JP2004138531A - Underground pollutant exploration method and underground pollution distribution monitoring method - Google Patents

Underground pollutant exploration method and underground pollution distribution monitoring method Download PDF

Info

Publication number
JP2004138531A
JP2004138531A JP2002304310A JP2002304310A JP2004138531A JP 2004138531 A JP2004138531 A JP 2004138531A JP 2002304310 A JP2002304310 A JP 2002304310A JP 2002304310 A JP2002304310 A JP 2002304310A JP 2004138531 A JP2004138531 A JP 2004138531A
Authority
JP
Japan
Prior art keywords
underground
tomographic image
distribution
pollution
monitoring method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002304310A
Other languages
Japanese (ja)
Other versions
JP3734034B2 (en
Inventor
Mutsuo Takeuchi
竹内 睦雄
Takehiko Okuyama
奥山 武彦
Hiromi Nakazato
中里 裕臣
Seiichiro Kuroda
黒田 清一郎
Soichiro Matsuzaka
松坂 総一郎
Kohei Sugawara
菅原 公平
Masaki Okamoto
岡本 昌己
Noboru Narisawa
成沢 昇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DORIKO KK
National Institute for Rural Engineering
Mitsubishi Materials Natural Resources Development Corp
Original Assignee
DORIKO KK
National Institute for Rural Engineering
Mitsubishi Materials Natural Resources Development Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DORIKO KK, National Institute for Rural Engineering, Mitsubishi Materials Natural Resources Development Corp filed Critical DORIKO KK
Priority to JP2002304310A priority Critical patent/JP3734034B2/en
Publication of JP2004138531A publication Critical patent/JP2004138531A/en
Application granted granted Critical
Publication of JP3734034B2 publication Critical patent/JP3734034B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Geophysics And Detection Of Objects (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an underground pollutant exploration method and an underground pollution distribution monitoring method capable of acquiring a tomographic video of the ground by a borehole underground radar, and acquiring quickly and accurately the distribution position, the concentration or the like of an underground pollutant from the tomographic video. <P>SOLUTION: This underground pollution distribution monitoring method has a procedure for forming boreholes 11, 12 under the ground, a procedure for radiating an electromagnetic wave into the underground from a transmission means 2 arranged in the borehole, a procedure for receiving the electromagnetic wave radiated from the transmission means by a reception means 3 arranged in the borehole, a procedure for operating the tomographic video including the underground pollutant distribution by a received signal by the reception means, and a procedure for monitoring the pollutant distribution following the elapse of time by the change with time of the tomographic video. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
この発明は、汚染物質による土壌・地下水の汚染の有無や、地下の汚染物質の濃度および位置等を探査したり、地下の汚染物質の分布の監視を行うための地下汚染物質探査方法および地下汚染分布監視方法に関するものである。
【0002】
【従来の技術】
重金属や揮発性有機化合物等の汚染物質による土壌や地下水の汚染を調査する地下汚染調査は、従来、次のような方法があった。地表での土壌サンプルを採取して分析する方法、地表から調査孔を掘削して土壌ガスを吸引採取し分析する方法、地表からレーダー探査を行う方法等である。また、汚染個所の地表面における位置が把握できた場合には、その地表面位置に基づいてボーリングを行い、土壌サンプルを採取して分析し、地下における汚染状態を調査していた。
【0003】
さらに、地下における汚染濃度や分布を調査するためには、ボーリング孔を多数掘削し、それぞれのボーリング孔から土壌や地下水のサンプルを採取して分析する必要があった。それらの分析結果から、地下の調査範囲全体における汚染物質の濃度や分布を類推するのである。
【0004】
また、汚染物質の濃度や位置が把握されたときには、次の段階として、汚染土壌や汚染地下水に対して揚水・曝気、揚水・分解、注水・揚水・曝気(分解)、薬品・鉄粉等の注入による分解無害化等の汚染浄化処理を行う。その汚染浄化処理を行う際に、浄化処理に伴って汚染状態がどのように変化しているかを監視し、汚染浄化処理の有効性を確認する必要がある。この場合にも、前述のような地下汚染調査と基本的に同様の方法によって汚染状態を監視していた。
【0005】
【発明が解決しようとする課題】
前述のように、地下汚染調査や汚染状態の監視には、ボーリングを行ってそのボーリング孔からサンプルを採取して分析するという方法が主として行われていた。したがって、汚染物質の濃度や位置を正確に調査するためには、ボーリング孔を多数掘削する必要があり、調査のための費用や時間が著しく増大してしまうという問題点があった。また、ボーリング孔を多数掘削することにより、汚染状態に影響を与えてしまい、汚染状態の正確な測定が極めて困難になってしまうという問題点もあった。
【0006】
さらに、汚染状態を地表からレーダによって探査する方法では、汚染物質の濃度や深さ位置を正確に知ることは困難であり、汚染個所の地表面における位置を把握できる程度であった。正確な汚染状態を把握するためには、地表からのレーダ探査によって求めた汚染物質の地表位置から、やはりボーリング孔を掘削しサンプルを採取して分析する必要があった。
【0007】
そこで、本発明は、地下汚染物質の探査または地下汚染分布の監視を行うために、いわゆるボアホール地中レーダによる断層写真法(トモグラフィ)によって地中の断層映像を得て、その断層映像から地下汚染物質の分布位置および濃度等を迅速かつ正確に取得することのできる地下汚染物質探査方法および地下汚染分布監視方法を提供することを目的とする。
【0008】
【課題を解決するための手段】
上記目的を達成するために、本発明の地下汚染物質探査方法は、地下にボーリング孔を形成する手順と、前記ボーリング孔の中に配置した送信手段から地下に電磁波を放射する手順と、前記ボーリング孔の中に配置した受信手段により、前記送信手段から放射された電磁波を受信する手順と、前記受信手段の受信信号により、地下の断層映像を演算する手順と、前記断層映像により、汚染物質の濃度および位置を探査する手順とを有するものである。
【0009】
また、上記の地下汚染物質探査方法において、前記断層映像は、電磁波の送信信号と受信信号との間の伝達特性に基づいて演算されるものであることが好ましい。
【0010】
また、本発明の地下汚染分布監視方法は、地下にボーリング孔を形成する手順と、前記ボーリング孔の中に配置した送信手段から地下に電磁波を放射する手順と、前記ボーリング孔の中に配置した受信手段により、前記送信手段から放射された電磁波を受信する手順と、前記受信手段の受信信号により、地下における汚染物質の分布を含む断層映像を演算する手順と、前記断層映像の時間的な変化により、時間経過に伴う汚染物質の分布を監視する手順とを有するものである。
【0011】
また、上記の地下汚染分布監視方法において、前記断層映像は、電磁波の送信信号と受信信号との間の伝達特性に基づいて演算されるものであることが好ましい。
【0012】
また、上記の地下汚染分布監視方法において、第1の時刻における前記断層映像と、前記第1の時刻より後の第2の時刻における前記断層映像との差分を演算する手順を有することが好ましい。
【0013】
また、上記の地下汚染分布監視方法において、汚染浄化処理を行いながら、汚染物質の分布の変化を監視するものであることが好ましい。
【0014】
【発明の実施の形態】
本発明の実施の形態について図面を参照して説明する。図1は、本発明の地下汚染物質探査方法および地下汚染分布監視方法の概要を示す図である。地盤10において、地下汚染物質の探査あるいは地下汚染分布の監視を行う領域に所定間隔でボーリング孔11,12を掘削する。これらのボーリング孔11,12には、送信アンテナ2および受信アンテナ3を配置する。
【0015】
ボアホールレーダトモグラフィ装置1は、送信アンテナ2から放射した電磁波を受信アンテナ3によって受信することにより、ボーリング孔11,12間における電磁波の伝達特性を測定して、ボーリング孔11,12間の地盤の構造を解析するための装置である。ボーリング孔11,12間の地盤の構造を、断層映像として視覚的に容易に認識可能に出力することができる。
【0016】
送信アンテナ2から放射される電磁波は、数MHz〜数百MHzの連続波、パルス波等が使用される。地盤における汚染物質の探査および監視に際して、注目すべき電磁的特性としては、地盤の誘電率(複素誘電率)、導電率およびそれらに依存する電磁波伝搬速度、電磁波減衰率がある。例えば、トリクロロエチレン等の有機塩類の多くは比誘電率が2程度であり、水の比誘電率81とは大きな差違がある。また、これらの有機塩類はほとんど絶縁性の物質であり、電解質を含む地下水や地盤とは導電率に大きな差違がある。
【0017】
すなわち、汚染物質が有機塩類の場合には、汚染部分4の導電率が他の部分よりも小さくなる。これに対して、汚染物質が硝酸塩、亜硝酸塩のような硝酸性窒素化合物や重金属塩である場合には、汚染部分4の導電率が他の部分よりも大きくなる。また、汚染物質が種々の物質の混合物である場合には、複素誘電率が周波数依存性(誘電分散)示すことを利用して、複数の周波数あるいは広帯域の周波数の伝達特性を測定し、それにより正確な汚染状態の測定が可能となる。
【0018】
これらの事実により、有機塩類により汚染された汚染部分4と他の地盤部分とは、地盤の誘電率、導電率に検出可能な差違を生じることになる。電磁波の伝搬速度、減衰率等により、ボーリング孔11,12間の地盤10の構造を表す断層映像を演算し表示すれば、図1に示すような汚染部分4を明瞭に示す映像が得られることになる。この断層映像から地下汚染物質の探査あるいは監視を行うことにより、従来のボーリング孔を多数掘削してサンプルを採取する方法に比較して極めて容易にこれらの探査あるいは監視を行うことができる。すなわち、探査あるいは監視のための時間および費用を大幅に削減することが可能となった。
【0019】
実際に、ボアホールレーダトモグラフィ装置1によって地盤の断層映像を得るには、図1に示すように、送信アンテナ2および受信アンテナ3をそれぞれ複数の位置に逐次変更して、そのそれぞれの位置の間の電磁波の伝達特性を測定する。その伝達特性のデータにより、ボーリング孔11,12間の鉛直面内の断層映像を得ることができる。電磁波の伝搬速度、減衰率等の伝達特性から、地盤の断層映像を得るための演算方法は、逆解析アルゴリズムと呼ばれ公知である。
【0020】
なお、図1では、ボーリング孔11,12内の送信アンテナ2および受信アンテナ3によって、鉛直面内の断層映像を得るようにしているが、このようなボーリング孔の組を複数組掘削すれば、水平面内の断層映像を得ることもできる。例えば、図2に示すように、ボーリング孔11,12に加えて、ボーリング孔11a,11b,12a,12bを掘削し、これらのボーリング孔の相互の間での電磁波の伝達特性を測定することにより水平面内の断層映像を得ることができる。
【0021】
また、図1では、ボーリング孔11からボーリング孔12へ透過した電磁波の伝達特性を測定して断層映像を得るようにしているが、送信アンテナ2および受信アンテナ3を同じボーリング孔に配置して、地盤からの反射電磁波の伝達特性により断層映像を得るようにすることもできる。
【0022】
図3は、地盤10の汚染部分4の位置等が判明したときに、汚染浄化処理を行いながら地下汚染分布を監視する場合の概要を示す図である。汚染物質による地盤10の汚染部分4が確認された場合には、次の段階として汚染部分4の浄化処理を行って汚染物質を取り除かなければならない。図3に示すように、汚染部分4に到達するように抽出井を掘削して、汚染物質を含む土壌ガスや地下水を汲み上げる。そして、その土壌ガスや地下水を汚染浄化装置5によって処理し、汚染物質を除去する。汚染物質を除去して浄化した地下水等は、再び地盤10中に戻すようにしている。
【0023】
以上のような汚染浄化処理を行いながら、ボアホールレーダトモグラフィ装置1によって、図1と同様に、ボーリング孔11,12間の地盤の構造を断層映像として出力し、時間経過に伴う断層映像の変化を追跡する。このときに、時刻T1における断層映像P1と、時刻T1よりも後の時刻T2における断層映像P2との差分映像ΔP=P2−P1を演算して表示することが好ましい。
【0024】
差分映像ΔPは、時刻T1から時刻T2までの間の地盤内成分や構造の変化分を表すものなので、汚染浄化処理による影響のみを選択的に抽出することができる。すなわち、地盤内の固定した構造等による変化しない映像成分を消すことができ、より明瞭に汚染浄化処理の効果を監視することができる。
【0025】
このようにして、汚染部分4の範囲の大きさの変化や、汚染物質の濃度の変化を極めて迅速に把握することができる。すなわち、汚染状態をほぼリアルタイムでモニターすることができる。したがって、汚染浄化装置5の浄化方法の有効性や、動作状況を迅速かつ正確に把握し評価することができる。これにより、的確で効果的な浄化方法を採用することができ、汚染浄化処理の工期短縮および大幅な費用削減が可能となった。
【0026】
【発明の効果】
本発明は、以上に説明したように構成されているので、以下のような効果を奏する。
【0027】
ボーリング孔内に配置した送信器および受信器により、電磁波の伝達特性から地下の断層映像を得て、その断層映像から地下汚染物質の探査を行うようにしたので、従来のボーリング孔を多数掘削してサンプルを採取する方法に比較して極めて容易に地下汚染物質の探査を行うことができる。すなわち、探査のための時間および費用を大幅に削減することが可能となった。
【0028】
ボーリング孔内に配置した送信器および受信器により、電磁波の伝達特性から地下の断層映像を得て、その断層映像から地下汚染分布の監視を行うようにしたので、汚染状態の変化を極めて迅速かつ正確に把握することができ、汚染浄化方法の有効性や、汚染浄化装置の動作状況を迅速かつ正確に把握し評価することができる。これにより、的確で効果的な浄化方法を採用することができ、汚染浄化処理の工期短縮および大幅な費用削減が可能となった。
【0029】
第1の時刻における断層映像と第2の時刻における断層映像との差分を演算するようにしたので、汚染浄化処理による影響のみを選択的に抽出することができる。すなわち、地盤内の固定した構造等による変化しない映像成分を消すことができ、より明瞭に汚染浄化処理の効果を監視することができる。
【図面の簡単な説明】
【図1】図1は、本発明の地下汚染物質探査方法および地下汚染分布監視方法の概要を示す図である。
【図2】図2は、水平面内の断層映像を得るためのボーリング孔の水平面内の配置の例を示す図である。
【図3】図3は、汚染浄化処理を行いながら地下汚染分布を監視する場合の概要を示す図である。
【符号の説明】
1…ボアホールレーダトモグラフィ装置
2…送信アンテナ
3…受信アンテナ
4…汚染部分
5…汚染浄化装置
10…地盤
11,12…ボーリング孔
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an underground pollutant detection method and an underground pollutant detection method for exploring the presence or absence of soil and groundwater contamination by pollutants, the concentration and position of underground pollutants, and monitoring the distribution of underground pollutants. It relates to a distribution monitoring method.
[0002]
[Prior art]
Conventionally, the following method has been used for the underground pollution survey for investigating the pollution of soil and groundwater by pollutants such as heavy metals and volatile organic compounds. These include methods of collecting and analyzing soil samples on the ground surface, methods of drilling a survey hole from the ground surface and sampling and analyzing soil gas, and methods of performing radar exploration from the ground surface. If the location of the contaminated area on the ground surface could be determined, drilling was performed based on the ground surface position, a soil sample was collected and analyzed, and the state of contamination underground was investigated.
[0003]
Furthermore, in order to investigate the concentration and distribution of contamination underground, it was necessary to drill a number of boreholes and collect and analyze soil and groundwater samples from each borehole. From these analyses, the concentration and distribution of pollutants throughout the underground survey area are inferred.
[0004]
When the concentration and location of pollutants are determined, the next step is to pump and aerate, pump and decompose, inject, pump and aerate (decompose) water, contaminate soil, and contaminated groundwater. Pollution purification treatment such as detoxification by injection is performed. When performing the pollution purification process, it is necessary to monitor how the pollution state changes with the purification process and confirm the effectiveness of the pollution purification process. In this case, the pollution state was monitored by a method basically similar to the underground pollution survey described above.
[0005]
[Problems to be solved by the invention]
As described above, underground pollution surveys and monitoring of the state of pollution have mainly been performed by boring, collecting samples from the boreholes, and analyzing the samples. Therefore, in order to accurately investigate the concentration and the position of the pollutant, it is necessary to drill a large number of boring holes, and there has been a problem that the cost and time for the investigation are significantly increased. In addition, excavating a large number of boreholes has a problem that the polluted state is affected and accurate measurement of the polluted state becomes extremely difficult.
[0006]
Furthermore, it is difficult to accurately determine the concentration and depth position of the contaminant by a method of detecting the state of contamination by radar from the ground surface, and it was only possible to grasp the position of the contaminated point on the ground surface. In order to ascertain the exact state of the contamination, it was necessary to drill a borehole, collect a sample, and analyze it from the surface position of the pollutant determined by radar survey from the surface.
[0007]
Therefore, the present invention obtains an underground tomographic image by tomography (tomography) using a so-called borehole underground radar in order to detect underground pollutants or monitor underground pollution distribution, and obtains an underground image from the tomographic image. An object of the present invention is to provide an underground pollutant exploration method and an underground pollution distribution monitoring method capable of quickly and accurately obtaining the distribution position and concentration of pollutants.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, an underground pollutant detection method of the present invention includes a step of forming a boring hole in the underground, a step of radiating electromagnetic waves from transmitting means disposed in the boring hole to the underground, By a receiving means arranged in the hole, a procedure of receiving electromagnetic waves radiated from the transmitting means, a procedure of calculating an underground tomographic image by a received signal of the receiving means, and Exploring the concentration and position.
[0009]
In the underground pollutant detection method, it is preferable that the tomographic image is calculated based on a transmission characteristic between a transmission signal and a reception signal of an electromagnetic wave.
[0010]
Further, the method of monitoring the distribution of underground pollution according to the present invention includes the steps of forming a boring hole in the underground, the step of radiating electromagnetic waves from the transmitting means disposed in the boring hole to the underground, and disposing the electromagnetic wave in the boring hole. Receiving means for receiving an electromagnetic wave radiated from the transmitting means; receiving signal from the receiving means for calculating a tomographic image including a distribution of contaminants underground; and a temporal change in the tomographic image. To monitor the distribution of pollutants with time.
[0011]
In the underground contamination distribution monitoring method, it is preferable that the tomographic image is calculated based on a transmission characteristic between a transmission signal and a reception signal of an electromagnetic wave.
[0012]
In addition, in the underground contamination distribution monitoring method, it is preferable that the method further includes a step of calculating a difference between the tomographic image at a first time and the tomographic image at a second time after the first time.
[0013]
In the above-mentioned underground pollution distribution monitoring method, it is preferable to monitor a change in the distribution of pollutants while performing a pollution purification process.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
An embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a diagram showing an outline of an underground pollutant detection method and an underground pollution distribution monitoring method of the present invention. Boring holes 11 and 12 are excavated at predetermined intervals in the ground 10 in a region where underground pollutants are detected or underground pollution distribution is monitored. A transmitting antenna 2 and a receiving antenna 3 are arranged in these bore holes 11 and 12.
[0015]
The borehole radar tomography apparatus 1 receives the electromagnetic wave radiated from the transmitting antenna 2 by the receiving antenna 3, measures the transmission characteristics of the electromagnetic wave between the boring holes 11 and 12, and forms the ground between the boring holes 11 and 12. This is a device for analyzing the structure. The structure of the ground between the boring holes 11 and 12 can be output as a tomographic image so that it can be easily recognized visually.
[0016]
As the electromagnetic wave radiated from the transmission antenna 2, a continuous wave of several MHz to several hundred MHz, a pulse wave, or the like is used. When searching for and monitoring contaminants on the ground, notable electromagnetic characteristics include the dielectric constant (complex permittivity) and conductivity of the ground, and the electromagnetic wave propagation velocity and electromagnetic wave attenuation rate depending on them. For example, many organic salts such as trichloroethylene have a relative dielectric constant of about 2, which is significantly different from the relative dielectric constant of water of 81. Further, these organic salts are almost insulating materials, and have a large difference in conductivity from groundwater or ground containing electrolyte.
[0017]
That is, when the contaminant is an organic salt, the conductivity of the contaminated portion 4 becomes smaller than that of the other portions. On the other hand, when the contaminant is a nitrate nitrogen compound such as nitrate or nitrite or a heavy metal salt, the conductivity of the contaminated portion 4 is higher than the other portions. Also, when the contaminant is a mixture of various substances, the transfer characteristic of a plurality of frequencies or a wide band of frequencies is measured by using the fact that the complex permittivity shows frequency dependence (dielectric dispersion), and thereby, It is possible to accurately measure the state of contamination.
[0018]
Due to these facts, the contaminated portion 4 contaminated with organic salts and the other ground portion cause a detectable difference in the dielectric constant and conductivity of the ground. By calculating and displaying a tomographic image showing the structure of the ground 10 between the boring holes 11 and 12 based on the propagation speed and attenuation rate of the electromagnetic wave, an image clearly showing the contaminated portion 4 as shown in FIG. 1 can be obtained. become. By exploring or monitoring underground pollutants from this tomographic image, these exploration or monitoring can be performed very easily as compared with the conventional method of excavating many boreholes and collecting samples. That is, the time and cost for exploration or monitoring can be significantly reduced.
[0019]
Actually, in order to obtain a tomographic image of the ground by the borehole radar tomography apparatus 1, the transmitting antenna 2 and the receiving antenna 3 are sequentially changed to a plurality of positions as shown in FIG. The transfer characteristic of the electromagnetic wave of is measured. The tomographic image in the vertical plane between the boring holes 11 and 12 can be obtained from the data of the transfer characteristics. A calculation method for obtaining a tomographic image of the ground from the transfer characteristics such as the propagation speed and the attenuation rate of the electromagnetic wave is called an inverse analysis algorithm and is known.
[0020]
In FIG. 1, a tomographic image in a vertical plane is obtained by the transmitting antenna 2 and the receiving antenna 3 in the boring holes 11 and 12, but if a plurality of such sets of boring holes are excavated, A tomographic image in the horizontal plane can also be obtained. For example, as shown in FIG. 2, by excavating the boring holes 11a, 11b, 12a and 12b in addition to the boring holes 11 and 12, and measuring the transmission characteristics of the electromagnetic wave between these boring holes. A tomographic image in a horizontal plane can be obtained.
[0021]
Further, in FIG. 1, the transmission characteristics of the electromagnetic wave transmitted from the boring hole 11 to the boring hole 12 are measured to obtain a tomographic image. However, the transmitting antenna 2 and the receiving antenna 3 are arranged in the same boring hole. It is also possible to obtain a tomographic image based on the transmission characteristics of the electromagnetic wave reflected from the ground.
[0022]
FIG. 3 is a diagram showing an outline of monitoring the underground pollution distribution while performing the pollution purification process when the position of the contaminated portion 4 of the ground 10 is found. If the contaminated part 4 of the ground 10 due to the contaminant is confirmed, the contaminant must be removed by performing a purification process on the contaminated part 4 as the next step. As shown in FIG. 3, an extraction well is drilled so as to reach the contaminated part 4, and soil gas and groundwater containing contaminants are pumped up. Then, the soil gas and the groundwater are processed by the pollution purification device 5 to remove the pollutants. Groundwater or the like purified by removing pollutants is returned to the ground 10 again.
[0023]
While performing the above-described contamination purification processing, the borehole radar tomography apparatus 1 outputs the structure of the ground between the boring holes 11 and 12 as a tomographic image as in FIG. 1 and changes in the tomographic image with time. To track. At this time, it is preferable to calculate and display a difference image ΔP = P2−P1 between the tomographic image P1 at the time T1 and the tomographic image P2 at the time T2 after the time T1.
[0024]
Since the difference image ΔP indicates a change in the ground component or the structure between the time T1 and the time T2, it is possible to selectively extract only the influence of the pollution purification processing. That is, an image component that does not change due to a fixed structure or the like in the ground can be eliminated, and the effect of the pollution purification processing can be more clearly monitored.
[0025]
In this way, a change in the size of the range of the contaminated portion 4 and a change in the concentration of the contaminant can be grasped very quickly. That is, the contamination state can be monitored almost in real time. Therefore, it is possible to quickly and accurately grasp and evaluate the effectiveness of the purification method of the pollution purification device 5 and the operation state. As a result, an accurate and effective purification method can be adopted, thereby shortening the construction period and significantly reducing the cost of the pollution purification treatment.
[0026]
【The invention's effect】
The present invention is configured as described above, and has the following effects.
[0027]
Transmitters and receivers placed in the borehole obtain an underground tomographic image from the transmission characteristics of electromagnetic waves, and use this tomographic image to search for underground contaminants. It is extremely easy to search for underground pollutants as compared to a method of taking a sample. That is, it has become possible to significantly reduce the time and cost for exploration.
[0028]
Transmitters and receivers located in the borehole obtain a tomographic image of the underground from the transmission characteristics of electromagnetic waves, and monitor the distribution of underground contamination from the tomographic image. It is possible to accurately grasp, and quickly and accurately grasp and evaluate the effectiveness of the pollution purification method and the operation status of the pollution purification device. As a result, an accurate and effective purification method can be adopted, thereby shortening the construction period and significantly reducing the cost of the pollution purification treatment.
[0029]
Since the difference between the tomographic image at the first time and the tomographic image at the second time is calculated, only the effect of the contamination purification process can be selectively extracted. That is, an image component that does not change due to a fixed structure or the like in the ground can be eliminated, and the effect of the pollution purification processing can be more clearly monitored.
[Brief description of the drawings]
FIG. 1 is a diagram showing an outline of an underground pollutant detection method and an underground pollution distribution monitoring method of the present invention.
FIG. 2 is a diagram illustrating an example of an arrangement in a horizontal plane of a boring hole for obtaining a tomographic image in a horizontal plane.
FIG. 3 is a diagram showing an outline of monitoring a distribution of underground pollution while performing a pollution purification process.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Borehole radar tomography apparatus 2 ... Transmitting antenna 3 ... Receiving antenna 4 ... Contaminated part 5 ... Contamination purification apparatus 10 ... Ground 11, 12 ... Boring hole

Claims (6)

地下にボーリング孔(11,12)を形成する手順と、
前記ボーリング孔(11,12)の中に配置した送信手段(1)から地下に電磁波を放射する手順と、
前記ボーリング孔(11,12)の中に配置した受信手段(2)により、前記送信手段(1)から放射された電磁波を受信する手順と、
前記受信手段(2)の受信信号により、地下の断層映像を演算する手順と、
前記断層映像により、汚染物質の濃度および位置を探査する手順とを有する地下汚染物質探査方法。
A procedure for forming a borehole (11, 12) in the basement;
Radiating an electromagnetic wave to the underground from the transmitting means (1) arranged in the boring holes (11, 12);
Receiving electromagnetic waves radiated from the transmitting means (1) by receiving means (2) arranged in the boring holes (11, 12);
Calculating a tomographic image of the underground based on the signal received by the receiving means (2);
Searching for the concentration and position of the pollutant using the tomographic image.
請求項1に記載した地下汚染物質探査方法であって、
前記断層映像は、電磁波の送信信号と受信信号との間の伝達特性に基づいて演算されるものである地下汚染物質探査方法。
An underground pollutant detection method according to claim 1,
The underground pollutant detection method, wherein the tomographic image is calculated based on a transmission characteristic between a transmission signal and a reception signal of an electromagnetic wave.
地下にボーリング孔(11,12)を形成する手順と、
前記ボーリング孔(11,12)の中に配置した送信手段(1)から地下に電磁波を放射する手順と、
前記ボーリング孔(11,12)の中に配置した受信手段(2)により、前記送信手段(1)から放射された電磁波を受信する手順と、
前記受信手段(2)の受信信号により、地下における汚染物質の分布を含む断層映像を演算する手順と、
前記断層映像の時間的な変化により、時間経過に伴う汚染物質の分布を監視する手順とを有する地下汚染分布監視方法。
A procedure for forming a borehole (11, 12) in the basement;
Radiating an electromagnetic wave to the underground from the transmitting means (1) arranged in the boring holes (11, 12);
Receiving electromagnetic waves radiated from the transmitting means (1) by receiving means (2) arranged in the boring holes (11, 12);
Calculating a tomographic image including a distribution of contaminants underground by a reception signal of the receiving means (2);
Monitoring the distribution of pollutants over time based on the temporal change of the tomographic image.
請求項3に記載した地下汚染分布監視方法であって、
前記断層映像は、電磁波の送信信号と受信信号との間の伝達特性に基づいて演算されるものである地下汚染分布監視方法。
An underground pollution distribution monitoring method according to claim 3,
The underground contamination distribution monitoring method, wherein the tomographic image is calculated based on a transmission characteristic between a transmission signal and a reception signal of an electromagnetic wave.
請求項3,4のいずれか1項に記載した地下汚染分布監視方法であって、
第1の時刻(T1)における前記断層映像(P1)と、前記第1の時刻より後の第2の時刻(T2)における前記断層映像(P2)との差分(ΔP)を演算する手順を有する地下汚染分布監視方法。
An underground pollution distribution monitoring method according to any one of claims 3 and 4,
A step of calculating a difference (ΔP) between the tomographic image (P1) at a first time (T1) and the tomographic image (P2) at a second time (T2) after the first time. Underground pollution distribution monitoring method.
請求項3〜5のいずれか1項に記載した地下汚染分布監視方法であって、
汚染浄化処理を行いながら、汚染物質の分布の変化を監視するものである地下汚染分布監視方法。
An underground pollution distribution monitoring method according to any one of claims 3 to 5,
An underground pollution distribution monitoring method that monitors changes in the distribution of pollutants while performing pollution purification processing.
JP2002304310A 2002-10-18 2002-10-18 Monitoring method for underground pollution distribution Expired - Lifetime JP3734034B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002304310A JP3734034B2 (en) 2002-10-18 2002-10-18 Monitoring method for underground pollution distribution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002304310A JP3734034B2 (en) 2002-10-18 2002-10-18 Monitoring method for underground pollution distribution

Publications (2)

Publication Number Publication Date
JP2004138531A true JP2004138531A (en) 2004-05-13
JP3734034B2 JP3734034B2 (en) 2006-01-11

Family

ID=32451765

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002304310A Expired - Lifetime JP3734034B2 (en) 2002-10-18 2002-10-18 Monitoring method for underground pollution distribution

Country Status (1)

Country Link
JP (1) JP3734034B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009526238A (en) * 2006-02-07 2009-07-16 アン・アーバー・テクニカル・サービシーズ Geomorphology for environmental restoration processes and systems, including sediment surveys
JP2009270919A (en) * 2008-05-07 2009-11-19 Tm:Kk Ground burial transmitter
KR100952845B1 (en) * 2007-11-28 2010-04-15 프랙라이트 인바이런멘탈 엘티디 Method for Remediation of Contaminated Soil Applying to Fracture-permeation and Inspecting State Thereof
CN101477106B (en) * 2009-01-13 2012-07-25 中国科学院武汉岩土力学研究所 Physical analog test apparatus for canal pollutant transmission under temperature-hydraulic coupling action
CN108287368A (en) * 2018-03-09 2018-07-17 上海岩土工程勘察设计研究院有限公司 Polluted Soil all standing detection method based on complex geophysical prospecting and its arrangement of measuring-line structure
JP2018524615A (en) * 2015-07-14 2018-08-30 コリア インスティチュート オブ ゲオサイエンス アンド ミネラル リソーセズ(ケイアイジーエイエム) Subsurface environment change detection method, detection sensor, and detection system using magnetic induction

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009526238A (en) * 2006-02-07 2009-07-16 アン・アーバー・テクニカル・サービシーズ Geomorphology for environmental restoration processes and systems, including sediment surveys
KR100952845B1 (en) * 2007-11-28 2010-04-15 프랙라이트 인바이런멘탈 엘티디 Method for Remediation of Contaminated Soil Applying to Fracture-permeation and Inspecting State Thereof
JP2009270919A (en) * 2008-05-07 2009-11-19 Tm:Kk Ground burial transmitter
CN101477106B (en) * 2009-01-13 2012-07-25 中国科学院武汉岩土力学研究所 Physical analog test apparatus for canal pollutant transmission under temperature-hydraulic coupling action
JP2018524615A (en) * 2015-07-14 2018-08-30 コリア インスティチュート オブ ゲオサイエンス アンド ミネラル リソーセズ(ケイアイジーエイエム) Subsurface environment change detection method, detection sensor, and detection system using magnetic induction
CN108287368A (en) * 2018-03-09 2018-07-17 上海岩土工程勘察设计研究院有限公司 Polluted Soil all standing detection method based on complex geophysical prospecting and its arrangement of measuring-line structure

Also Published As

Publication number Publication date
JP3734034B2 (en) 2006-01-11

Similar Documents

Publication Publication Date Title
Dietrich et al. Direct push-technologies
US11333758B2 (en) High resolution underground analysis
Halihan et al. Post-remediation evaluation of a LNAPL site using electrical resistivity imaging
WO2016187318A1 (en) Sampling techniques to detect hydrocarbon seepage
US20160011331A1 (en) Apparatus and methods of data analysis
Cui et al. Application of the Ground Penetrating Radar ARMA power spectrum estimation method to detect moisture content and compactness values in sandy loam
US20160187509A1 (en) Methods and Systems for Scan Analysis of a Core Sample
JP3734034B2 (en) Monitoring method for underground pollution distribution
Madun et al. Soil investigation using multichannel analysis of surface wave (MASW) and borehole
Simonin et al. Case study of detection of artificial defects in an experimental pavement structure using 3D GPR systems
Thalund‐Hansen et al. Assessing Contaminant Mass Discharge Uncertainty With Application of Hydraulic Conductivities Derived From Geoelectrical Cross‐Borehole Induced Polarization and Other Methods
Lu Identification of forensic information from existing conventional site-investigation data
JP2003279452A (en) Soil pollution survey method, soil pollution survey device, drilling tool and drilling pipe
Li et al. A novel NMR instrument for real time drilling fluid analysis
AU2020250804A1 (en) Device and method for determining an elemental composition of ground
KR102565165B1 (en) Complex underground sensor and method for monitoring underground contamination using the same for minimizing soil disturbing
JP2004198385A (en) Method of surveying oil contamination in soil
Abraham et al. Use of a handheld broadband EM induction system for deriving resistivity depth images
Grégoire et al. GPR abilities for the detection and characterisation of open fractures in a salt mine
Grimm et al. Nonlinear complex-resistivity survey for DNAPL at the Savannah River Site A-014 outfall
Azadpour‐Keeley et al. Monitored natural attenuation of contaminants in the subsurface: Applications
Kennel et al. Acoustic televiewer amplitude data for porosity estimation with application to porewater conversion
Kerfoot Shallow-probe soil-gas sampling for indication of ground-water contamination by chloroform
Takeshita et al. Measurement of groundwater behavior in sandy soils using surface ground penetrating radar
Grimm et al. Cross-hole complex resistivity survey for PCE at the SRS A-014 outfall

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050322

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050520

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050614

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050714

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050714

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050812

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20050829

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050915

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051011

R150 Certificate of patent or registration of utility model

Ref document number: 3734034

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20051013

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081028

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081028

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081028

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081028

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091028

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091028

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101028

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111028

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121028

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121028

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131028

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term