JP2004138419A - Particulate shape measurement device - Google Patents

Particulate shape measurement device Download PDF

Info

Publication number
JP2004138419A
JP2004138419A JP2002301285A JP2002301285A JP2004138419A JP 2004138419 A JP2004138419 A JP 2004138419A JP 2002301285 A JP2002301285 A JP 2002301285A JP 2002301285 A JP2002301285 A JP 2002301285A JP 2004138419 A JP2004138419 A JP 2004138419A
Authority
JP
Japan
Prior art keywords
magnetic sensor
magnetic field
magnetic
fine particles
particle measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002301285A
Other languages
Japanese (ja)
Inventor
Akihiko Umeda
梅田 彰彦
Yoshimi Kagimoto
鍵本 良実
Masaya Kouno
河野 将弥
Junichi Miyagawa
宮川 純一
Makihito Katayama
片山 牧人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2002301285A priority Critical patent/JP2004138419A/en
Publication of JP2004138419A publication Critical patent/JP2004138419A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a particulate shape measurement device capable of surely performing the detailed shape measurement of a particulate by detecting a change of a magnetic field by the particulate. <P>SOLUTION: This device has a magnetic sensor 34 having a flat structure in which a coil 32 and coil source device 33 for forming the magnetic field 38 and a number of magnetic sensor elements 34a are arranged in matrix in a particulate measuring area part 36 and a sensor arrangement part 37, the sensor being arranged in the sensor arrangement part in opposition to the particulate measuring area part to detect the change of the magnetic field caused by the particulate 39 present in the particulate measuring area part by each magnetic sensor element; and a signal processor 35 for processing the detection signal of each magnetic sensor element of the magnetic sensor to determine the shape of the particulate. As the magnetic sensor, flat ones may be provided orthogonally, or the magnetic sensor may be constituted in a cylindrical, linear or annular shape. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は微粒子形状計測装置に関し、軸受の潤滑油に混入した金属摩耗粉などの微粒子の形状を計測する場合に適用して有用なものであり、例えば潤滑油管理システムやメンテナンスシステムに装備される微粒子形状計測装置などに適用することができる。
【0002】
【従来の技術】
例えば火力発電所には、ボイラに供給する空気を発電所で発生する余熱で予め加熱して熱効率を高めるために用いられるエアヒータ(図1参照)など、回転軸を軸受で回転自在に支持する構成の機器が多数備えられており、これらの機器では、運転中に軸受の金属摩耗粉などの微粒子が軸受の潤滑油に混入して軸受の焼きつき等の支障をきたすことがある。このため、エアヒータなどの重要な機器については、循環する潤滑油中に混入した微粒子の計測などを行って潤滑油の状態を管理する潤滑油管理システムが装備される。
【0003】
そして、従来、潤滑油などの流体中の微粒子を計測する装置としては、微粒子による磁界の変化を検出するものが知られている(例えば、特許文献1参照)。
【0004】
【特許文献1】
特開2000−171382
【0005】
図9には特許文献1に開示されている計測技術の概要を示す。図9(a)に示すようにフィールドコイル1a,1bで交流磁界を発生させ、このコイル中においてテフロン(商品名)製チューブ3の往路(傾斜部)3a及び復路(非傾斜部)3bに潤滑油とともに微粒子2を流すことにより、図9(b)及び図9(c)に示すように前記磁界に対する微粒子2の姿勢を変える。そして、このときの微粒子2による前記磁界の変化を、図9(a)に示すようにセンシンングコイル4により、起電力として検出する。その結果、図9(d)に示すような起電力A,Bが得られ、この起電力A,Bの比から、図9(e)に示すような微粒子2のアスペクト比(長軸径と短軸径の比)、即ち、長短度(円形度)を求めることができる。
【0006】
図10には別の従来の計測技術の概要を示す。図10(a)に示すように、コイル11により、潤滑油が流れる配管12の途中(微粒子計測領域部)、及び、磁気センサ13の配置部に磁界14を形成し、潤滑油とともに配管12を流れる微粒子15によって生じる磁界14の変化を、磁気センサ13によって検出する。その結果、図10(b)に示すような磁気センサ13の検出信号が得られるため、この検出信号と、既知の潤滑油(微粒子15)の流速とに基づいて微粒子15の長短度を検出することができる。
【0007】
なお、上記のような微粒子による磁界の変化を検出する手法以外にも、小径の検査領域を微粒子が通過する際の電気抵抗の変化を検知し、この微粒子通過時の信号をトリガとして光学的に微粒子の形状を計測するベックマンコールター社のものや、光学センサによって微粒子の形状計測を行うスペクトロ社のものなどがある。
【0008】
【発明が解決しようとする課題】
しかしながら、上記のような従来の形状計測装置では微粒子の大きさを検知することはできるが、詳細な微粒子の形状計測を行うことはできない。また、ベックマンコールター社やスペクトロ社のものは、光学的な計測であるため、実機に適用する際、計測する潤滑油ライン等の汚損に弱いため、適用性に劣ると考えられる。
【0009】
従って本発明は上記の事情に鑑み、微粒子による磁界の変化を検出して微粒子の詳細な形状計測を確実に行うことができる微粒子形状計測装置を提供することを課題とする。
【0010】
【課題を解決するための手段】
上記課題を解決する第1発明の微粒子形状計測装置は、微粒子計測領域部及びセンサ配置部に磁界を形成する磁界形成手段と、
多数の磁気センサ素子をマトリクス状に配列してなる平面状の構成であって、前記微粒子計測領域部に面して前記センサ配置部に配置され、前記微粒子計測領域部に存在する微粒子によって生じる前記磁界の変化を各磁気センサ素子によって検出する磁気センサと、
この磁気センサの各磁気センサ素子の検出信号を処理して前記微粒子の形状を求める信号処理手段とを有することを特徴とする。
【0011】
また、第2発明の微粒子形状計測装置は、微粒子計測領域部及びこの微粒子計測領域部の直交方向の一方側に位置する第1のセンサ配置部に第1の磁界を形成する第1の磁界形成手段と、
前記微粒子計測領域部及び前記直交方向の他方側に位置する第2のセンサ配置部に第2の磁界を形成する第2磁界形成手段と、
多数の第1の磁気センサ素子をマトリクス状に配列してなる平面状の構成であって、前記微粒子計測領域部に面して前記第1のセンサ配置部に配置され、前記微粒子計測領域部に存在する微粒子によって生じる前記第1の磁界の変化を各第1の磁気センサ素子によって検出する第1の磁気センサと、
多数の第2の磁気センサ素子をマトリクス状に配列してなる平面状の構成であって、前記微粒子計測領域部に面して前記第2のセンサ配置部に配置され、前記微粒子計測領域部に存在する微粒子によって生じる前記第2の磁界の変化を各第2の磁気センサ素子によって検出する第2の磁気センサと、
前記第1の磁気センサ及び第2の磁気センサの各第1及び第2の磁気センサ素子の検出信号を処理して前記微粒子の形状を求める信号処理手段とを有することを特徴とする。
【0012】
また、第3発明の微粒子形状計測装置は、微粒子計測領域部及びセンサ配置部の回りに回転磁界を形成する磁界形成手段と、
多数の磁気センサ素子をマトリクス状に配列してなる円筒状の構成であって、前記微粒子計測領域部の周囲を囲むようにして前記センサ配置部に配置され、前記微粒子計測領域部に存在する微粒子によって生じる前記回転磁界の変化を各磁気センサ素子によって検出する磁気センサと、
この磁気センサの各磁気センサ素子の検出信号を処理して前記微粒子の形状を求める信号処理手段とを有することを特徴とする。
【0013】
また、第4発明の微粒子形状計測装置は、微粒子計測領域部及びセンサ配置部に磁界を形成する磁界形成手段と、
多数の磁気センサ素子を一列に配列してなる直線状の構成であって、前記微粒子計測領域部に面して前記センサ配置部に配置され、前記微粒子計測領域部を流体とともに流れる微粒子によって生じる前記磁界の変化を各磁気センサ素子によって検出する磁気センサと、
前記微粒子の流速に基づき、前記磁気センサの各磁気センサ素子の検出信号を処理して前記微粒子の形状を求める信号処理手段とを有することを特徴とする。
【0014】
また、第5発明の微粒子形状計測装置は、微粒子計測領域部及びこの微粒子計測領域部の直交方向の一方側に位置する第1のセンサ配置部に第1の磁界を形成する第1の磁界形成手段と、
前記微粒子計測領域部及び前記直交方向の他方側に位置する第2のセンサ配置部に第2の磁界を形成する第2磁界形成手段と、
多数の第1の磁気センサ素子を一列に配列してなる直線状の構成であって、前記微粒子計測領域部に面して前記第1のセンサ配置部に配置され、前記微粒子計測領域部を流体とともに流れる微粒子によって生じる前記第1の磁界の変化を各第1の磁気センサ素子によって検出する第1の磁気センサと、
多数の第2の磁気センサ素子を一列に配列してなる直線状の構成であって、前記微粒子計測領域部に面して前記第2のセンサ配置部に配置され、前記微粒子によって生じる前記第2の磁界の変化を各第2の磁気センサ素子によって検出する第2の磁気センサと、
前記微粒子の流速に基づき、前記第1の磁気センサ及び第2の磁気センサの各第1及び第2の磁気センサ素子の検出信号を処理して前記微粒子の形状を求める信号処理手段とを有することを特徴とする。
【0015】
また、第6発明の微粒子形状計測装置は、微粒子計測領域部及びセンサ配置部の回りに回転磁界を形成する磁界形成手段と、
多数の磁気センサ素子を一列に配列してなる円環状の構成であって、前記微粒子計測領域部の周囲を囲むようにして前記センサ配置部に配置され、前記微粒子計測領域部を流体とともに流れる微粒子によって生じる前記回転磁界の変化を各磁気センサ素子によって検出する磁気センサと、
前記微粒子の流速に基づき、前記磁気センサの各磁気センサ素子の検出信号を処理して前記微粒子の形状を求める信号処理手段とを有することを特徴とする。
【0016】
また、第7発明の微粒子形状計測装置は、第1〜第6発明の何れかの微粒子形状計測装置において、
前記磁界形成手段は多数のコイル素子を前記平面状、円筒状、直線状又は円環状の磁気センサの各磁気センサ素子に各々に対応させてマトリクス状又は一列に配列してなる平面状、円筒状、直線状又は円環状の磁界形成部であり、この磁界形成部と、前記平面状、円筒状、直線状又は円環状の磁気センサとを一体的に構成し、
前記磁界形成部の各コイル素子に順次通電して前記磁界又は回転磁界を形成するように構成したことを特徴とする。
【0017】
【発明の実施の形態】
以下、本発明の実施の形態を図面に基づき詳細に説明する。
【0018】
<実施の形態1>
図1は本発明の実施の形態1に係る微粒子形状計測装置を備えた潤滑油循環ラインの構成図、図2は本発明の実施の形態1に係る微粒子形状計測装置の構成図である。
【0019】
図1には一例として火力発電プラントのエアヒータの潤滑油循環ラインに本実施の形態1の微粒子形状計測装置を備えた場合の概略構成を示している。図1に示すように、エアヒータ21は、駆動装置22によってロータ23を回転させることにより、下部主軸受25によって回転自在に支持された回転軸24を回転駆動する構成となっている。なお、図1中の26はハウジング、27は上部主軸受である。
【0020】
そして、ドットで概略的に図示するように下部主軸受25は潤滑油30に浸されており、潤滑油30は潤滑油循環ライン(配管)28の途中に設けられたポンプ29によって循環され、潤滑油30中に混入した微粒子(下部主軸受25の金属摩耗粉)は潤滑油循環ライン28の途中に設けられた微粒子形状計測装置31によって計測されるようになっている。
【0021】
図2に示すように、本実施の形態1の微粒子形状計測装置31は磁界形成手段としてのコイル32及びコイル電源装置33、磁気センサ34、信号処理手段としての信号処理装置35などを有している。
【0022】
コイル32は潤滑油循環ライン28の途中の微粒子計測領域部36の一方側に面して配置され、磁気センサ34は微粒子計測領域部36を間に挟んでコイル32と対向するように微粒子計測領域部36の他方側に面してセンサ配置部37に配置されている。従って、コイル電源装置33によってコイル32に交流電流或いは直流電流を流すと、コイル32は微粒子計測領域部36及びセンサ配置部37(磁気センサ34)に交流又は直流の磁界38を形成する。即ち、微粒子計測領域部36及びセンサ配置部37(磁気センサ34)が、磁界38の中に置かれる。このとき、微粒子計測領域部36に微粒子(下部主軸受25の金属摩耗粉)39が存在すると(微粒子計測領域部36の潤滑油30中に微粒子39が混入していると)、即ち、矢印Cのように潤滑油30とともに微粒子39が微粒子計測領域部36を流れると、この微粒子39によって磁界38が変化する(乱れる)。微粒子39の大きさは例えば数100μm程度である。
【0023】
なお、コイル32の位置は図示の位置に限定するものではなく、磁気センサ34の後方などでもよい。また、潤滑油循環ライン(配管)28のうちの少なくとも微粒子計測領域部36はテフロン製などの非磁性、非導電性のもので形成されていることが望ましい。
【0024】
磁気センサ34は、磁気抵抗(MR)素子、大規模磁気抵抗(GMR)素子又は磁気インダクタンス(MI)素子などの磁気センサ素子34aを多数マトリクス状に配列してなる平面状の構成であり、微粒子計測領域部36に存在する微粒子39によって生じる磁界38の変化を各磁気センサ素子34aによって検出する。即ち、図2中のハッチングが施された磁気センサ素子34aは微粒子39の形状に対応する位置のセンサであり、これらの磁気センサ素子34aでは微粒子39による当該部分の磁界38の変化に応じて検出値が変化する。なお、このような平面状(マトリクス状)の磁気センサ34は、例えば磁界によって抵抗値が変化する磁気抵抗(MR)の膜を基板上に成膜してエッチングなど行うことにより、多数の磁気センサ素子34aを同基板上にマトリクス状に集積することなどによって、構成することができる。
【0025】
磁気センサ34の各磁気センサ素子34aの検出信号は、信号処理装置35に入力される。信号処理装置35では、各磁気センサ素子34aの検出信号を処理することにより、例えば各磁気センサ素子34aの検出信号レベルと閾値とを比較し、検出信号レベルが閾値を超えた磁気センサ素子34aにおいて微粒子39が検知されたと判断するような信号処理をすることにより、図2中にハッチングで示すような微粒子39の形状を求める。即ち、各磁気センサ素子34aの検出信号の変化から微粒子39の存在領域を推定する。信号処理装置35で求められた微粒子39の形状(データ)は、表示・記録装置40において表示され、且つ、記録される。
【0026】
従って、本実施の形態1の微粒子形状計測装置31によれば、微粒子39の詳細な形状、即ち、微粒子39の幅(又は厚み)及び長さを計測を行うことができる。しかも、光学的な計測手法に比べて計測精度が潤滑油循環ライン28の汚損に左右されにくい。また、磁気センサ素子34aの集積度を向上させれば、より詳細(高精度)な微粒子39の形状計測が可能となる。
【0027】
<実施の形態2>
図3は本発明の実施の形態2に係る微粒子形状計測装置の構成図である。なお、潤滑油循環ラインの構成については、上記実施の形態1(図1参照)と同様であるため、ここでの説明及び図示を省略する。
【0028】
図3に示すように、本実施の形態2の微粒子形状計測装置51は第1及び第2の磁界形成手段としての第1及び第2のコイル52A,52B及びコイル電源装置53、第1及び第2の磁気センサ54A,54B、信号処理手段としての信号処理装置55などを有している。
【0029】
第1のコイル52Aは潤滑油循環ラインの途中の微粒子計測領域部56の直交方向の一方側に面して配置され、第2のコイル52Bは前記直交方向の他方側に面して配置されている。磁気センサ34Aは微粒子計測領域部56の他の直交方向の一方側に位置する第1のセンサ配置部57Aに微粒子計測領域部56に面して配置され、微粒子計測領域部56を間に挟んで第1のコイル52Aと対向しており、磁気センサ34Bは前記他の直交方向の他方側に位置する第2のセンサ配置部57Bに微粒子計測領域部56に面して配置され、微粒子計測領域部56を間に挟んで第2のコイル52Bと対向している。
【0030】
従って、コイル電源装置53によって第1のコイル52Aに交流電流或いは直流電流を流すと、第1のコイル52Aは微粒子計測領域部56及び第1のセンサ配置部57A(第1の磁気センサ54A)に交流又は直流の第1の磁界58Aを形成し、また、コイル電源装置53によって第2のコイル52Bに交流電流或いは直流電流を流すと、第2のコイル52Bは微粒子計測領域部56及び第2のセンサ配置部57B(第2の磁気センサ54B)に交流又は直流の第2の磁界58Bを形成する。即ち、微粒子計測領域部56及び第1のセンサ配置部57A(第1の磁気センサ54A)が、第1の磁界58Aの中に置かれ、微粒子計測領域部56及び第2のセンサ配置部57B(第2の磁気センサ54B)が、第1の磁界58Bの中に置かれる。
【0031】
但し、第1の磁界58Aと第2の磁界58Bは、相互の磁界58A,58Bの干渉を避けるため、コイル電源装置53から第1及び第2のコイル52A,52Bへの通電を交互に切り換えることにより、交互に形成する。この場合、通電の切り換え速度は微粒子59の流速に応じた適宜の高速度とする。
【0032】
そして、このとき、微粒子計測領域部56に微粒子(軸受の金属摩耗粉)59が存在すると(微粒子計測領域部56の潤滑油中に微粒子59が混入していると)、即ち、矢印Cのように潤滑油とともに微粒子59が微粒子計測領域部56を流れると、この微粒子59によって第1の磁界58Aと第2の磁界58Bとが変化する(乱れる)。微粒子59の大きさは例えば数100μm程度である。
【0033】
なお、第1及び第2のコイル52A,52Bの位置は図示の位置に限定するものではなく、第1及び第2の磁気センサ54A,54Bの後方などでもよい。また、潤滑油循環ライン(配管)のうちの少なくとも微粒子計測領域部56はテフロン製などの非磁性、非導電性のもので形成されていることが望ましい。
【0034】
第1の磁気センサ54Aは、磁気抵抗(MR)素子、大規模磁気抵抗(GMR)素子又は磁気インダクタンス(MI)素子などの第1の磁気センサ素子54aを多数マトリクス状に配列してなる平面状の構成であり、微粒子計測領域部56に存在する微粒子59によって生じる第1の磁界58Aの変化を各第1の磁気センサ素子54aによって検出する。即ち、図3中のハッチングが施された第1の磁気センサ素子54aは微粒子59の形状に対応する位置のセンサであり、これらの51の磁気センサ素子54aでは微粒子59による当該部分の第1の磁界58Aの変化に応じて検出値が変化する。
【0035】
第2の磁気センサ54Bは、磁気抵抗(MR)素子、大規模磁気抵抗(GMR)素子又は磁気インダクタンス(MI)素子などの第2の磁気センサ素子54bを多数マトリクス状に配列してなる平面状の構成であり、微粒子計測領域部56に存在する微粒子59によって生じる第2の磁界58Bの変化を各第2の磁気センサ素子54bによって検出する。即ち、図3中のハッチングが施された第2の磁気センサ素子54bは微粒子59の形状に対応する位置のセンサであり、これらの第2の磁気センサ素子54bでは微粒子59による当該部分の第2の磁界58Bの変化に応じて検出値が変化する。
【0036】
このような平面状(マトリクス状)の第1及び第2の磁気センサ54A,54Bは、例えば磁界によって抵抗値が変化する磁気抵抗(MR)の膜を基板上に成膜してエッチングなどを行うことにより、多数の第1及び第2の磁気センサ素子54a,54bを同基板上にマトリクス状に集積することなどによって、構成することができる。
【0037】
第1及び第2の磁気センサ54A,54Bの各第1及び第2の磁気センサ素子54a,54bの検出信号は、信号処理装置55に入力される。信号処理装置55では、各第1及び第2の磁気センサ素子54a,54bの検出信号を処理することにより、例えば各第1及び第2の磁気センサ素子54a,54bの検出信号レベルと閾値とを比較し、検出信号レベルが閾値を超えた第1及び第2の磁気センサ素子54a,54bにおいて微粒子59が検知されたと判断するような信号処理をすることにより、図3中にハッチングで示すような微粒子59の直交する2方向の形状を求める。即ち、各第1及び第2の磁気センサ素子54a,54bの検出信号の変化から微粒子59の存在領域を推定する。信号処理装置55で求められた微粒子59の形状(データ)は、表示・記録装置50において表示され、且つ、記録される。
【0038】
従って、本実施の形態2の微粒子形状計測装置51によれば、微粒子59のより詳細な形状、即ち、微粒子59の幅、長さ、厚みを同時に計測することができる。しかも、光学的な計測手法に比べて計測精度が潤滑油循環ラインの汚損に左右されにくい。また、第1及び第2の磁気センサ素子64a,64bの集積度を向上させれば、より詳細(高精度)な微粒子59の形状計測が可能となる。
【0039】
<実施の形態3>
図4は本発明の実施の形態3に係る微粒子形状計測装置の構成図である。なお、潤滑油循環ラインの構成については、上記実施の形態1(図1参照)と同様であるため、ここでの説明及び図示を省略する。
【0040】
図4に示すように、本実施の形態3の微粒子形状計測装置71は磁界形成手段としてのコイル72及びコイル電源装置73、磁気センサ74、信号処理手段としての信号処理装置75などを有している。
【0041】
磁気センサ74は磁気抵抗(MR)素子、大規模磁気抵抗(GMR)素子又は磁気インダクタンス(MI)素子などの磁気センサ素子74aをマトリクス状に配列してなる円筒状の構成であって、潤滑油循環ラインの途中の微粒子計測領域部76の周囲を囲むようにしてセンサ配置部77に配置され、微粒子計測領域部76に存在する例えば数100μm程度の大きさの微粒子79によって生じる回転磁界78(詳細は後述するが、前記磁界形成手段によって形成される)の変化を各磁気センサ素子74aによって検出する。即ち、微粒子79の形状に対応する位置の磁気センサ素子74aでは、微粒子79による当該部分の回転磁界78の変化に応じて検出値が変化する。なお、このような円筒状(マトリクス状)の磁気センサ74は、例えば磁界によって抵抗値が変化する磁気抵抗(MR)の膜を基板上に成膜してエッチングなどを行うことにより、多数の磁気センサ素子34aを同基板上にマトリクス状に集積し、且つ、円筒状に成形することなどによって、構成することができる。
【0042】
コイル72は微粒子計測領域部76に面し、且つ、円筒状の磁気センサ74の外周面側に配置されている。そして、コイル72は図示しないモータなどの適宜の回転駆動手段によって矢印Dのように微粒子計測領域部76及びセンサ配置部77(磁気センサ74)の回りをまるようになっている。従って、コイル電源装置73によってコイル72に交流電流或いは直流電流を流し、且つ、前記回転駆動手段によってコイル72を回転させると、微粒子計測領域部76及びセンサ配置部77(磁気センサ74)に交流又は直流の回転磁界78が形成される。即ち、微粒子計測領域部76及びセンサ配置部77(磁気センサ74)が、回転磁界78の中に置かれる。
【0043】
このとき、微粒子計測領域部76に微粒子(軸受の金属摩耗粉)79が存在すると(微粒子計測領域部76の潤滑油中に微粒子79が混入していると)、即ち、矢印Cのように潤滑油とともに微粒子79が微粒子計測領域部76を流れると、この微粒子79によって回転磁界78が変化する(乱れる)。なお、磁気センサ74の周囲に同時に磁界を形成せず、回転磁界78とするのは、磁界相互の干渉を防止するためである。
【0044】
また、回転磁界78を形成する磁界形成手段としては、上記のものに限定されず、例えば、コイル72を磁気センサ74の周方向に連続的に多数配列して、磁気センサ74の周囲を囲む円筒状のコイル群を構成し、このコイル群の各コイル72へのコイル電源装置73からの通電を順次切り換えていくことによって、回転磁界78を形成してもよい。なお、回転磁界78の回転速度(通電の切り換え速度或いはコイル回転速度)は、微粒子79の流速に応じた適宜の高速度とする。また、潤滑油循環ライン(配管)のうちの少なくとも微粒子計測領域部76はテフロン製などの非磁性、非導電性のもので形成されていることが望ましい。
【0045】
磁気センサ74の各磁気センサ素子74aの検出信号は、信号処理装置75に入力される。信号処理装置75では、各磁気センサ素子74aの検出信号を処理することにより、例えば各磁気センサ素子74aの検出信号レベルと閾値とを比較し、検出信号レベルが閾値を超えた磁気センサ素子74aにおいて微粒子79が検知されたと判断するような信号処理をすることにより、微粒子79の形状を求める。即ち、各磁気センサ素子74aの検出信号の変化から微粒子79の存在領域を推定する。信号処理装置75で求められた微粒子79の形状(データ)は、表示・記録装置80において表示され、且つ、記録される。
【0046】
従って、本実施の形態3の微粒子形状計測装置71によれば、微粒子79のより詳細な形状、即ち、微粒子79の全周にわたる形状計測を行うことができる。しかも、光学的な計測手法に比べて計測精度が潤滑油循環ラインの汚損に左右されにくい。また、磁気センサ素子74aの集積度を向上させれば、より詳細(高精度)な微粒子79の形状計測が可能となる。
【0047】
<実施の形態4>
図5は本発明の実施の形態4に係る微粒子形状計測装置の構成図である。なお、潤滑油循環ラインの構成については、上記実施の形態1(図1参照)と同様であるため、ここでの説明及び図示を省略する。
【0048】
図5に示すように、本実施の形態4の微粒子形状計測装置91は磁界形成手段としてのコイル92及びコイル電源装置93、磁気センサ94、信号処理手段としての信号処理装置95などを有している。
【0049】
コイル92は潤滑油循環ラインの途中の微粒子計測領域部96に面し、且つ、磁気センサ94の後方に配置されている。磁気センサ94はコイル32と微粒子計測領域部96の間で微粒子計測領域部96に面してセンサ配置部97に配置されている。従って、コイル電源装置93によってコイル92に交流電流或いは直流電流を流すと、コイル92は微粒子計測領域部96及びセンサ配置部97(磁気センサ94)に交流又は直流の磁界98を形成する。即ち、微粒子計測領域部96及びセンサ配置部97(磁気センサ94)が、磁界98の中に置かれる。このとき、微粒子計測領域部96に微粒子(軸受の金属摩耗粉)99が存在すると(微粒子計測領域部96の潤滑油中に微粒子99が混入していると)、即ち、矢印Cのように潤滑油とともに微粒子99が微粒子計測領域部96を流れると、この微粒子99によって磁界98が変化する(乱れる)。微粒子39の大きさは例えば数100μm程度である。
【0050】
なお、コイル92の位置は図示の位置に限定するものではなく、微粒子計測領域部96を間に挟んで磁気センサ34と対向する位置でもよい。また、潤滑油循環ライン(配管)のうちの少なくとも微粒子計測領域部96はテフロン製などの非磁性、非導電性のもので形成されていることが望ましい。
【0051】
磁気センサ94は、磁気抵抗(MR)素子、大規模磁気抵抗(GMR)素子又は磁気インダクタンス(MI)素子などの磁気センサ素子94aを多数一列に配列してなる直線状の構成であって、長手方向(配列方向)が微粒子99の流れ方向(矢印C方向)と直交するように配置されており、微粒子計測領域部96に存在する微粒子99によって生じる磁界98の変化を各磁気センサ素子94aによって検出する。即ち、微粒子99の形状に対応する位置の磁気センサ素子94aでは、微粒子99による当該部分の磁界98の変化に応じて検出値が変化する。なお、このような直線状の磁気センサ94は、例えば磁界によって抵抗値が変化する磁気抵抗(MR)の膜を基板上に成膜してエッチングなどを行うことにより、多数の磁気センサ素子94aを同基板上にマトリクス状に集積し、且つ、そのうちの1列分を切り出すことなどによって構成することができる。
【0052】
磁気センサ94の各磁気センサ素子94aの検出信号は、信号処理装置95に入力される。信号処理装置95では、既知の微粒子99の流速(潤滑油の流速)、或いは、流速センサで計測した微粒子99の流速(潤滑油の流速)に基づき、各磁気センサ素子94aの検出信号を処理することにより、例えば各磁気センサ素子94aの検出信号レベルと閾値とを比較し、検出信号レベルが閾値を超えた磁気センサ素子94aにおいて微粒子99が検知されたと判断するような信号処理をすることにより、微粒子99の形状を求める。即ち、各磁気センサ素子94aの検出信号の変化から微粒子99の存在領域を推定する。また、信号処理装置95で求められた微粒子99の形状(データ)は、表示・記録装置100において表示され、且つ、記録される。
【0053】
従って、本実施の形態4の微粒子形状計測装置91によれば、微粒子99の詳細な形状、即ち、微粒子99の幅(又は厚み)及び長さの計測を行うことができる。つまり、平面状(マトリクス状)ではなく直線状(一列)の磁気センサ94であっても、微粒子99の流速がわかれば、平面状の磁気センサと同程度の詳細な形状測定が可能である。しかも、光学的な計測手法に比べて計測精度が潤滑油循環ラインの汚損に左右されにくい。また、磁気センサ素子94aの集積度を向上させれば、より詳細(高精度)な微粒子99の形状計測が可能となる。
【0054】
<実施の形態5>
図6は本発明の実施の形態5に係る微粒子形状計測装置の構成図である。なお、潤滑油循環ラインの構成については、上記実施の形態1(図1参照)と同様であるため、ここでの説明及び図示を省略する。
【0055】
図6に示すように、本実施の形態5の微粒子形状計測装置101は第1及び第2の磁界形成手段としての第1及び第2のコイル102A,102B及びコイル電源装置103、第1及び第2の磁気センサ104A,104B、信号処理手段としての信号処理装置105などを有している。
【0056】
第1のコイル102Aは潤滑油循環ラインの途中の微粒子計測領域部106の直交方向の一方側に面し、且つ、第1の磁気センサ104Aの後方に配置されている。第2のコイル102Bは前記直交方向の他方側に面し、且つ、第2の磁気センサ104Bの後方に配置されている。磁気センサ104Aは微粒子計測領域部106の他の直交方向の一方側に位置する第1のセンサ配置部107Aに微粒子計測領域部106に面して配置され、第1のコイル102Aと微粒子計測領域部106との間に位置している。磁気センサ104Bは前記他の直交方向の他方側に位置する第2のセンサ配置部107Bに微粒子計測領域部106に面して配置され、第2のコイル102Bと微粒子計測領域部106との間に位置している。
【0057】
従って、コイル電源装置103によって第1のコイル102Aに交流電流或いは直流電流を流すと、第1のコイル102Aは微粒子計測領域部106及び第1のセンサ配置部107A(第1の磁気センサ104A)に交流又は直流の第1の磁界108Aを形成し、また、コイル電源装置103によって第2のコイル102Bに交流電流或いは直流電流を流すと、第2のコイル102Bは微粒子計測領域部106及び第2のセンサ配置部107B(第2の磁気センサ104B)に交流又は直流の第2の磁界108Bを形成する。即ち、微粒子計測領域部106及び第1のセンサ配置部107A(第1の磁気センサ104A)が、第1の磁界108Aの中に置かれ、微粒子計測領域部106及び第2のセンサ配置部107B(第2の磁気センサ104B)が、第1の磁界108Bの中に置かれる。
【0058】
但し、第1の磁界108Aと第2の磁界108Bは、相互の磁界58A,58Bの干渉を避けるため、コイル電源装置103から第1及び第2のコイル102A,102Bへの通電を交互に切り換えることにより、交互に形成する。この場合、通電の切り換え速度は微粒子109の流速に応じた適宜の高速度とする。
【0059】
そして、このとき、微粒子計測領域部106に微粒子(軸受の金属摩耗粉)109が存在すると(微粒子計測領域部106の潤滑油中に微粒子109が混入していると)、即ち、矢印Cのように潤滑油とともに微粒子109が微粒子計測領域部106を流れると、この微粒子109によって第1の磁界108Aと第2の磁界108Bとが変化する(乱れる)。微粒子109の大きさは例えば数100μm程度である。
【0060】
なお、第1及び第2のコイル102A,102Bの位置は図示の位置に限定するものではなく、微粒子計測領域部106を間に挟んで第1及び第2の磁気センサ104A,104Bとそれぞれ対向する位置でもよい。また、潤滑油循環ライン(配管)のうちの少なくとも微粒子計測領域部106はテフロン製などの非磁性、非導電性のもので形成されていることが望ましい。
【0061】
第1の磁気センサ104Aは、磁気抵抗(MR)素子、大規模磁気抵抗(GMR)素子又は磁気インダクタンス(MI)素子などの第1の磁気センサ素子104aを多数一列に配列してなる直線状の構成であって、長手方向(配列方向)が微粒子109の流れ方向(矢印C方向)と直交するように配置されており、微粒子計測領域部106に存在する微粒子109によって生じる第1の磁界108Aの変化を各第1の磁気センサ素子104aによって検出する。即ち、微粒子109の形状に対応する位置の第1の磁気センサ素子104aでは、微粒子109による当該部分の第1の磁界108Aの変化に応じて検出値が変化する。
【0062】
第2の磁気センサ104Bは、磁気抵抗(MR)素子、大規模磁気抵抗(GMR)素子又は磁気インダクタンス(MI)素子などの第2の磁気センサ素子104bを多数一列に配列してなる直線状の構成であって、長手方向(配列方向)が微粒子109の流れ方向(矢印C方向)と直交するように配置されており、微粒子計測領域部106に存在する微粒子109によって生じる第2の磁界108Bの変化を各第2の磁気センサ素子104bによって検出する。即ち、微粒子109の形状に対応する位置の第2の磁気センサ素子104bでは、微粒子109による当該部分の第2の磁界108Bの変化に応じて検出値が変化する。
【0063】
このような直線状の第1及び第2の磁気センサ1054A,104Bは、例えば磁界によって抵抗値が変化する磁気抵抗(MR)の膜を基板上に成膜してエッチングなどを行うことにより、多数の第1及び第2の磁気センサ素子104a,104bを同基板上にマトリクス状に集積し、且つ、そのうちの一列分を切り出すことなどによって、構成することができる。
【0064】
第1及び第2の磁気センサ104A,104Bの各第1及び第2の磁気センサ素子104a,104bの検出信号は、信号処理装置105に入力される。信号処理装置105では、既知の微粒子109の流速(潤滑油の流速)、或いは、流速センサで計測した微粒子109の流速(潤滑油の流速)に基づき、各第1及び第2の磁気センサ素子104a,104bの検出信号を処理することにより、例えば各第1及び第2の磁気センサ素子104a,104bの検出信号レベルと閾値とを比較し、検出信号レベルが閾値を超えた第1及び第2の磁気センサ素子104aにおいて微粒子109が検知されたと判断するような信号処理をすることにより、微粒子109の直交する2方向の形状を求める。即ち、各磁気センサ素子104a,104bの検出信号の変化から微粒子109の存在領域を推定する。また、信号処理装置105で求められた微粒子109の形状(データ)は、表示・記録装置110において表示され、且つ、記録される。
【0065】
従って、本実施の形態5の微粒子形状計測装置101によれば、微粒子109のより詳細な形状、即ち、微粒子109の幅、長さ、厚みを同時に計測することができる。つまり、平面状(マトリクス状)ではなく直線状(一列)の第1及び第2の磁気センサ104A,104Bであっても、微粒子109の流速がわかれば、平面状の磁気センサと同程度の詳細な形状測定が可能である。しかも、光学的な計測手法に比べて計測精度が潤滑油循環ラインの汚損に左右されにくい。また、第1及び第2の磁気センサ素子104a,104bの集積度を向上させれば、より詳細(高精度)な微粒子109の形状計測が可能となる。
【0066】
<実施の形態6>
図7は本発明の実施の形態6に係る微粒子形状計測装置の構成図である。なお、潤滑油循環ラインの構成については、上記実施の形態1(図1参照)と同様であるため、ここでの説明及び図示を省略する。
【0067】
図7に示すように、本実施の形態6の微粒子形状計測装置121は磁界形成手段としてのコイル122及びコイル電源装置123、磁気センサ124、信号処理手段としての信号処理装置125などを有している。
【0068】
磁気センサ124は磁気抵抗(MR)素子、大規模磁気抵抗(GMR)素子又は磁気インダクタンス(MI)素子などの磁気センサ素子124aを多数一列に配列してなる円環状の構成であって、この円環の接線方向が微粒子129の流れ方向(矢印C方向)と直交するように配置され、且つ、潤滑油循環ラインの途中の微粒子計測領域部126の周囲を囲むようにしてセンサ配置部127に配置されており、微粒子計測領域部126に存在する例えば数100μm程度の大きさの微粒子129によって生じる回転磁界128(詳細は後述するが、前記磁界形成手段によって形成される)の変化を各磁気センサ素子124aによって検出する。即ち、微粒子129の形状に対応する位置の磁気センサ素子124aでは、微粒子129による当該部分の回転磁界128の変化に応じて検出値が変化する。
【0069】
なお、このような円環状の磁気センサ124は、例えば磁界によって抵抗値が変化する磁気抵抗(MR)の膜を基板上に成膜してエッチングなどを行うことにより、多数の磁気センサ素子124aを同基板上にマトリクス状に集積し、且つ、そのうちの一列を切り出して円環状に成形することなどによって、構成することができる。
【0070】
コイル122は微粒子計測領域部126に面し、且つ、円環状の磁気センサ124の外周側に配置されている。そして、コイル122は図示しないモータなどの適宜の回転駆動手段によって矢印Dのように微粒子計測領域部126及びセンサ配置部127(磁気センサ124)の回りをまるようになっている。従って、コイル電源装置123によってコイル122に交流電流或いは直流電流を流し、且つ、前記回転駆動手段によってコイル122を回転させると、微粒子計測領域部126及びセンサ配置部127(磁気センサ124)に交流又は直流の回転磁界128が形成される。即ち、微粒子計測領域部126及びセンサ配置部127(磁気センサ124)が、回転磁界128の中に置かれる。
【0071】
このとき、微粒子計測領域部126に微粒子(軸受の金属摩耗粉)129が存在すると(微粒子計測領域部126の潤滑油中に微粒子129が混入していると)、即ち、矢印Cのように潤滑油とともに微粒子129が微粒子計測領域部126を流れると、この微粒子129によって回転磁界128が変化する(乱れる)。なお、磁気センサ124の周囲に同時に磁界を形成せず、回転磁界128とするのは、磁界相互の干渉を防止するためである。
【0072】
また、回転磁界128を形成する磁界形成手段としては、上記のものに限定されず、例えば、コイル122を磁気センサ124の周方向に連続的に多数配列して、磁気センサ124の周囲を囲む円環状のコイル群を構成し、このコイル群の各コイル122へのコイル電源装置123からの通電を順次切り換えていくことによって、回転磁界128を形成してもよい。なお、回転磁界128の回転速度(通電の切り換え速度或いはコイル回転速度)は、微粒子129の流速に応じた適宜の高速度とする。また、潤滑油循環ライン(配管)のうちの少なくとも微粒子計測領域部126はテフロン製などの非磁性、非導電性のもので形成されていることが望ましい。
【0073】
磁気センサ124の各磁気センサ素子124aの検出信号は、信号処理装置125に入力される。信号処理装置125では、各磁気センサ素子124aの検出信号を処理することにより、例えば各磁気センサ素子124aの検出信号レベルと閾値とを比較し、検出信号レベルが閾値を超えた磁気センサ素子124aにおいて微粒子129が検知されたと判断するような信号処理をすることにより、微粒子129の形状を求める。即ち、各磁気センサ素子124aの検出信号の変化から微粒子129の存在領域を推定する。また、信号処理装置125で求められた微粒子129の形状(データ)は、表示・記録装置130において表示され、且つ、記録される。
【0074】
従って、本実施の形態6の微粒子形状計測装置121によれば、微粒子129のより詳細な形状、即ち、微粒子129の全周にわたる形状計測を行うことができる。つまり、円筒状(マトリクス状)ではなく円環状(一列)の磁気センサ124であっても、微粒子129の流速がわかれば、円筒状の磁気センサと同程度の詳細な形状測定が可能である。しかも、光学的な計測手法に比べて計測精度が潤滑油循環ラインの汚損に左右されにくい。また、磁気センサ素子124aの集積度を向上させれば、より詳細(高精度)な微粒子129の形状計測が可能となる。
【0075】
<実施の形態7>
図8は本発明の実施の形態7に係る微粒子形状計測装置の構成図である。なお、潤滑油循環ラインの構成については、上記実施の形態1(図1参照)と同様であるため、ここでの説明及び図示を省略する。
【0076】
図8に示すように、本実施の形態7の微粒子形状計測装置141は磁界形成手段としての磁界形成部142及びコイル電源装置143、磁気センサ144、信号処理手段としての信号処理装置145などを有している。
【0077】
磁気センサ144は上記実施の形態1の磁気センサ34と同様の構成、即ち、磁気抵抗(MR)素子、大規模磁気抵抗(GMR)素子又は磁気インダクタンス(MI)素子などの磁気センサ素子34aを多数マトリクス状に配列してなる平面状の構成である。一方、磁界形成部142は、多数のコイル素子142aを磁気センサ144の各磁気センサ素子144aに対応させてマトリクス状に配列してなる平面状の構成である。そして、この磁界形成部142と磁気センサ144とが一体的に構成され、潤滑油循環ラインの途中の微粒子計測領域部146に面してセンサ配置部147に配置されている。
【0078】
なお、磁気センサ144は、例えば磁界によって抵抗値が変化する磁気抵抗(MR)の膜を基板上に成膜してエッチングなどを行うことにより、多数の磁気センサ素子1444aを同基板上にマトリクス状に集積することなどによって、構成することができ、また、磁界形成部142は、例えば導電体の膜を基板上に成膜してエッチングなどを行うことにより、多数のコイル素子142aをマトリクス状に集積することなどによって、構成することができる。
【0079】
コイル電源装置143によって磁界形成部142の各コイル素子142aに交流電流或いは直流電流を流すと、各コイル素子142aは微粒子計測領域部146及びセンサ配置部147(磁気センサ144の各磁気センサ素子144a)に交流又は直流の磁界148を形成する。即ち、微粒子計測領域部146及びセンサ配置部147(磁気センサ144の各磁気センサ素子144a)が、磁界148の中に置かれる。
【0080】
このとき、微粒子計測領域部146に微粒子(軸受の金属摩耗粉)149が存在すると(微粒子計測領域部146の潤滑油中に微粒子149が混入していると)、即ち、矢印Cのように潤滑油とともに微粒子149が微粒子計測領域部146を流れると、この微粒子149によって磁界148が変化する(乱れる)。微粒子149の大きさは例えば数100μm程度である。
【0081】
コイル電源装置143から磁界形成部142の各コイル素子142aへの通電は順次行い、各コイル素子142aが、順次、当該位置において順次磁界148を発生するため、磁界相互の干渉は防止される。なお、この場合、通電の切り換え速度は微粒子149の流速に応じた適宜の高速度とする。また、潤滑油循環ライン(配管)のうちの少なくとも微粒子計測領域部146はテフロン製などの非磁性、非導電性のもので形成されていることが望ましい。
【0082】
そして、磁気センサ144では、微粒子計測領域部146に存在する微粒子149によって生じる磁界148の変化を各磁気センサ素子144aによって検出する。即ち、微粒子149の形状に対応する位置の磁気センサ素子144aでは、微粒子149による当該部分の磁界148の変化に応じて検出値が変化する。
【0083】
磁気センサ144の各磁気センサ素子144aの検出信号は、信号処理装置145に入力される。信号処理装置145では、各磁気センサ素子144aの検出信号を処理することにより(例えば各磁気センサ素子144aの検出信号レベルと閾値とを比較し、検出信号レベルが閾値を超えた磁気センサ素子144aにおいて微粒子149が検知されたと判断するような信号処理をすることにより)、微粒子149の形状を求める。即ち、各磁気センサ素子144aの検出信号の変化から微粒子149の存在領域を推定する。また、信号処理装置145で求められた微粒子149の形状(データ)は、表示・記録装置150において表示され、且つ、記録される。
【0084】
従って、本実施の形態7の微粒子形状計測装置141によれば、微粒子39の詳細な形状、即ち、微粒子39の幅(又は厚み)及び長さを計測を行うことができる。しかも、磁界形成部142の各コイル素子142aにより、磁気センサ144の各磁気センサ素子144aに対して個別に磁界148を形成するため、より精度のよい形状計測が可能であり、装置全体の小型化を図ることもできる。また、光学的な計測手法に比べて計測精度が潤滑油循環ラインの汚損に左右されにくい。また、磁気センサ素子144a及びコイル素子142aの集積度を向上させれば、より詳細(高精度)な微粒子149の形状計測が可能となる。
【0085】
なお、上記実施の形態2〜6の磁気センサ素子54A,54B,74,94,104A,104B,124に対しても、多数のコイル素子を配列してなる磁界形成部を一体的に設けることができる。
【0086】
即ち、図示は省略するが、多数のコイル素子を平面状、円筒状、直線状又は円環状の磁気センサ54A,54B,74,94,104A,104B,124の各磁気センサ素子54a,54b,74a,94a,104a,104b,124aに各々に対応させてマトリクス状又は一列に配列してなる平面状、円筒状、直線状又は円環状の磁界形成部と、前記平面状、円筒状、直線状又は円環状の磁気センサ54A,54B,74,94,104A,104B,124とを一体的に構成し、前記磁界形成部の各コイル素子に順次通電して磁界又は回転磁界を形成するように構成してもよい。
【0087】
また、微粒子が、軸受の摩耗粉などのような金属粉ではなく、例えばセラミックス粉などの非金属粉などであっても、この微粒子と潤滑油などの液体や気体との比誘電率の違いにより、磁界の変化を生じるため、本発明による形状計測が可能である。
【0088】
また、磁界形成手段しては、コイルを用いた電磁石に限らず、用途に応じて永久磁石を用いてもよい。例えば、上記実施の形態1,4ではコイル32,92に代えて永久磁石を用いてもよい。
【0089】
【発明の効果】
以上、実施の形態とともに具体的に説明したように、第1発明の微粒子形状計測装置によれば、微粒子計測領域部及びセンサ配置部に磁界を形成する磁界形成手段と、多数の磁気センサ素子をマトリクス状に配列してなる平面状の構成であって、前記微粒子計測領域部に面して前記センサ配置部に配置され、前記微粒子計測領域部に存在する微粒子によって生じる前記磁界の変化を各磁気センサ素子によって検出する磁気センサと、この磁気センサの各磁気センサ素子の検出信号を処理して前記微粒子の形状を求める信号処理手段とを有することを特徴とするため、微粒子の詳細な形状計測を行うことができる。しかも、光学的な計測手法に比べて計測精度が潤滑油循環ライン等の汚損に左右されにくい。また、磁気センサ素子の集積度を向上させれば、より詳細(高精度)な微粒子の形状計測が可能となる。
【0090】
また、第2発明の微粒子形状計測装置によれば、微粒子計測領域部及びこの微粒子計測領域部の直交方向の一方側に位置する第1のセンサ配置部に第1の磁界を形成する第1の磁界形成手段と、前記微粒子計測領域部及び前記直交方向の他方側に位置する第2のセンサ配置部に第2の磁界を形成する第2磁界形成手段と、多数の第1の磁気センサ素子をマトリクス状に配列してなる平面状の構成であって、前記微粒子計測領域部に面して前記第1のセンサ配置部に配置され、前記微粒子計測領域部に存在する微粒子によって生じる前記第1の磁界の変化を各第1の磁気センサ素子によって検出する第1の磁気センサと、多数の第2の磁気センサ素子をマトリクス状に配列してなる平面状の構成であって、前記微粒子計測領域部に面して前記第2のセンサ配置部に配置され、前記微粒子計測領域部に存在する微粒子によって生じる前記第2の磁界の変化を各第2の磁気センサ素子によって検出する第2の磁気センサと、前記第1の磁気センサ及び第2の磁気センサの各第1及び第2の磁気センサ素子の検出信号を処理して前記微粒子の形状を求める信号処理手段とを有することを特徴とするため、微粒子のより詳細な形状計測が可能となる。しかも、光学的な計測手法に比べて計測精度が潤滑油循環ライン等の汚損に左右されにくい。また、第1及び第2の磁気センサ素子の集積度を向上させれば、より詳細(高精度)な微粒子の形状計測が可能となる。
【0091】
また、第3発明の微粒子形状計測装置によれば、微粒子計測領域部及びセンサ配置部の回りに回転磁界を形成する磁界形成手段と、多数の磁気センサ素子をマトリクス状に配列してなる円筒状の構成であって、前記微粒子計測領域部の周囲を囲むようにして前記センサ配置部に配置され、前記微粒子計測領域部に存在する微粒子によって生じる前記回転磁界の変化を各磁気センサ素子によって検出する磁気センサと、この磁気センサの各磁気センサ素子の検出信号を処理して前記微粒子の形状を求める信号処理手段とを有することを特徴とするため、微粒子の全周にわたる詳細な形状計測を行うことができる。しかも、光学的な計測手法に比べて計測精度が潤滑油循環ライン等の汚損に左右されにくい。また、磁気センサ素子の集積度を向上させれば、より詳細(高精度)な微粒子の形状計測が可能となる。
【0092】
また、第4発明の微粒子形状計測装置は、微粒子計測領域部及びセンサ配置部に磁界を形成する磁界形成手段と、多数の磁気センサ素子を一列に配列してなる直線状の構成であって、前記微粒子計測領域部に面して前記センサ配置部に配置され、前記微粒子計測領域部を流体とともに流れる微粒子によって生じる前記磁界の変化を各磁気センサ素子によって検出する磁気センサと、前記微粒子の流速に基づき、前記磁気センサの各磁気センサ素子の検出信号を処理して前記微粒子の形状を求める信号処理手段とを有することを特徴とするため、微粒子の詳細な形状計測を行うことができる。つまり、平面状(マトリクス状)ではなく直線状(一列)の磁気センサであっても、微粒子の流速がわかれば、平面状の磁気センサと同程度の詳細な形状測定が可能である。しかも、光学的な計測手法に比べて計測精度が潤滑油循環ライン等の汚損に左右されにくい。また、磁気センサ素子の集積度を向上させれば、より詳細(高精度)な微粒子の形状計測が可能となる。
【0093】
また、第5発明の微粒子形状計測装置は、微粒子計測領域部及びこの微粒子計測領域部の直交方向の一方側に位置する第1のセンサ配置部に第1の磁界を形成する第1の磁界形成手段と、前記微粒子計測領域部及び前記直交方向の他方側に位置する第2のセンサ配置部に第2の磁界を形成する第2磁界形成手段と、多数の第1の磁気センサ素子を一列に配列してなる直線状の構成であって、前記微粒子計測領域部に面して前記第1のセンサ配置部に配置され、前記微粒子計測領域部を流体とともに流れる微粒子によって生じる前記第1の磁界の変化を各第1の磁気センサ素子によって検出する第1の磁気センサと、多数の第2の磁気センサ素子を一列に配列してなる直線状の構成であって、前記微粒子計測領域部に面して前記第2のセンサ配置部に配置され、前記微粒子によって生じる前記第2の磁界の変化を各第2の磁気センサ素子によって検出する第2の磁気センサと、前記微粒子の流速に基づき、前記第1の磁気センサ及び第2の磁気センサの各第1及び第2の磁気センサ素子の検出信号を処理して前記微粒子の形状を求める信号処理手段とを有することを特徴とするため、微粒子のより詳細な形状計測が可能となる。つまり、平面状(マトリクス状)ではなく直線状(一列)の第1及び第2の磁気センサであっても、微粒子の流速がわかれば、平面状の磁気センサと同程度の詳細な形状測定が可能である。しかも、光学的な計測手法に比べて計測精度が潤滑油循環ライン等の汚損に左右されにくい。また、第1及び第2の磁気センサ素子の集積度を向上させれば、より詳細(高精度)な微粒子の形状計測が可能となる。
【0094】
また、第6発明の微粒子形状計測装置は、微粒子計測領域部及びセンサ配置部の回りに回転磁界を形成する磁界形成手段と、多数の磁気センサ素子を一列に配列してなる円環状の構成であって、前記微粒子計測領域部の周囲を囲むようにして前記センサ配置部に配置され、前記微粒子計測領域部を流体とともに流れる微粒子によって生じる前記回転磁界の変化を各磁気センサ素子によって検出する磁気センサと、前記微粒子の流速に基づき、前記磁気センサの各磁気センサ素子の検出信号を処理して前記微粒子の形状を求める信号処理手段とを有することを特徴とするため、微粒子のの全周にわたる詳細な形状計測を行うことができる。つまり、円筒状(マトリクス状)ではなく円環状(一列)の磁気センサであっても、微粒子の流速がわかれば、円筒状の磁気センサと同程度の詳細な形状測定が可能である。しかも、光学的な計測手法に比べて計測精度が潤滑油循環ライン等の汚損に左右されにくい。また、磁気センサ素子の集積度を向上させれば、より詳細(高精度)な微粒子の形状計測が可能となる。
【0095】
また、第7発明の微粒子形状計測装置は、第1〜第6発明の何れかの微粒子形状計測装置において、前記磁界形成手段は多数のコイル素子を前記平面状、円筒状、直線状又は円環状の磁気センサの各磁気センサ素子に各々に対応させてマトリクス状又は一列に配列してなる平面状、円筒状、直線状又は円環状の磁界形成部であり、この磁界形成部と、前記平面状、円筒状、直線状又は円環状の磁気センサとを一体的に構成し、前記磁界形成部の各コイル素子に順次通電して前記磁界又は回転磁界を形成するように構成したことを特徴とするため、微粒子の詳細な形状計測を行うことができる。しかも、磁界形成部の各コイル素子により、磁気センサの各磁気センサ素子に対して個別に磁界を形成するため、より精度のよい形状計測が可能であり、装置全体の小型化を図ることもできる。また、光学的な計測手法に比べて計測精度が潤滑油循環ライン等の汚損に左右されにくい。また、磁気センサ素子及びコイル素子の集積度を向上させれば、より詳細(高精度)な微粒子の形状計測が可能となる。
【図面の簡単な説明】
【図1】本発明の実施の形態1に係る微粒子形状計測装置を備えた潤滑油循環ラインの構成図である。
【図2】本発明の実施の形態1に係る微粒子形状計測装置の構成図である。
【図3】本発明の実施の形態2に係る微粒子形状計測装置の構成図である。
【図4】本発明の実施の形態3に係る微粒子形状計測装置の構成図である。
【図5】本発明の実施の形態4に係る微粒子形状計測装置の構成図である。
【図6】本発明の実施の形態5に係る微粒子形状計測装置の構成図である。
【図7】本発明の実施の形態6に係る微粒子形状計測装置の構成図である。
【図8】本発明の実施の形態7に係る微粒子形状計測装置の構成図である。
【図9】従来の微粒子形状計測装置の構成図である。
【図10】従来の他の微粒子形状計測装置の構成図である。
【符号の説明】
21 エアヒータ
22 駆動装置
23 ロータ
24 回転軸
25 下部主軸受
26 ハウジング
27 上部主軸受
28 潤滑油循環ライン
29 ポンプ
30 潤滑油
31 微粒子形状計測装置
32 コイル
33 コイル電源装置
34 磁気センサ
34a 磁気センサ素子
35 信号処理装置
36 微粒子計測領域部
37 センサ配置部
38 磁界
39 微粒子
40 表示・記録装置
51 微粒子形状計測装置
52A 第1のコイル
52B 第2のコイル
53 コイル電源装置
54A 第1の磁気センサ
54B 第2の磁気センサ
54a 第1の磁気センサ素子
54b 第2の磁気センサ素子
55 信号処理装置
56 微粒子計測領域部
57A 第1のセンサ配置部
57B 第2のセンサ配置部
58A 第1の磁界
58B 第2の磁界
59 微粒子
60 表示・記録装置
71 微粒子形状計測装置
72 コイル
73 コイル電源装置
74 磁気センサ
74a 磁気センサ素子
75 信号処理装置
76 微粒子計測領域部
77 センサ配置部
78 回転磁界
79 微粒子
80 表示・記録装置
91 微粒子形状計測装置
92 コイル
93 コイル電源装置
94 磁気センサ
94a 磁気センサ素子
95 信号処理装置
96 微粒子計測領域部
97 センサ配置部
98 磁界
99 微粒子
100 表示・記録装置
101 微粒子形状計測装置
102A 第1のコイル
102B 第2のコイル
103 コイル電源装置
104A 第1の磁気センサ
104B 第2の磁気センサ
104a 第1の磁気センサ素子
104b 第2の磁気センサ素子
105 信号処理装置
106 微粒子計測領域部
107A 第1のセンサ配置部
107B 第2のセンサ配置部
108A 第1の磁界
108B 第2の磁界
109 微粒子
110 表示・記録装置
121 微粒子形状計測装置
122 コイル
123 コイル電源装置
124 磁気センサ
124a 磁気センサ素子
125 信号処理装置
126 微粒子計測領域部
127 センサ配置部
128 回転磁界
129 微粒子
130 表示・記録装置
141 微粒子形状計測装置
142 磁界形成部
142a コイル素子
143  コイル電源装置
144 磁気センサ
144a 磁気センサ素子
145 信号処理装置
146 微粒子計測領域部
147 センサ配置部
148 磁界
149 微粒子
150 表示・記録装置
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a fine particle shape measuring device, which is useful when applied to a case of measuring the shape of fine particles such as metal abrasion powder mixed in bearing lubricating oil, and is provided, for example, in a lubricating oil management system and a maintenance system. The present invention can be applied to a fine particle shape measuring device and the like.
[0002]
[Prior art]
For example, in a thermal power plant, a configuration in which a rotating shaft is rotatably supported by a bearing, such as an air heater (see FIG. 1) used to preheat air supplied to a boiler with residual heat generated in the power plant to increase thermal efficiency. Many of these devices are provided, and in these devices, during operation, fine particles such as metal abrasion powder of the bearing may be mixed into the lubricating oil of the bearing to cause problems such as seizure of the bearing. For this reason, an important device such as an air heater is equipped with a lubricating oil management system that manages the state of the lubricating oil by measuring fine particles mixed in the circulating lubricating oil.
[0003]
Conventionally, as a device for measuring fine particles in a fluid such as lubricating oil, a device that detects a change in a magnetic field due to the fine particles is known (for example, see Patent Document 1).
[0004]
[Patent Document 1]
JP-A-2000-171382
[0005]
FIG. 9 shows an outline of the measurement technique disclosed in Patent Document 1. As shown in FIG. 9 (a), an alternating magnetic field is generated by the field coils 1a and 1b, and lubrication is applied to the forward path (inclined portion) 3a and the return path (non-inclined portion) 3b of the Teflon (trade name) tube 3 in this coil. By flowing the fine particles 2 together with the oil, the posture of the fine particles 2 with respect to the magnetic field is changed as shown in FIGS. 9B and 9C. Then, the change in the magnetic field caused by the fine particles 2 is detected as an electromotive force by the sensing coil 4 as shown in FIG. As a result, electromotive forces A and B as shown in FIG. 9D are obtained. From the ratio of the electromotive forces A and B, the aspect ratio of the fine particles 2 as shown in FIG. Ratio of the short axis diameter), that is, the length (degree of circularity) can be obtained.
[0006]
FIG. 10 shows an outline of another conventional measurement technique. As shown in FIG. 10A, a magnetic field 14 is formed by a coil 11 in the middle of a pipe 12 through which the lubricating oil flows (particulate measurement area) and at the position where the magnetic sensor 13 is disposed. A change in the magnetic field 14 caused by the flowing fine particles 15 is detected by the magnetic sensor 13. As a result, a detection signal of the magnetic sensor 13 as shown in FIG. 10B is obtained, and the length of the fine particles 15 is detected based on this detection signal and the known flow rate of the lubricating oil (fine particles 15). be able to.
[0007]
In addition to the above-described method of detecting a change in magnetic field due to fine particles, a change in electrical resistance when fine particles pass through a small-diameter inspection region is detected, and a signal at the time of passing the fine particles is used as a trigger to optically detect the change. There are Beckman Coulter, which measures the shape of fine particles, and Spectro, which measures the shape of fine particles using an optical sensor.
[0008]
[Problems to be solved by the invention]
However, although the above-described conventional shape measuring device can detect the size of the fine particles, it cannot perform detailed shape measurement of the fine particles. In addition, Beckman Coulter's and Spectro's are considered to be inferior in applicability because they are optical measurements and are susceptible to contamination of a lubricating oil line to be measured when applied to an actual machine.
[0009]
Accordingly, it is an object of the present invention to provide a fine particle shape measuring apparatus capable of detecting a change in a magnetic field due to fine particles and reliably performing detailed shape measurement of the fine particles.
[0010]
[Means for Solving the Problems]
A fine particle shape measuring apparatus according to a first aspect of the present invention that solves the above-mentioned problems includes:
A planar configuration in which a large number of magnetic sensor elements are arranged in a matrix, wherein the magnetic sensor elements are arranged in the sensor arrangement portion facing the fine particle measurement region portion, and are generated by the fine particles present in the fine particle measurement region portion. A magnetic sensor that detects a change in a magnetic field with each magnetic sensor element;
Signal processing means for processing the detection signal of each magnetic sensor element of the magnetic sensor to determine the shape of the fine particles.
[0011]
Further, the fine particle shape measuring apparatus according to the second aspect of the present invention provides a first magnetic field forming device for forming a first magnetic field in a fine particle measuring region and a first sensor disposing portion located on one side in a direction orthogonal to the fine particle measuring region. Means,
Second magnetic field forming means for forming a second magnetic field in the fine particle measurement region and a second sensor arrangement portion located on the other side in the orthogonal direction;
A planar configuration in which a large number of first magnetic sensor elements are arranged in a matrix, the first magnetic sensor elements being arranged in the first sensor arrangement portion facing the fine particle measurement region portion, and being disposed in the fine particle measurement region portion. A first magnetic sensor for detecting a change in the first magnetic field caused by the existing fine particles by each first magnetic sensor element;
A planar configuration in which a large number of second magnetic sensor elements are arranged in a matrix, and are arranged in the second sensor disposition section so as to face the fine particle measurement area section, and are provided in the fine particle measurement area section. A second magnetic sensor for detecting a change in the second magnetic field caused by the existing fine particles by each second magnetic sensor element;
Signal processing means for processing detection signals of the first and second magnetic sensor elements of the first magnetic sensor and the second magnetic sensor to obtain the shape of the fine particles.
[0012]
Also, the fine particle shape measuring device of the third invention is a magnetic field forming means for forming a rotating magnetic field around the fine particle measuring region and the sensor arrangement portion,
A cylindrical configuration in which a large number of magnetic sensor elements are arranged in a matrix. A magnetic sensor for detecting a change in the rotating magnetic field by each magnetic sensor element;
Signal processing means for processing the detection signal of each magnetic sensor element of the magnetic sensor to determine the shape of the fine particles.
[0013]
In addition, the fine particle shape measuring device according to a fourth aspect of the present invention includes: a magnetic field forming unit that forms a magnetic field in the fine particle measurement area and the sensor placement unit;
A linear configuration in which a number of magnetic sensor elements are arranged in a line, and the magnetic sensor elements are arranged in the sensor disposition portion facing the fine particle measurement region portion, and are generated by the fine particles flowing together with the fluid in the fine particle measurement region portion. A magnetic sensor for detecting a change in the magnetic field by each magnetic sensor element,
Signal processing means for processing a detection signal of each magnetic sensor element of the magnetic sensor based on the flow velocity of the fine particles to obtain a shape of the fine particles.
[0014]
Further, the particle shape measuring apparatus according to a fifth aspect of the present invention provides a first magnetic field forming device that forms a first magnetic field in a particle measuring region and a first sensor disposing portion located on one side in a direction orthogonal to the particle measuring region. Means,
Second magnetic field forming means for forming a second magnetic field in the fine particle measurement region and a second sensor arrangement portion located on the other side in the orthogonal direction;
A linear configuration in which a number of first magnetic sensor elements are arranged in a line, the first magnetic sensor elements being arranged in the first sensor disposing portion facing the fine particle measurement region portion, and the fine particle measurement region portion being fluidized A first magnetic sensor for detecting, by each first magnetic sensor element, a change in the first magnetic field caused by fine particles flowing therewith;
A linear configuration in which a number of second magnetic sensor elements are arranged in a line, the second magnetic sensor elements being arranged in the second sensor arrangement portion facing the fine particle measurement region portion, wherein the second magnetic field generated by the fine particles is A second magnetic sensor for detecting a change in the magnetic field of each of the second magnetic sensor element,
Signal processing means for processing a detection signal of each of the first and second magnetic sensor elements of the first magnetic sensor and the second magnetic sensor based on the flow velocity of the fine particles to determine the shape of the fine particles. It is characterized by.
[0015]
Further, the fine particle shape measuring apparatus according to a sixth aspect of the present invention includes: a magnetic field forming unit that forms a rotating magnetic field around the fine particle measurement area and the sensor arrangement unit;
An annular configuration in which a number of magnetic sensor elements are arranged in a line. The magnetic sensor elements are arranged in the sensor placement section so as to surround the periphery of the particle measurement area, and are generated by particles flowing along with the fluid in the particle measurement area. A magnetic sensor for detecting a change in the rotating magnetic field by each magnetic sensor element;
Signal processing means for processing a detection signal of each magnetic sensor element of the magnetic sensor based on the flow velocity of the fine particles to obtain a shape of the fine particles.
[0016]
Further, the fine particle shape measuring device of the seventh invention is the fine particle shape measuring device of any of the first to sixth inventions,
The magnetic field forming means includes a plurality of coil elements arranged in a matrix or a line arranged in a matrix or in a row corresponding to the respective magnetic sensor elements of the planar, cylindrical, linear or annular magnetic sensors. A linear or annular magnetic field forming portion, and the magnetic field forming portion and the planar, cylindrical, linear or annular magnetic sensor are integrally configured,
It is characterized in that each coil element of the magnetic field forming section is sequentially energized to form the magnetic field or the rotating magnetic field.
[0017]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[0018]
<Embodiment 1>
FIG. 1 is a configuration diagram of a lubricating oil circulation line provided with a particle shape measuring device according to Embodiment 1 of the present invention, and FIG. 2 is a configuration diagram of a particle shape measuring device according to Embodiment 1 of the present invention.
[0019]
FIG. 1 shows, as an example, a schematic configuration in a case where the particle shape measuring device of the first embodiment is provided in a lubricating oil circulation line of an air heater of a thermal power plant. As shown in FIG. 1, the air heater 21 is configured to rotate a rotor 23 by a driving device 22, thereby rotating a rotation shaft 24 rotatably supported by a lower main bearing 25. In FIG. 1, 26 is a housing, and 27 is an upper main bearing.
[0020]
The lower main bearing 25 is immersed in a lubricating oil 30 as schematically shown by dots. The fine particles (metal wear powder of the lower main bearing 25) mixed in the oil 30 are measured by a fine particle shape measuring device 31 provided in the middle of the lubricating oil circulation line 28.
[0021]
As shown in FIG. 2, the fine particle shape measuring device 31 of the first embodiment includes a coil 32 and a coil power supply device 33 as a magnetic field forming means, a magnetic sensor 34, a signal processing device 35 as a signal processing means, and the like. I have.
[0022]
The coil 32 is disposed so as to face one side of the fine particle measurement area 36 in the middle of the lubricating oil circulation line 28, and the magnetic sensor 34 is arranged so as to face the coil 32 with the fine particle measurement area 36 interposed therebetween. The sensor 36 is arranged on the sensor arrangement part 37 so as to face the other side of the part 36. Therefore, when an alternating current or a direct current is caused to flow through the coil 32 by the coil power supply device 33, the coil 32 forms an alternating or direct magnetic field 38 in the fine particle measurement area portion 36 and the sensor arrangement portion 37 (magnetic sensor 34). That is, the fine particle measurement area 36 and the sensor placement section 37 (magnetic sensor 34) are placed in the magnetic field 38. At this time, if the fine particles (metal abrasion powder of the lower main bearing 25) 39 exist in the fine particle measurement region 36 (the fine particles 39 are mixed in the lubricating oil 30 in the fine particle measurement region 36), that is, the arrow C When the fine particles 39 flow through the fine particle measurement region 36 together with the lubricating oil 30, the magnetic field 38 is changed (disturbed) by the fine particles 39. The size of the fine particles 39 is, for example, about several 100 μm.
[0023]
The position of the coil 32 is not limited to the illustrated position, but may be behind the magnetic sensor 34 or the like. Further, it is desirable that at least the particle measurement area 36 of the lubricating oil circulation line (pipe) 28 is formed of a non-magnetic or non-conductive material such as Teflon.
[0024]
The magnetic sensor 34 has a planar configuration in which a large number of magnetic sensor elements 34a such as a magnetoresistive (MR) element, a large-scale magnetoresistive (GMR) element, and a magnetic inductance (MI) element are arranged in a matrix. The change of the magnetic field 38 caused by the fine particles 39 present in the measurement area 36 is detected by each magnetic sensor element 34a. That is, the hatched magnetic sensor element 34a in FIG. 2 is a sensor at a position corresponding to the shape of the fine particles 39, and these magnetic sensor elements 34a detect in accordance with the change in the magnetic field 38 of the corresponding portion due to the fine particles 39. The value changes. Note that such a planar (matrix) magnetic sensor 34 has a large number of magnetic sensors by, for example, forming a film of a magnetic resistance (MR) whose resistance value changes by a magnetic field on a substrate and performing etching or the like. It can be configured by integrating the elements 34a in a matrix on the same substrate.
[0025]
The detection signal of each magnetic sensor element 34 a of the magnetic sensor 34 is input to the signal processing device 35. In the signal processing device 35, by processing the detection signal of each magnetic sensor element 34a, for example, the detection signal level of each magnetic sensor element 34a is compared with a threshold, and in the magnetic sensor element 34a whose detection signal level exceeds the threshold, By performing signal processing for determining that the fine particles 39 have been detected, the shape of the fine particles 39 as shown by hatching in FIG. 2 is obtained. That is, the existence area of the fine particles 39 is estimated from the change in the detection signal of each magnetic sensor element 34a. The shape (data) of the fine particles 39 obtained by the signal processing device 35 is displayed and recorded by the display / recording device 40.
[0026]
Therefore, according to the fine particle shape measuring device 31 of the first embodiment, the detailed shape of the fine particles 39, that is, the width (or thickness) and length of the fine particles 39 can be measured. In addition, the measurement accuracy is less affected by the contamination of the lubricating oil circulation line 28 as compared with the optical measurement method. Further, if the degree of integration of the magnetic sensor element 34a is improved, more detailed (high accuracy) shape measurement of the fine particles 39 can be performed.
[0027]
<Embodiment 2>
FIG. 3 is a configuration diagram of a particle shape measuring apparatus according to Embodiment 2 of the present invention. Note that the configuration of the lubricating oil circulation line is the same as that of the first embodiment (see FIG. 1), and thus description and illustration thereof are omitted here.
[0028]
As shown in FIG. 3, the fine particle shape measuring device 51 of the second embodiment includes first and second coils 52A and 52B and a coil power supply device 53 as first and second magnetic field forming means, and first and second magnetic field forming devices. It has two magnetic sensors 54A and 54B, a signal processing device 55 as signal processing means, and the like.
[0029]
The first coil 52A is arranged on one side in the orthogonal direction of the fine particle measurement area 56 in the middle of the lubricating oil circulation line, and the second coil 52B is arranged on the other side in the orthogonal direction. I have. The magnetic sensor 34A is disposed on the first sensor arrangement portion 57A located on one side in the other orthogonal direction of the fine particle measurement region 56 so as to face the fine particle measurement region 56, and sandwiches the fine particle measurement region 56 therebetween. The magnetic sensor 34B is opposed to the first coil 52A, and the magnetic sensor 34B is disposed on the second sensor arrangement portion 57B located on the other side in the other orthogonal direction so as to face the particle measurement region portion 56. The second coil 52B faces the second coil 52B with 56 interposed therebetween.
[0030]
Accordingly, when an alternating current or a direct current is applied to the first coil 52A by the coil power supply device 53, the first coil 52A is applied to the fine particle measurement area 56 and the first sensor arrangement section 57A (the first magnetic sensor 54A). When an AC or DC first magnetic field 58A is formed, and an AC current or a DC current is applied to the second coil 52B by the coil power supply device 53, the second coil 52B is moved to the fine particle measurement area 56 and the second coil 52B. An AC or DC second magnetic field 58B is formed in the sensor arrangement section 57B (second magnetic sensor 54B). That is, the particle measurement area 56 and the first sensor arrangement 57A (first magnetic sensor 54A) are placed in the first magnetic field 58A, and the particle measurement area 56 and the second sensor arrangement 57B ( A second magnetic sensor 54B) is placed in the first magnetic field 58B.
[0031]
However, the first magnetic field 58A and the second magnetic field 58B alternately switch energization from the coil power supply device 53 to the first and second coils 52A and 52B in order to avoid interference between the magnetic fields 58A and 58B. Are formed alternately. In this case, the switching speed of the energization is set to an appropriate high speed according to the flow rate of the fine particles 59.
[0032]
Then, at this time, if the fine particles (metal wear powder of the bearing) 59 exist in the fine particle measurement region 56 (the fine particles 59 are mixed in the lubricating oil in the fine particle measurement region 56), that is, as shown by the arrow C When the fine particles 59 flow through the fine particle measurement area 56 together with the lubricating oil, the first magnetic field 58A and the second magnetic field 58B are changed (disturbed) by the fine particles 59. The size of the fine particles 59 is, for example, about several 100 μm.
[0033]
Note that the positions of the first and second coils 52A and 52B are not limited to the illustrated positions, but may be behind the first and second magnetic sensors 54A and 54B. Further, it is desirable that at least the particle measurement area 56 of the lubricating oil circulation line (pipe) is formed of a non-magnetic or non-conductive material such as Teflon.
[0034]
The first magnetic sensor 54A has a planar shape in which a large number of first magnetic sensor elements 54a such as a magnetoresistive (MR) element, a large-scale magnetoresistive (GMR) element, or a magnetic inductance (MI) element are arranged in a matrix. The first magnetic sensor element 54a detects a change in the first magnetic field 58A caused by the fine particles 59 existing in the fine particle measurement area 56. That is, the hatched first magnetic sensor element 54 a in FIG. 3 is a sensor at a position corresponding to the shape of the fine particles 59, and the first magnetic sensor element 54 a of these 51 magnetic sensor elements 54 a The detected value changes according to the change in the magnetic field 58A.
[0035]
The second magnetic sensor 54B has a planar shape in which a large number of second magnetic sensor elements 54b such as a magnetoresistive (MR) element, a large-scale magnetoresistive (GMR) element, or a magnetic inductance (MI) element are arranged in a matrix. The change of the second magnetic field 58B caused by the fine particles 59 present in the fine particle measurement area 56 is detected by each of the second magnetic sensor elements 54b. That is, the hatched second magnetic sensor element 54b in FIG. 3 is a sensor at a position corresponding to the shape of the fine particles 59. In these second magnetic sensor elements 54b, the second magnetic sensor element 54b The detected value changes in accordance with the change in the magnetic field 58B.
[0036]
The first and second planar (matrix) magnetic sensors 54A and 54B have a magnetoresistive (MR) film whose resistance value changes by a magnetic field, formed on a substrate, and perform etching or the like. Thus, a large number of first and second magnetic sensor elements 54a and 54b can be integrated in a matrix on the same substrate.
[0037]
The detection signals of the first and second magnetic sensor elements 54a and 54b of the first and second magnetic sensors 54A and 54B are input to the signal processing device 55. The signal processing device 55 processes the detection signals of the first and second magnetic sensor elements 54a and 54b, for example, to determine the detection signal level and the threshold value of the first and second magnetic sensor elements 54a and 54b. By performing signal processing such that it is determined that the fine particles 59 have been detected in the first and second magnetic sensor elements 54a and 54b whose detection signal levels have exceeded the threshold value, as indicated by hatching in FIG. The shapes of the fine particles 59 in two orthogonal directions are obtained. That is, the existence area of the fine particles 59 is estimated from the change in the detection signals of the first and second magnetic sensor elements 54a and 54b. The shape (data) of the fine particles 59 obtained by the signal processing device 55 is displayed and recorded on the display / recording device 50.
[0038]
Therefore, according to the fine particle shape measuring apparatus 51 of the second embodiment, it is possible to simultaneously measure the more detailed shape of the fine particles 59, that is, the width, length, and thickness of the fine particles 59. Moreover, the measurement accuracy is less affected by the contamination of the lubricating oil circulation line as compared with the optical measurement method. Further, if the degree of integration of the first and second magnetic sensor elements 64a and 64b is improved, more detailed (high accuracy) shape measurement of the fine particles 59 can be performed.
[0039]
<Embodiment 3>
FIG. 4 is a configuration diagram of a particle shape measuring apparatus according to Embodiment 3 of the present invention. Note that the configuration of the lubricating oil circulation line is the same as that of the first embodiment (see FIG. 1), and thus description and illustration thereof are omitted here.
[0040]
As shown in FIG. 4, the fine particle shape measuring apparatus 71 according to the third embodiment includes a coil 72 and a coil power supply 73 as a magnetic field forming unit, a magnetic sensor 74, a signal processing unit 75 as a signal processing unit, and the like. I have.
[0041]
The magnetic sensor 74 has a cylindrical configuration in which magnetic sensor elements 74a such as a magnetoresistive (MR) element, a large-scale magnetoresistive (GMR) element, and a magnetic inductance (MI) element are arranged in a matrix. A rotating magnetic field 78 (details will be described later) that is arranged in the sensor disposition portion 77 so as to surround the periphery of the particle measurement region portion 76 in the middle of the circulation line and is generated by the particles 79 having a size of, for example, about several hundred μm existing in the particle measurement region portion 76. However, the change of the magnetic field forming means) is detected by each magnetic sensor element 74a. That is, in the magnetic sensor element 74 a at a position corresponding to the shape of the fine particles 79, the detection value changes in accordance with a change in the rotating magnetic field 78 of the portion due to the fine particles 79. Note that such a cylindrical (matrix) magnetic sensor 74 has a large number of magnetic sensors formed by, for example, forming a magnetoresistive (MR) film whose resistance value changes with a magnetic field on a substrate and performing etching or the like. The sensor elements 34a can be configured by integrating them in a matrix on the same substrate and molding them into a cylindrical shape.
[0042]
The coil 72 faces the particle measurement area 76 and is arranged on the outer peripheral surface side of the cylindrical magnetic sensor 74. Then, the coil 72 is adapted to move around the particle measuring area 76 and the sensor arrangement section 77 (magnetic sensor 74) as shown by an arrow D by an appropriate rotation driving means such as a motor (not shown). Therefore, when an alternating current or a direct current is supplied to the coil 72 by the coil power supply device 73 and the coil 72 is rotated by the rotation driving means, the alternating current or the direct current is applied to the particle measurement region 76 and the sensor arrangement portion 77 (magnetic sensor 74). A rotating DC magnetic field 78 is formed. That is, the particle measurement area 76 and the sensor arrangement section 77 (magnetic sensor 74) are placed in the rotating magnetic field 78.
[0043]
At this time, if the fine particles (metal wear powder of the bearing) 79 exist in the fine particle measurement area 76 (the fine particles 79 are mixed in the lubricating oil in the fine particle measurement area 76), When the fine particles 79 flow along with the oil in the fine particle measurement area 76, the rotating magnetic field 78 is changed (disturbed) by the fine particles 79. The reason why the magnetic field is not formed around the magnetic sensor 74 at the same time and the rotating magnetic field 78 is used is to prevent interference between the magnetic fields.
[0044]
The magnetic field forming means for forming the rotating magnetic field 78 is not limited to the above-described one. For example, a cylinder surrounding the magnetic sensor 74 by arranging a large number of coils 72 continuously in the circumferential direction of the magnetic sensor 74. A rotating magnetic field 78 may be formed by forming a coil group having a shape of a circle, and sequentially switching the energization from the coil power supply 73 to each coil 72 of the coil group. Note that the rotation speed of the rotating magnetic field 78 (the switching speed of energization or the coil rotation speed) is set to an appropriate high speed in accordance with the flow velocity of the fine particles 79. Further, it is desirable that at least the particle measurement area portion 76 of the lubricating oil circulation line (pipe) is formed of a non-magnetic or non-conductive material such as Teflon.
[0045]
The detection signal of each magnetic sensor element 74 a of the magnetic sensor 74 is input to the signal processing device 75. The signal processing device 75 processes the detection signal of each of the magnetic sensor elements 74a, for example, compares the detection signal level of each of the magnetic sensor elements 74a with a threshold, and in the magnetic sensor element 74a in which the detection signal level exceeds the threshold, By performing signal processing for determining that the fine particles 79 have been detected, the shape of the fine particles 79 is determined. That is, the existence area of the fine particles 79 is estimated from the change in the detection signal of each magnetic sensor element 74a. The shape (data) of the fine particles 79 obtained by the signal processing device 75 is displayed and recorded on the display / recording device 80.
[0046]
Therefore, according to the fine particle shape measuring apparatus 71 of the third embodiment, a more detailed shape of the fine particle 79, that is, a shape measurement over the entire circumference of the fine particle 79 can be measured. Moreover, the measurement accuracy is less affected by the contamination of the lubricating oil circulation line as compared with the optical measurement method. If the degree of integration of the magnetic sensor element 74a is improved, more detailed (high accuracy) shape measurement of the fine particles 79 can be performed.
[0047]
<Embodiment 4>
FIG. 5 is a configuration diagram of a particle shape measuring apparatus according to Embodiment 4 of the present invention. Note that the configuration of the lubricating oil circulation line is the same as that of the first embodiment (see FIG. 1), and thus description and illustration thereof are omitted here.
[0048]
As shown in FIG. 5, the fine particle shape measuring apparatus 91 of the fourth embodiment includes a coil 92 and a coil power supply 93 as a magnetic field forming unit, a magnetic sensor 94, a signal processing unit 95 as a signal processing unit, and the like. I have.
[0049]
The coil 92 faces the particle measurement area 96 in the middle of the lubricating oil circulation line and is disposed behind the magnetic sensor 94. The magnetic sensor 94 is arranged in the sensor arrangement section 97 between the coil 32 and the particle measurement area 96 so as to face the particle measurement area 96. Therefore, when an alternating current or a direct current is caused to flow through the coil 92 by the coil power supply 93, the coil 92 forms an alternating or direct magnetic field 98 in the particle measurement area 96 and the sensor arrangement section 97 (magnetic sensor 94). That is, the particle measurement area 96 and the sensor arrangement section 97 (the magnetic sensor 94) are placed in the magnetic field 98. At this time, if the fine particles (metal wear powder of the bearing) 99 exist in the fine particle measurement area 96 (the fine particles 99 are mixed in the lubricating oil of the fine particle measurement area 96), When the fine particles 99 flow through the fine particle measurement area 96 together with the oil, the magnetic field 98 is changed (disturbed) by the fine particles 99. The size of the fine particles 39 is, for example, about several 100 μm.
[0050]
The position of the coil 92 is not limited to the illustrated position, but may be a position facing the magnetic sensor 34 with the fine particle measurement area 96 interposed therebetween. In addition, it is desirable that at least the particle measuring area 96 of the lubricating oil circulation line (pipe) is formed of a non-magnetic or non-conductive material such as Teflon.
[0051]
The magnetic sensor 94 has a linear configuration in which many magnetic sensor elements 94a such as a magnetoresistive (MR) element, a large-scale magnetoresistive (GMR) element, and a magnetic inductance (MI) element are arranged in a line. The direction (arrangement direction) is arranged so as to be orthogonal to the flow direction (arrow C direction) of the fine particles 99, and each magnetic sensor element 94 a detects a change in a magnetic field 98 caused by the fine particles 99 existing in the fine particle measurement area 96. I do. That is, in the magnetic sensor element 94 a at a position corresponding to the shape of the fine particles 99, the detection value changes in accordance with a change in the magnetic field 98 in the portion due to the fine particles 99. It should be noted that such a linear magnetic sensor 94 has a large number of magnetic sensor elements 94a formed by forming, for example, a magnetoresistive (MR) film having a resistance value changed by a magnetic field on a substrate and performing etching or the like. They can be formed by integrating them in a matrix on the same substrate, and cutting out one row of them.
[0052]
The detection signal of each magnetic sensor element 94 a of the magnetic sensor 94 is input to the signal processing device 95. The signal processing device 95 processes the detection signal of each magnetic sensor element 94a based on the known flow rate of the fine particles 99 (the flow rate of the lubricating oil) or the flow rate of the fine particles 99 measured by the flow rate sensor (the flow rate of the lubricating oil). Thereby, for example, by comparing the detection signal level of each magnetic sensor element 94a with a threshold value, and performing signal processing to determine that the fine particles 99 have been detected in the magnetic sensor element 94a whose detection signal level has exceeded the threshold value, The shape of the fine particles 99 is determined. That is, the existence area of the fine particles 99 is estimated from the change in the detection signal of each magnetic sensor element 94a. The shape (data) of the fine particles 99 obtained by the signal processing device 95 is displayed and recorded by the display / recording device 100.
[0053]
Therefore, according to the fine particle shape measuring device 91 of the fourth embodiment, the detailed shape of the fine particles 99, that is, the width (or thickness) and length of the fine particles 99 can be measured. In other words, even if the magnetic sensor 94 is not linear (matrix) but linear (one line), if the flow rate of the fine particles 99 is known, it is possible to measure the shape as detailed as a planar magnetic sensor. Moreover, the measurement accuracy is less affected by the contamination of the lubricating oil circulation line as compared with the optical measurement method. In addition, if the degree of integration of the magnetic sensor element 94a is improved, more detailed (high accuracy) shape measurement of the fine particles 99 can be performed.
[0054]
<Embodiment 5>
FIG. 6 is a configuration diagram of a particle shape measuring apparatus according to Embodiment 5 of the present invention. Note that the configuration of the lubricating oil circulation line is the same as that of the first embodiment (see FIG. 1), and thus description and illustration thereof are omitted here.
[0055]
As shown in FIG. 6, a fine particle shape measuring apparatus 101 according to the fifth embodiment includes first and second coils 102A and 102B and a coil power supply device 103 as first and second magnetic field forming means, and first and second magnetic fields. It has two magnetic sensors 104A and 104B, a signal processing device 105 as signal processing means, and the like.
[0056]
The first coil 102A faces one side in the orthogonal direction of the particle measurement area 106 in the middle of the lubricating oil circulation line, and is arranged behind the first magnetic sensor 104A. The second coil 102B faces the other side in the orthogonal direction and is disposed behind the second magnetic sensor 104B. The magnetic sensor 104A is disposed on the first sensor disposition portion 107A located on one side in the other orthogonal direction of the fine particle measurement region 106 so as to face the fine particle measurement region 106, and the first coil 102A and the fine particle measurement region 106. The magnetic sensor 104B is disposed on the second sensor disposition portion 107B located on the other side in the other orthogonal direction, facing the particle measurement region portion 106, and between the second coil 102B and the particle measurement region portion 106. positioned.
[0057]
Therefore, when an alternating current or a direct current is applied to the first coil 102A by the coil power supply device 103, the first coil 102A is applied to the fine particle measurement area 106 and the first sensor placement section 107A (the first magnetic sensor 104A). When an AC or DC first magnetic field 108A is formed and an AC or DC current is applied to the second coil 102B by the coil power supply device 103, the second coil 102B is moved to the fine particle measurement area 106 and the second coil 102B. An AC or DC second magnetic field 108B is formed in the sensor arrangement section 107B (second magnetic sensor 104B). That is, the particle measurement region 106 and the first sensor placement portion 107A (the first magnetic sensor 104A) are placed in the first magnetic field 108A, and the particle measurement region 106 and the second sensor placement portion 107B ( A second magnetic sensor 104B) is placed in the first magnetic field 108B.
[0058]
However, the first magnetic field 108A and the second magnetic field 108B alternately switch energization from the coil power supply 103 to the first and second coils 102A and 102B in order to avoid interference between the magnetic fields 58A and 58B. Are formed alternately. In this case, the switching speed of energization is set to an appropriate high speed according to the flow rate of the fine particles 109.
[0059]
At this time, if the fine particles (metal wear powder of the bearing) 109 exist in the fine particle measurement region 106 (the fine particles 109 are mixed in the lubricating oil in the fine particle measurement region 106), that is, as shown by the arrow C When the fine particles 109 flow through the fine particle measurement area 106 together with the lubricating oil, the first magnetic field 108A and the second magnetic field 108B are changed (disturbed) by the fine particles 109. The size of the fine particles 109 is, for example, about several 100 μm.
[0060]
Note that the positions of the first and second coils 102A and 102B are not limited to the positions shown in the drawing, and are opposed to the first and second magnetic sensors 104A and 104B, respectively, with the fine particle measurement area 106 interposed therebetween. It may be a position. Further, it is desirable that at least the particle measurement region 106 of the lubricating oil circulation line (pipe) is formed of a non-magnetic or non-conductive material such as Teflon.
[0061]
The first magnetic sensor 104A has a linear shape in which a large number of first magnetic sensor elements 104a such as a magnetoresistive (MR) element, a large-scale magnetoresistive (GMR) element, or a magnetic inductance (MI) element are arranged in a line. The first magnetic field 108 </ b> A generated by the fine particles 109 existing in the fine particle measurement area 106 is disposed so that the longitudinal direction (arrangement direction) is orthogonal to the flow direction (the direction of arrow C) of the fine particles 109. The change is detected by each first magnetic sensor element 104a. That is, in the first magnetic sensor element 104a at a position corresponding to the shape of the fine particles 109, the detection value changes in accordance with a change in the first magnetic field 108A of the portion due to the fine particles 109.
[0062]
The second magnetic sensor 104B has a linear shape in which a large number of second magnetic sensor elements 104b such as a magnetoresistive (MR) element, a large-scale magnetoresistive (GMR) element, or a magnetic inductance (MI) element are arranged in a line. The second magnetic field 108 </ b> B generated by the fine particles 109 existing in the fine particle measurement area 106 is disposed so that the longitudinal direction (arrangement direction) is orthogonal to the flow direction (the direction of arrow C) of the fine particles 109. The change is detected by each second magnetic sensor element 104b. That is, in the second magnetic sensor element 104b at a position corresponding to the shape of the fine particles 109, the detection value changes in accordance with a change in the second magnetic field 108B of the portion due to the fine particles 109.
[0063]
Such linear first and second magnetic sensors 1054A and 104B are formed by, for example, forming a magnetoresistive (MR) film having a resistance value changed by a magnetic field on a substrate and performing etching and the like. The first and second magnetic sensor elements 104a and 104b can be integrated in a matrix on the same substrate, and one row can be cut out.
[0064]
The detection signals of the first and second magnetic sensor elements 104a and 104b of the first and second magnetic sensors 104A and 104B are input to the signal processing device 105. In the signal processing device 105, each of the first and second magnetic sensor elements 104a is based on the known flow rate of the fine particles 109 (the flow rate of the lubricating oil) or the flow rate of the fine particles 109 measured by the flow rate sensor (the flow rate of the lubricating oil). , 104b, for example, by comparing the detection signal level of each of the first and second magnetic sensor elements 104a, 104b with the threshold value, and comparing the first and second detection signal levels exceeding the threshold value. By performing signal processing for determining that the fine particles 109 have been detected in the magnetic sensor element 104a, the shapes of the fine particles 109 in two orthogonal directions are obtained. That is, the existence area of the fine particles 109 is estimated from the change in the detection signal of each of the magnetic sensor elements 104a and 104b. Further, the shape (data) of the fine particles 109 obtained by the signal processing device 105 is displayed and recorded by the display / recording device 110.
[0065]
Therefore, according to the fine particle shape measuring apparatus 101 of the fifth embodiment, it is possible to simultaneously measure the more detailed shape of the fine particles 109, that is, the width, length, and thickness of the fine particles 109. In other words, even if the first and second magnetic sensors 104A and 104B are not linear (matrix) but linear (one row), as long as the flow rate of the fine particles 109 is known, the details are almost the same as those of the planar magnetic sensor. Shape measurement is possible. Moreover, the measurement accuracy is less affected by the contamination of the lubricating oil circulation line as compared with the optical measurement method. Further, if the degree of integration of the first and second magnetic sensor elements 104a and 104b is improved, more detailed (high accuracy) shape measurement of the fine particles 109 can be performed.
[0066]
<Embodiment 6>
FIG. 7 is a configuration diagram of a particle shape measuring apparatus according to Embodiment 6 of the present invention. Note that the configuration of the lubricating oil circulation line is the same as that of the first embodiment (see FIG. 1), and thus description and illustration thereof are omitted here.
[0067]
As shown in FIG. 7, the particle shape measuring apparatus 121 of the sixth embodiment has a coil 122 and a coil power supply device 123 as a magnetic field forming means, a magnetic sensor 124, a signal processing device 125 as a signal processing means, and the like. I have.
[0068]
The magnetic sensor 124 has an annular configuration in which a large number of magnetic sensor elements 124a such as a magnetoresistive (MR) element, a large-scale magnetoresistive (GMR) element, and a magnetic inductance (MI) element are arranged in a line. The ring is arranged in the sensor arrangement section 127 so that the tangential direction of the ring is orthogonal to the flow direction of the particles 129 (the direction of arrow C) and surrounds the periphery of the particle measurement area 126 in the middle of the lubricating oil circulation line. The change in the rotating magnetic field 128 (which will be described in detail later, but is formed by the magnetic field forming means) caused by the fine particles 129 having a size of, for example, about several hundreds of micrometers existing in the fine particle measurement area 126 is changed by each magnetic sensor element 124a. To detect. That is, in the magnetic sensor element 124 a at a position corresponding to the shape of the fine particles 129, the detection value changes in accordance with a change in the rotating magnetic field 128 in the portion due to the fine particles 129.
[0069]
It should be noted that such an annular magnetic sensor 124 has a large number of magnetic sensor elements 124a formed by, for example, forming a magnetoresistive (MR) film whose resistance value changes by a magnetic field on a substrate and performing etching or the like. It can be constructed by, for example, stacking in a matrix on the same substrate, and cutting out one of the rows and molding it into an annular shape.
[0070]
The coil 122 faces the particle measurement area 126 and is disposed on the outer peripheral side of the annular magnetic sensor 124. Then, the coil 122 is adapted to move around the particle measurement area 126 and the sensor arrangement section 127 (magnetic sensor 124) as shown by an arrow D by an appropriate rotation driving means such as a motor (not shown). Therefore, when an alternating current or a direct current is applied to the coil 122 by the coil power supply device 123 and the coil 122 is rotated by the rotation driving means, the alternating current or the alternating current is applied to the particle measurement area 126 and the sensor placement section 127 (magnetic sensor 124). A DC rotating magnetic field 128 is formed. That is, the particle measurement area 126 and the sensor placement section 127 (magnetic sensor 124) are placed in the rotating magnetic field 128.
[0071]
At this time, if the fine particles (metal wear powder of the bearing) 129 exist in the fine particle measurement region 126 (the fine particles 129 are mixed in the lubricating oil of the fine particle measurement region 126), that is, the lubrication is performed as shown by the arrow C. When the fine particles 129 flow along with the oil through the fine particle measurement region 126, the rotating magnetic field 128 is changed (disturbed) by the fine particles 129. The reason why the magnetic field is not formed around the magnetic sensor 124 at the same time and the rotating magnetic field 128 is used is to prevent interference between the magnetic fields.
[0072]
The magnetic field forming means for forming the rotating magnetic field 128 is not limited to the above-described one. For example, a large number of coils 122 are continuously arranged in the circumferential direction of the magnetic sensor 124 to form a circle surrounding the magnetic sensor 124. The rotating magnetic field 128 may be formed by forming an annular coil group and sequentially switching the energization from the coil power supply device 123 to each coil 122 of the coil group. The rotation speed of the rotating magnetic field 128 (the switching speed of the energization or the coil rotation speed) is set to an appropriate high speed according to the flow velocity of the fine particles 129. Further, it is desirable that at least the fine particle measurement area portion 126 of the lubricating oil circulation line (pipe) is formed of a non-magnetic or non-conductive material such as Teflon.
[0073]
The detection signal of each magnetic sensor element 124 a of the magnetic sensor 124 is input to the signal processing device 125. In the signal processing device 125, the detection signal level of each magnetic sensor element 124a is processed, for example, the detection signal level of each magnetic sensor element 124a is compared with a threshold, and in the magnetic sensor element 124a whose detection signal level exceeds the threshold, By performing signal processing for determining that the fine particles 129 have been detected, the shape of the fine particles 129 is obtained. That is, the existence area of the fine particles 129 is estimated from the change in the detection signal of each magnetic sensor element 124a. Further, the shape (data) of the fine particles 129 obtained by the signal processing device 125 is displayed and recorded on the display / recording device 130.
[0074]
Therefore, according to the fine particle shape measuring apparatus 121 of the sixth embodiment, a more detailed shape of the fine particles 129, that is, a shape measurement over the entire circumference of the fine particles 129 can be measured. That is, even if the magnetic sensor 124 is not cylindrical (matrix) but annular (single row), if the flow rate of the fine particles 129 is known, it is possible to measure the shape as detailed as the cylindrical magnetic sensor. Moreover, the measurement accuracy is less affected by the contamination of the lubricating oil circulation line as compared with the optical measurement method. In addition, if the degree of integration of the magnetic sensor element 124a is improved, more detailed (high accuracy) shape measurement of the fine particles 129 can be performed.
[0075]
<Embodiment 7>
FIG. 8 is a configuration diagram of a fine particle shape measuring apparatus according to Embodiment 7 of the present invention. Note that the configuration of the lubricating oil circulation line is the same as that of the first embodiment (see FIG. 1), and thus description and illustration thereof are omitted here.
[0076]
As shown in FIG. 8, the fine particle shape measuring apparatus 141 of the seventh embodiment includes a magnetic field forming unit 142 as a magnetic field forming unit, a coil power supply 143, a magnetic sensor 144, a signal processing unit 145 as a signal processing unit, and the like. are doing.
[0077]
The magnetic sensor 144 has the same configuration as the magnetic sensor 34 of the first embodiment, that is, a large number of magnetic sensor elements 34a such as a magnetoresistive (MR) element, a large-scale magnetoresistive (GMR) element, and a magnetic inductance (MI) element. It is a planar configuration arranged in a matrix. On the other hand, the magnetic field forming section 142 has a planar configuration in which a large number of coil elements 142a are arranged in a matrix so as to correspond to each magnetic sensor element 144a of the magnetic sensor 144. The magnetic field forming section 142 and the magnetic sensor 144 are integrally formed, and are arranged in the sensor arrangement section 147 so as to face the fine particle measurement area section 146 in the middle of the lubricating oil circulation line.
[0078]
Note that the magnetic sensor 144 has a large number of magnetic sensor elements 1444a formed in a matrix on the same substrate by, for example, forming a film of a magnetic resistance (MR) whose resistance value changes with a magnetic field on the substrate and performing etching or the like. The magnetic field forming part 142 is formed by, for example, depositing a conductive film on a substrate and performing etching or the like to thereby form a large number of coil elements 142a in a matrix. It can be configured by integration.
[0079]
When an alternating current or a direct current is applied to each coil element 142a of the magnetic field forming unit 142 by the coil power supply device 143, each coil element 142a becomes a fine particle measurement area section 146 and a sensor arrangement section 147 (each magnetic sensor element 144a of the magnetic sensor 144). An AC or DC magnetic field 148 is formed. That is, the particle measurement area 146 and the sensor arrangement part 147 (each magnetic sensor element 144a of the magnetic sensor 144) are placed in the magnetic field 148.
[0080]
At this time, if the fine particles (metal wear powder of the bearing) 149 exist in the fine particle measurement region 146 (if the fine particles 149 are mixed in the lubricating oil in the fine particle measurement region 146), the lubrication is performed as shown by the arrow C. When the fine particles 149 flow along with the oil in the fine particle measurement area 146, the magnetic field 148 is changed (disturbed) by the fine particles 149. The size of the fine particles 149 is, for example, about several 100 μm.
[0081]
The energization from the coil power supply device 143 to the respective coil elements 142a of the magnetic field forming unit 142 is sequentially performed, and the respective coil elements 142a sequentially generate the magnetic field 148 sequentially at the corresponding positions. Therefore, mutual interference of the magnetic fields is prevented. In this case, the switching speed of energization is set to an appropriate high speed in accordance with the flow velocity of the fine particles 149. It is desirable that at least the particle measurement area 146 of the lubricating oil circulation line (pipe) is formed of a non-magnetic or non-conductive material such as Teflon.
[0082]
Then, in the magnetic sensor 144, a change in the magnetic field 148 caused by the fine particles 149 existing in the fine particle measurement area 146 is detected by each magnetic sensor element 144a. That is, in the magnetic sensor element 144 a at a position corresponding to the shape of the fine particles 149, the detection value changes in accordance with a change in the magnetic field 148 of the portion due to the fine particles 149.
[0083]
The detection signal of each magnetic sensor element 144a of the magnetic sensor 144 is input to the signal processing device 145. The signal processing device 145 processes the detection signal of each of the magnetic sensor elements 144a (for example, by comparing the detection signal level of each of the magnetic sensor elements 144a with a threshold value, and in the magnetic sensor element 144a whose detection signal level exceeds the threshold value). By performing signal processing to determine that the fine particles 149 have been detected, the shape of the fine particles 149 is determined. That is, the existence area of the fine particles 149 is estimated from the change of the detection signal of each magnetic sensor element 144a. Further, the shape (data) of the fine particles 149 obtained by the signal processing device 145 is displayed and recorded by the display / recording device 150.
[0084]
Therefore, according to the fine particle shape measuring device 141 of the seventh embodiment, the detailed shape of the fine particles 39, that is, the width (or thickness) and the length of the fine particles 39 can be measured. In addition, since the magnetic field 148 is individually formed for each magnetic sensor element 144a of the magnetic sensor 144 by each coil element 142a of the magnetic field forming unit 142, more accurate shape measurement can be performed, and the size of the entire apparatus can be reduced. Can also be planned. Further, the measurement accuracy is less affected by the contamination of the lubricating oil circulation line as compared with the optical measurement method. Further, if the degree of integration of the magnetic sensor element 144a and the coil element 142a is improved, more detailed (high accuracy) shape measurement of the fine particles 149 can be performed.
[0085]
It should be noted that the magnetic sensor elements 54A, 54B, 74, 94, 104A, 104B, and 124 of Embodiments 2 to 6 may be integrally provided with a magnetic field forming section in which a large number of coil elements are arranged. it can.
[0086]
That is, although not shown, a large number of coil elements are formed by planar, cylindrical, linear or annular magnetic sensors 54a, 54b, 74a of magnetic sensors 54A, 54B, 74, 94, 104A, 104B, 124. , 94a, 104a, 104b, 124a, respectively, in a matrix or in a line, a planar, cylindrical, linear or annular magnetic field forming portion; The annular magnetic sensors 54A, 54B, 74, 94, 104A, 104B, and 124 are integrally formed, and each coil element of the magnetic field forming unit is sequentially energized to form a magnetic field or a rotating magnetic field. You may.
[0087]
Also, even if the fine particles are not metal powders such as bearing wear powders, for example, non-metallic powders such as ceramic powders, etc., due to a difference in relative dielectric constant between the fine particles and a liquid or gas such as lubricating oil. Since the magnetic field changes, the shape measurement according to the present invention is possible.
[0088]
Further, the magnetic field forming means is not limited to an electromagnet using a coil, and a permanent magnet may be used depending on the application. For example, in the first and fourth embodiments, a permanent magnet may be used instead of the coils 32 and 92.
[0089]
【The invention's effect】
As described above in detail with the embodiments, according to the fine particle shape measuring apparatus of the first invention, a magnetic field forming means for forming a magnetic field in the fine particle measurement region and the sensor arrangement portion, and a large number of magnetic sensor elements It is a planar configuration arranged in a matrix, and is arranged in the sensor disposition section facing the fine particle measurement area, and the magnetic field generated by the fine particles present in the fine particle measurement area is changed by each magnetic field. A magnetic sensor for detecting by the sensor element; and a signal processing means for processing a detection signal of each magnetic sensor element of the magnetic sensor to obtain a shape of the fine particle. It can be carried out. In addition, the measurement accuracy is less affected by contamination of the lubricating oil circulation line and the like as compared with the optical measurement method. If the degree of integration of the magnetic sensor element is improved, more detailed (highly accurate) shape measurement of fine particles can be performed.
[0090]
Further, according to the fine particle shape measuring device of the second invention, the first magnetic field is formed in the fine particle measuring region and the first sensor arrangement portion located on one side in the orthogonal direction of the fine particle measuring region. Magnetic field forming means, second magnetic field forming means for forming a second magnetic field in the fine particle measurement area section and a second sensor arrangement section located on the other side in the orthogonal direction, and a number of first magnetic sensor elements. A planar configuration arranged in a matrix, wherein the first sensor is disposed in the first sensor disposing portion facing the fine particle measurement region, and the first particle generated by the fine particles present in the fine particle measurement region is provided. A first magnetic sensor for detecting a change in a magnetic field by each first magnetic sensor element, and a planar configuration in which a large number of second magnetic sensor elements are arranged in a matrix; Facing the said A second magnetic sensor, which is disposed in the sensor arrangement section, and detects a change in the second magnetic field caused by the fine particles present in the fine particle measurement area by each of the second magnetic sensor elements, and the first magnetic sensor And signal processing means for processing the detection signal of each of the first and second magnetic sensor elements of the second magnetic sensor to determine the shape of the fine particles, so that more detailed shape measurement of the fine particles can be performed. Becomes possible. In addition, the measurement accuracy is less affected by contamination of the lubricating oil circulation line and the like as compared with the optical measurement method. Further, if the degree of integration of the first and second magnetic sensor elements is improved, more detailed (high accuracy) shape measurement of fine particles can be performed.
[0091]
Further, according to the fine particle shape measuring apparatus of the third invention, a magnetic field forming means for forming a rotating magnetic field around the fine particle measuring area and the sensor disposing portion, and a cylindrical shape formed by arranging a large number of magnetic sensor elements in a matrix. A magnetic sensor arranged in the sensor arrangement portion so as to surround the periphery of the particle measurement region portion, wherein each magnetic sensor element detects a change in the rotating magnetic field caused by particles present in the particle measurement region portion. And signal processing means for processing the detection signal of each magnetic sensor element of the magnetic sensor to determine the shape of the fine particles, so that detailed shape measurement over the entire circumference of the fine particles can be performed. . In addition, the measurement accuracy is less affected by contamination of the lubricating oil circulation line and the like as compared with the optical measurement method. If the degree of integration of the magnetic sensor element is improved, more detailed (highly accurate) shape measurement of fine particles can be performed.
[0092]
Further, the fine particle shape measuring apparatus of the fourth invention is a linear configuration in which a magnetic field forming means for forming a magnetic field in the fine particle measuring region and the sensor arrangement portion and a number of magnetic sensor elements are arranged in a line, A magnetic sensor that is arranged in the sensor arrangement portion facing the fine particle measurement region, detects a change in the magnetic field caused by the fine particles flowing with the fluid through the fine particle measurement region by each magnetic sensor element, and a flow rate of the fine particles. And a signal processing means for processing the detection signal of each magnetic sensor element of the magnetic sensor to determine the shape of the fine particles, so that detailed shape measurement of the fine particles can be performed. That is, even if the magnetic sensor is not a flat (matrix) but a linear (one row) magnetic sensor, if the flow rate of the fine particles is known, the same detailed shape measurement as the flat magnetic sensor can be performed. In addition, the measurement accuracy is less affected by contamination of the lubricating oil circulation line and the like as compared with the optical measurement method. If the degree of integration of the magnetic sensor element is improved, more detailed (highly accurate) shape measurement of fine particles can be performed.
[0093]
Further, the particle shape measuring apparatus according to a fifth aspect of the present invention provides a first magnetic field forming device that forms a first magnetic field in a particle measuring region and a first sensor disposing portion located on one side in a direction orthogonal to the particle measuring region. Means, a second magnetic field forming means for forming a second magnetic field in the fine particle measurement area portion and a second sensor arrangement portion located on the other side in the orthogonal direction, and a large number of first magnetic sensor elements arranged in a line. A linear configuration formed by arranging the first magnetic field generated by particles flowing along with the fluid in the particle measurement region portion, the first magnetic field being arranged in the first sensor arrangement portion facing the particle measurement region portion; A linear configuration in which a first magnetic sensor for detecting a change is detected by each first magnetic sensor element and a number of second magnetic sensor elements are arranged in a line, and the first magnetic sensor faces the fine particle measurement area. The second sensor arrangement A second magnetic sensor, which is disposed in a portion and detects a change in the second magnetic field caused by the fine particles by each of the second magnetic sensor elements; and a first magnetic sensor and a second magnetic sensor based on the flow rate of the fine particles. Signal processing means for processing the detection signal of each of the first and second magnetic sensor elements of the magnetic sensor to obtain the shape of the fine particles, thereby enabling more detailed shape measurement of the fine particles. Become. That is, even if the first and second magnetic sensors are not linear (matrix) but linear (one row), as long as the flow rate of the fine particles is known, the same detailed shape measurement as the planar magnetic sensor can be performed. It is possible. In addition, the measurement accuracy is less affected by contamination of the lubricating oil circulation line and the like as compared with the optical measurement method. Further, if the degree of integration of the first and second magnetic sensor elements is improved, more detailed (high accuracy) shape measurement of fine particles can be performed.
[0094]
Further, the fine particle shape measuring apparatus according to the sixth invention has an annular configuration in which a magnetic field forming means for forming a rotating magnetic field around the fine particle measuring region and the sensor arrangement portion and a number of magnetic sensor elements are arranged in a line. A magnetic sensor that is arranged in the sensor arrangement portion so as to surround the periphery of the particle measurement region portion, and that detects a change in the rotating magnetic field caused by particles flowing along with the fluid in the particle measurement region portion by each magnetic sensor element, Signal processing means for processing the detection signal of each magnetic sensor element of the magnetic sensor based on the flow velocity of the fine particles to obtain the shape of the fine particles, so that the detailed shape of the fine particles over the entire circumference of the fine particles is obtained. Measurement can be performed. In other words, even if the magnetic sensor is not a cylinder (matrix) but an annular (one row), as long as the flow rate of the fine particles is known, it is possible to measure the same detailed shape as the cylindrical magnetic sensor. In addition, the measurement accuracy is less affected by contamination of the lubricating oil circulation line and the like as compared with the optical measurement method. If the degree of integration of the magnetic sensor element is improved, more detailed (highly accurate) shape measurement of fine particles can be performed.
[0095]
A seventh aspect of the present invention is the fine particle shape measuring apparatus according to any one of the first to sixth aspects, wherein the magnetic field forming means includes a plurality of coil elements each of which is formed of the planar, cylindrical, linear, or annular shape. A planar, cylindrical, linear or annular magnetic field forming portion arranged in a matrix or in a row corresponding to each magnetic sensor element of the magnetic sensor of the present invention. , A cylindrical, linear or annular magnetic sensor is integrally formed, and the coil element of the magnetic field forming section is sequentially energized to form the magnetic field or the rotating magnetic field. Therefore, detailed shape measurement of the fine particles can be performed. Moreover, since the magnetic field is formed individually for each magnetic sensor element of the magnetic sensor by each coil element of the magnetic field forming unit, more accurate shape measurement can be performed, and the size of the entire apparatus can be reduced. . Further, the measurement accuracy is less affected by contamination of the lubricating oil circulation line and the like as compared with the optical measurement method. Further, if the degree of integration of the magnetic sensor element and the coil element is improved, more detailed (high accuracy) fine particle shape measurement can be performed.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of a lubricating oil circulation line including a fine particle shape measuring device according to a first embodiment of the present invention.
FIG. 2 is a configuration diagram of a particle shape measuring apparatus according to Embodiment 1 of the present invention.
FIG. 3 is a configuration diagram of a fine particle shape measuring device according to a second embodiment of the present invention.
FIG. 4 is a configuration diagram of a fine particle shape measuring device according to a third embodiment of the present invention.
FIG. 5 is a configuration diagram of a particle shape measuring apparatus according to Embodiment 4 of the present invention.
FIG. 6 is a configuration diagram of a particle shape measuring apparatus according to Embodiment 5 of the present invention.
FIG. 7 is a configuration diagram of a particle shape measuring apparatus according to Embodiment 6 of the present invention.
FIG. 8 is a configuration diagram of a particle shape measuring apparatus according to Embodiment 7 of the present invention.
FIG. 9 is a configuration diagram of a conventional particle shape measuring device.
FIG. 10 is a configuration diagram of another conventional fine particle shape measuring device.
[Explanation of symbols]
21 Air heater
22 Drive
23 rotor
24 rotating shaft
25 Lower main bearing
26 Housing
27 Upper main bearing
28 Lubricating oil circulation line
29 pump
30 Lubricating oil
31 Particle shape measuring device
32 coils
33 Coil power supply
34 Magnetic Sensor
34a Magnetic sensor element
35 signal processor
36 Particle measurement area
37 Sensor placement part
38 Magnetic field
39 fine particles
40 Display and recording device
51 Particle shape measuring device
52A first coil
52B second coil
53 coil power supply
54A First Magnetic Sensor
54B Second Magnetic Sensor
54a First magnetic sensor element
54b Second Magnetic Sensor Element
55 signal processing equipment
56 Particle measurement area
57A First Sensor Arrangement Section
57B 2nd sensor arrangement part
58A first magnetic field
58B Second magnetic field
59 fine particles
60 Display and recording device
71 Particle Shape Measurement System
72 coils
73 Coil power supply
74 magnetic sensor
74a Magnetic sensor element
75 Signal Processor
76 Particle Measurement Area
77 Sensor arrangement part
78 Rotating magnetic field
79 fine particles
80 Display and recording device
91 Particle Shape Measurement System
92 coil
93 Coil power supply
94 Magnetic Sensor
94a Magnetic sensor element
95 signal processor
96 Particle measurement area
97 Sensor placement section
98 magnetic field
99 fine particles
100 Display and recording device
101 Particle shape measuring device
102A first coil
102B second coil
103 Coil power supply
104A first magnetic sensor
104B second magnetic sensor
104a first magnetic sensor element
104b Second magnetic sensor element
105 signal processing device
106 Particle measurement area
107A first sensor arrangement unit
107B 2nd sensor arrangement part
108A First magnetic field
108B Second magnetic field
109 fine particles
110 Display and recording device
121 Particle shape measurement device
122 coil
123 Coil power supply
124 magnetic sensor
124a Magnetic sensor element
125 signal processor
126 Particle measurement area
127 Sensor arrangement part
128 rotating magnetic field
129 fine particles
130 Display and recording device
141 Particle Shape Measurement System
142 magnetic field generator
142a coil element
143 Coil power supply
144 magnetic sensor
144a Magnetic sensor element
145 signal processing device
146 Particle Measurement Area
147 Sensor arrangement part
148 magnetic field
149 fine particles
150 Display and recording device

Claims (7)

微粒子計測領域部及びセンサ配置部に磁界を形成する磁界形成手段と、
多数の磁気センサ素子をマトリクス状に配列してなる平面状の構成であって、前記微粒子計測領域部に面して前記センサ配置部に配置され、前記微粒子計測領域部に存在する微粒子によって生じる前記磁界の変化を各磁気センサ素子によって検出する磁気センサと、
この磁気センサの各磁気センサ素子の検出信号を処理して前記微粒子の形状を求める信号処理手段とを有することを特徴とする微粒子形状計測装置。
A magnetic field forming means for forming a magnetic field in the particle measurement region and the sensor arrangement portion,
A planar configuration in which a large number of magnetic sensor elements are arranged in a matrix, wherein the magnetic sensor elements are arranged in the sensor arrangement portion facing the fine particle measurement region portion, and are generated by the fine particles present in the fine particle measurement region portion. A magnetic sensor that detects a change in a magnetic field with each magnetic sensor element;
Signal processing means for processing a detection signal of each magnetic sensor element of the magnetic sensor to obtain the shape of the fine particles.
微粒子計測領域部及びこの微粒子計測領域部の直交方向の一方側に位置する第1のセンサ配置部に第1の磁界を形成する第1の磁界形成手段と、
前記微粒子計測領域部及び前記直交方向の他方側に位置する第2のセンサ配置部に第2の磁界を形成する第2磁界形成手段と、
多数の第1の磁気センサ素子をマトリクス状に配列してなる平面状の構成であって、前記微粒子計測領域部に面して前記第1のセンサ配置部に配置され、前記微粒子計測領域部に存在する微粒子によって生じる前記第1の磁界の変化を各第1の磁気センサ素子によって検出する第1の磁気センサと、
多数の第2の磁気センサ素子をマトリクス状に配列してなる平面状の構成であって、前記微粒子計測領域部に面して前記第2のセンサ配置部に配置され、前記微粒子計測領域部に存在する微粒子によって生じる前記第2の磁界の変化を各第2の磁気センサ素子によって検出する第2の磁気センサと、
前記第1の磁気センサ及び第2の磁気センサの各第1及び第2の磁気センサ素子の検出信号を処理して前記微粒子の形状を求める信号処理手段とを有することを特徴とする微粒子形状計測装置。
First magnetic field forming means for forming a first magnetic field in the fine particle measurement region and a first sensor arrangement portion located on one side in the orthogonal direction of the fine particle measurement region;
Second magnetic field forming means for forming a second magnetic field in the fine particle measurement region and a second sensor arrangement portion located on the other side in the orthogonal direction;
A planar configuration in which a large number of first magnetic sensor elements are arranged in a matrix, the first magnetic sensor elements being arranged in the first sensor arrangement portion facing the fine particle measurement region portion, and being disposed in the fine particle measurement region portion. A first magnetic sensor for detecting a change in the first magnetic field caused by the existing fine particles by each first magnetic sensor element;
A planar configuration in which a large number of second magnetic sensor elements are arranged in a matrix, and are arranged in the second sensor disposition section so as to face the fine particle measurement area section, and are provided in the fine particle measurement area section. A second magnetic sensor for detecting a change in the second magnetic field caused by the existing fine particles by each second magnetic sensor element;
Signal processing means for processing a detection signal of each of the first and second magnetic sensor elements of the first magnetic sensor and the second magnetic sensor to obtain a shape of the fine particles; apparatus.
微粒子計測領域部及びセンサ配置部の回りに回転磁界を形成する磁界形成手段と、
多数の磁気センサ素子をマトリクス状に配列してなる円筒状の構成であって、前記微粒子計測領域部の周囲を囲むようにして前記センサ配置部に配置され、前記微粒子計測領域部に存在する微粒子によって生じる前記回転磁界の変化を各磁気センサ素子によって検出する磁気センサと、
この磁気センサの各磁気センサ素子の検出信号を処理して前記微粒子の形状を求める信号処理手段とを有することを特徴とする微粒子形状計測装置。
Magnetic field forming means for forming a rotating magnetic field around the particle measurement area and the sensor arrangement part,
A cylindrical configuration in which a large number of magnetic sensor elements are arranged in a matrix. A magnetic sensor for detecting a change in the rotating magnetic field by each magnetic sensor element;
Signal processing means for processing a detection signal of each magnetic sensor element of the magnetic sensor to obtain the shape of the fine particles.
微粒子計測領域部及びセンサ配置部に磁界を形成する磁界形成手段と、
多数の磁気センサ素子を一列に配列してなる直線状の構成であって、前記微粒子計測領域部に面して前記センサ配置部に配置され、前記微粒子計測領域部を流体とともに流れる微粒子によって生じる前記磁界の変化を各磁気センサ素子によって検出する磁気センサと、
前記微粒子の流速に基づき、前記磁気センサの各磁気センサ素子の検出信号を処理して前記微粒子の形状を求める信号処理手段とを有することを特徴とする微粒子形状計測装置。
A magnetic field forming means for forming a magnetic field in the particle measurement region and the sensor arrangement portion,
A linear configuration in which a number of magnetic sensor elements are arranged in a line, and the magnetic sensor elements are arranged in the sensor disposition portion facing the fine particle measurement region portion, and are generated by the fine particles flowing together with the fluid in the fine particle measurement region portion. A magnetic sensor for detecting a change in the magnetic field by each magnetic sensor element,
Signal processing means for processing a detection signal of each magnetic sensor element of the magnetic sensor based on the flow rate of the fine particles to obtain a shape of the fine particles.
微粒子計測領域部及びこの微粒子計測領域部の直交方向の一方側に位置する第1のセンサ配置部に第1の磁界を形成する第1の磁界形成手段と、
前記微粒子計測領域部及び前記直交方向の他方側に位置する第2のセンサ配置部に第2の磁界を形成する第2磁界形成手段と、
多数の第1の磁気センサ素子を一列に配列してなる直線状の構成であって、前記微粒子計測領域部に面して前記第1のセンサ配置部に配置され、前記微粒子計測領域部を流体とともに流れる微粒子によって生じる前記第1の磁界の変化を各第1の磁気センサ素子によって検出する第1の磁気センサと、
多数の第2の磁気センサ素子を一列に配列してなる直線状の構成であって、前記微粒子計測領域部に面して前記第2のセンサ配置部に配置され、前記微粒子によって生じる前記第2の磁界の変化を各第2の磁気センサ素子によって検出する第2の磁気センサと、
前記微粒子の流速に基づき、前記第1の磁気センサ及び第2の磁気センサの各第1及び第2の磁気センサ素子の検出信号を処理して前記微粒子の形状を求める信号処理手段とを有することを特徴とする微粒子形状計測装置。
First magnetic field forming means for forming a first magnetic field in the fine particle measurement region and a first sensor arrangement portion located on one side in the orthogonal direction of the fine particle measurement region;
Second magnetic field forming means for forming a second magnetic field in the fine particle measurement region and a second sensor arrangement portion located on the other side in the orthogonal direction;
A linear configuration in which a number of first magnetic sensor elements are arranged in a line, the first magnetic sensor elements being arranged in the first sensor disposing portion facing the fine particle measurement region portion, and the fine particle measurement region portion being fluidized A first magnetic sensor for detecting, by each first magnetic sensor element, a change in the first magnetic field caused by fine particles flowing therewith;
A linear configuration in which a number of second magnetic sensor elements are arranged in a line, the second magnetic sensor elements being arranged in the second sensor arrangement portion facing the fine particle measurement region portion, wherein the second magnetic field generated by the fine particles is A second magnetic sensor for detecting a change in the magnetic field of each of the second magnetic sensor element,
Signal processing means for processing a detection signal of each of the first and second magnetic sensor elements of the first magnetic sensor and the second magnetic sensor based on the flow velocity of the fine particles to determine the shape of the fine particles. A particle shape measuring device characterized by the following.
微粒子計測領域部及びセンサ配置部の回りに回転磁界を形成する磁界形成手段と、
多数の磁気センサ素子を一列に配列してなる円環状の構成であって、前記微粒子計測領域部の周囲を囲むようにして前記センサ配置部に配置され、前記微粒子計測領域部を流体とともに流れる微粒子によって生じる前記回転磁界の変化を各磁気センサ素子によって検出する磁気センサと、
前記微粒子の流速に基づき、前記磁気センサの各磁気センサ素子の検出信号を処理して前記微粒子の形状を求める信号処理手段とを有することを特徴とする微粒子形状計測装置。
Magnetic field forming means for forming a rotating magnetic field around the particle measurement area and the sensor arrangement part,
An annular configuration in which a number of magnetic sensor elements are arranged in a line. The magnetic sensor elements are arranged in the sensor placement section so as to surround the periphery of the particle measurement area, and are generated by particles flowing along with the fluid in the particle measurement area. A magnetic sensor for detecting a change in the rotating magnetic field by each magnetic sensor element;
Signal processing means for processing a detection signal of each magnetic sensor element of the magnetic sensor based on the flow rate of the fine particles to obtain a shape of the fine particles.
請求項1〜6の何れか1項に記載の微粒子形状計測装置において、
前記磁界形成手段は多数のコイル素子を前記平面状、円筒状、直線状又は円環状の磁気センサの各磁気センサ素子に各々に対応させてマトリクス状又は一列に配列してなる平面状、円筒状、直線状又は円環状の磁界形成部であり、この磁界形成部と、前記平面状、円筒状、直線状又は円環状の磁気センサとを一体的に構成し、
前記磁界形成部の各コイル素子に順次通電して前記磁界又は回転磁界を形成するように構成したことを特徴とする微粒子形状計測装置。
In the fine particle shape measuring apparatus according to any one of claims 1 to 6,
The magnetic field forming means includes a plurality of coil elements arranged in a matrix or a line arranged in a matrix or in a row corresponding to the respective magnetic sensor elements of the planar, cylindrical, linear or annular magnetic sensors. A linear or annular magnetic field forming portion, and the magnetic field forming portion and the planar, cylindrical, linear or annular magnetic sensor are integrally configured,
The fine particle shape measuring device is configured to sequentially energize each coil element of the magnetic field forming unit to form the magnetic field or the rotating magnetic field.
JP2002301285A 2002-10-16 2002-10-16 Particulate shape measurement device Withdrawn JP2004138419A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002301285A JP2004138419A (en) 2002-10-16 2002-10-16 Particulate shape measurement device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002301285A JP2004138419A (en) 2002-10-16 2002-10-16 Particulate shape measurement device

Publications (1)

Publication Number Publication Date
JP2004138419A true JP2004138419A (en) 2004-05-13

Family

ID=32449667

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002301285A Withdrawn JP2004138419A (en) 2002-10-16 2002-10-16 Particulate shape measurement device

Country Status (1)

Country Link
JP (1) JP2004138419A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014112034A1 (en) * 2013-01-15 2014-07-24 三菱重工業株式会社 Abnormality diagnostic method and system
CN109100270A (en) * 2018-08-29 2018-12-28 大连海事大学 A kind of annular fluid channel oil liquid detection device and preparation method thereof
CN112781482A (en) * 2020-08-21 2021-05-11 哈尔滨工业大学(威海) Method for measuring space curvature of deformable curved surface and method for manufacturing inductive space curvature measurement sensitive element
CN115963038A (en) * 2022-12-14 2023-04-14 中国科学院空间应用工程与技术中心 Magnetic particle motion track measuring system and method based on space microgravity condition

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014112034A1 (en) * 2013-01-15 2014-07-24 三菱重工業株式会社 Abnormality diagnostic method and system
CN109100270A (en) * 2018-08-29 2018-12-28 大连海事大学 A kind of annular fluid channel oil liquid detection device and preparation method thereof
CN109100270B (en) * 2018-08-29 2020-10-02 大连海事大学 Annular micro-channel oil liquid detection device and manufacturing method thereof
CN112781482A (en) * 2020-08-21 2021-05-11 哈尔滨工业大学(威海) Method for measuring space curvature of deformable curved surface and method for manufacturing inductive space curvature measurement sensitive element
CN112781482B (en) * 2020-08-21 2022-10-14 哈尔滨工业大学(威海) Method for measuring space curvature of deformable curved surface and method for manufacturing inductive space curvature measurement sensitive element
CN115963038A (en) * 2022-12-14 2023-04-14 中国科学院空间应用工程与技术中心 Magnetic particle motion track measuring system and method based on space microgravity condition
CN115963038B (en) * 2022-12-14 2023-07-28 中国科学院空间应用工程与技术中心 Magnetic particle motion trail measurement system and method based on space microgravity condition

Similar Documents

Publication Publication Date Title
CA2662034C (en) Permanent magnet rotor crack detection
JP6219961B2 (en) Magnetic flow meter with multiple coils
EP1902286B1 (en) Apparatus for magnetizing a magnetizable element and a sensor device
US7952348B2 (en) Flexible eddy current array probe and methods of assembling the same
US7038445B2 (en) Method, system and apparatus for ferromagnetic wall monitoring
US10254250B2 (en) Rotating current excitation with array magnetic sensors nondestructive testing probe for tube inspection
KR20180021802A (en) METAL DETECTION SENSOR AND METAL DETECTING METHOD USING THE SENSOR
US10634645B2 (en) Eddy current probe with 3-D excitation coils
CN107389782A (en) Spiral nonmagnetic matrix high accuracy imaging detection device for the detection of pipeline tiny flaw
WO2017158898A1 (en) Inspection device, inspection method and non-contact sensor
JPH0772262A (en) Filter for diagnosis
JP2004138419A (en) Particulate shape measurement device
KR101609186B1 (en) Multi directional electromagnetic yoke for inspection of bores
CN111929356B (en) Steel defect magnetic imaging device and method
Muthuvel et al. A planar inductive based oil debris sensor plug
JP2004270898A (en) Rolling bearing unit with sensor
JP2001318079A (en) Method and device for detecting foreign matter in fluid
JP2007163263A (en) Eddy current flaw detection sensor
US11169116B2 (en) Probe for nondestructive testing device using crossed gradient induced current and method for manufacturing induction coil for nondestructive testing device
KR20190061933A (en) Lissajour curve display apparatus using magnetic sensor array
Liu et al. Research on the influence of different microchannel position on the sensitivity of inductive sensor
JP5595587B2 (en) Method for identifying magnetically labeled objects and corresponding method
Khazi et al. Microfabricated Eddy-Current Sensors for Non-Destructive Testing of the Micro Grinding Burn
JP3712535B2 (en) Rolling bearing and rolling state measuring device for rolling element for rolling bearing
RU111299U1 (en) INNER-TUBE MAGNETIC DEFECTOSCOPE WITH TRANSVERSE MAGNETIZATION (OPTIONS)

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060110