウム(和光純薬工業株式会社製試薬特級)を0.01g、N−ヤシアルキル−1,3−ジアミノプロパン(和光純薬工業株式会社製試薬特級)を0.02g添加して、空気を20ミリリットル/分の流量で送気し、起泡させつつ、発生した泡を除去した。
【0026】
この送気を30分間行なった後の液中の金属濃度はそれぞれ、鉄0.1ppm、カドミウム0.1ppm、銅0.1ppm、アルミニウム25ppm、カルシウム445ppm、カリウム5ppm、アンチモン0.5ppmであった。
【0027】
[比較例1]
実施例1と同じ処理対象水を用い、容量50ミリリットルの反応槽に処理水25mlを入れ、5wt%水酸化ナトリウム水溶液を用いて処理水のpHを7.0に調整し、鉄沈殿を形成させた後に、定量ろ紙にて鉄沈殿を濾別した。
【0028】
濾別後の液中の金属濃度はそれぞれ、鉄2.3ppm、カドミウム6.6ppm、銅0.2ppm、アルミニウム94ppm、カルシウム538ppm、カリウム6ppm、アンチモン1ppmであった。
【0029】
上記の実施例、比較例から明らかな通り、本発明によれば、本発明の方法で得られる排水処理液は、従来方法である比較例に比べて、金属の除去率が優れていることが明らかである。
【0030】
【発明の効果】
本発明によれば、鉄と鉄以外の金属成分を含んだ排水から金属成分を効率よく、かつ大規模な装置を必要とせず、コンパクトな装置にて除去することが可能であり、その工業的意義は大である。
【図面の簡単な説明】
【図1】本発明を実施するための一態様を示したプロセスの概略図である。
【符号の説明】
1 pH調整装置
2 金属回収装置
3 経路
4 経路
5 経路
6 経路
A アルカリ
B 界面活性剤
C 空気
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for purifying wastewater containing iron and metal components other than iron, and more particularly, to a method for removing these metal components from wastewater containing iron and metal components other than iron.
[0002]
[Prior art]
Conventionally, when treating large amounts of iron in steel mills and steel plate processing plants, large amounts of cooling water and surface treatment water are generated, and in these wastewaters, in addition to a large amount of iron, zinc, cadmium, etc. , Tin, nickel, aluminum, copper, etc., and it is required to sufficiently remove these dissolved metals when discharging or reusing wastewater.
[0003]
As a conventional method for removing the dissolved metal, the metal-containing wastewater is led to a reaction tank, an alkali agent is added to a part of the sludge settled and separated in the settling tank to form an alkali sludge, and the alkali sludge is led to the reaction tank. There is a method in which the pH is adjusted to alkaline, the dissolved metal is precipitated as a hydroxide, the precipitated hydroxide is agglomerated with a flocculant, and the floc is flocculated and separated in a sedimentation tank (Patent Document 1). reference.).
[0004]
However, in this method, it is necessary to adjust the pH to a high alkali in order to treat the metal concentration in the wastewater to a low concentration, and in order to treat the metal concentration in the wastewater to a low concentration, A large amount of chemicals is required, the amount of inevitable waste is also large, and a large-scale sedimentation tank is required.
[0005]
On the other hand, as another wastewater treatment method, there is an adsorption method in which activated carbon, an ion-exchange resin, or the like adsorbs and removes the ionic state (see Patent Document 2). The use of activated carbon has the advantage that advanced treatment can be performed relatively inexpensively, and the use of ion-exchange resins can recover valuable substances by elution. However, it is difficult to purify the liquid-phase activated carbon on which the metal is adsorbed, and there is a problem that a large amount of waste is generated when a large amount of wastewater is treated. In addition, since the ion exchange resin is expensive, it is presumed that the adsorbed substance is repeatedly used by eluting the adsorbed substance. However, it is necessary to treat the regenerated waste liquid generated at the time of elution. The total cost of treatment is high when the use of wastewater is combined, and it is not suitable for large-scale wastewater treatment.
[0006]
[Patent Document 1]
JP-A-11-221575
[Patent Document 2]
JP-A-8-168798
[Problems to be solved by the invention]
The present invention has been made in view of the above-mentioned problems of the prior art, and an object of the present invention is to provide a method for efficiently removing these metal components from wastewater containing iron and metal components other than iron. It is in.
[0009]
[Means for Solving the Problems]
The present inventors have conducted intensive studies in view of the above-described conventional technology, and as a result, completed the present invention.
[0010]
That is, the object of the present invention is to
A method for purifying wastewater containing iron and metal components other than iron, wherein the wastewater is sequentially passed through the following steps (a) to (b) to remove metals in the wastewater. This is achieved by a method for purifying wastewater containing a metal component.
(A) To an effluent containing iron and a metal component other than iron, an alkaline agent is added to adjust the pH of the effluent to be 3.0 or more to cause iron precipitation and to produce a metal component other than iron. Coprecipitation.
(B) A surfactant is added to the waste water after the step (a), and the foam is foamed. The generated foam captures the precipitated iron and coprecipitated metal components and / or the metal components dissolved in the waste water. Gathering process.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
The wastewater to be purified in the present invention is wastewater containing iron and metal components other than iron. Here, examples of the metal component other than iron include cadmium, copper, aluminum, calcium, potassium, and antimony.
[0012]
Hereinafter, the present invention will be described in detail with reference to the drawings, but the present invention is not limited thereto.
[0013]
FIG. 1 is a schematic diagram schematically showing one embodiment for carrying out the present invention. The metal-containing wastewater to be treated is sent to a pH adjuster (1 in the figure) via a path (3 in the figure). In the apparatus, an alkaline agent such as sodium hydroxide or potassium hydroxide (A in the figure) is added, and the pH of the solution is adjusted to 3.0 or more, preferably 5 to 9. Thereby, a part of metal components in the wastewater is also precipitated by utilizing the coprecipitation effect of iron contained in the wastewater.
[0014]
Wastewater containing iron and metal precipitates other than iron and dissolved metals is sent to a flotation device (2 in the figure) via a path (4 in the figure). In this apparatus, a surfactant (B in the figure) is added, and gas (C in the figure) is sealed to generate air bubbles in the wastewater, and the air bubbles adsorb sediment other than iron and a dissolved metal, and the route ( Collected through 6) in the figure.
[0015]
Here, as the surfactant to be used, any organic compound having both a hydrophilic group and a hydrophobic group in one molecular chain can be used, and the surfactant to be used is selected depending on a target metal component. Is preferred.
[0016]
The collection of the metal by the surfactant can be considered to be due to the electrostatic interaction between the metal present in the wastewater and the charge of the surfactant, for example, iron precipitate has a positive charge Therefore, if a surfactant having a negative charge such as sodium oleate is used, collection can be performed efficiently.
[0017]
In addition, since cadmium dissolved in wastewater is a metal that easily forms a chelate, for example, when a surfactant having an amino group is used, a lone electron pair of amine nitrogen and a metal are coordinated and bonded. Thereby, the metal can be collected by the surfactant.
[0018]
In addition, when using a gas for foaming, it is preferable to use air because the operating cost can be suppressed.
[0019]
There are optimum surfactant concentration, aeration flow rate, and treatment time depending on the type of metal, metal concentration in wastewater, and required removal rate, and these may be appropriately set.
[0020]
Subsequently, the generated foam can be collected by using a method such as overflow, scraping, vacuum suction, and the like, and the foam contains metal components contained in the wastewater, including iron precipitates. Finally, the drainage from the flotation device is drained via a path (5 in the figure).
[0021]
【Example】
The contents of the present invention will be described more specifically with reference to the following examples, but the present invention is not limited by these examples.
[0022]
In addition, the metal concentration in the wastewater shown in the Examples was determined using an atomic absorption spectrophotometer (Z-8100, manufactured by Hitachi, Ltd.).
[0023]
[Example 1]
Metal-containing wastewater (1219 ppm of iron, 38 ppm of cadmium, 40 ppm of copper, 122 ppm of aluminum, 714 ppm of calcium, 7 ppm of potassium, 8.2 ppm of antimony) was used as the water to be treated.
[0024]
25 ml of treated water was placed in a reaction vessel having a capacity of 50 ml, and the pH of the treated water was adjusted to 7.0 using a 5 wt% aqueous sodium hydroxide solution to form an iron precipitate.
[0025]
To the liquid thus obtained, 0.01 g of sodium oleate (reagent grade, manufactured by Wako Pure Chemical Industries, Ltd.) and N-cocoalkyl-1,3-diaminopropane (Wako Pure Chemical Industries, Ltd.) were used as surfactants. 0.02 g of a reagent (manufactured by a company) was added, and air was blown at a flow rate of 20 ml / min to generate foam and remove generated foam.
[0026]
The metal concentrations in the liquid after this air supply was performed for 30 minutes were 0.1 ppm of iron, 0.1 ppm of cadmium, 0.1 ppm of copper, 25 ppm of aluminum, 445 ppm of calcium, 5 ppm of potassium, and 0.5 ppm of antimony.
[0027]
[Comparative Example 1]
Using the same water to be treated as in Example 1, 25 ml of the treated water was put into a reaction vessel having a capacity of 50 ml, and the pH of the treated water was adjusted to 7.0 with a 5 wt% sodium hydroxide aqueous solution to form an iron precipitate. After that, the iron precipitate was filtered off with a quantitative filter paper.
[0028]
The metal concentrations in the liquid after the filtration were 2.3 ppm for iron, 6.6 ppm for cadmium, 0.2 ppm for copper, 94 ppm for aluminum, 538 ppm for calcium, 6 ppm for potassium, and 1 ppm for antimony.
[0029]
As is clear from the above Examples and Comparative Examples, according to the present invention, the wastewater treatment liquid obtained by the method of the present invention has an excellent metal removal rate as compared with the conventional Comparative Example. it is obvious.
[0030]
【The invention's effect】
According to the present invention, it is possible to efficiently remove metal components from wastewater containing iron and metal components other than iron with a compact device without the need for a large-scale device, and the industrial The significance is great.
[Brief description of the drawings]
FIG. 1 is a schematic diagram of a process illustrating one embodiment for practicing the present invention.
[Explanation of symbols]
Reference Signs List 1 pH adjusting device 2 Metal recovery device 3 Route 4 Route 5 Route 6 Route A Alkaline B Surfactant C Air

Claims (2)

鉄および鉄以外の金属成分を含有する排水の浄化方法であって、該排水を下記工程(a)〜(b)を逐次的に通過させて排水中の金属を除去することを特徴とする、金属成分を含有する排水の浄化方法。
(a)鉄および鉄以外の金属成分を含有する排水に、アルカリ剤を添加して、該排水のpHを3.0以上となるように調整し、鉄沈殿を生じさせるとともに鉄以外の金属を共沈させる工程。
(b)工程(a)通過後の排水に界面活性剤を添加し、起泡させ、発生した泡に鉄および共沈した金属成分の沈殿及び/または排水中に溶解している金属成分を捕集する工程。
A method for purifying wastewater containing iron and metal components other than iron, wherein the wastewater is sequentially passed through the following steps (a) to (b) to remove metals in the wastewater. A method for purifying wastewater containing metal components.
(A) To an effluent containing iron and a metal component other than iron, an alkali agent is added to adjust the pH of the effluent to be 3.0 or more, to cause iron precipitation and to remove metals other than iron. Coprecipitation step.
(B) A surfactant is added to the waste water after the step (a), and the foam is foamed. The generated foam captures the precipitated iron and coprecipitated metal components and / or the metal components dissolved in the waste water. Gathering process.
工程(b)に用いる界面活性剤が、陰イオン界面活性剤又は陽イオン界面活性剤である、請求項1記載の金属成分回収方法。The metal component recovery method according to claim 1, wherein the surfactant used in the step (b) is an anionic surfactant or a cationic surfactant.
JP2002308042A 2002-10-23 2002-10-23 Method for cleaning waste water containing metallic component Pending JP2004141741A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002308042A JP2004141741A (en) 2002-10-23 2002-10-23 Method for cleaning waste water containing metallic component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002308042A JP2004141741A (en) 2002-10-23 2002-10-23 Method for cleaning waste water containing metallic component

Publications (1)

Publication Number Publication Date
JP2004141741A true JP2004141741A (en) 2004-05-20

Family

ID=32454295

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002308042A Pending JP2004141741A (en) 2002-10-23 2002-10-23 Method for cleaning waste water containing metallic component

Country Status (1)

Country Link
JP (1) JP2004141741A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103043822A (en) * 2012-12-28 2013-04-17 华北电力大学 Ectopic pump circular processing system and method for reactive additives of tea saponin

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103043822A (en) * 2012-12-28 2013-04-17 华北电力大学 Ectopic pump circular processing system and method for reactive additives of tea saponin
CN103043822B (en) * 2012-12-28 2014-04-09 华北电力大学 Ectopic pump circular processing system and method for reactive additives of tea saponin

Similar Documents

Publication Publication Date Title
JP4428582B1 (en) Method and apparatus for producing acid and alkali from leachate
JP3241374B2 (en) Wastewater treatment method using improved recirculation of high density sludge
US8679349B2 (en) Heavy metal removal from waste streams
JP2000117270A (en) Treatment of metal-containing waste water and method for recovering valuable metal
WO2007052618A1 (en) Method for removing metals from waste water and apparatus for removing metals from waste water
US20080073279A1 (en) High Rate Clarification of Cooling Water Using Magnetite Seeding and Separation
CN106045168A (en) Zero discharge method for desulfurization waste water
US20120138528A1 (en) Method and apparatus for removing arsenic from an arsenic bearing material
CN116874100A (en) Treatment method of saline water
CA2673977A1 (en) Method and apparatus for removing arsenic from a solution
JP3918657B2 (en) Method and apparatus for purifying contaminated soil
US20120138529A1 (en) Method and apparatus for recovering a metal and separating arsenic from an arsenic containing solution
JP5046853B2 (en) Treatment agent and treatment method for contaminated water containing heavy metals
JP4821170B2 (en) Ultrapure water production equipment
CA2941223C (en) Method for recovering cyanide from a barren solution
JP2004141741A (en) Method for cleaning waste water containing metallic component
JP4261857B2 (en) Method for recovering and using valuable metals in metal-containing wastewater
CN114772793A (en) Method for delaying calcium sulfate scaling in desulfurization wastewater pretreatment and unhardening processes
JPH11235595A (en) Treatment of boron-containing waste water
JP2005324137A (en) Method for removing fluoride ion in wastewater
JP2003010861A (en) Method and apparatus for coagulation and separation of phosphorus- and suspended solids-containing water
RU2748040C1 (en) Method for water purification from heavy metals by catalytic deposition
JP4665279B2 (en) Method for treating boron-containing water
JP2009220102A (en) Method for treating selenium-containing waste water using iron powder
Jeon Review for physical and chemical process for heavy metal treatment