JP2004140509A - Optical transmitter - Google Patents

Optical transmitter Download PDF

Info

Publication number
JP2004140509A
JP2004140509A JP2002301889A JP2002301889A JP2004140509A JP 2004140509 A JP2004140509 A JP 2004140509A JP 2002301889 A JP2002301889 A JP 2002301889A JP 2002301889 A JP2002301889 A JP 2002301889A JP 2004140509 A JP2004140509 A JP 2004140509A
Authority
JP
Japan
Prior art keywords
temperature
function
optical transmitter
light source
input variable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002301889A
Other languages
Japanese (ja)
Inventor
Kazuhiro Yamashita
山下 和広
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2002301889A priority Critical patent/JP2004140509A/en
Publication of JP2004140509A publication Critical patent/JP2004140509A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optical transmitter whose temperature compensation is easy and exact. <P>SOLUTION: The optical transmitter provided with a biasing means 2 for controlling optical power of a light source 1 and a modulating means 3 for controlling the amplitude of an optical signal is provided with a function calculating means 4 for calculating a function expressing the relation between control amounts in the means 2, 3 and an input variable proportional to an atmospheric temperature, and a temperature sensor 5 for measuring the atmospheric temperature and providing the temperature detection electric amount as an input variable to the means 4. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、光源の光パワーをバイアス電流と変調電流とで制御する光送信器に係り、特に、温度補償が容易でかつ正確な光送信器に関するものである。
【0002】
【従来の技術】
この種の光送信器は、バイアス電流及び変調電流に応じた強度で光出力するレーザダイオード(以下、LDという)等の光源と、その光源の光パワー(平均レベル)を光源に印加するバイアス電流により制御するバイアス手段と、光信号の振幅を光源に印加する変調電流により制御する変調手段とを備えている。外部機器から与えられた送信信号を増幅すると共にバイアスを加え、そのバイアス付き増幅信号を光源であるLDに印加すると、光出力強度が平均レベルの上下に強弱変化する光信号が得られる。
【0003】
光送信器では、光通信の規格に従い光パワー及び消光比を一定に保つことが必要になる。しかし、光源の特性が温度依存性を持っているため、雰囲気温度変化により、光パワーや光信号の振幅が変化し、消光比も変ってしまう。
【0004】
そこで、従来は、サーミスタ等の温度センサを用いて雰囲気温度に比例する電圧信号を取り出し、バイアス電流及び変調電流を発生しているドライバに温度補償の制御電圧として印加している。
【0005】
図2に示されるように、従来の光送信器は、光源21とドライバ22と温度センサ23とを備え、温度センサ23の出力電圧がドライバ22のバイアス電流及び変調電流に変化を与えるように構成されている。
【0006】
図3に雰囲気温度が25°のときの光源のI−L特性(印加電流対光出力強度特性)を、図4には、雰囲気温度が70°のときの光源のI−L特性を示す。また、これらの図には、光源に供給される駆動信号S とI−L特性に従って光源が出力する光信号S が付記されている。
【0007】
図3、図4を比較すると、雰囲気温度が低い時、図3に示されるように、光源21のI−L特性31は、図4に比べて低い電流域で図4に比べて急峻に立ち上がっている。一方、雰囲気温度が高い時、図4に示されるように、光源21のI−L特性41は、図3に比べて高い電流域から図3に比べて緩やかに立ち上がっている。このため図3のように雰囲気温度が低い時は、バイアス電流Ibia を小さく、変調電流Imod も小さく制御した駆動信号S を入力することで、光パワーPavの上下に振幅P −P を有する光信号S を得ることができる。図4のように雰囲気温度が高い時は、バイアス電流Ibia を大きく、変調電流Imod も大きく制御した駆動信号S を入力することで、光パワーPavの上下に振幅P −P を有する光信号S を得ることができる。このようなバイアス電流及び変調電流の制御により、図3、図4の両者において光パワーPavは同じであり、消光比ER=P /P も同じである。
【0008】
先行技術文献としては、特許文献1がある。
【0009】
【特許文献1】
特開2002−204022号公報
【0010】
【発明が解決しようとする課題】
しかしながら、LDの温度依存特性は個体毎にばらつきがあり、同じ温度特性の温度センサを一律に使用しても良好な温度補償ができるとは限らない。従って、従来では、光送信器をいったん組み立てた後、温度特性の異なる温度センサを取り替えながら、光送信器を様々な温度環境でテストして光パワーPavや消光比ERを測定し、良好な温度補償ができているかどうかを確認するという試行錯誤工程を必要としていた。しかし、ひとつひとつの光送信器に対して温度センサを何度も取り替えるには手間がかかり、問題である。
【0011】
また、LDの温度依存特性が温度センサの温度対抵抗値特性とまったく一致するわけでないので、全温度範囲に亘って光パワーPavや消光比ERを完全に一定にするのは困難である。しかし、光通信速度を上げるために変調速度を高速にさせるにつれて消光比ERを厳密に一定にする必要があり、温度センサによる補償では正確さに限界があった。
【0012】
そこで、本発明の目的は、上記課題を解決し、温度補償が容易でかつ正確な光送信器を提供することにある。
【0013】
【課題を解決するための手段】
上記目的を達成するために本発明は、光源の光パワーを制御するバイアス手段と光信号の振幅を制御する変調手段とを備えた光送信器において、上記バイアス手段及び変調手段における制御量と雰囲気温度に比例した入力変数との関係を表した関数を計算する関数計算手段と、雰囲気温度を計測してその温度検出電気量を入力変数として上記関数計算手段に提供する温度センサとを設けたものである。
【0014】
上記関数を入力変数のn次関数としてもよい。
【0015】
上記関数の入力変数項にかかる係数及び定数項の定数をを記憶する記憶手段を設けてもよい。
【0016】
【発明の実施の形態】
以下、本発明の一実施形態を添付図面に基づいて詳述する。
【0017】
図1に示されるように、本発明に係る光送信器は、バイアス電流及び変調電流に応じた強度で光出力するレーザダイオード(以下、LDという)等の光源1と、その光源1の光パワー(平均レベル)を光源1に印加するバイアス電流により制御するバイアス手段2と、光信号の振幅を光源に印加する変調電流により制御する変調手段3と、上記バイアス手段及び変調手段における制御量と雰囲気温度に比例した入力変数との関係を表した関数を計算する関数計算手段4と、雰囲気温度を計測してその温度検出電気量を入力変数として上記関数計算手段4に提供する温度センサ5とを有する。温度センサ5としてサーミスタを用いる場合は、温度検出電気量は電圧である。
【0018】
この実施形態では、バイアス手段2、変調手段3、関数計算手段4は、マイクロプロセッサ(CPU)6に制御・演算プログラムを組み込んで構成されている。マイクロプロセッサ6とアナログ要素とのインタフェースとしてD/A変換器7、A/D変換器8が設けられている。また、この実施形態では、バイアス電流の制御値と変調電流の制御値とはマイクロプロセッサ6において重畳され、その重畳された制御値がアナログ変換により、例えば、電流としてドライバ9に入力されるようになっている。ドライバ9は、図示しない送信信号発生部からの送信信号Siを上記制御電流に応じて増幅してバイアス電流Ibia 及び変調電流Imod からなる駆動信号Sdを光源1に与えるものである。
【0019】
関数計算に用いる係数や定数を記憶する記憶手段10がマイクロプロセッサ6に内蔵又は外付けで設けられている。記憶手段10は、ROM、不揮発性RAMなどの無電源で記憶が保持できる半導体メモリ素子で構成されている。
【0020】
図1の光送信器における温度補償の動作を説明する。
【0021】
ここでは、関数計算手段4が計算する関数は、
f(x)=A x +An−1 xn−1 +…+A x+A
とする。xは、温度センサ5の温度検出電気量からなる入力変数である。A 〜A は係数、A は定数であり、記憶手段10に記憶されている。関数f(x)は、入力変数xのn次式で表され、その計算結果はバイアス電流と変調電流とを重畳した制御値である。即ち、関数f(x)は温度に応じた制御値を求める関数である。この制御値をD/A変換器7に与えることで、ドライバ9からは温度補償されたバイアス電流及び変調電流が出力される。
【0022】
図3のように雰囲気温度が低い時、マイクロプロセッサ6は、温度センサ5の出力電圧をA/D変換器8でA/D変換して得た入力変数xにより、関数f(x)を計算する。その関数f(x)の計算結果をD/A変換器7に与えると、バイアス電流Ibia が小さく、変調電流Imod も小さく制御され、光パワーPavの上下に振幅P −P を有する光信号が得られる。
【0023】
図4のように雰囲気温度が高い時、マイクロプロセッサ6は、温度センサ5の出力電圧をA/D変換器8でA/D変換して得た入力変数xにより、関数f(x)を計算する。その関数f(x)の計算結果をD/A変換器7に与えると、バイアス電流Ibia が大きく、変調電流Imod も大きく制御され、光パワーPavの上下に振幅P −P を有する光信号が得られる。
【0024】
なお、入力変数xの1〜n次の項にかかる係数A 〜A 及び定数項の定数A は、予め図3や図4の温度を含む広い温度範囲で光パワーPavも一定、消光比ER=P /P も一定となるように、複数の温度においての実験から求めて記憶手段10に登録しておくとよい。
【0025】
このようなバイアス電流及び変調電流の制御により、図3、図4の両者において光パワーPavは一定であり、消光比ER=P /P も一定である。
【0026】
従来では、温度センサ23の出力電圧をそのままアナログ的にドライバ22に与えるだけだったので、光源21の特性の温度依存性と温度センサ23の温度特性とが広い温度範囲で厳密に一致しないことに起因して温度補償の正確さに限界があった。本発明では、温度センサ5の出力電圧をデジタル処理により関数計算して制御値を求め、その制御値でドライバ9を制御するので、関数の係数や定数が適切に決定されてさえいれば、広い温度範囲に亘り温度補償を正確に行うことができる。
【0027】
次に、光源1の個体毎のばらつきに対応する係数A 〜A 及び定数A の求め方(登録方法)について説明する。
【0028】
光送信器を組み立てた後、光送信器を恒温槽等の温度が一定かつ任意に制御できる環境に置き、テスト用の送信信号S を入力する。係数A 〜A 及び定数A は適宜に決めた初期値(例えば、平均的な光源1について知られている値)とする。この状態で光信号S を測定器で受信し、その受信波形から光パワーPavや消光比ERを測定する。この測定を広い温度範囲に亘り、適宜な温度刻みごとに行う。
【0029】
所望する光パワーPav及び消光比ERと各温度での測定値との比較から各温度での望ましいバイアス電流Ibia 及び変調電流Imod を推定する。その推定されたバイアス電流Ibia 及び変調電流Imod から各温度でドライバ9に与えるべき制御値を逆算し、各温度について制御値(関数f(x)の値)と温度(入力変数x)とを関数に当てはめることにより、係数A 〜A 及び定数A を初期値からどれだけ変更すればよいかを求めることができる。
【0030】
こうして求めた係数A 〜A 及び定数A を記憶手段10に書き込めば、光送信器は、光源1の個体毎のばらつきによらず、広い温度範囲に亘り光パワーPav一定かつ消光比ER一定な光送信器として出荷が可能になる。
【0031】
従来では、適切な温度センサ23が見付かるまで、ひとつひとつの光送信器に対して温度センサ23を何度も取り替える試行錯誤工程を必要としていた。本発明では、温度センサ5は最初に取り付けたままで一度も取り替える必要がなく、記憶手段10への書き込みさえ行えばよいので、温度補償のための作業が容易となる。
【0032】
本実施形態では、関数f(x)は、n次関数としたが他の関数であってもよく、結果的に光源の温度特性が補償できればよい。また、n次関数の次数に制限はなく、例えば、3次関数とすることができる。
【0033】
次に、関数f(x)として3次関数を用いた具体的な実施形態を説明する。
【0034】
ここでは、係数A 〜A 及び定数A の異なる3つの関数f(x)▲1▼〜▲3▼を予め用意しておく。関数f(x)の値をyとすると、
▲1▼ y=0.00166x −0.0642x +3.45x+703
▲2▼ y=0.00175x −0.0534x +4.42x+678
▲3▼ y=0.00131x −0.041x +1.505x+745
である。
【0035】
図5に、各関数▲1▼〜▲3▼についての雰囲気温度(横軸)とD/A変換器7の出力(縦軸)との関係(入力変数xと関数値yとの関係)を示す。特性曲線▲1▼〜▲3▼は、それぞれ関数▲1▼〜▲3▼に対応している。光源1の複数個のサンプルについて、例えば、特性曲線▲1▼が平均的な温度依存性を補償するのに適した関数値yを得るものとすると、これに比べて特性曲線▲2▼は関数値yが高温域で大きく低温域で小さくなっており、逆に特性曲線▲3▼は関数値yが高温域で小さく低温域で大きくなっている。平均的なサンプルには特性曲線▲1▼を適用し、平均から外れているサンプルには特性曲線▲2▼又は▲3▼を適用することで全てのサンプルの温度補償を可及的に正確に行うことができる。
【0036】
このように、サンプルのひとつひとつについて係数A 〜A 及び定数A を個別に設定しなくとも、代表的な有限個の係数A 〜A 及び定数A を予め設定しておいて、その中から選んで適用するだけでも、全てのサンプルの温度補償を可及的に正確に行うことができる。
【0037】
【発明の効果】
本発明は次の如き優れた効果を発揮する。
【0038】
(1)光源と温度センサの間の温度特性の不一致が関数の介在により解消できるので、広い温度範囲に亘り温度補償を正確に行うことができる。
【0039】
(2)温度センサの取り替えを行わずともよいので、温度補償が容易である。
【図面の簡単な説明】
【図1】本発明の一実施形態を示す光送信器の回路図である。
【図2】従来の光送信器の回路図である。
【図3】雰囲気温度が25°のときの光源のI−L特性の図である。
【図4】雰囲気温度が70°のときの光源のI−L特性の図である。
【図5】本発明における関数の入出力関係を示す図である。
【符号の説明】
1 光源
2 バイアス手段
3 変調手段
4 関数計算手段
5 温度センサ
6 マイクロプロセッサ
9 ドライバ
10 記憶手段
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an optical transmitter that controls the optical power of a light source by using a bias current and a modulation current, and more particularly to an optical transmitter that can easily and accurately compensate for temperature.
[0002]
[Prior art]
This type of optical transmitter includes a light source such as a laser diode (hereinafter, referred to as an LD) that outputs light with an intensity corresponding to a bias current and a modulation current, and a bias current that applies the optical power (average level) of the light source to the light source. And a modulation means for controlling the amplitude of the optical signal by a modulation current applied to the light source. When a transmission signal provided from an external device is amplified and a bias is applied, and the amplified signal with the bias is applied to an LD serving as a light source, an optical signal whose light output intensity fluctuates above and below an average level is obtained.
[0003]
In an optical transmitter, it is necessary to keep the optical power and the extinction ratio constant according to the standard of optical communication. However, since the characteristics of the light source have temperature dependence, the optical power and the amplitude of the optical signal change due to a change in ambient temperature, and the extinction ratio also changes.
[0004]
Therefore, conventionally, a voltage signal proportional to the ambient temperature is extracted using a temperature sensor such as a thermistor, and is applied as a temperature compensation control voltage to a driver that generates a bias current and a modulation current.
[0005]
As shown in FIG. 2, the conventional optical transmitter includes a light source 21, a driver 22, and a temperature sensor 23, and is configured such that an output voltage of the temperature sensor 23 changes a bias current and a modulation current of the driver 22. Have been.
[0006]
FIG. 3 shows the IL characteristics (applied current vs. light output intensity characteristics) of the light source when the ambient temperature is 25 °, and FIG. 4 shows the IL characteristics of the light source when the ambient temperature is 70 °. Further, these figures, an optical signal S o of the light source outputs are appended in accordance with the drive signal S d and I-L characteristics supplied to the light source.
[0007]
Comparing FIGS. 3 and 4, when the ambient temperature is low, as shown in FIG. 3, the IL characteristic 31 of the light source 21 rises sharply in a current range lower than that of FIG. ing. On the other hand, when the ambient temperature is high, as shown in FIG. 4, the IL characteristic 41 of the light source 21 rises more gradually from a current range higher than that in FIG. 3 than in FIG. When Accordingly ambient temperature as shown in FIG. 3 is low, reducing the bias current I bia, modulation current I mod also by entering the small control drive signal S d, the amplitude P 1 and below the optical power P av - An optical signal So having P 0 can be obtained. When the ambient temperature is high as in Figure 4, increasing the bias current I bia, modulation current I mod also by entering a larger control drive signal S d, the amplitude P 1 -P 0 and below the optical power P av it is possible to obtain an optical signal S o with. By such control of the bias current and modulation current, FIG. 3, an optical power P av is the same in both FIG. 4, the extinction ratio ER = P 1 / P 0 is the same.
[0008]
Patent Document 1 is a prior art document.
[0009]
[Patent Document 1]
Japanese Patent Application Laid-Open No. 2002-204022
[Problems to be solved by the invention]
However, the temperature-dependent characteristics of the LD vary from one device to another, and even if temperature sensors having the same temperature characteristics are used uniformly, good temperature compensation cannot always be achieved. Therefore, conventionally, after once assembling the optical transmitter, the optical transmitter is tested in various temperature environments and the optical power P av and the extinction ratio ER are measured while replacing the temperature sensor having a different temperature characteristic. It required a trial and error process of checking whether the temperature compensation was achieved. However, it is troublesome and troublesome to replace the temperature sensor for each optical transmitter many times.
[0011]
Further, since the temperature-dependent characteristics of the LD do not exactly match the temperature-resistance characteristics of the temperature sensor, it is difficult to make the optical power Pav and the extinction ratio ER completely constant over the entire temperature range. However, it is necessary to keep the extinction ratio ER strictly constant as the modulation speed is increased in order to increase the optical communication speed, and the accuracy of the compensation by the temperature sensor is limited.
[0012]
Then, an object of the present invention is to solve the above-mentioned problems and to provide an optical transmitter that is easy and accurate in temperature compensation.
[0013]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides an optical transmitter including a bias unit for controlling the optical power of a light source and a modulation unit for controlling the amplitude of an optical signal. Provided with a function calculating means for calculating a function representing a relationship with an input variable proportional to temperature, and a temperature sensor for measuring an ambient temperature and providing the temperature detection electric quantity as an input variable to the function calculating means. It is.
[0014]
The above function may be an n-th order function of the input variable.
[0015]
Storage means may be provided for storing a coefficient relating to the input variable term of the function and a constant of the constant term.
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an embodiment of the present invention will be described in detail with reference to the accompanying drawings.
[0017]
As shown in FIG. 1, an optical transmitter according to the present invention includes a light source 1 such as a laser diode (hereinafter, referred to as an LD) that outputs light at an intensity corresponding to a bias current and a modulation current, and an optical power of the light source 1. Bias means 2 for controlling the (average level) by a bias current applied to the light source 1, modulation means 3 for controlling the amplitude of the optical signal by a modulation current applied to the light source, control amounts and atmospheres in the bias means and the modulation means A function calculating means 4 for calculating a function representing a relationship with an input variable proportional to the temperature, and a temperature sensor 5 for measuring the ambient temperature and providing the temperature detection electric quantity to the function calculating means 4 as an input variable. Have. When a thermistor is used as the temperature sensor 5, the temperature detection electric quantity is a voltage.
[0018]
In this embodiment, the bias means 2, the modulation means 3, and the function calculation means 4 are configured by incorporating a control / operation program into a microprocessor (CPU) 6. A D / A converter 7 and an A / D converter 8 are provided as an interface between the microprocessor 6 and analog elements. Further, in this embodiment, the control value of the bias current and the control value of the modulation current are superimposed in the microprocessor 6, and the superimposed control value is input to the driver 9 as a current, for example, by analog conversion. Has become. The driver 9 is to provide a drive signal Sd to the transmission signal Si from the transmitting signal generator (not shown) is amplified in accordance with the control current is the bias current I bia and the modulation current I mod in the light source 1.
[0019]
A storage means 10 for storing coefficients and constants used for calculating functions is provided in the microprocessor 6 internally or externally. The storage means 10 is configured by a semiconductor memory element such as a ROM or a non-volatile RAM that can store data without power supply.
[0020]
The operation of temperature compensation in the optical transmitter of FIG. 1 will be described.
[0021]
Here, the function calculated by the function calculating means 4 is:
f (x) = A n x n + A n-1 x n-1 + ... + A 1 x + A 0
And x is an input variable consisting of a temperature detection electric quantity of the temperature sensor 5. A n to A 1 are coefficients, and A 0 is a constant, which is stored in the storage unit 10. The function f (x) is represented by an n-th order expression of the input variable x, and the calculation result is a control value obtained by superimposing the bias current and the modulation current. That is, the function f (x) is a function for obtaining a control value according to the temperature. By providing this control value to the D / A converter 7, the driver 9 outputs a bias current and a modulation current whose temperature has been compensated.
[0022]
When the ambient temperature is low as shown in FIG. 3, the microprocessor 6 calculates a function f (x) based on an input variable x obtained by A / D converting the output voltage of the temperature sensor 5 with the A / D converter 8. I do. Given the calculation result of the function f (x) to the D / A converter 7, the bias current I bia is small, the modulation current I mod is also controlled small, and below the optical power P av amplitude P 1 -P 0 An optical signal is obtained.
[0023]
When the ambient temperature is high as shown in FIG. 4, the microprocessor 6 calculates a function f (x) based on an input variable x obtained by A / D converting the output voltage of the temperature sensor 5 by the A / D converter 8. I do. Given the calculation result of the function f (x) to the D / A converter 7, the bias current I bia large, the modulation current I mod is also largely controlled, and below the optical power P av amplitude P 1 -P 0 An optical signal is obtained.
[0024]
The coefficients A n to A 1 of the first to n-order terms of the input variable x and the constant A 0 of the constant term are predetermined such that the optical power P av is constant in a wide temperature range including the temperature in FIGS. The extinction ratio ER = P 1 / P 0 may be obtained from experiments at a plurality of temperatures and registered in the storage unit 10 so that the extinction ratio ER = P 1 / P 0 is also constant.
[0025]
By such control of the bias current and modulation current, FIG. 3, the optical power P av in both FIG. 4 is constant, the extinction ratio ER = P 1 / P 0 is also constant.
[0026]
Conventionally, only the output voltage of the temperature sensor 23 is supplied to the driver 22 in an analog manner without any change, so that the temperature dependence of the characteristics of the light source 21 does not exactly match the temperature characteristics of the temperature sensor 23 in a wide temperature range. This limits the accuracy of temperature compensation. In the present invention, a control value is obtained by digitally processing the output voltage of the temperature sensor 5 to obtain a control value, and the driver 9 is controlled by the control value. Therefore, if the coefficients and constants of the function are appropriately determined, a wide range is obtained. Temperature compensation can be accurately performed over the temperature range.
[0027]
Next, how to obtain the coefficients A n to A 1 and the constant A 0 corresponding to variations among individuals of the light source 1 for (registration method) will be described.
[0028]
After assembling the optical transmitter, the optical transmitter is placed in an environment where the temperature is constant and can be arbitrarily controlled, such as a thermostat, and a test transmission signal Si is input. Factor A n to A 1 and the constant A 0 is the initial value decided as appropriate (e.g., a known value for an average light source 1) to. In this state, the optical signal So is received by the measuring instrument, and the optical power Pav and the extinction ratio ER are measured from the received waveform. This measurement is performed at appropriate temperature steps over a wide temperature range.
[0029]
Estimating a desired bias current I bia and the modulation current I mod at each temperature from the comparison between the measured value of a desired optical power P av and the extinction ratio ER and each temperature. Calculating back the control value to be given to the driver 9 at each temperature from the estimated bias current I bia and the modulation current I mod, the control value for each temperature (the value of the function f (x)) and temperature (input variable x) the by fitting the function it can be determined whether the coefficient a n to a 1 and the constant a 0 may be changed much from its initial value.
[0030]
Writing a coefficient A n to A 1 and the constant A 0 obtained in this way in the storage means 10, an optical transmitter, regardless of the variation of each individual light source 1, a wide beam over a temperature range power P av constant and extinction ratio It can be shipped as an optical transmitter with a constant ER.
[0031]
In the past, a trial and error process was required to replace the temperature sensor 23 for each optical transmitter many times until a suitable temperature sensor 23 was found. In the present invention, the temperature sensor 5 does not need to be replaced once without being attached, and only the writing to the storage means 10 is performed, so that the work for temperature compensation becomes easy.
[0032]
In the present embodiment, the function f (x) is an nth-order function, but may be another function, as long as the temperature characteristics of the light source can be compensated as a result. The order of the n-order function is not limited, and may be, for example, a cubic function.
[0033]
Next, a specific embodiment using a cubic function as the function f (x) will be described.
[0034]
Here, the coefficient A 3 to A 1 and the constant A 0 of three different functions f (x) ▲ 1 ▼ ~ ▲ 3 ▼ prepared in advance. Assuming that the value of the function f (x) is y,
▲ 1 ▼ y = 0.00166x 3 -0.0642x 2 + 3.45x + 703
▲ 2 ▼ y = 0.00175x 3 -0.0534x 2 + 4.42x + 678
▲ 3 ▼ y = 0.00131x 3 -0.041x 2 + 1.505x + 745
It is.
[0035]
FIG. 5 shows the relationship between the ambient temperature (horizontal axis) and the output (vertical axis) of the D / A converter 7 (the relationship between the input variable x and the function value y) for each of the functions (1) to (3). Show. The characteristic curves (1) to (3) correspond to the functions (1) to (3), respectively. For a plurality of samples of the light source 1, for example, assuming that the characteristic curve {circle around (1)} obtains a function value y suitable for compensating for the average temperature dependency, the characteristic curve {circle around (2)} is different from this. The value y is large in the high temperature range and small in the low temperature range. Conversely, in the characteristic curve (3), the function value y is small in the high temperature range and large in the low temperature range. Apply the characteristic curve (1) to the average sample, and apply the characteristic curve (2) or (3) to the sample that is out of the average so that the temperature compensation of all samples can be performed as accurately as possible. It can be carried out.
[0036]
Thus, without individually setting the coefficients A n to A 1 and the constant A 0 for each sample, a representative finite number of coefficients A n to A 1 and the constant A 0 are set in advance, The temperature compensation of all the samples can be performed as accurately as possible by simply selecting and applying them.
[0037]
【The invention's effect】
The present invention exhibits the following excellent effects.
[0038]
(1) Since the mismatch of the temperature characteristics between the light source and the temperature sensor can be eliminated by the interposition of the function, the temperature can be accurately compensated over a wide temperature range.
[0039]
(2) The temperature compensation is easy because the temperature sensor need not be replaced.
[Brief description of the drawings]
FIG. 1 is a circuit diagram of an optical transmitter showing one embodiment of the present invention.
FIG. 2 is a circuit diagram of a conventional optical transmitter.
FIG. 3 is a diagram of the IL characteristic of the light source when the ambient temperature is 25 °.
FIG. 4 is a diagram showing IL characteristics of a light source when an ambient temperature is 70 °.
FIG. 5 is a diagram showing an input / output relationship of functions according to the present invention.
[Explanation of symbols]
REFERENCE SIGNS LIST 1 light source 2 bias means 3 modulation means 4 function calculation means 5 temperature sensor 6 microprocessor 9 driver 10 storage means

Claims (3)

光源の光パワーを制御するバイアス手段と光信号の振幅を制御する変調手段とを備えた光送信器において、上記バイアス手段及び変調手段における制御量と雰囲気温度に比例した入力変数との関係を表した関数を計算する関数計算手段と、雰囲気温度を計測してその温度検出電気量を入力変数として上記関数計算手段に提供する温度センサとを設けたことを特徴とする光送信器。In an optical transmitter including a bias unit for controlling the optical power of a light source and a modulation unit for controlling the amplitude of an optical signal, a relation between a control amount of the bias unit and the modulation unit and an input variable proportional to an ambient temperature is shown. An optical transmitter, comprising: a function calculating means for calculating the calculated function; and a temperature sensor for measuring the ambient temperature and providing the temperature detection electric quantity as an input variable to the function calculating means. 上記関数を入力変数のn次関数としたことを特徴とする請求項1記載の光送信器。2. The optical transmitter according to claim 1, wherein the function is an n-th order function of an input variable. 上記関数の入力変数項にかかる係数及び定数項の定数を記憶する記憶手段を設けたことを特徴とする請求項1又は2記載の光送信器。3. The optical transmitter according to claim 1, further comprising storage means for storing a coefficient relating to an input variable term of the function and a constant of a constant term.
JP2002301889A 2002-10-16 2002-10-16 Optical transmitter Pending JP2004140509A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002301889A JP2004140509A (en) 2002-10-16 2002-10-16 Optical transmitter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002301889A JP2004140509A (en) 2002-10-16 2002-10-16 Optical transmitter

Publications (1)

Publication Number Publication Date
JP2004140509A true JP2004140509A (en) 2004-05-13

Family

ID=32450119

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002301889A Pending JP2004140509A (en) 2002-10-16 2002-10-16 Optical transmitter

Country Status (1)

Country Link
JP (1) JP2004140509A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015233083A (en) * 2014-06-10 2015-12-24 日本オクラロ株式会社 Semiconductor optical device and control method
JP2017183391A (en) * 2016-03-29 2017-10-05 沖電気工業株式会社 Optical line termination device and program

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015233083A (en) * 2014-06-10 2015-12-24 日本オクラロ株式会社 Semiconductor optical device and control method
JP2017183391A (en) * 2016-03-29 2017-10-05 沖電気工業株式会社 Optical line termination device and program

Similar Documents

Publication Publication Date Title
EP0516398B1 (en) Method and apparatus for controlling the emission spectrum of a light emitting diode
US6359918B1 (en) Light source control device
US5926778A (en) Method for temperature compensation in measuring systems
CA2496661C (en) Light source control system
US6494370B1 (en) Electro-optic system controller and method of operation
US7674035B2 (en) Digital temperature sensors and calibration thereof
US5603570A (en) Constant-temperature control using surroundings temperature of a device
US6859471B2 (en) Method and system for providing thermal control of superluminescent diodes
US6784756B2 (en) On-board processor compensated oven controlled crystal oscillator
US20110150028A1 (en) Self-calibration circuit and method for junction temperature estimation
US7443894B2 (en) System and method for laser temperature compensation
US5917183A (en) Method of temperature compensation for optoelectronic components, more specifically optoelectronic semiconductors
JP6818919B1 (en) Temperature sensor module
US20050052437A1 (en) Temperature sensor circuit for microdisplays
US20070127530A1 (en) Laser control
US10365169B2 (en) Temperature/voltage sensor calibration
JP2004140509A (en) Optical transmitter
JP5488159B2 (en) Constant power control circuit
US8022717B2 (en) Thermal pre-scanning of electric circuits using thermally-trimmable resistors
EP0581860A1 (en) Semiconductor light source temperature control
JP3200161B2 (en) Optical oscillation frequency stabilizing method and apparatus
US8736842B2 (en) Actuation and evaluation circuit, measuring device and method for measuring the concentration of a gas
CN111089609A (en) Sensor circuit with offset compensation
Li et al. A scanning temperature control system for laser diodes
JPH10132577A (en) Optical fiber gyroscope

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050415

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070522

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070925