JP2004139900A - Manufacturing method of grid base board for battery - Google Patents

Manufacturing method of grid base board for battery Download PDF

Info

Publication number
JP2004139900A
JP2004139900A JP2002304929A JP2002304929A JP2004139900A JP 2004139900 A JP2004139900 A JP 2004139900A JP 2002304929 A JP2002304929 A JP 2002304929A JP 2002304929 A JP2002304929 A JP 2002304929A JP 2004139900 A JP2004139900 A JP 2004139900A
Authority
JP
Japan
Prior art keywords
mold
temperature
substrate
lattice
melting point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002304929A
Other languages
Japanese (ja)
Inventor
Masanori Ozaki
尾崎 正則
Shinichi Kokaji
小鍜冶 真一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Battery Co Ltd
Original Assignee
Furukawa Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Battery Co Ltd filed Critical Furukawa Battery Co Ltd
Priority to JP2002304929A priority Critical patent/JP2004139900A/en
Publication of JP2004139900A publication Critical patent/JP2004139900A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an economical manufacturing method of a thin and light-weighted grid base board for a battery with high quality by optimally combining a temperature of lead-alloy melting and and that of a casting mold at a book mold casting method. <P>SOLUTION: In the manufacturing method of the grid base board for a battery of manufacturing the grid base board for the battery with a thickness of 0.5 to 1.2 mm by the book mold casting method, the mold is heated so as to have a temperature of 0.7 to 0.9 times as high as the melting point of the lead-alloy, and a molten lead-alloy heated so as to have a temperature of 1.7 to 2 times as high as the melting point of the lead-alloy is poured into the above mold. Afterwards, the book mold is cooled by an air spray when releasing it. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【産業上の利用分野】
本発明は薄型・軽量の電池用格子基板の製造方法に関し、特に自動車用電池、各種バックアップ用電池等の鉛蓄電池に使用される格子基板の製造方法に関するものである。
【0002】
【従来の技術】
最近のエネルギー事情あるいは資源事情などから、鉛蓄電池の小型軽量化あるいは長寿命化が強く要求されている。小型軽量化を図る為には使用する材料の利用率向上が有効であり、そのためには、格子基板の有効利用と活物質の利用率向上が最も重要となる。
格子基板は、電池の充放電反応に直接作用しないにも拘らず極板全体の30〜50重量%を占めている。この格子基板には経時的に腐食が進行する問題があり、腐食が進むとともに次第に構造体および活物質保持体としての役割を果たさなくなる。
【0003】
そのため、最近、時効硬化処理の最適化による格子基板の機械的強度向上、および新合金の開発による耐食性向上(Ag添加;特開平6−29021号公報、米国特許5,298,350号公報、米国特許5,434,025号公報、Ba添加;WO97/05732号公報、WO99/05732号公報)が図られ、格子基板の小型軽量化の動きが出てきている。
【0004】
【発明が解決しようとする課題】
従来の格子基板はブックモールド鋳造で製造され、1.3〜1.8mmの板厚が使用されていた。基板格子を製造するブックモールド鋳造では400〜550℃で溶解した鉛合金を120〜200℃に加熱した鋳型(基板格子板厚1.3〜1.8mm)に注湯し、凝固後取出し大気冷却するため、厚さが1.2mm以下の薄型基板を得ることができず、電池軽量化の一つの壁となっていた。
【0005】
この壁を克服すべく本発明者はブックモールド鋳造による格子基板製造の薄型軽量化につき鋭意研究した結果、その問題点は鋳造時の湯流れ性と離型剤の2点にあること、即ち、従来のブックモールド鋳造では、特に、溶湯温度が400〜550℃、鋳型温度が120〜200℃で鋳造が行われていたために鉛合金溶湯の粘性が高く、湯流れが余りよくない状況で行われていたことを突き止めた。
そこで、本発明はかかる従来の問題点に鑑み、ブックモールド鋳造において、鉛合金溶湯温度と鋳型温度とを最適組合せとすることによって、薄型軽量基板格子を高品質で経済的に有利に製造できる製造方法を開発し、提供するものである。
【0006】
【課題を解決するための手段】
本願の請求項1の発明は、ブックモールド鋳造による電池用格子基板の製造方法において、鋳型を鉛合金融点の0.7〜0.9倍の温度に加熱し、該鋳型に鉛合金融点の1.7〜2倍の温度に溶融加熱した鉛合金を鋳込んだ後、ブックモールド鋳型を冷却し開放することを特徴とする電池用格子基板の製造方法である。
【0007】
本願発明の請求項2の発明は、格子厚0.5〜1.2mmの電池用格子基板をブックモールド鋳造により製造する電池用格子基板の製造方法において、鋳型を鉛合金融点の0.7〜0.9倍の温度に加熱し、該鋳型に鉛合金融点の1.7〜2倍の温度に溶融加熱した鉛合金を鋳込んだ後、ブックモールド鋳型を冷却し開放することを特徴とする電池用格子基板の製造方法である。
【0008】
上記請求項1または2に記載の電池用極板格子の製造方法において、溶融鉛合金を鋳込んだ後のブックモールド鋳型を開放する際の冷却を、エアースプレーで冷却することが好ましい。
【0009】
本発明は、鉛合金溶湯温度と鋳型温度とを最適組合せとすることによって湯流れ性を向上させたため厚さが、0.5〜1.2mmの薄型軽量基板を品質の良好な鋳造条件で製造可能としたものである。
【0010】
本発明において、鉛合金の溶融温度を該合金融点の1.7〜2倍に加熱する理由は、融点の2倍超になると凝固速度が遅くなるために鋳型隙間からの溶湯沁み出しおよび格子部でのバリが多くなるためであり、鉛合金の融点の2倍が良好な格子形状発現の溶湯温度上限となる。
一方、鉛合金の溶融温度が該合金融点の1.7倍未満では湯流れが悪く、基板の底部格子において溶湯が回りきらないために目切れが発生することになり、鉛合金の融点の1.7倍が良好な格子形状発現の溶湯温度下限となる。
【0011】
本発明において、鋳型温度を鉛合金溶融温度の0.7〜0.9倍の温度に加熱する理由は、鉛合金融点の0.9倍超になると溶湯の凝固速度が遅くなるために鋳型隙間からの溶湯沁み出しおよび格子部でのバリが多くなるなどの問題を生じ、鋳型温度の上限は鉛合金融点の0.9倍が上限となる。
一方、鋳型温度が鉛合金融点の0.7倍未満では湯流れが悪く、溶湯が回りきらないことによる目切れが発生するため、鉛合金融点の0.7倍が鋳型温度の下限となる。
【0012】
ブックモールド鋳造最終工程において、鋳造格子基板における鉛合金の結晶粒界や亜粒界の凝固が完了する前に鋳造基板格子を鋳型から取り出すと、ハンドリング等による変形が加わり熱間割れを発生する問題がある。そこで、ブックモールド鋳造鋳型を開放する際にエアースプレーで冷却することより熱間割れを有効に防止することができる。
【0013】
本発明に適用できる鉛合金としては、Pb−Ca系合金、Pb−Sn合金、Pb−Ca−Sn合金およびこれら合金にAg、Baの内1種類以上を添加したPb−Sn系合金が適しているが、これら鉛合金に限定されるものではない。
【0014】
実施例1
Pb−0.07wt%Ca−1.3wt%Sn−0.02wt%Al合金(該合金の融点は325℃)について、中格子厚0.6mm、外格子厚1.0mmの基板格子を掘り込んだ割型ブックモールド鋳型を用い、注湯温度を580℃(鉛合金融点の1.8倍)とし、鋳型温度を種々変化させて鋳造を行った。なお、鋳型を開くときの冷却は大気冷却とした。その結果を図1に示す。なお、図において縦軸は外観評価点で符号1は鋳造した格子基板の縦格子や横格子の形成が不完全で目切れが極めて多い製品、2は目切れが「中」程度の製品、3は一部に僅かに目切れが見られる製品、4は外観良好な製品、5は鋳バリが僅かに見られる製品、6は鋳バリが大きい製品を示し、横軸は鋳型の温度である。
【0015】
図1から明らかなように、鋳型温度が230℃(鉛合金融点の0.7倍)以上で良好な鋳造品が得られることが判明した。しかし、300℃(鉛合金融点の0.92倍)以上では鋳型の隙間から溶湯が沁み出しバリ発生となり、230℃(鉛合金融点の0.7倍)以下では湯流れが悪く基板の底部に目切れが発生していた。従って、鋳型温度230〜290℃(鉛合金融点の0.7〜0.9倍)が良好な条件である。
次に、鋳型温度230〜290℃の温度範囲で製造した格子基板につきX線透過試験で鋳造良好品の品質チェックを行った結果、全てに問題がないことが実証された。
続いて、鋳型温度230〜290℃の温度範囲で製造した格子基板につき熱間割れチェックを行った結果、格子の折曲げ試験において、一部製品の外格子の一部に僅かに割れが認められが、これは大気冷却の為、格子基板の冷却度合いに差が出た為である。
【0016】
実施例2
実施例1と同じ条件でブックモールド鋳造を行い、割型のブックモールド鋳型を開放する際にエアースプレーで冷却して格子基板を作製した。
次に、鋳型温度230〜290℃の温度範囲で製造した格子基板につきX線透過試験で鋳造良好品の品質チェックを行った結果、全てに問題がないことが実証された。
続いて、鋳型温度230〜290℃の温度範囲で製造した格子基板につき熱間割れチェックを行った結果、全てに問題のないことが確認できた。
エアースプレーにより冷却したので、比較的短時間で格子基板を取り出し得ると共に、取出した格子基板の品質(熱間割れ)も安定していた。
【0017】
実施例3
次に、Pb−3.5Wt%Sb−0.03As合金(該合金の融点は315℃)について、上記ブックモールド鋳型を用いて鋳造を行った。注湯温度を560℃(鉛合金融点の1.78倍)とし、鋳型温度を変化させて鋳造を行い、鋳型を開く際にエアースプレーで冷却して基板格子を作製した。その結果を図2に示す。縦軸は外観評価点で、符号の意味するところは図1と同様であり、横軸は鋳型温度である。図からも明らかな通り、鋳型温度は約220℃〜280℃(鉛合金融点の0.7〜0.9倍)が良好な条件であった。
【0018】
実施例4
最近開発されたPb−0.04wt%Ca−1.1wt%Sn−0.008wt%Ba合金(該合金の融点は326℃)について、同じ割型ブックモールド鋳型を用いて鋳造を行った。注湯温度を620℃(鉛合金融点の1.9倍)とし、鋳型温度を変化させて鋳造を行い、割型のブックモールド鋳型を開放する際にエアースプレーで冷却して格子基板を作製した。その結果は図1に示した実施例1の結果とほぼ同様であり、鋳型温度は約230℃〜290℃(鉛合金融点の0.7〜0.9倍)が良好な条件であった。
鋳型温度230〜290℃の温度範囲で製造した格子基板につきX線透過試験と格子の折り曲げ試験を行った結果、問題のないことが確認できた。
【0019】
実施例5
同様にPb−0.04wt%Ca−0.6wt%Sn−0.008wtBa−0.03wt%Ag合金(該合金の融点は325℃)について、上記割型ブックモールド鋳型を用いて鋳造を行った。注湯温度580℃(鉛合金融点の1.78倍)とし、鋳型温度を変化させて鋳造を行い、割型のブックモールド鋳型を開放する際にエアースプレーで冷却して格子基板を作製した。その結果は図1と同様であり、鋳型温度230〜290℃が良好な条件であった。
鋳型温度230〜290℃の温度範囲で製造した格子基板につきX線透過試験と折り曲げ試験の結果、品質的に問題のないことが確認できた。
【0020】
実施例6
実施例1の鉛合金(該合金の融点は325℃)について、中格子厚0.4mm〜1.5、外格子厚1.0mm〜1.8mmの基板格子を掘り込んだ種々の割型ブックモールド鋳型を用い、実施例2と同製法で格子基板を製造し、製造した各格子基板につきX線透過試験と折り曲げ試験の結果、中格子厚0.4mmの製品には一部湯流れの影響で品質的に問題が発生したが、0.5mm以上の製品については全く問題のない良好な格子基板であることが確認できた。
【0021】
実施例7
実施例4の鉛合金(該合金の融点は326℃)について、鋳型温度を260℃に保持し、溶湯温度を種種変えて鋳造し溶湯温度の影響を調べた。その結果を図3に示す。縦軸は外観評価点、横軸は溶湯温度である。外観評価点の符号の意味するところは、図1のそれと同様である。
図からも明らかな如く約550〜650℃(合金の融点の1.7倍〜2倍)の範囲で良好に鋳造し得た。
【0022】
比較例1
中格子厚0.6mm、外格子厚1.0mmの基板格子を掘り込んだ割型ブックモールド鋳型を用い、上記実施例1〜5の合金で注湯温度を450℃(鉛合金融点の約1.4倍)とし、鋳型温度150℃で鋳造を行った。その結果、格子基板には湯流れの悪さにより溶湯が回りきらず目切れが発生し、製品としての品質が維持できないものであった。
【0023】
参考例1
なお、参考のため、中格子0.9mm、外格子1.4mmの基板格子を掘り込んだ割型ブックモールド鋳型を用いて、実施例1〜5の鉛合金を注湯温度450℃、鋳型温度150℃で鋳造を行い、実施例1〜5の製品との重量比較を行ったところ、実施例製品は参考例製品の0.69倍と31%の重量減となることが確認された。
【0024】
本発明により製造した格子基板並びに参考例1の格子基板を使用して鉛蓄電池を組み立て、75°Cの環境下でJIS D 5301に規定された軽負荷寿命に順じた試験を行い、両者を比較した結果、格子基板が31%重量減となったにもかかわらず寿命は実施例1と3に記載のものを使用した場合は参考例1に記載のものを使用した場合に比し0.9倍で10%の減少に留まり、実施例4と5に記載のものを使用した場合は1.5倍以上と寿命は延び、寿命をそれ程減少させず或いは向上させ、材料削減ができたことを確認した。
【0025】
【発明の効果】
本発明は、ブックモールド鋳造の鋳型を鉛合金融点の0.7〜0.9倍の温度に加熱し、該鋳型に鉛合金融点の1.7〜2倍の温度に溶融加熱した鉛合金を鋳込んだ後、ブックモールド鋳型を冷却し開放することを特徴とする電池用格子基板の製造方法であり、格子厚0.5〜1.2mmと従来の格子基板に比較して薄く(小型化された)、軽量な格子基板が提供でき、その製造は鋳型の彫り込みを替えるだけで従来のブックモールド鋳造装置がそのまま活用でき、設備改造等の費用が軽減でき、材料費(鉛合金の使用量)が少なくて済むだけ経済的に有利なものであり、且つ熱間割れ等の問題もなく、品質的に優れた薄型軽量基板格子を提供しうる工業的に優れた効果を有するものである。
【図面の簡単な説明】
【図1】鉛合金を用い、溶湯温度を一定として鋳型温度を変えた場合の鋳造された格子基板の外観評価結果を示すグラフである。
【図2】融点の異なる他の鉛合金を用い、溶湯温度を一定として鋳型温度を変えた場合の鋳造された格子基板の外観評価結果を示すグラフである。
【図3】鉛合金を用い、鋳型温度を一定として溶湯温度を変えた場合の鋳造された格子基板の外観評価結果を示すグラフである。
[0001]
[Industrial applications]
The present invention relates to a method for manufacturing a thin and lightweight battery grid substrate, and more particularly to a method for manufacturing a grid substrate used for lead storage batteries such as automobile batteries and various backup batteries.
[0002]
[Prior art]
Due to recent energy and resource situations, there is a strong demand for lead-acid batteries to be smaller and lighter or have a longer life. To reduce the size and weight, it is effective to improve the utilization rate of the materials used. For that purpose, it is most important to effectively utilize the lattice substrate and improve the utilization rate of the active material.
The grid substrate occupies 30 to 50% by weight of the whole electrode plate although it does not directly affect the charge / discharge reaction of the battery. This lattice substrate has a problem that corrosion progresses with time, and as the corrosion progresses, the lattice substrate gradually does not play a role as a structure or an active material holder.
[0003]
Therefore, recently, the mechanical strength of the lattice substrate has been improved by optimizing the age hardening treatment, and the corrosion resistance has been improved by the development of a new alloy (addition of Ag; JP-A-6-29021, US Pat. No. 5,298,350, US Pat. Patent No. 5,434,025, Ba addition; WO97 / 05732, WO99 / 05732), and a movement to reduce the size and weight of the lattice substrate is coming out.
[0004]
[Problems to be solved by the invention]
A conventional lattice substrate is manufactured by book mold casting, and a plate thickness of 1.3 to 1.8 mm is used. In book mold casting for manufacturing a substrate lattice, a lead alloy melted at 400 to 550 ° C. is poured into a mold (substrate lattice plate thickness: 1.3 to 1.8 mm) heated to 120 to 200 ° C., taken out after solidification, and air cooled. For this reason, a thin substrate having a thickness of 1.2 mm or less cannot be obtained, which has been one of the barriers to battery weight reduction.
[0005]
In order to overcome this wall, the present inventor has conducted intensive studies on the reduction in thickness and weight of lattice substrate production by book mold casting, and as a result, there are two problems, namely, the flow of molten metal during casting and the release agent, that is, In the conventional book mold casting, in particular, since the casting is performed at a temperature of the molten metal of 400 to 550 ° C. and a temperature of the mold of 120 to 200 ° C., the viscosity of the molten lead alloy is high and the flow of the molten metal is not so good. I found out.
Accordingly, the present invention has been made in view of the above-mentioned conventional problems. In book mold casting, a thin and lightweight substrate grid can be manufactured with high quality and economically and advantageously by using an optimal combination of a lead alloy melt temperature and a mold temperature. Develop and provide methods.
[0006]
[Means for Solving the Problems]
The invention of claim 1 of the present application is directed to a method of manufacturing a battery grid substrate by book mold casting, wherein a mold is heated to a temperature 0.7 to 0.9 times the melting point of a lead alloy, A method of manufacturing a battery grid substrate, comprising: casting a lead alloy melt-heated to a temperature 1.7 to 2 times as high as that described above, and then cooling and opening the book mold.
[0007]
According to a second aspect of the present invention, there is provided a method of manufacturing a battery grid substrate for manufacturing a battery grid substrate having a grid thickness of 0.5 to 1.2 mm by book mold casting. After heating to 0.9 times the temperature and casting the lead alloy melted and heated to 1.7 to 2 times the melting point of the lead alloy in the mold, the book mold mold is cooled and opened. Is a method for producing a battery lattice substrate.
[0008]
In the method for producing a battery grid according to claim 1 or 2, it is preferable to cool the book mold after opening the molten lead alloy by air spray.
[0009]
In the present invention, a thin and light-weight substrate having a thickness of 0.5 to 1.2 mm is produced under good quality casting conditions because the flowability is improved by optimizing the combination of the temperature of the lead alloy and the temperature of the mold. It is possible.
[0010]
In the present invention, the reason why the melting temperature of the lead alloy is heated to 1.7 to 2 times the melting point of the alloy is that when the melting point exceeds 2 times the melting point, the solidification rate is slowed down, so This is because burrs increase in the portion, and twice the melting point of the lead alloy becomes the upper limit of the molten metal temperature for achieving a good lattice shape.
On the other hand, when the melting temperature of the lead alloy is less than 1.7 times the melting point of the alloy, the flow of the molten metal is poor, and the molten metal does not reach the bottom lattice of the substrate, so that the molten metal is not cut off, so that the melting occurs. 1.7 times is the lower limit of the molten metal temperature at which a good lattice shape is exhibited.
[0011]
In the present invention, the reason for heating the mold temperature to 0.7 to 0.9 times the melting temperature of the lead alloy is that when the melting temperature exceeds 0.9 times the melting point of the lead alloy, the solidification rate of the molten metal becomes slow. Problems such as leaching of molten metal from gaps and increase of burrs at the lattice portion occur, and the upper limit of the mold temperature is 0.9 times the melting point of the lead alloy.
On the other hand, when the mold temperature is less than 0.7 times the melting point of the lead alloy, the flow of the molten metal is poor, and the molten metal does not turn completely. Become.
[0012]
In the final step of book mold casting, if the cast substrate lattice is removed from the mold before the solidification of the crystal grain boundaries and sub-grain boundaries of the lead alloy in the cast lattice substrate is completed, deformation due to handling etc. will occur and hot cracking will occur. There is. Therefore, hot tearing can be effectively prevented by cooling with air spray when opening the book mold casting mold.
[0013]
Pb-Ca alloys, Pb-Sn alloys, Pb-Ca-Sn alloys, and Pb-Sn alloys obtained by adding one or more of Ag and Ba to these alloys are suitable as the lead alloy applicable to the present invention. However, the present invention is not limited to these lead alloys.
[0014]
Example 1
For a Pb-0.07 wt% Ca-1.3 wt% Sn-0.02 wt% Al alloy (melting point of the alloy is 325 ° C.), a substrate lattice having a middle lattice thickness of 0.6 mm and an outer lattice thickness of 1.0 mm is dug. Using a split book mold mold, casting was performed at a pouring temperature of 580 ° C. (1.8 times the melting point of the lead alloy) and variously changing the mold temperature. In addition, the cooling when opening the mold was air cooling. The result is shown in FIG. In the figure, the vertical axis is the appearance evaluation point, and reference numeral 1 denotes a product in which the vertical lattice and the horizontal lattice of the cast lattice substrate are incompletely formed and the discontinuity is extremely large; Indicates a product in which a part is slightly cut, 4 indicates a product having good appearance, 5 indicates a product in which casting burrs are slightly observed, 6 indicates a product in which casting burrs are large, and the horizontal axis indicates the temperature of the mold.
[0015]
As is clear from FIG. 1, it was found that a good cast product was obtained at a mold temperature of 230 ° C. (0.7 times the melting point of the lead alloy). However, at 300 ° C. or higher (0.92 times the melting point of the lead alloy), the molten metal seeps out of the gap of the mold to generate burrs. There was a discontinuity at the bottom. Therefore, a good condition is a mold temperature of 230 to 290 ° C. (0.7 to 0.9 times the melting point of the lead alloy).
Next, the quality of good cast products was checked by an X-ray transmission test on the lattice substrate manufactured at a mold temperature of 230 to 290 ° C., and it was verified that there was no problem in all.
Subsequently, as a result of performing a hot crack check on the lattice substrate manufactured at a mold temperature of 230 to 290 ° C., in the lattice bending test, a slight crack was observed in a part of the outer lattice of some products. However, this is due to the difference in the degree of cooling of the lattice substrate due to air cooling.
[0016]
Example 2
Book mold casting was performed under the same conditions as in Example 1, and when opening the split book mold mold, cooling was performed by air spray to produce a lattice substrate.
Next, the quality of good cast products was checked by an X-ray transmission test on the lattice substrate manufactured at a mold temperature of 230 to 290 ° C., and it was verified that there was no problem in all.
Subsequently, the lattice substrate manufactured at a mold temperature of 230 to 290 ° C. was subjected to a hot crack check, and as a result, it was confirmed that there was no problem.
Since the grid substrate was cooled by air spray, the grid substrate could be taken out in a relatively short time, and the quality (hot cracking) of the grid substrate taken out was stable.
[0017]
Example 3
Next, the Pb-3.5Wt% Sb-0.03As alloy (the melting point of the alloy was 315 ° C) was cast using the book mold. Casting was carried out at a pouring temperature of 560 ° C. (1.78 times the melting point of the lead alloy) and by changing the mold temperature. When the mold was opened, it was cooled by air spray to produce a substrate lattice. The result is shown in FIG. The vertical axis is the appearance evaluation point, the sign means the same as in FIG. 1, and the horizontal axis is the mold temperature. As is clear from the figure, the favorable mold temperature was about 220 ° C. to 280 ° C. (0.7 to 0.9 times the melting point of the lead alloy).
[0018]
Example 4
A recently developed Pb-0.04 wt% Ca-1.1 wt% Sn-0.008 wt% Ba alloy (having a melting point of 326 ° C.) was cast using the same split book mold. The pouring temperature is 620 ° C (1.9 times the melting point of the lead alloy), casting is performed by changing the mold temperature, and when opening the split book mold mold, it is cooled by air spray to produce a lattice substrate. did. The result was almost the same as the result of Example 1 shown in FIG. 1, and the mold temperature was about 230 ° C. to 290 ° C. (0.7 to 0.9 times the melting point of the lead alloy). .
As a result of performing an X-ray transmission test and a grid bending test on the grid substrate manufactured at a mold temperature of 230 to 290 ° C., it was confirmed that there was no problem.
[0019]
Example 5
Similarly, Pb-0.04wt% Ca-0.6wt% Sn-0.008wtBa-0.03wt% Ag alloy (melting point of the alloy is 325 ° C) was cast using the split mold. . Casting was performed at a pouring temperature of 580 ° C. (1.78 times the melting point of the lead alloy), changing the mold temperature, and cooling by air spray when opening the split book mold mold to produce a lattice substrate. . The results were the same as in FIG. 1, and favorable conditions were a mold temperature of 230 to 290 ° C.
As a result of an X-ray transmission test and a bending test of the lattice substrate manufactured at a mold temperature of 230 to 290 ° C., it was confirmed that there was no problem in quality.
[0020]
Example 6
For the lead alloy of Example 1 (melting point of the alloy is 325 ° C.), various split books in which a substrate lattice having a medium lattice thickness of 0.4 mm to 1.5 mm and an outer lattice thickness of 1.0 mm to 1.8 mm are dug. A grid substrate was manufactured using the same method as in Example 2 using a mold, and as a result of an X-ray transmission test and a bending test for each manufactured grid substrate, a product having a medium grid thickness of 0.4 mm was partially affected by the flow of molten metal. However, it was confirmed that a product having a size of 0.5 mm or more was a good lattice substrate having no problem at all.
[0021]
Example 7
With respect to the lead alloy of Example 4 (the melting point of the alloy was 326 ° C.), the mold temperature was kept at 260 ° C., and the casting was performed while changing the temperature of the molten metal to examine the influence of the temperature of the molten metal. The result is shown in FIG. The vertical axis is the appearance evaluation point, and the horizontal axis is the molten metal temperature. The sign of the appearance evaluation point is the same as that in FIG.
As is clear from the figure, the casting was successfully performed in the range of about 550 to 650 ° C. (1.7 to 2 times the melting point of the alloy).
[0022]
Comparative Example 1
Using a split book mold mold in which a substrate lattice having a middle lattice thickness of 0.6 mm and an outer lattice thickness of 1.0 mm was dug, the pouring temperature of the alloys of Examples 1 to 5 was 450 ° C. (about the melting point of the lead alloy). (1.4 times) and casting was performed at a mold temperature of 150 ° C. As a result, the molten metal does not turn around on the grid substrate due to poor flow of the molten metal, and the grid substrate is cut off, so that the quality as a product cannot be maintained.
[0023]
Reference Example 1
For reference, the lead alloys of Examples 1 to 5 were poured at a temperature of 450 ° C. and a mold temperature using a split book mold mold in which a substrate lattice of 0.9 mm in middle lattice and 1.4 mm in outer lattice was dug. Casting was performed at 150 ° C., and the weights of the products of Examples 1 to 5 were compared. As a result, it was confirmed that the weight of the product of the example was 0.69 times that of the product of the reference example, and the weight was reduced by 31%.
[0024]
A lead-acid battery was assembled using the grid substrate manufactured according to the present invention and the grid substrate of Reference Example 1, and a test was performed in an environment of 75 ° C. according to the light load life specified in JIS D 5301. As a result of the comparison, the lifespan of the grid substrates described in Examples 1 and 3 was 0.1% in comparison with the one described in Reference Example 1 even though the weight of the lattice substrate was reduced by 31%. Nine times, the reduction is only 10%, and when the ones described in Examples 4 and 5 are used, the life is extended to 1.5 times or more, and the material life can be reduced without reducing or improving the life so much. It was confirmed.
[0025]
【The invention's effect】
The present invention heats a book mold casting mold to a temperature 0.7 to 0.9 times the melting point of the lead alloy, and melts and heats the mold to a temperature 1.7 to 2 times the melting point of the lead alloy. This is a method for manufacturing a battery grid substrate, which comprises cooling an open book mold mold after casting the alloy and opening the mold. The grid thickness is 0.5 to 1.2 mm, which is thinner than a conventional grid substrate ( (A miniaturized), lightweight lattice substrate can be provided, and the production can be done by simply changing the engraving of the mold, the conventional book mold casting device can be used as it is, the cost of equipment modification etc. can be reduced, and the material cost (lead alloy (E.g., the amount used) is economically advantageous as it requires only a small amount, and has an industrially superior effect of providing a thin and lightweight substrate grid with excellent quality without problems such as hot cracking. is there.
[Brief description of the drawings]
FIG. 1 is a graph showing the appearance evaluation results of a cast lattice substrate when a mold temperature is changed while a molten metal temperature is kept constant using a lead alloy.
FIG. 2 is a graph showing the appearance evaluation results of a cast lattice substrate in the case where the temperature of a molten metal is fixed and the temperature of a mold is changed using another lead alloy having a different melting point.
FIG. 3 is a graph showing the results of evaluating the appearance of a cast lattice substrate when a molten metal temperature is changed while a mold temperature is kept constant using a lead alloy.

Claims (3)

ブックモールド鋳造による電池用格子基板の製造方法において、鋳型を鉛合金融点の0.7〜0.9倍の温度に加熱し、該鋳型に鉛合金融点の1.7〜2倍の温度に溶融加熱した鉛合金を鋳込んだ後、ブックモールド鋳型を冷却し開放することを特徴とする電池用格子基板の製造方法。In a method of manufacturing a battery grid substrate by book mold casting, a mold is heated to a temperature of 0.7 to 0.9 times the melting point of a lead alloy, and the mold is heated to a temperature of 1.7 to 2 times the melting point of a lead alloy. A method of manufacturing a battery grid substrate, comprising: casting a molten and heated lead alloy into a mold; and cooling and opening the book mold. 格子厚0.5〜1.2mmの電池用格子基板をブックモールド鋳造により製造する電池用格子基板の製造方法において、鋳型を鉛合金融点の0.7〜0.9倍の温度に加熱し、該鋳型に鉛合金融点の1.7〜2倍の温度に溶融加熱した鉛合金を鋳込んだ後、ブックモールド鋳型を冷却し開放することを特徴とする電池用格子基板の製造方法。In a battery grid substrate manufacturing method for manufacturing a battery grid substrate having a grid thickness of 0.5 to 1.2 mm by book mold casting, a mold is heated to a temperature of 0.7 to 0.9 times the melting point of a lead alloy. A method of manufacturing a battery grid substrate, comprising: casting a lead alloy melt-heated to a temperature 1.7 to 2 times the melting point of the lead alloy into the mold; and cooling and opening the book mold mold. 前記溶融鉛合金を鋳込んだ後のブックモールド鋳型を開放する際にエアースプレーで冷却することを特徴とする請求項1または2に記載の電池用極板格子の製造方法。The method according to claim 1 or 2, wherein cooling is performed by air spray when opening the book mold after casting the molten lead alloy.
JP2002304929A 2002-10-18 2002-10-18 Manufacturing method of grid base board for battery Pending JP2004139900A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002304929A JP2004139900A (en) 2002-10-18 2002-10-18 Manufacturing method of grid base board for battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002304929A JP2004139900A (en) 2002-10-18 2002-10-18 Manufacturing method of grid base board for battery

Publications (1)

Publication Number Publication Date
JP2004139900A true JP2004139900A (en) 2004-05-13

Family

ID=32452202

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002304929A Pending JP2004139900A (en) 2002-10-18 2002-10-18 Manufacturing method of grid base board for battery

Country Status (1)

Country Link
JP (1) JP2004139900A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008106344A (en) * 2006-09-25 2008-05-08 Furukawa Battery Co Ltd:The Method for manufacturing substrate for lead storage battery and manufacturing apparatus therefor
JP2010251032A (en) * 2009-04-14 2010-11-04 Shin Kobe Electric Mach Co Ltd Suspension substrate for lead acid battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008106344A (en) * 2006-09-25 2008-05-08 Furukawa Battery Co Ltd:The Method for manufacturing substrate for lead storage battery and manufacturing apparatus therefor
JP2010251032A (en) * 2009-04-14 2010-11-04 Shin Kobe Electric Mach Co Ltd Suspension substrate for lead acid battery

Similar Documents

Publication Publication Date Title
JP5567210B2 (en) Rolled copper foil for secondary battery negative electrode current collector and method for producing the same
JP2008223087A (en) Aluminum alloy sheet for secondary battery case and its manufacturing method
AU2003292555B2 (en) Lead-based alloy for lead-acid battery grid
JP2011140708A (en) Aluminum alloy sheet material for lithium ion battery case
EP2857535B1 (en) Aluminum alloy foil for electrode collector, method for manufacturing same, and electrode material
JP2004139900A (en) Manufacturing method of grid base board for battery
JPH1027616A (en) Lead-acid battery with erosion resistant electrode structure and its manufacture
JPH0326905B2 (en)
JP2595809B2 (en) Method of manufacturing base for lead-acid battery electrode plate
JP2785633B2 (en) Method of manufacturing grid for lead-acid battery
CN108588444A (en) By discarded aluminium be changed into aluminium fuel for power generation method
JP3413930B2 (en) Manufacturing method of lead storage battery electrode group
JP2000021414A (en) Manufacture of grid for positive electrode for lead-acid battery, and manufacture of the positive electrode for the lead-acid battery
JP2004186013A (en) Electrode collector, its manufacturing method and sealed lead-acid battery
JP4793518B2 (en) Lead acid battery
JPH11111329A (en) Lead-acid battery and manufacture thereof
JPH0326906B2 (en)
JP2003331814A (en) Method of manufacturing control valve lead battery
JPH04358035A (en) Lead-base alloy for storage battery
CN102447114B (en) A kind of manufacture method of battery grid of electric bicycle
JP2004311070A (en) Manufacturing method of grid for lead-acid storage battery
JP2003293059A (en) Aluminum alloy clad plate for secondary battery case, and secondary battery case
JPH09167611A (en) Lead-acid battery
JP2005310463A (en) Manufacturing method of lead-acid battery
JP2014060092A (en) Method for manufacturing negative electrode collector copper foil, negative electrode collector copper foil, negative electrode for lithium ion secondary battery, and lithium ion secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050628

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070705

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070731

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071211