JP2004139794A - Depositing power supply device - Google Patents

Depositing power supply device Download PDF

Info

Publication number
JP2004139794A
JP2004139794A JP2002302080A JP2002302080A JP2004139794A JP 2004139794 A JP2004139794 A JP 2004139794A JP 2002302080 A JP2002302080 A JP 2002302080A JP 2002302080 A JP2002302080 A JP 2002302080A JP 2004139794 A JP2004139794 A JP 2004139794A
Authority
JP
Japan
Prior art keywords
power supply
magnetic flux
heating coil
supply device
heating coils
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002302080A
Other languages
Japanese (ja)
Inventor
Toshie Miura
三浦 敏栄
Kiyokazu Nakamura
中村 清和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Systems Co Ltd filed Critical Fuji Electric Systems Co Ltd
Priority to JP2002302080A priority Critical patent/JP2004139794A/en
Publication of JP2004139794A publication Critical patent/JP2004139794A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • General Induction Heating (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To alleviate mutual influence by magnetic flux generated from each heating coil and enable a high-frequency power source to be stably operated, of a deposition power supply device equipped with heating coils and a high-frequency power source for depositing metal on a plastic film. <P>SOLUTION: By arranging ferrite cores 5 as ferromagnets in the vicinity of all heating coils 2, magnetic flux from adjacent heating coils is absorbed with the ferrite cores 5 scarcely to be affected by the magnetic flux. Further, the sign 3 denotes a crucible for melting metal such as aluminum and the sign 4 denotes a plastic film on which the metal evaporating from the crucible 3 is deposited. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
この発明は、互いに近接して複数個配置された加熱コイルと、各加熱コイルに接続され個別に電流を供給する高周波電源とからなる蒸着電源装置、特にその改良に関する。
【0002】
【従来の技術】
図5に、従来公知(例えば、特許文献1参照)の蒸着電源装置の加熱コイル部外形図を示す。同図(a)は平面図、(b)は横方向の側面図、(c)は縦方向の側面図である。
加熱コイル2は一般に、冷却のため10〜20mmφ程度の絶縁された水冷銅管などで製作され、外形寸法は直径200〜300mmφ,高さ150〜300mmφ程度である。また、高周波電源との接続は端子1により行なう。各加熱コイル2は、鉛直方向に主磁束を発生する方向に置かれ、水平方向には千鳥足状に複数個近接配置されている。
【0003】
加熱コイル2内には、るつぼ3が置かれアルミなどの金属を溶解させる。蒸着電源装置では、加熱コイル部は真空容器中に置かれ溶解した金属を蒸発し易くし、加熱コイル2の上部に送られてくるプラスチックフィルム4に、蒸発する金属を蒸着させる。例えば、アルミを蒸着したプラスチックフィルムは、コンデンサの電極やスナック菓子の食品包装用材料などに使用され、高機能フィルムとしてその応用は多岐に渡っている。
【0004】
図6に、一般的な蒸着電源装置主回路部を示す。
商用周波数の交流電源に接続されている電動機10と同じ軸に高周波発電機11を接続し、電動機10から伝達される動力と界磁電源12より界磁電流が供給される界磁巻線13が発生する磁束により、単相の100〜300kW,400V,10kHz程度の高周波電力を発生させる。リアクトル14を介する高周波発電機11の出力側は、共振コンデンサ9と加熱コイル2が接続された並列共振回路がさらに5〜15並列程度接続された構成になっている。各加熱コイル2の出力調整は、出力調整用共振コンデンサ15をコンタクタ16で入り,切りすることにより行なう。
【0005】
【特許文献1】
特開平05−299163号公報(第2頁、図2)
【0006】
【発明が解決しようとする課題】
ところで、図6に示すような電動機10と高周波発電機11による主回路は、インバータの発達により生産中止の傾向にあるだけでなく、その機械的稼動部分やコンタクタ16などはメンテナンスに多くの時間とコストを必要とするという問題がある。さらに、故障により高周波電源が停止した場合、蒸着電源装置による生産も停止する。大容量300kWの電動機と高周波発電機の修理,またコンタクタなどの交換には時間がかかり、ロスタイムを短くすることも課題になっている。このため、蒸着電源装置の高周波電源をインバータに置き換えることが急務になっている。
【0007】
図7に、インバータによる主回路例を示す。
商用周波数の交流電源が各インバータの整流器6に接続され、インバータはここではIGBT(絶縁ゲートバイポーラトランジスタ)7と直流中間コンデンサ8からなる単相出力電圧形ハーフブリッジ構成となっている。各インバータの出力側は、共振コンデンサ9と加熱コイル2が接続された直列共振回路で構成されている。各加熱コイル2の出力調整は、各インバータの出力周波数を可変とすることにより行なう。また、インバータは各コイルに個別に設けているため20kW程度の小容量であり、インバータの予備を準備しておくことが容易である。その結果、インバータの故障時には予備のインバータに交換することにより、早急に故障復帰させることが可能である。
【0008】
ここで、図7の電源に図5のような加熱コイルを接続し、高周波電源を運転したときの、インバータの出力電流波形例を図8に示す。同図のインバータa,bは、図5の加熱コイルa,bに対応している。加熱コイルaおよびbの出力を調整するため、インバータaおよびbの出力周波数を個別に調整する。図8では、インバータaでは出力を下げるため出力周波数を高くし、インバータbでは出力を上げるため出力周波数を低くしている例を示す。Aの時点で出力周波数および位相が一致している。このとき、加熱コイルaおよびbは近接配置されているため磁束の影響を受け易く、出力周波数および位相が一致したとき、より一層大きい影響を受ける。
【0009】
加熱コイルaの発生する磁束と加熱コイルbの発生する磁束が相互に増減し合い、出力電流に影響を及ぼし、結果として出力電流を急激に変化させ、Bの時点では過電流レベルを越え故障停止する。このまま運転を継続しようとすると、過電流レベルを定格電流の2倍以上に設定しなければならず、出力容量に対して装置容量が著しく大きくなり、コストアップや大型化が避けられない。
したがって、この発明の課題は、互いに近接配置された加熱コイル間に発生する磁束の影響を低減し、高周波電源を安定に運転できるようにすることにある。
【0010】
【課題を解決するための手段】
このような課題を解決するため、請求項1の発明では、水平方向に互いに近接して配置され鉛直方向に磁束を発生する加熱コイルと、各加熱コイルに接続され個別に電流を供給する高周波電源とを備えた蒸着電源装置において、全ての加熱コイルの近傍に磁性体を設置したことを特徴とする。
また、請求項2の発明では、水平方向に互いに近接して配置され鉛直方向に磁束を発生する加熱コイルと、各加熱コイルに接続され個別に電流を供給する高周波電源とを備えた蒸着電源装置において、一部の加熱コイルの近傍にのみ磁性体を設置したことを特徴とする。
【0011】
請求項3の発明では、水平方向に互いに近接して配置され鉛直方向に磁束を発生する加熱コイルと、各加熱コイルに接続され個別に電流を供給する高周波電源とを備えた蒸着電源装置において、全ての加熱コイルの間に磁性体を設置したことを特徴とする。
さらに、請求項4の発明では、水平方向に互いに近接して配置され鉛直方向に磁束を発生する加熱コイルと、各加熱コイルに接続され個別に電流を供給する高周波電源とを備えた蒸着電源装置において、一部の加熱コイルの間にのみ磁性体を設置したことを特徴とする。
【0012】
【発明の実施の形態】
図1はこの発明の第1の実施の形態を示す構成図である。
同図からも明らかなように、全ての加熱コイル2の近傍に強磁性体である、幅150×高さ200×厚さ5mm程度のフェライトコア5を配置した点が特徴である。これにより、隣り合うコイルなどからの磁束がフェライトコア5により吸収され、磁束の影響を殆ど受けないようになる。各インバータの出力周波数および位相が一致した場合でも、出力電流は殆ど変化せず、安定な運転を継続することができる。
【0013】
図2はこの発明の第2の実施の形態を示す構成図である。
磁束の影響を特に受け易い中心部に置かれた加熱コイル2の近傍に、強磁性体であるフェライトコア5を配置し、磁束の影響を受け難い端部に置かれた加熱コイル2には特に何も設置しないようにしたものである。この場合でも、中心部の隣り合うコイルなどからの磁束をフェライトコア5により吸収するので、磁束の影響を殆ど受けることがない。各インバータの出力周波数および位相が一致した場合でも、出力電流は殆ど変化せず、安定な運転を継続する。図1の場合と比較して磁束による影響の低減効果はやや落ちるが、フェライトコア5の個数を削減でき、また加熱コイル2付近は数百度の温度であり、フェライトコア5のメンテナンスも必要なので、その時間を短縮しなければならない場合に有効な方法となる。
【0014】
図3はこの発明の第3の実施の形態を示す構成図である。
これは、全ての加熱コイル2の間に強磁性体であるフェライトコア5を配置した例である。磁束の影響は、隣り合うコイルからのものが最も大きいので、隣り合うコイルからの磁束をフェライトコア5により吸収させる。結果として、磁束による影響を殆ど受けない。各インバータの出力周波数および位相が一致した場合でも、出力電流は殆ど変化せず、安定な運転を継続する。図1の場合と比較して磁束による影響の低減効果はやや落ちるが、フェライトコア5の個数を削減でき、また、フェライトコア5の設置スペースが限られるような場合には有効な方法となる。
【0015】
図4はこの発明の第4の実施の形態を示す構成図である。
磁束の影響を特に受け易い中心部に置かれた加熱コイル2の間に強磁性体であるフェライトコア5を配置し、磁束の影響を受け難い端部に置かれた加熱コイル2には特に何も設置しないようにしたものである。この場合でも、中心部の隣り合うコイルなどからの磁束をフェライトコア5により吸収し、磁束の影響を殆ど受けることがない。各インバータの出力周波数および位相が一致した場合でも、出力電流は殆ど変化せず、安定な運転を継続する。図1〜図3の例と比較して、磁束による影響の低減効果は最も小さいが、フェライトコア5の個数を最も少なくでき、フェライトコア5の設置スペースも狭くて済ませることができる。
【0016】
【発明の効果】
この発明によれば、互いに近接して複数個配置された加熱コイルの近傍または加熱コイル間に磁性体を配置することにより、各加熱コイルに接続され個別に制御される高周波電源を安定に運転することが可能となる。その結果、過電流レベルを定格電流の数十%増程度の値に設定できるので、出力容量に対して装置容量が妥当で、コスト,大きさともに競争力のあるものにすることができる。
【図面の簡単な説明】
【図1】この発明の第1の実施の形態を説明する説明図
【図2】この発明の第2の実施の形態を説明する説明図
【図3】この発明の第3の実施の形態を説明する説明図
【図4】この発明の第4の実施の形態を説明する説明図
【図5】コイル配置の従来例を示す構成図
【図6】高周波電源の一般的な例を示す回路図
【図7】インバータを用いた高周波電源例を示す回路図
【図8】図7の出力波形例を示す波形図
【符号の説明】
1…端子、2…加熱コイル、3…るつぼ、4…プラスチックフィルム、5…フェライトコア、6…整流器、7…IGBT(絶縁ゲートバイポーラトランジスタ)、8…直流中間コンデンサ、9…共振コンデンサ、10…電動機、11…高周波発電機、12…界磁電源、13…界磁巻線、14…リアクトル、15…出力調整用共振コンデンサ、16…コンタクタ。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a vapor deposition power supply device including a plurality of heating coils arranged close to each other and a high-frequency power supply connected to each heating coil and individually supplying current, and particularly to an improvement thereof.
[0002]
[Prior art]
FIG. 5 shows an outline drawing of a heating coil portion of a conventionally known evaporation power supply device (for example, see Patent Document 1). 3A is a plan view, FIG. 3B is a lateral side view, and FIG. 3C is a vertical side view.
The heating coil 2 is generally made of an insulated water-cooled copper tube of about 10 to 20 mmφ for cooling, and has external dimensions of about 200 to 300 mmφ in diameter and about 150 to 300 mmφ in height. The connection to the high-frequency power supply is made by the terminal 1. Each heating coil 2 is placed in a direction in which a main magnetic flux is generated in a vertical direction, and a plurality of heating coils 2 are arranged in a staggered manner in the horizontal direction.
[0003]
A crucible 3 is placed in the heating coil 2 to melt a metal such as aluminum. In the vapor deposition power supply device, the heating coil unit is placed in a vacuum vessel to facilitate the evaporation of the dissolved metal, and deposits the evaporating metal on the plastic film 4 sent above the heating coil 2. For example, a plastic film on which aluminum is deposited is used as an electrode of a capacitor, a food packaging material for snacks, and the like, and its application as a high-performance film is diversified.
[0004]
FIG. 6 shows a main circuit section of a general vapor deposition power supply device.
A high-frequency generator 11 is connected to the same shaft as the motor 10 connected to the commercial frequency AC power supply, and the power transmitted from the motor 10 and the field winding 13 to which the field current is supplied from the field power supply 12 are connected. The generated magnetic flux generates a single-phase high-frequency power of about 100 to 300 kW, 400 V, and about 10 kHz. The output side of the high-frequency generator 11 via the reactor 14 has a configuration in which about 5 to 15 parallel resonance circuits in which the resonance capacitor 9 and the heating coil 2 are connected are further connected. The output of each heating coil 2 is adjusted by turning on and off the output adjusting resonance capacitor 15 with the contactor 16.
[0005]
[Patent Document 1]
JP-A-05-299163 (page 2, FIG. 2)
[0006]
[Problems to be solved by the invention]
Incidentally, the main circuit including the electric motor 10 and the high-frequency generator 11 as shown in FIG. 6 not only has a tendency to stop production due to the development of the inverter, but also requires a lot of time and maintenance for its mechanically operating part and the contactor 16. There is a problem that costs are required. Further, when the high-frequency power supply stops due to a failure, the production by the vapor deposition power supply also stops. It takes time to repair a large-capacity 300 kW motor and high-frequency generator, and to replace a contactor, etc., and shortening the loss time is also an issue. Therefore, there is an urgent need to replace the high-frequency power supply of the vapor deposition power supply device with an inverter.
[0007]
FIG. 7 shows an example of a main circuit using an inverter.
An AC power supply having a commercial frequency is connected to a rectifier 6 of each inverter. The inverter has a single-phase output voltage type half-bridge configuration including an IGBT (insulated gate bipolar transistor) 7 and a DC intermediate capacitor 8. The output side of each inverter is constituted by a series resonance circuit in which a resonance capacitor 9 and a heating coil 2 are connected. The output of each heating coil 2 is adjusted by making the output frequency of each inverter variable. Further, since the inverter is provided separately for each coil, it has a small capacity of about 20 kW, and it is easy to prepare a spare inverter. As a result, when the inverter fails, it is possible to quickly recover from the failure by replacing the inverter with a spare inverter.
[0008]
Here, FIG. 8 shows an example of the output current waveform of the inverter when the heating coil as shown in FIG. 5 is connected to the power supply in FIG. 7 and the high-frequency power supply is operated. The inverters a and b in the figure correspond to the heating coils a and b in FIG. In order to adjust the outputs of the heating coils a and b, the output frequencies of the inverters a and b are individually adjusted. FIG. 8 shows an example in which the output frequency of the inverter a is increased to reduce the output, and the output frequency of the inverter b is decreased to increase the output. At the point A, the output frequency and the phase match. At this time, since the heating coils a and b are arranged close to each other, they are easily affected by the magnetic flux, and when the output frequency and the phase match, the influence is further increased.
[0009]
The magnetic flux generated by the heating coil a and the magnetic flux generated by the heating coil b increase and decrease each other, affecting the output current. As a result, the output current sharply changes. I do. If the operation is to be continued as it is, the overcurrent level must be set to twice or more of the rated current, and the capacity of the device becomes significantly larger than the output capacity, which inevitably increases the cost and size.
Therefore, an object of the present invention is to reduce the influence of magnetic flux generated between heating coils arranged close to each other, and to stably operate a high-frequency power supply.
[0010]
[Means for Solving the Problems]
In order to solve such a problem, according to the first aspect of the present invention, a heating coil that is arranged close to each other in a horizontal direction and generates a magnetic flux in a vertical direction, and a high-frequency power supply connected to each heating coil and individually supplying current And a magnetic body is provided near all the heating coils.
According to the second aspect of the present invention, a vapor deposition power supply device includes a heating coil that is arranged close to each other in a horizontal direction and generates a magnetic flux in a vertical direction, and a high-frequency power supply connected to each heating coil and individually supplying current. Wherein the magnetic material is provided only in the vicinity of some of the heating coils.
[0011]
In a third aspect of the present invention, in a vapor deposition power supply device including a heating coil that is arranged close to each other in a horizontal direction and generates a magnetic flux in a vertical direction, and a high-frequency power supply connected to each heating coil and individually supplying current, A magnetic body is provided between all the heating coils.
Further, in the invention according to claim 4, a vapor deposition power supply device comprising: a heating coil which is arranged close to each other in a horizontal direction and generates a magnetic flux in a vertical direction; and a high frequency power supply connected to each heating coil and individually supplying a current. Wherein a magnetic material is provided only between some of the heating coils.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 1 is a configuration diagram showing a first embodiment of the present invention.
As is clear from the figure, a feature is that a ferrite core 5 of about 150 × 200 × 5 mm in thickness, which is a ferromagnetic material, is arranged near all the heating coils 2. As a result, the magnetic flux from adjacent coils and the like is absorbed by the ferrite core 5 and is hardly affected by the magnetic flux. Even when the output frequency and the phase of each inverter match, the output current hardly changes, and stable operation can be continued.
[0013]
FIG. 2 is a configuration diagram showing a second embodiment of the present invention.
A ferrite core 5 made of a ferromagnetic material is disposed in the vicinity of the heating coil 2 located at the center, which is particularly susceptible to the magnetic flux. Nothing was set up. Even in this case, since the magnetic flux from the adjacent coil or the like at the center is absorbed by the ferrite core 5, the magnetic flux is hardly affected. Even when the output frequency and the phase of each inverter match, the output current hardly changes, and stable operation is continued. Although the effect of reducing the influence of the magnetic flux is slightly reduced as compared with the case of FIG. 1, the number of the ferrite cores 5 can be reduced, and the temperature around the heating coil 2 is several hundred degrees. This is an effective method when the time must be shortened.
[0014]
FIG. 3 is a configuration diagram showing a third embodiment of the present invention.
This is an example in which a ferrite core 5 made of a ferromagnetic material is arranged between all the heating coils 2. Since the influence of the magnetic flux is greatest from the adjacent coil, the magnetic flux from the adjacent coil is absorbed by the ferrite core 5. As a result, it is hardly affected by the magnetic flux. Even when the output frequency and the phase of each inverter match, the output current hardly changes, and stable operation is continued. Although the effect of reducing the influence of the magnetic flux is slightly reduced as compared with the case of FIG. 1, the method is effective when the number of ferrite cores 5 can be reduced and the installation space for the ferrite cores 5 is limited.
[0015]
FIG. 4 is a configuration diagram showing a fourth embodiment of the present invention.
A ferrite core 5 made of a ferromagnetic material is arranged between the heating coil 2 placed at the center, which is particularly susceptible to the magnetic flux. Is also not installed. Even in this case, the magnetic flux from the adjacent coil or the like at the center is absorbed by the ferrite core 5 and is hardly affected by the magnetic flux. Even when the output frequency and the phase of each inverter match, the output current hardly changes, and stable operation is continued. Compared with the examples of FIGS. 1 to 3, the effect of reducing the influence of the magnetic flux is the smallest, but the number of ferrite cores 5 can be minimized, and the installation space for the ferrite cores 5 can be reduced.
[0016]
【The invention's effect】
According to the present invention, by disposing a magnetic body near or between heating coils arranged in close proximity to each other, a high-frequency power supply connected to each heating coil and individually controlled is stably operated. It becomes possible. As a result, the overcurrent level can be set to a value about several tens of percent of the rated current, so that the device capacity is appropriate with respect to the output capacity, and the cost and size can be competitive.
[Brief description of the drawings]
FIG. 1 is an explanatory view for explaining a first embodiment of the present invention; FIG. 2 is an explanatory view for explaining a second embodiment of the present invention; FIG. 3 is a view for explaining a third embodiment of the present invention; FIG. 4 is an explanatory diagram illustrating a fourth embodiment of the present invention. FIG. 5 is a configuration diagram illustrating a conventional example of coil arrangement. FIG. 6 is a circuit diagram illustrating a general example of a high-frequency power supply. FIG. 7 is a circuit diagram showing an example of a high-frequency power supply using an inverter. FIG. 8 is a waveform diagram showing an example of an output waveform of FIG. 7;
DESCRIPTION OF SYMBOLS 1 ... Terminal, 2 ... Heating coil, 3 ... Crucible, 4 ... Plastic film, 5 ... Ferrite core, 6 ... Rectifier, 7 ... IGBT (insulated gate bipolar transistor), 8 ... DC intermediate capacitor, 9 ... Resonant capacitor, 10 ... Electric motor, 11: high frequency generator, 12: field power supply, 13: field winding, 14: reactor, 15: resonance capacitor for output adjustment, 16: contactor.

Claims (4)

水平方向に互いに近接して配置され鉛直方向に磁束を発生する加熱コイルと、各加熱コイルに接続され個別に電流を供給する高周波電源とを備えた蒸着電源装置において、
全ての加熱コイルの近傍に磁性体を設置したことを特徴とする蒸着電源装置。
In a deposition power supply device including a heating coil that is arranged close to each other in the horizontal direction and generates a magnetic flux in the vertical direction, and a high-frequency power supply that is connected to each heating coil and individually supplies current,
A vapor deposition power supply, wherein a magnetic material is provided near all heating coils.
水平方向に互いに近接して配置され鉛直方向に磁束を発生する加熱コイルと、各加熱コイルに接続され個別に電流を供給する高周波電源とを備えた蒸着電源装置において、
一部の加熱コイルの近傍にのみ磁性体を設置したことを特徴とする蒸着電源装置。
In a deposition power supply device including a heating coil that is arranged close to each other in the horizontal direction and generates a magnetic flux in the vertical direction, and a high-frequency power supply that is connected to each heating coil and individually supplies current,
A vapor deposition power supply device, wherein a magnetic material is provided only in the vicinity of some of the heating coils.
水平方向に互いに近接して配置され鉛直方向に磁束を発生する加熱コイルと、各加熱コイルに接続され個別に電流を供給する高周波電源とを備えた蒸着電源装置において、
全ての加熱コイルの間に磁性体を設置したことを特徴とする蒸着電源装置。
In a deposition power supply device including a heating coil that is arranged close to each other in the horizontal direction and generates a magnetic flux in the vertical direction, and a high-frequency power supply that is connected to each heating coil and individually supplies current,
A vapor deposition power supply, wherein a magnetic material is provided between all the heating coils.
水平方向に互いに近接して配置され鉛直方向に磁束を発生する加熱コイルと、各加熱コイルに接続され個別に電流を供給する高周波電源とを備えた蒸着電源装置において、
一部の加熱コイルの間にのみ磁性体を設置したことを特徴とする蒸着電源装置。
In a deposition power supply device including a heating coil that is arranged close to each other in the horizontal direction and generates a magnetic flux in the vertical direction, and a high-frequency power supply that is connected to each heating coil and individually supplies current,
A vapor deposition power supply characterized in that a magnetic material is provided only between some of the heating coils.
JP2002302080A 2002-10-16 2002-10-16 Depositing power supply device Pending JP2004139794A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002302080A JP2004139794A (en) 2002-10-16 2002-10-16 Depositing power supply device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002302080A JP2004139794A (en) 2002-10-16 2002-10-16 Depositing power supply device

Publications (1)

Publication Number Publication Date
JP2004139794A true JP2004139794A (en) 2004-05-13

Family

ID=32450263

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002302080A Pending JP2004139794A (en) 2002-10-16 2002-10-16 Depositing power supply device

Country Status (1)

Country Link
JP (1) JP2004139794A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113195781A (en) * 2018-12-19 2021-07-30 Posco公司 Coating control device and method in PVD coating process

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113195781A (en) * 2018-12-19 2021-07-30 Posco公司 Coating control device and method in PVD coating process

Similar Documents

Publication Publication Date Title
TWI418259B (en) A power supply device and a microwave generator using the same
AU2002237760B2 (en) Induction furnace with improved efficiency coil system
KR100872002B1 (en) Simultaneous induction heating and stirring of a molten metal
KR20130122022A (en) Induction heating device, control method for induction heating device, and control program
AU2018346513B2 (en) Magnetic field generation with magneto-caloric cooling
RU2007125704A (en) ELECTRICAL CONTROL SYSTEM
US11081273B1 (en) Magnetic field generation with thermovoltaic cooling
JPWO2014033830A1 (en) Power converter
CN109792811B (en) Converter-fed electric arc furnace with capacitor means in the secondary circuit
KR20040023752A (en) Power supply for induction heating or melting
AU2002255551A1 (en) Simultaneous induction heating and stirring of a molten metal
JP2016537953A (en) Method and primary unit for operating a three-phase primary winding structure
US6798822B2 (en) Simultaneous induction heating and stirring of a molten metal
JP3683318B2 (en) X-ray apparatus comprising an X-ray tube power supply unit
JP2004139794A (en) Depositing power supply device
US6992406B2 (en) Induction heating or melting power supply utilizing a tuning capacitor
JP6347044B2 (en) Induction heating device
JP7222806B2 (en) Electromagnetic induction heating device
JP2022034220A (en) Electromagnetic induction heating device
US8437150B1 (en) Dual frequency heating, melting and stirring with electric induction power
JP2007220396A (en) Induction heating device
Hatchavanich et al. The analysis of series—Parallel—Parallel compensation current source inverter for wireless power transfer in EVs charging application
JPH08261656A (en) Floating melting apparatus
CN221728540U (en) Crystal manufacturing induction heating assembly and inductor assembly
JP2012230874A (en) Induction heating cooker

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040205

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050215

A977 Report on retrieval

Effective date: 20070302

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070405

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070514

A02 Decision of refusal

Effective date: 20070719

Free format text: JAPANESE INTERMEDIATE CODE: A02