JP2004138681A - Beam emission angle correcting element and laser marking apparatus with the same installed on - Google Patents

Beam emission angle correcting element and laser marking apparatus with the same installed on Download PDF

Info

Publication number
JP2004138681A
JP2004138681A JP2002301089A JP2002301089A JP2004138681A JP 2004138681 A JP2004138681 A JP 2004138681A JP 2002301089 A JP2002301089 A JP 2002301089A JP 2002301089 A JP2002301089 A JP 2002301089A JP 2004138681 A JP2004138681 A JP 2004138681A
Authority
JP
Japan
Prior art keywords
angle
light
optical element
emission angle
incident surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002301089A
Other languages
Japanese (ja)
Other versions
JP3991837B2 (en
Inventor
Koji Nishimura
西村 孝司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koki Holdings Co Ltd
Original Assignee
Hitachi Koki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Koki Co Ltd filed Critical Hitachi Koki Co Ltd
Priority to JP2002301089A priority Critical patent/JP3991837B2/en
Priority to US10/681,261 priority patent/US6970294B2/en
Priority to TW092128330A priority patent/TWI226429B/en
Priority to DE10347122A priority patent/DE10347122A1/en
Publication of JP2004138681A publication Critical patent/JP2004138681A/en
Application granted granted Critical
Publication of JP3991837B2 publication Critical patent/JP3991837B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Optical Elements Other Than Lenses (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an angle correcting optical element capable of easily and highly accurately correcting the emission angle of a beam and a laser marking apparatus which is equipped with the same and low-priced and can carry out irradiation with a plurality of line light beams. <P>SOLUTION: The beam emission angle correcting element is formed of a flat plate member of glass, plastic, etc., capable of transmitting light and its beam incidence surface and beam emitting surface form a specified angle. Namely, the incidence surface and emitting surface are so configured to satisfy α=θ/(n-1), where θ is an angular error with respect to the traveling direction of a beam incident on the beam emission angle correcting element, (n) is the refractive index of an optical element for angle correction, and α is the apex angle formed by the incidence surface and emitting surface of the optical element for angle correction. The angular error of the beam can be corrected by transmitting the beam through the optical element for angle correction. Further, the laser marking apparatus is constituted by incorporating the optical element for angle correction in a line light generation optical system and then the laser marking apparatus which has very high indication accuracy can be obtained at a low price. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、主として1本のレーザ光を複数本のレーザ光に分割するためのビームスプリッター及びそのビームスプリッターを使用したレーザ墨出し装置に関するものである。
【0002】
【従来の技術】
家屋建築の際、特に工事の開始時には各種部材の取り付け基準位置の設定や部材加工の位置決め等に水準線を出す作業、すなわち墨出し作業が必須である。そこで建築現場では、レベル測量儀等の器具を用いてレベル出しを行い、対象となる構造物の壁に複数のマーク(墨)をつけ、それらをつないで墨出しラインを形成し工事基準としていた。
【0003】
しかし、この作業は最低でも2人で行う必要があり、非常に手間が掛かり、効率が悪いという問題があった。この問題を改善するために、最近ではライン光照射機能を有するレーザ墨出し装置を用いて効率良く墨出し作業を行うことが多くなった。レーザ墨出し装置は1人で墨出し作業を容易に行うことができるため、建築作業には欠かせない建築作業必須ツールとなりつつある。
【0004】
墨出しラインには床から壁、天井にかけて垂直線を描くいわゆる『たちライン』や2本の『たちライン』を同時に照射させることで天井に直角ラインを描く『大矩ライン(おおがねライン)』あるいは壁に水平線を描く『ろくライン』あるいはレーザ墨出し装置の直下の床上に集光したレーザビームを照射する『地墨』等いろいろなラインが存在する。
【0005】
レーザ墨出し装置を用いた墨出し作業の効率化を図るには、1台のレーザ墨出し装置で複数の墨出しラインが照射できることが望まれる。そこで最近では1台の装置で2ライン以上のライン照射が可能な装置が提案されている。
【0006】
1台のレーザ墨出し装置から複数ラインを照射するためには、複数個のレーザ光源を搭載する方式か、1個のレーザ光源から出射されたレーザ光を分割することにより複数ラインを得る方式が考えられる。
【0007】
1本のレーザ光を分割することにより複数のライン光を得る方式としては、従来方法はレーザ出射方向に複数のハーフミラーを直列に積層した構造の出射光学系を用いる方式が知られている(特許文献1参照)。
【特許文献1】
特開平9−159451号(図1及び図3)
【0008】
【発明が解決しようとする課題】
レーザ墨出し装置から照射されるライン光は理想的な水平線及び理想的な垂直線に近いほど、ライン指示精度は良くなる。したがって、複数個のレーザ光源を用いる従来のレーザ墨出器では、ライン指示精度を出すために個々のレーザ光源付属の光学系について光学調整を行う必要がある。しかしながらこの組立調整にはかなりの手間がかかり、装置のコストも高くなると言う問題がある。
【0009】
一方、1本のレーザ光を分割することにより複数のライン光を得る方式としては、例えば特開平9−159451号に開示されるように、レーザ出射方向に複数のハーフミラーを直列に積層した構造の出射光学系を用いる方式が知られている。しかし、この方式の場合、出射光の角度を調節するためにはハーフミラーの設置角度を微調整する必要があり,機構が複雑かつ部品点数が増えてしまう。ちなみに特開平9−159451号に示された方式では特にハーフミラーの角度調整機構は設けていないため、出射光の指示精度を高めることは困難である。
【0010】
本発明の目的は、このような従来の課題を解決した簡易なビーム出射角度補正素子及びそれを搭載したレーザ墨出し装置を提供することにある。
【0011】
【課題を解決するための手段】
上記の目的を達成するために本発明は、ガラス又はプラスチック等の光透過体よりなる平板であって、角度誤差を補正すべき光の入射面と、出射面を有し、上記入射面と出射面とのなす角度αが、上記光透過体の屈折率に依存する所定の値となるように上記入射面と出射面を形成した光学素子によりビーム出射角度を補正するようにしたことに一つの特徴がある。このように構成することにより簡単且つ高精度でビーム角度を補正することが可能になる。また、上記角度補正の効果は、光学素子の配置の精度に依存しないため、該角度補正光学素子を光学系に組み込むときに精度を必要としないという利点がある。
【0012】
本発明の特徴をさらに具体的に言えば、ビームの進行方向に対する角度誤差をθ、角度補正用光学素子の屈折率をn、該角度補正用光学素子の入射面と出射面がなす頂角をαとした時、頂角の大きさがα=θ/(n−1)又はその近傍となるように上記入射面と出射面を形成したことにある。すなわち、角度補正用の光学素子の頂角を、入射ビームの入射角度と光学素子の屈折率だけから決定できるため光学素子の設計が極めて容易である。
【0013】
本発明の他の特徴は、角度補正用光学素子の入射面と出射面のなす頂角αを1.1θ≦α≦2.2θの範囲に設定したことにある。このように構成すると、通常のガラスあるいはプラスチックを用いた場合、角度補正用光学素子の頂角を、容易に設計することができる。
【0014】
本発明の他の特徴は、角度補正用光学素子の屈折率nが1.47≦n≦1.53の範囲にあってかつ頂角αが2θ、あるいはその近傍に選定したことにある。このようにすると、一般的な角度精度を有する光学素子を用いてライン光を発生した場合、レーザ墨出し器のライン光指示精度を仕様範囲に収めることが可能になる。
【0015】
本発明の他の特徴は、角度補正用光学素子は、少なくとも2つの平行な面と、所定の角度をなすように形成された第1及び第2の面とを有し、入射光は上記第1の面に照射し、上記第2の面から光線を出射するように配置したことにある。前述のように本発明においては、入射面と出射面の角度は補正に影響するが、そのほかの形状や大きさに影響を受けずに補正することができる。
【0016】
本発明の他の特徴は、互いに直交する軸をx,y,zとしたとき、z−y面からx方向に光ビームを出射するビーム照射光学系と、第1及び第2のビーム出射角度補正用光学素子から出射角度補正装置を構成し、第1の光学素子はx−y面における光ビームの傾きを補正し、第2の光学素子はx−z面における光ビームの傾きを補正するように配置したことにある。このように構成すると3次元的な出射角度誤差を互いに直交する2つの正射影成分に分けて書く成分ごとに角度補正を行なうことができる。
【0017】
本発明の他の特徴は、互いに直交する軸をx,y,zとしたとき、z−y面からx方向に光ビームを出射するビーム照射光学系と、該光ビームの出射角度を補正するための光学素子とより光ビーム出射角度補正装置を構成し、上記光学素子は、x−y面及びx−z面の両方における光ビームの傾きを補正するために、z−y面内で適当な角度傾斜して配置したことにある。このように配置すると、1個の補正素子で3次元的角度誤差を補正することが可能になる。
【0018】
本発明の他の特徴は、上記のような角度補正光学素子および光ビーム出射角度補正装置をライン光発生光学系に組み込んでレーザ墨出し装置を構成したことにある。このように構成することにより、非常に高い指示精度を有するレーザ墨出し装置を低価格で得ることが可能になる。
本発明の他の特徴及び効果は以下の実施形態の説明から更に明確に理解される。
【0019】
【発明の実施の形態】
(実施形態1)
本発明のビーム出射角度補正素子1の一実施例を図1に示す。本発明にかかるビーム出射角度補正素子1は、ガラス又はプラスチック等の光透過体で構成された平板であり、図1の紙面と垂直方向に厚みを有する。本実施形態ではガラス材であるBK7(屈折率1.5)を用いた。同図において2が光の入射面、3が光の出射面を示し、その入射面2と出射面3は所定の角度αをなすように形成されている。
【0020】
次に図2を用いて本発明のビーム出射角度補正素子1の原理を説明する。別の光学系(図示しない)から出射したビームB1が理想的なビームの進行ライン(x軸)と角度δずれている場合について考える。今、ビーム出射角度補正素子1の入射面2がx軸とπ/2−ξの角度だけ傾いて設置されており、さらに入射面2の法線に対してビームB1が角度θ傾いて入射し、更に、ビーム出射角度補正素子1内部を進むビームB2は、上記の法線に対して角度γ傾いて進むとする。ビーム出射角度補正素子1の屈折率をnとするとスネルの法則により
sinθ=n・sinγ    (1)
が成り立つ。ここでビーム出射角度補正素子1外部は空気であるため屈折率は1である。
【0021】
また、ビーム出射角度補正素子1内部を進むビームB2は、出射面3の法線に対してα−γの角度をなす。ビーム出射角度補正素子1内部から出射したビームB3が出射面3の法線となす角度をθとするとスネルの法則により
n・sin(α−γ)=sinθ    (2)
が成り立つ。
(1)式から   sinγ=(1/n)・sinθ (3)
(3)式を変形して
cosγ=(1/n)・(n−sinθ1/2  (4) となる。
次に(2)式から
sinθ=n・sin(α−γ)
=n・(sinα・cosγ−cosα・sinγ)
=n・(sinα・(1/n)・(n−sinθ1/2
−cosα・(1/n)・sinθ
=sinα・(n−sinθ1/2−cosα・sinθ  (5)
となる。
ここでビームB1がx軸となす角度δは δ=ξ−θ (6)
また、出射ビームB3がx軸となす角度φは φ=α−ξ−θ   (7)
となる。
【0022】
今、α、θ及びδが十分小さい場合、
sinθ=θ   sinθ=θ   sinα=α  cosα=1
θ =0
であるため、(5)式は
θ=α・(n−θ 1/2−θ
=n・α−θ  (8)
出射ビームB3がx軸となす角度φは(7)式に(8)式を代入して
φ=α−ξ−(n・α−θ
=α−n・α−(ξ−θ
=α−n・α−δ     (9)
ここでφが0となるのは(9)式においてφ=0とすると
α−n・α−δ=0
上式を変形して
α=−δ/(n−1)   (10)
となる。すなわちビームB1がx軸となす角度δに対して1/(n−1)倍の
角度αを有するビーム出射角度補正素子1にビームを透過させることにより、
ビーム出射角度補正素子1からの出射光がx軸となす角度は0となるように補正される。また、(10)式から明らかなようにこの角度補正は、ビーム出射角度補正素子1のx軸に対する設置角度には依存しない。
【0023】
今、ある光学系からの出射ビームがx軸と0.01°の角度をなしている場合、このビームの進行方向をx軸の方向と一致させるためには(10)式からα=−0.01/(n−1)の角度を有するビーム出射角度補正素子1を用いて角度補正を行えばよい。ビーム出射角度補正素子1の材質をBK7(屈折率=1.5)とすると、
α=−0.01/(1.5−1)=−0.02°となる。
【0024】
図3に本発明のビーム出射角度補正素子1の実装例を示す。上述の通り角度補正の効果はビーム出射角度補正素子1とx軸がなす取り付け角度には依存しないが、取り付けの方向は重要である。本実施例では図3に示すように入射ビームB1がx軸に対し、+0.01°傾いているのでビーム出射角度補正素子1の0.02°の角度を有する方向は図面下向きに設置する必要がある。すなわち補正素子1の幅の狭い部分がx軸の下方に、幅の広い部分がx軸の上方に位置するようにこの素子1を配置する。逆に、入射ビームB1がx軸に対して−0.01°傾いている場合にはビーム出射角度補正素子1の0.02°の角度を有する方向は図面上向きに配置する。但し、素子の厚み、外形の大きさには全く無関係であるため、補正が必要な光学系のサイズに応じて角度補正素子を自由に設計することができる。
【0025】
(実施形態2)
本発明のビーム出射角度補正素子1をレーザ墨出し装置に実装した形態について説明する。図4に示すようにレーザ墨出し装置10は基本的にはライン光を発生させる光学系14と光学系を水平に保つための支持機構部15から構成されている。図5にライン光発生光学系14の一例の概略を示す。
【0026】
レーザー墨出し装置本体に対して水平方向に配置した半導体レーザ16から出射されたレーザビームはコリメータレンズ17によりビーム断面形状が円形であるコリメート光(平行光)B1に変換される。本実施形態ではコリメート光B1のビーム径は2mmになるように設定している。また、光学系14はビームスプリッター4が用いられており入射光を3本の均一な強度の光に分岐している。すなわちこのビームスプリッター4はこの実施例ではガラス又はプラスチック等の光を透過する3個の部材を貼り合わせて構成され直方体形状をしている。第1の部材と第2の部材の貼り合わせ面には第1の光分離面41が形成されている。すなわちこの光分離面41で入射光が透過光と反射光に分離される。
【0027】
さらに第2の部材と第3の部材の貼り合わせ面には第2の光分離面42が形成されている。上記の反射光はビームスプリッター4の内部を進み、第2の光分離面で更に反射光と透過光に分離されるので3本の分岐光を得ることができる。したがって各光線の光路上にロッドレンズ51、52、53を配置することで3本のライン光を得ることができる。
【0028】
ここでビームスプリッター4は必ず加工誤差を持っているため、分岐光の出射角度には若干の誤差が含まれる。しかしレーザ墨出し装置の場合、ライン光の指示精度が厳しく規定されており、例えばライン光を照射し10m先で1mm以内の指示精度に押さえる必要がある。10mで1mmの精度に押さえるには、ビームスプリッター4の出射光が、理想的な水平線(x軸)となす角度を0.005°以内としなければならない。つまり各分岐光が理想ラインとなす角度が0.005°を超える場合、補正が必要となる。この実施例ではビームスプリッター4から出射した光線の各光路にビーム出射角度補正素子1a、1b、1cが配置されている。例えば各分岐光が理想ラインとなす角度が0.03°である場合、α=−0.03/(1.5−1)=0.06°の角度を有するビーム出射角度補正素子1を用いて角度補正を行うことにより、補正素子からの出射光が理想ラインとなす角度は0となる。角度補正素子1a、1b、1cの後にロッドレンズ51、52、53を配置することにより発生するライン光の指示精度は0となり、理想ラインと一致する。
【0029】
次に角度補正素子1a、1b、1cにおいてα=−2δである時、各角度補正素子1a、1b、1cが補正効果を発揮するための屈折率の範囲を規定する。図3に示すように角度補正素子1の入射面がx軸に直交するように配置されている場合について考える。これは図2においてξ=0の場合に相当する。したがって、(7)式から
φ=α−ξ−θ
=α−θ     (11)
ここでθは(8)式からθ=n・α−θ であるため、これを(11)式に
代入してまとめると  φ=(1−n)α+θ   (12) となる。
【0030】
ここで上述の通り、角度補正素子1の頂角はα=−2δであり、さらに(6)式からδ=ξ−θ であるが、ξ=0のため δ=−θとなる。したがってα=2θ である。これを(12)式に代入してまとめると
φ=(1−n)(2θ)+θ
=(3−2n)θ   (13)  となる。(13)式を変形して
n=(3−φ/θ)/2  (14) が得られる。
【0031】
ここでレーザ墨出し器において一般的な光学素子の角度精度は3分程度であるので、この精度3分で作製した光学素子を用いてライン光を発生させた場合,生じ得るライン光指示精度の最大値は±0.08°程度となる。一方、本実施例で検討しているレーザ墨出し器のライン光指示精度の許容値は0.005°であるため、(14)式においてθ=±0.08 ,φ=0.005 を代入し、nを計算すると
それぞれ n=1.4688 , n=1.5313 が得られる。
すなわち、角度補正素子1の屈折率nが
1.4688≦n≦1.5313の範囲にあれば、レーザ墨出し器のライン光指示精度が仕様範囲に収まることが分かる。
すなわち、角度補正素子1の屈折率は概略 1.47≦n≦1.53 であればよい。また、一般的にガラスあるいはプラスチック材の屈折率は
1.45≦n≦1.90 の範囲に存在しているため、(10)式に
上記のnの値を代入し計算するとそれぞれ α=−1.1δ α=−2.2δとなる。ξ=0の時、δ=−θ であるため
α=1.1θ  α=2.2θ  となる。
【0032】
(実施形態3)
次に図6に示すようにビーム照射光学系60からの出射ビームB1がx軸に対して3次元的に傾いている場合の角度補正に関する実施形態について説明する。図6に示すようにx、y、z座標を定め、xy平面及びxz平面に対するビームB1の正射影を考える。xy平面の正射影を図7に示し、xz平面に対する正射影を図8に示す。
【0033】
例えばxy平面への正射影B1xyがx軸となす角度をδxyとすると、式(10)から角度補正素子1xyの頂角の大きさδは−δxy/(n−1)となる。ここで角度補正素子1xyの材質をBK7(屈折率1.5)とすると、α=−2δxyとなる。負号を考慮すると角度補正素子1xyにより角度補正がなされ出射ビームB3xyのようにx軸に平行な光に変換される。
【0034】
これはxz平面への正射影B1xzに対しても全く同様である。この場合はα=−2δxzの頂角を有する角度補正素子1xzを図8のように配置することでx軸に平行なビームB3xzを得ることができる。すなわち、x軸に対して3次元的に傾いているビームの角度補正方法としては図10に示すように角度補正素子1xy及び1xzを互いに直交するように配置し各正射影毎に角度補正を行う。
【0035】
(実施形態4)
次に本発明による角度誤差補正の別の実施形態について説明する。
今、図6においてビームB1がx軸となす角度をδとすると、頂角の大きさが−δ/(n−1)である角度補正素子1を用いることでx軸に平行なビームを得ることができる。ただし、この場合ビームB1はxy平面あるいはxz平面上に無いため、角度補正素子1をy軸あるいはz軸に平行に配置することでは補正を十分に行うことはできない。y軸に対して所定の角度をなすように角度補正素子1を配置することが必要となる。y軸に対する角度補正素子1の配置角度は次のようになる。ビームB1のyz平面に対する正射影を考えるとそれは図9のようになる。
【0036】
正射影B1yzがy軸となす角度をδyzとした時、このδyzが角度補正素子1の配置角度となる。今、角度補正素子1の材質をBK7(屈折率1.5)とすると、図11に示すように頂角α=−2δである角度補正素子1をy軸に対してδyzとなるように配置することによりx軸と完全に平行となる出射ビームを得ることが可能となる。実際には上述の角度補正素子1をx軸を回転軸として適当に回転させ出射ビームB3とx軸のなす角度が0になる位置で角度補正素子1を固定すればよい。
【0037】
【発明の効果】
上述のように本発明によるビーム出射角度補正素子を用いれば、簡易な方法で,ビーム出射角度を補正することが可能となる。また、本発明によるビーム出射角度補正素子をレーザ墨出し装置の光学系に搭載することで非常に高い指示精度のライン光を容易に得ることができるため、低コストで複数本の高精度墨出し用レーザライン光を発生させることが可能となった。その結果、従来は非常に高価であった複数ライン光照射用レーザ墨出し装置を低価格で得ることが可能となった。
【図面の簡単な説明】
【図1】本発明のビーム出射角度補正素子の一実施例を示す概略図。
【図2】本発明のビーム出射角度補正素子による角度補正原理を示す図。
【図3】本発明のビーム出射角度補正素子の一実施例を示す概略図。
【図4】本発明のビーム出射角度補正素子を搭載したレーザ墨出し装置の概略図。
【図5】本発明のレーザ墨出し装置におけるライン光発生光学系の概略図。
【図6】光学系からの出射ビームの様子を示す概略図。
【図7】出射ビームが三次元的に傾いている場合の出射角度補正の原理を説明するための説明図。
【図8】出射ビームが三次元的に傾いている場合の出射角度補正の原理を説明するための説明図。
【図9】出射ビームが三次元的に傾いている場合の出射角度補正の原理を説明するための説明図。
【図10】本発明のビーム出射角度補正素子の配置についての一実施形態を示す概略図。
【図11】本発明のビーム出射角度補正素子の配置についての一実施形態を示す概略図。
【符号の説明】
1、1a、1b、1c:ビーム出射角度補正素子
2:入射面
3:出射面
4:ビームスプリッタ−
10:レーザ墨出し装置
14:ライン光発生光学系
15:支持系
16:半導体レーザ
17:コリメートレンズ
51、52、53:ロッドレンズ
60:ビーム照射光学系
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a beam splitter for splitting one laser beam into a plurality of laser beams, and a laser marking device using the beam splitter.
[0002]
[Prior art]
When building a house, especially at the start of construction, it is essential to perform a task of setting a reference position for mounting various members and setting a level line for the positioning of member processing, that is, a blackout operation. Therefore, at the construction site, leveling was performed using instruments such as a level surveyor, multiple marks (black) were attached to the walls of the target structure, and they were connected to form a blacking line, which was used as a construction standard. .
[0003]
However, this operation must be performed by at least two people, which is very time-consuming and inefficient. In order to solve this problem, recently, the ink marking operation has been often performed efficiently using a laser marking device having a line light irradiation function. Since a laser marking device can easily perform a marking operation by one person, the laser marking device is becoming an indispensable building work tool for building work.
[0004]
The so-called "Tachi-Line" which draws a vertical line from the floor to the wall and the ceiling and two "Tachi-Lines" are simultaneously illuminated to draw a right angle line on the ceiling. There are various lines, such as a "Roku line" that draws a horizontal line on a wall, and a "ground ink" that irradiates a focused laser beam on the floor directly below a laser marking device.
[0005]
In order to improve the efficiency of the blackout operation using a laser blackout device, it is desired that a single laser blackout device can irradiate a plurality of blackout lines. Therefore, recently, a device capable of irradiating two or more lines with one device has been proposed.
[0006]
In order to irradiate a plurality of lines from one laser marking device, a method of mounting a plurality of laser light sources or a method of obtaining a plurality of lines by dividing laser light emitted from one laser light source is used. Conceivable.
[0007]
As a method of obtaining a plurality of line lights by dividing one laser light, a method using an emission optical system having a structure in which a plurality of half mirrors are stacked in series in a laser emission direction is known in the related art ( Patent Document 1).
[Patent Document 1]
JP-A-9-159451 (FIGS. 1 and 3)
[0008]
[Problems to be solved by the invention]
The closer the line light emitted from the laser marking device is to the ideal horizontal line and the ideal vertical line, the better the line pointing accuracy. Therefore, in a conventional laser marking device using a plurality of laser light sources, it is necessary to perform optical adjustment on an optical system attached to each laser light source in order to obtain line pointing accuracy. However, there is a problem that this assembling adjustment takes a considerable amount of time and increases the cost of the apparatus.
[0009]
On the other hand, as a method of obtaining a plurality of line lights by dividing one laser light, for example, as disclosed in Japanese Patent Application Laid-Open No. 9-159451, a structure in which a plurality of half mirrors are stacked in series in a laser emission direction is disclosed. Are known. However, in the case of this method, it is necessary to finely adjust the installation angle of the half mirror in order to adjust the angle of the emitted light, so that the mechanism is complicated and the number of parts increases. Incidentally, in the method disclosed in Japanese Patent Application Laid-Open No. 9-159451, it is difficult to increase the pointing accuracy of the emitted light because no angle adjustment mechanism for the half mirror is provided.
[0010]
An object of the present invention is to provide a simple beam emission angle correction element that solves such a conventional problem and a laser marking device equipped with the same.
[0011]
[Means for Solving the Problems]
In order to achieve the above object, the present invention is directed to a flat plate made of a light transmitting body such as glass or plastic, which has an incident surface for light whose angle error is to be corrected, and an exit surface. The angle α between the light transmitting surface and the light emitting angle is corrected by an optical element having the light incident surface and the light emitting surface so as to have a predetermined value depending on the refractive index of the light transmitting body. There are features. With this configuration, it is possible to easily and accurately correct the beam angle. Further, since the effect of the angle correction does not depend on the accuracy of the arrangement of the optical element, there is an advantage that no accuracy is required when the angle correction optical element is incorporated into an optical system.
[0012]
More specifically, the characteristics of the present invention are as follows: the angle error with respect to the traveling direction of the beam is θ, the refractive index of the angle correction optical element is n, and the apex angle between the entrance surface and the output surface of the angle correction optical element is n. When α is set, the incident surface and the outgoing surface are formed such that the magnitude of the apex angle is α = θ / (n−1) or in the vicinity thereof. That is, since the vertex angle of the optical element for angle correction can be determined only from the incident angle of the incident beam and the refractive index of the optical element, the design of the optical element is extremely easy.
[0013]
Another feature of the present invention resides in that the apex angle α between the entrance surface and the exit surface of the angle correcting optical element is set in a range of 1.1θ ≦ α ≦ 2.2θ. With this configuration, when ordinary glass or plastic is used, the apex angle of the angle correcting optical element can be easily designed.
[0014]
Another feature of the present invention is that the refractive index n of the angle correcting optical element is in the range of 1.47 ≦ n ≦ 1.53 and the apex angle α is selected to be 2θ or in the vicinity thereof. In this way, when line light is generated using an optical element having general angular accuracy, it is possible to keep the line light indicating accuracy of the laser marking device within the specification range.
[0015]
Another feature of the present invention is that the angle correcting optical element has at least two parallel surfaces and first and second surfaces formed so as to form a predetermined angle, and the incident light is reflected by the first and second surfaces. It is arranged so that light is emitted to the first surface and light rays are emitted from the second surface. As described above, in the present invention, the angle between the entrance surface and the exit surface affects the correction, but the correction can be performed without being affected by other shapes and sizes.
[0016]
Another feature of the present invention is that, when axes orthogonal to each other are x, y, and z, a beam irradiation optical system that emits a light beam in the x direction from the xy plane, and first and second beam emission angles The correction optical element constitutes an emission angle correction device, wherein the first optical element corrects the tilt of the light beam on the xy plane, and the second optical element corrects the tilt of the light beam on the xz plane. It is arranged in such a way. With this configuration, it is possible to perform the angle correction for each component to be written by dividing the three-dimensional emission angle error into two orthogonal projection components orthogonal to each other.
[0017]
Another feature of the present invention is that, when axes orthogonal to each other are x, y, and z, a beam irradiation optical system that emits a light beam in the x direction from the zy plane and an emission angle of the light beam are corrected. And an optical element for correcting the inclination of the light beam in both the xy plane and the xz plane. It is that it was arranged at an inclined angle. With this arrangement, it is possible to correct a three-dimensional angle error with one correction element.
[0018]
Another feature of the present invention resides in that a laser marking device is configured by incorporating the above-described angle correction optical element and the light beam emission angle correction device into a line light generation optical system. With this configuration, it is possible to obtain a laser marking device having extremely high pointing accuracy at a low price.
Other features and advantages of the present invention will be more clearly understood from the following description of the embodiments.
[0019]
BEST MODE FOR CARRYING OUT THE INVENTION
(Embodiment 1)
FIG. 1 shows an embodiment of a beam emission angle correction element 1 according to the present invention. The beam emission angle correction element 1 according to the present invention is a flat plate made of a light transmitting body such as glass or plastic, and has a thickness in a direction perpendicular to the plane of FIG. In this embodiment, BK7 (refractive index: 1.5) which is a glass material is used. 2, reference numeral 2 denotes a light incident surface, and 3 denotes a light emitting surface. The incident surface 2 and the emitting surface 3 are formed so as to form a predetermined angle α.
[0020]
Next, the principle of the beam emission angle correction element 1 of the present invention will be described with reference to FIG. Consider a case where the beam B1 emitted from another optical system (not shown) is shifted from the ideal beam traveling line (x-axis) by an angle δ. Now, the entrance surface 2 of the beam exit angle correction element 1 is installed at an angle of π / 2-ξ with respect to the x-axis, and the beam B1 is incident at an angle θ 1 with respect to the normal of the entrance surface 2. Further, it is assumed that the beam B2 traveling inside the beam emission angle correction element 1 advances at an angle γ with respect to the normal. Assuming that the refractive index of the beam emission angle correction element 1 is n, sin θ 1 = n · sin γ (1) according to Snell's law.
Holds. Here, since the outside of the beam emission angle correction element 1 is air, the refractive index is 1.
[0021]
Further, the beam B2 traveling inside the beam emission angle correction element 1 forms an angle of α-γ with respect to the normal of the emission surface 3. Beam emission angle when the correction element 1 beam B3 emitted from the inside to the angle between the normal line of the exit surface 3 and theta 2 according to Snell's law n · sin (α-γ) = sinθ 2 (2)
Holds.
From equation (1), sinγ = (1 / n) · sinθ 1 (3)
By modifying the equation (3), cosγ = (1 / n) · (n 2 −sin 2 θ 1 ) 1/2 (4).
Next, from equation (2), sin θ 2 = n · sin (α−γ)
= N · (sinα · cosγ-cosα · sinγ)
= N · (sin α · (1 / n) · (n 2 −sin 2 θ 1 ) 1/2
−cos α · (1 / n) · sin θ 1 )
= Sin α · (n 2 −sin 2 θ 1 ) 1/2 −cos α · sin θ 1 (5)
It becomes.
Here, the angle δ that the beam B1 makes with the x axis is δ = ξ−θ 1 (6)
The angle φ formed by the output beam B3 and the x-axis is φ = α−ξ−θ 2 (7)
It becomes.
[0022]
Now, if α, θ 1 and δ are small enough,
sin θ 1 = θ 1 sin θ 2 = θ 2 sin α = α cos α = 1
θ 1 2 = 0
Because it is, equation (5) θ 2 = α · (n 2 -θ 1 2) 1/2 -θ 1)
= N · α-θ 1 (8)
The angle φ formed by the outgoing beam B3 with the x-axis is obtained by substituting equation (8) into equation (7), and φ = α−ξ− (n · α−θ 1 )
= Α-n · α- (ξ-θ 1 )
= Α-n · α-δ (9)
Here, φ becomes 0 when α = 0 in equation (9), α−n · α−δ = 0.
The above equation is transformed into α = −δ / (n−1) (10)
It becomes. That is, by transmitting the beam to the beam emission angle correction element 1 having an angle α that is 1 / (n−1) times the angle δ that the beam B1 forms with the x axis,
The angle formed by the light emitted from the beam emission angle correction element 1 and the x axis is corrected to be zero. Further, as is apparent from the equation (10), this angle correction does not depend on the installation angle of the beam emission angle correction element 1 with respect to the x-axis.
[0023]
Now, if the beam emitted from an optical system forms an angle of 0.01 ° with the x axis, in order to make the traveling direction of this beam coincide with the direction of the x axis, α = −0 from equation (10). Angle correction may be performed using the beam emission angle correction element 1 having an angle of .01 / (n-1). If the material of the beam emission angle correction element 1 is BK7 (refractive index = 1.5),
α = −0.01 / (1.5−1) = − 0.02 °
[0024]
FIG. 3 shows a mounting example of the beam emission angle correction element 1 of the present invention. As described above, the effect of the angle correction does not depend on the mounting angle between the beam output angle correcting element 1 and the x-axis, but the mounting direction is important. In this embodiment, as shown in FIG. 3, since the incident beam B1 is inclined by + 0.01 ° with respect to the x-axis, the direction of the beam output angle correction element 1 having an angle of 0.02 ° needs to be set downward in the drawing. There is. That is, the correction element 1 is arranged such that the narrow part is located below the x-axis and the wide part is located above the x-axis. Conversely, when the incident beam B1 is inclined at −0.01 ° with respect to the x-axis, the direction of the beam emission angle correction element 1 having an angle of 0.02 ° is arranged upward in the drawing. However, since it is completely independent of the thickness of the element and the size of the outer shape, the angle correction element can be freely designed according to the size of the optical system that needs to be corrected.
[0025]
(Embodiment 2)
An embodiment in which the beam emission angle correction element 1 of the present invention is mounted on a laser marking device will be described. As shown in FIG. 4, the laser marking device 10 basically includes an optical system 14 for generating line light and a support mechanism 15 for keeping the optical system horizontal. FIG. 5 schematically shows an example of the line light generating optical system 14.
[0026]
A laser beam emitted from a semiconductor laser 16 arranged in a horizontal direction with respect to the laser marking device main body is converted by a collimator lens 17 into collimated light (parallel light) B1 having a circular beam cross-sectional shape. In the present embodiment, the beam diameter of the collimated light B1 is set to be 2 mm. The beam splitter 4 is used as the optical system 14, and the incident light is split into three light beams having uniform intensity. That is, in this embodiment, the beam splitter 4 is formed by bonding three members such as glass or plastic which transmit light, and has a rectangular parallelepiped shape. A first light separation surface 41 is formed on a bonding surface of the first member and the second member. That is, the incident light is separated by the light separation surface 41 into transmitted light and reflected light.
[0027]
Further, a second light separation surface 42 is formed on a bonding surface of the second member and the third member. The reflected light travels inside the beam splitter 4 and is further separated into reflected light and transmitted light by the second light separation surface, so that three branched lights can be obtained. Therefore, three line lights can be obtained by arranging the rod lenses 51, 52, 53 on the optical path of each light beam.
[0028]
Here, since the beam splitter 4 always has a processing error, the exit angle of the split light includes a slight error. However, in the case of a laser marking device, the pointing accuracy of the line light is strictly specified. For example, it is necessary to irradiate the line light and to keep the pointing accuracy within 1 mm within 10 m. In order to keep the accuracy of 1 mm at 10 m, the angle between the light emitted from the beam splitter 4 and the ideal horizontal line (x-axis) must be within 0.005 °. In other words, when the angle formed by each split light with the ideal line exceeds 0.005 °, correction is necessary. In this embodiment, beam emission angle correction elements 1a, 1b, and 1c are arranged on each optical path of the light beam emitted from the beam splitter 4. For example, when the angle between each of the branched lights and the ideal line is 0.03 °, the beam emission angle correction element 1 having an angle of α = −0.03 / (1.5-1) = 0.06 ° is used. By performing the angle correction, the angle formed by the light emitted from the correction element and the ideal line becomes zero. The pointing accuracy of the line light generated by arranging the rod lenses 51, 52, 53 after the angle correction elements 1a, 1b, 1c becomes 0, which coincides with the ideal line.
[0029]
Next, when α = −2δ in the angle correction elements 1a, 1b, and 1c, the range of the refractive index for each of the angle correction elements 1a, 1b, and 1c to exhibit a correction effect is defined. Consider a case where the incident surface of the angle correction element 1 is arranged so as to be orthogonal to the x-axis as shown in FIG. This corresponds to the case where ξ = 0 in FIG. Therefore, from equation (7), φ = α−ξ−θ 2
= Α-θ 2 (11)
Here, since θ 2 is θ 2 = n · α−θ 1 from the expression (8), when it is substituted into the expression (11) and summarized, φ = (1−n) α + θ 1 (12)
[0030]
Here as described above, the apex angle of the angle correction device 1 is α = -2δ, further (6) it is a δ = ξ-θ 1 from the equation, a [delta] = - [theta] 1 for xi] = 0. It is therefore α = 2θ 1. Substituting this into equation (12) and summarizing the result, φ = (1−n) (2θ 1 ) + θ 1
= (3-2n) θ 1 (13) By modifying the expression (13), n = (3-φ / θ 1 ) / 2 (14) is obtained.
[0031]
Here, since the angle accuracy of a general optical element in a laser marking device is about three minutes, if line light is generated using an optical element manufactured with this accuracy of three minutes, the line light pointing accuracy that can occur may be reduced. The maximum value is about ± 0.08 °. On the other hand, since the allowable value of the line light indicating accuracy of the laser marking device studied in this embodiment is 0.005 °, θ 1 = ± 0.08 and φ = 0.005 in Expression (14). Substituting and calculating n gives n = 1.4688 and n = 1.51313, respectively.
That is, when the refractive index n of the angle correction element 1 is in the range of 1.4688 ≦ n ≦ 1.5313, it can be seen that the line light pointing accuracy of the laser marking device falls within the specification range.
That is, the refractive index of the angle correction element 1 may be approximately 1.47 ≦ n ≦ 1.53. Further, since the refractive index of glass or plastic material generally exists in the range of 1.45 ≦ n ≦ 1.90, when the above value of n is substituted into the equation (10) and calculated, α = − 1.1δ α = −2.2δ. When ξ = 0, δ = because it is - [theta] 1 alpha = a 1.1θ 1 α = 2.2θ 1.
[0032]
(Embodiment 3)
Next, a description will be given of an embodiment relating to angle correction when the output beam B1 from the beam irradiation optical system 60 is three-dimensionally inclined with respect to the x-axis as shown in FIG. As shown in FIG. 6, x, y, and z coordinates are determined, and the orthogonal projection of the beam B1 onto the xy plane and the xz plane is considered. FIG. 7 shows an orthographic projection on the xy plane, and FIG. 8 shows an orthographic projection on the xz plane.
[0033]
For example, assuming that the angle formed by the orthogonal projection B1xy on the xy plane and the x-axis is δxy, the magnitude δ of the apex angle of the angle correction element 1xy is −δxy / (n−1) from Expression (10). Here, if the material of the angle correction element 1xy is BK7 (refractive index 1.5), α = −2δxy. In consideration of the negative sign, the angle is corrected by the angle correction element 1xy, and the light is converted into light parallel to the x-axis like the output beam B3xy.
[0034]
This is exactly the same for the orthogonal projection B1xz on the xz plane. In this case, a beam B3xz parallel to the x-axis can be obtained by arranging the angle correction element 1xz having an apex angle of α = −2δxz as shown in FIG. That is, as a method of correcting the angle of a beam three-dimensionally inclined with respect to the x-axis, as shown in FIG. 10, the angle correction elements 1xy and 1xz are arranged so as to be orthogonal to each other, and the angle is corrected for each orthographic projection. .
[0035]
(Embodiment 4)
Next, another embodiment of the angle error correction according to the present invention will be described.
Now, assuming that the angle between the beam B1 and the x-axis in FIG. 6 is δ, a beam parallel to the x-axis is obtained by using the angle correction element 1 whose apex angle is −δ / (n−1). be able to. However, in this case, since the beam B1 is not on the xy plane or the xz plane, it is not possible to sufficiently perform the correction by arranging the angle correction element 1 in parallel with the y axis or the z axis. It is necessary to arrange the angle correction element 1 so as to form a predetermined angle with respect to the y-axis. The arrangement angle of the angle correction element 1 with respect to the y axis is as follows. Considering the orthogonal projection of the beam B1 on the yz plane, it is as shown in FIG.
[0036]
When the angle formed by the orthogonal projection B1yz and the y axis is δyz, δyz is the arrangement angle of the angle correction element 1. Now, assuming that the material of the angle correction element 1 is BK7 (refractive index 1.5), as shown in FIG. 11, the angle correction element 1 having the apex angle α = −2δ is arranged so as to be δyz with respect to the y axis. By doing so, it becomes possible to obtain an output beam completely parallel to the x-axis. In practice, the angle correction element 1 described above may be appropriately rotated around the x axis as a rotation axis, and the angle correction element 1 may be fixed at a position where the angle between the output beam B3 and the x axis becomes zero.
[0037]
【The invention's effect】
As described above, by using the beam emission angle correction element according to the present invention, the beam emission angle can be corrected by a simple method. In addition, by mounting the beam emission angle correction element according to the present invention on the optical system of the laser marking device, it is possible to easily obtain a line light with very high pointing accuracy. It is possible to generate laser line light for use. As a result, it has become possible to obtain a laser marking device for irradiating a plurality of lines at a low cost, which was conventionally very expensive.
[Brief description of the drawings]
FIG. 1 is a schematic view showing one embodiment of a beam emission angle correction element of the present invention.
FIG. 2 is a diagram showing the principle of angle correction by the beam emission angle correction element of the present invention.
FIG. 3 is a schematic diagram showing one embodiment of a beam emission angle correction element of the present invention.
FIG. 4 is a schematic view of a laser marking device equipped with the beam emission angle correction element of the present invention.
FIG. 5 is a schematic diagram of a line light generating optical system in the laser marking device of the present invention.
FIG. 6 is a schematic diagram showing a state of a beam emitted from an optical system.
FIG. 7 is an explanatory diagram for explaining the principle of emission angle correction when the emission beam is three-dimensionally inclined.
FIG. 8 is an explanatory diagram for explaining the principle of emission angle correction when the emission beam is three-dimensionally inclined.
FIG. 9 is an explanatory diagram for explaining the principle of emission angle correction when the emission beam is three-dimensionally inclined.
FIG. 10 is a schematic diagram showing an embodiment of an arrangement of a beam emission angle correction element of the present invention.
FIG. 11 is a schematic view showing an embodiment of an arrangement of a beam emission angle correction element of the present invention.
[Explanation of symbols]
1, 1a, 1b, 1c: beam emission angle correction element 2: incidence surface 3: emission surface 4: beam splitter
10: Laser marking device 14: Line light generating optical system 15: Supporting system 16: Semiconductor laser 17: Collimating lenses 51, 52, 53: Rod lens 60: Beam irradiation optical system

Claims (15)

ガラス又はプラスチック等の光透過体であって、角度誤差を補正すべき光の入射面と、出射面を有し、上記入射面と出射面とのなす角度αが、上記光透過体の屈折率に依存する所定の値となるように上記入射面と出射面を形成したことを特徴とするビーム出射角度補正用光学素子。A light transmitting body such as glass or plastic, which has an incident surface of light whose angle error is to be corrected, and an emitting surface, and an angle α between the incident surface and the emitting surface is a refractive index of the light transmitting body. An optical element for correcting a beam exit angle, wherein the entrance surface and the exit surface are formed so as to have predetermined values depending on the following. ガラス又はプラスチック等の光透過体であって、角度誤差を補正すべき光の入射面と、出射面を有し、上記入射面と出射面とが所定の角度をなすようにしたビーム出射角度補正用光学素子であって、ビームの進行方向に対する角度誤差をθ、角度補正用光学素子の屈折率をn、該角度補正用光学素子の入射面と出射面がなす頂角をαとした時、頂角の大きさがα=θ/(n−1)又はその近傍となるように上記入射面と出射面を形成したことを特徴とするビーム出射角度補正用光学素子。A light transmitting body such as glass or plastic, which has an incident surface for light whose angle error is to be corrected, and an exit surface, and a beam exit angle correction in which the incident surface and the exit surface form a predetermined angle. When the angle error with respect to the traveling direction of the beam is θ, the refractive index of the angle correction optical element is n, and the apex angle between the entrance surface and the exit surface of the angle correction optical element is α, An optical element for correcting a beam emission angle, wherein the incident surface and the emission surface are formed such that the magnitude of the apex angle is α = θ / (n−1) or in the vicinity thereof. 請求項2において上記入射面と出射面のなす頂角αが1.1θ≦α≦2.2θであることを特徴とするビーム出射角度補正用光学素子。3. An optical element for correcting a beam emission angle according to claim 2, wherein the apex angle α between the incident surface and the emission surface satisfies 1.1θ ≦ α ≦ 2.2θ. 請求項2において角度補正用光学素子の屈折率nが1.47≦n≦1.53の範囲にあってかつ頂角αが2θであることを特徴とするビーム出射角度補正用光学素子。3. The beam emitting angle correcting optical element according to claim 2, wherein the refractive index n of the angle correcting optical element is in a range of 1.47 ≦ n ≦ 1.53, and the apex angle α is 2θ. 請求項2において角度補正用光学素子は、少なくとも2つの平行な面と、所定の角度をなすように形成された第1及び第2の面とを有し、入射光は上記第1の面に照射し、上記第2の面から光線を出射するように配置したことを特徴とする角度補正光学系。In claim 2, the optical element for angle correction has at least two parallel surfaces and first and second surfaces formed so as to form a predetermined angle, and incident light is incident on the first surface. An angle-correcting optical system, which is provided so as to irradiate and emit light rays from the second surface. 半導体レーザよりなる光源と、該光源から出射した光をコリメート光に変換する光学素子と、コリメート光の出射角度を微調整するビーム出射角度補正用光学素子と、出射角度が補正されたコリメート光からライン光を発生させる光学系を備え、上記ビーム出射角度補正用光学素子は、ガラス又はプラスチック等の光透過体よりなる平板であって、角度誤差を補正すべき光の入射面と、出射面を有し、上記入射面と出射面とのなす角度αが、上記光透過体の屈折率に依存する所定の値となるように上記入射面と出射面を形成したことを特徴とするレーザ墨出し装置。A light source composed of a semiconductor laser, an optical element for converting light emitted from the light source into collimated light, a beam emission angle correcting optical element for finely adjusting the emission angle of the collimated light, and a collimated light having an emission angle corrected An optical system for generating line light is provided, and the beam emission angle correcting optical element is a flat plate made of a light transmitting body such as glass or plastic, and has a light incident surface to be corrected for an angular error, and a light emitting surface. Wherein the incident surface and the outgoing surface are formed such that an angle α between the incident surface and the outgoing surface has a predetermined value depending on the refractive index of the light transmitting body. apparatus. 半導体レーザよりなる光源と、該光源から出射した光をコリメート光に変換するコリメート光学素子と、コリメート光の出射角度を微調整するビーム出射角度補正用光学素子と、出射角度が補正されたコリメート光からライン光を発生させる光学系を備え、上記ビーム出射角度補正用光学素子は、ガラス又はプラスチック等の光透過体よりなる平板であって、角度誤差を補正すべき光の入射面と、出射面を有し、上記入射面と出射面とが所定の角度をなすように構成され、ビームの進行方向に対する角度誤差をθ、角度補正用光学素子の屈折率をn、該角度補正用光学素子の入射面と出射面がなす頂角をαとした時、頂角の大きさがα=θ/(n−1)またはその近傍となるように上記入射面と出射面を形成してなることを特徴とするレーザ墨出し装置。A light source made of a semiconductor laser, a collimating optical element for converting light emitted from the light source into collimated light, a beam emission angle correcting optical element for finely adjusting the emission angle of the collimated light, and a collimated light having an emitted angle corrected The beam emission angle correcting optical element is a flat plate made of a light transmitting body such as glass or plastic, and has a light incident surface to be corrected for an angular error, and a light emitting surface. Having a predetermined angle between the entrance surface and the exit surface, an angle error with respect to the traveling direction of the beam is θ, a refractive index of the angle correction optical element is n, and the angle correction optical element is When the apex angle between the incident surface and the outgoing surface is α, the incident surface and the outgoing surface are formed such that the magnitude of the apex angle is α = θ / (n−1) or in the vicinity thereof. Laser ink featured And equipment. 半導体レーザよりなる光源と、該光源から出射した光をコリメート光に変換するコリメート光学素子と、該光源からの光線から複数の光線を発生するビームスプリッターと、該ビームスプリッターから分岐した複数のコリメート光の出射角度を微調整するビーム出射角度補正用光学素子と、出射角度が補正されたコリメート光からライン光を発生させる光学系を備え、上記ビーム出射角度補正用光学素子は、ガラス又はプラスチック等の光透過体よりなる平板であって、角度誤差を補正すべき光の入射面と、出射面を有し、上記入射面と出射面とが上記光透過体の屈折率に依存した所定の角度をなすように構成したことを特徴とするレーザ墨出し装置。A light source composed of a semiconductor laser, a collimating optical element that converts light emitted from the light source into collimated light, a beam splitter that generates a plurality of light beams from light beams from the light source, and a plurality of collimated light beams branched from the beam splitter A beam emission angle correcting optical element for fine-tuning the emission angle of the light, and an optical system for generating line light from the collimated light whose emission angle has been corrected, wherein the beam emission angle correction optical element is made of glass, plastic, or the like. A flat plate made of a light transmitting body, having an incident surface of light to be corrected for an angular error, and an outgoing surface, wherein the incident surface and the outgoing surface have a predetermined angle depending on the refractive index of the light transmitting body. A laser marking device characterized in that it is configured to perform. 半導体レーザよりなる光源と、該光源から出射した光をコリメート光に変換するコリメート光学素子と、該光源からの光線から複数の光線を発生するビームスプリッターと、該ビームスプリッターから分岐した複数のコリメート光の出射角度を微調整するビーム出射角度補正用光学素子と、出射角度が補正されたコリメート光からライン光を発生させる光学系を備え、上記ビーム出射角度補正用光学素子は、ガラス又はプラスチック等の光透過体よりなる平板であって、角度誤差を補正すべき光の入射面と、出射面を有し、上記入射面と出射面とが所定の角度をなすように構成され、ビームの進行方向に対する角度誤差をθ、角度補正用光学素子の屈折率をn、該角度補正用光学素子の入射面と出射面がなす頂角をαとした時、頂角の大きさがα=θ/(n−1)またはその近傍となるように上記入射面と出射面を形成してなることを特徴とするレーザ墨出し装置。A light source composed of a semiconductor laser, a collimating optical element that converts light emitted from the light source into collimated light, a beam splitter that generates a plurality of light beams from light beams from the light source, and a plurality of collimated light beams branched from the beam splitter A beam emission angle correcting optical element for fine-tuning the emission angle of the light, and an optical system for generating line light from the collimated light whose emission angle has been corrected, wherein the beam emission angle correction optical element is made of glass, plastic, or the like. A flat plate made of a light transmitting body, having an incident surface of light whose angular error is to be corrected, and an emitting surface, wherein the incident surface and the emitting surface are formed at a predetermined angle, and a traveling direction of the beam; Θ, the refractive index of the angle correcting optical element is n, and the apex angle between the entrance surface and the outgoing surface of the angle correcting optical element is α, the magnitude of the apex angle is A laser marking device characterized in that the incident surface and the outgoing surface are formed so that α = θ / (n−1) or its vicinity. 互いに直交する軸をx,y,zとしたとき、z−y面からx方向に光ビームを出射するビーム照射光学系と、第1及び第2のビーム出射角度補正用光学素子からなる出射角度補正装置であって、上記第1及び第2の光学素子は、角度を補正すべき光の入射面と出射面とを有し、屈折率がnのガラス又はプラスチック等の光透過体であって、第1の光学素子はx−y面における光ビームの傾きを補正し、第2の光学素子はx−z面における光ビームの傾きを補正するように配置したことを特徴とする光ビーム出射角度補正装置。Assuming that axes orthogonal to each other are x, y, and z, a beam irradiation optical system that emits a light beam in the x direction from the xy plane, and an emission angle including first and second beam emission angle correcting optical elements. A correction device, wherein the first and second optical elements have an incident surface and an exit surface of light whose angle is to be corrected, and have a refractive index of n or a light transmitting body such as glass or plastic. Wherein the first optical element is arranged to correct the inclination of the light beam in the xy plane, and the second optical element is arranged to correct the inclination of the light beam in the xy plane. Angle correction device. 請求項10において、光ビームをx−y面に正射影したときにx軸となす角度をδxyとしたとき、第1の光学素子の入射面と出射面のなす角度αを、δxy/(n−1)またはその近傍の値にしたことを特徴とする光ビーム出射角度補正装置。In claim 10, when an angle formed with the x axis when the light beam is orthogonally projected on the xy plane is δxy, an angle α formed between the incident surface and the outgoing surface of the first optical element is δxy / (n -1) A light beam emission angle correction device characterized in that the value is set to or near the value. 請求項10において、光ビームをx−z面に正射影したときにx軸となす角度をδxzとしたとき、第2の光学素子の入射面と出射面のなす角度αを、δxz/(n−1)またはその近傍の値にしたことを特徴とする光ビーム出射角度補正装置。In claim 10, when an angle formed with the x-axis when the light beam is orthogonally projected on the xz plane is δxz, an angle α formed between the entrance surface and the exit surface of the second optical element is δxz / (n -1) A light beam emission angle correction device characterized in that the value is set to or near the value. 互いに直交する軸をx,y,zとしたとき、z−y面からx方向に光ビームを出射するビーム照射光学系と、該光ビームの出射角度を補正するための光学素子とよりなる光ビーム出射角度補正装置であって、上記光学素子は、角度を補正すべき光の入射面と出射面とを有し、屈折率がnのガラス又はプラスチック等の光透過体よりなり、x−y面及びx−z面の両方における光ビームの傾きを補正するために、z−y面内で適当な角度傾斜して配置したことを特徴とする光ビーム出射角度補正装置。Assuming that axes perpendicular to each other are x, y, and z, a beam irradiation optical system that emits a light beam in the x direction from the xy plane and an optical element that corrects the emission angle of the light beam A beam emission angle correction device, wherein the optical element has an incident surface and an emission surface for light whose angle is to be corrected, and is made of a light transmitting body such as glass or plastic having a refractive index of n; A light beam emission angle correction device characterized in that the light beam emission angle correction device is disposed at an appropriate angle in the zy plane in order to correct the inclination of the light beam in both the plane and the xz plane. 請求項13において、光ビームとx軸とのなす角度をδとしたとき、光学素子の入射面と出射面とのなす角度αをδ/(n−1)またはその近傍としたことを特徴とする光ビーム出射角度補正装置。14. An image forming apparatus according to claim 13, wherein when an angle between the light beam and the x-axis is δ, an angle α between the incident surface and the exit surface of the optical element is δ / (n−1) or in the vicinity thereof. Light beam emission angle correction device. 請求項10乃至14のいずれかに記載された光ビーム出射角度補正装置を搭載したことを特徴とするレーザ墨出し装置。A laser marking device comprising the light beam emission angle correction device according to claim 10.
JP2002301089A 2002-10-10 2002-10-15 Beam exit angle correction element and laser marking device equipped with the same Expired - Fee Related JP3991837B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2002301089A JP3991837B2 (en) 2002-10-15 2002-10-15 Beam exit angle correction element and laser marking device equipped with the same
US10/681,261 US6970294B2 (en) 2002-10-10 2003-10-09 Beam splitting unit, beam-emission-angle compensating optical unit, and laser marking apparatus
TW092128330A TWI226429B (en) 2002-10-10 2003-10-09 Beam splitting unit, beam-emission-angle compensating optical unit, and laser marking apparatus
DE10347122A DE10347122A1 (en) 2002-10-10 2003-10-10 Beam splitting unit, beam emission angle compensation optical unit and laser marking device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002301089A JP3991837B2 (en) 2002-10-15 2002-10-15 Beam exit angle correction element and laser marking device equipped with the same

Publications (2)

Publication Number Publication Date
JP2004138681A true JP2004138681A (en) 2004-05-13
JP3991837B2 JP3991837B2 (en) 2007-10-17

Family

ID=32449554

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002301089A Expired - Fee Related JP3991837B2 (en) 2002-10-10 2002-10-15 Beam exit angle correction element and laser marking device equipped with the same

Country Status (1)

Country Link
JP (1) JP3991837B2 (en)

Also Published As

Publication number Publication date
JP3991837B2 (en) 2007-10-17

Similar Documents

Publication Publication Date Title
US5617202A (en) Diode laser co-linear and intersecting light beam generator
US5500524A (en) Diode laser co-linear light beam generator
US7520062B2 (en) Light-plane projecting apparatus and lens
US9482412B2 (en) Lighting device
US6694629B2 (en) Laser projector for producing intersecting lines on a surface
US6539638B1 (en) Line projecting device
US6327090B1 (en) Multiple laser beam generation
JP6414349B1 (en) Light emitting device, object information detecting device, optical path adjusting method, object information detecting method, and light modulation unit
EP1394507A2 (en) Beam splitter and laser marking apparatus
WO2019208306A1 (en) Light irradiation device and laser radar device
US6970294B2 (en) Beam splitting unit, beam-emission-angle compensating optical unit, and laser marking apparatus
US6253457B1 (en) Laser beam direction correcting optical system for a surveying instrument
WO2019244701A1 (en) Light radiation device, object information detection device, light path adjustment method, and object information detection method
JP2004138681A (en) Beam emission angle correcting element and laser marking apparatus with the same installed on
US10203091B2 (en) Motor vehicle lighting system and motor vehicle
JP2009251381A (en) Laser irradiation device
JP2004302055A (en) Beam emitting angle correction optical unit and laser marking device furnished with the same
JP3991822B2 (en) Line generating optical element and laser marking device equipped with the same
WO2023112363A1 (en) Optical system, multi-beam projection optical system, multi-beam projection device, image projection device, and imaging device
TWM340450U (en) Rotatable calibration apparatus of an optical axis for three parallel light beams
JP2004133215A (en) Beam splitter and laser marking system carrying same
TW202321832A (en) EUV light source having a beam-position adjustment device
JP3991821B2 (en) Line generating optical element and laser marking device equipped with the same
JP2004077574A (en) Line light generation optical system, and laser marking device using the same
JP2019128343A (en) Light radiation device, object information detector, method for adjusting optical path, method for detecting object information, and optical modulation unit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050902

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070420

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070612

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070703

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070716

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100803

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100803

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110803

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110803

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120803

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130803

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140803

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees