JP2004138341A - Heating furnace - Google Patents

Heating furnace Download PDF

Info

Publication number
JP2004138341A
JP2004138341A JP2002304448A JP2002304448A JP2004138341A JP 2004138341 A JP2004138341 A JP 2004138341A JP 2002304448 A JP2002304448 A JP 2002304448A JP 2002304448 A JP2002304448 A JP 2002304448A JP 2004138341 A JP2004138341 A JP 2004138341A
Authority
JP
Japan
Prior art keywords
furnace
heat storage
fuel
heat
combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002304448A
Other languages
Japanese (ja)
Inventor
Hirotoshi Uejima
上島 啓利
Masao Kamiide
上出 雅男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chugai Ro Co Ltd
Original Assignee
Chugai Ro Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chugai Ro Co Ltd filed Critical Chugai Ro Co Ltd
Priority to JP2002304448A priority Critical patent/JP2004138341A/en
Publication of JP2004138341A publication Critical patent/JP2004138341A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Tunnel Furnaces (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
  • Air Supply (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To effectively utilize heat of exhaust combustion gas and reduce variations in internal heating furnace temperatures and suppress occurrence of NOx, in a heating furnace which heats heating objects in sequence by supplying gas for combustion including oxygen to a burner and fuel and burning the fuel in the furnace. <P>SOLUTION: This heating furnace, which heats the heating object 1 in sequence in the furnace by supplying the gas for combustion including oxygen and fuel to the burner 11 and burning the fuel in the furnace 10, is provided with at least a pair of heat exchangers 20a, 20b which include a regenerator 22 filled with a heat storage material 21. The pair of heat exchangers alternately perform the operation for guiding the exhaust combustion gas in the furnace into the regenerator, storing heat in the heat storage material, and discharging it, and the operation for supplying the combustion gas to the regenerator and heating the combustion gas by the heat storage material; and excessively supply the fuel to the burner against the combustion gas. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
この発明は、酸素を含む燃焼用ガスと燃料とをバーナに供給し、炉内において上記の燃料を燃焼させ、炉内に導かれた鋼帯や鋼材等の被加熱体を順々に加熱させるようにした加熱炉に係り、特に、燃焼排ガスにおける熱を有効に利用して省エネルギー化を図ると共に、炉内における温度のばらつきを少なくし、さらにNOx が発生するのを抑制するようにした点に特徴を有するものである。
【0002】
【従来の技術】
従来より、鋼帯や鋼材等を圧延させるにあたり、この鋼帯や鋼材等の被加熱体を加熱炉において加熱させることが行われている。
【0003】
ここで、上記のように鋼帯や鋼材等の被加熱体を加熱炉で加熱させるにあたっては、図1に示すように、炉10の天井10aや側壁10bに多数のバーナ11を設け、各バーナ11に酸素を含む燃焼用ガスと燃料とを供給して、燃料を加熱炉10内において燃焼させると共に、上記の被加熱体1を順々に導入口12を通して炉10内に導き、この炉10内において被加熱体1を加熱しながら送り装置13によって被加熱体1を順々に送り、加熱された被加熱体1を取出口14から取り出すようにしている。
【0004】
また、従来の加熱炉においても、上記のように炉10内において燃料を燃焼させた後における燃焼排ガスの熱を有効に利用するため、燃焼排ガスを排出させる煙道15の途中に熱交換器16を設け、この熱交換器16により燃焼排ガスの熱をバーナ11に供給する上記の燃焼用ガスに付与し、このように加熱された燃焼用ガスを供給パイプ17を通して各バーナ11に供給し、加熱された燃焼用ガスにより燃料を燃焼させて、効率よく炉10内の温度を高めるようにしていた。
【0005】
しかし、煙道15の途中に設ける熱交換器16には、一般に金属製のものが使用されており、その耐熱温度は600℃程度であるのに対して、煙道15に導かれる燃焼排ガスは900℃程度になり、このため、従来においては、煙道15に冷却用の空気を送り込み、燃焼排ガスの温度を下げて熱交換器16に導くようにしており、燃焼排ガスの熱を十分に利用することができなかった。
【0006】
また、上記のように酸素を含む燃焼用ガスと燃料とをバーナ11に供給して、炉10内において燃料を燃焼させるあたり、従来においては、一般にバーナ11に供給する燃焼用ガスと燃料との割合を、燃料が完全燃焼するように調整していた。
【0007】
ここで、このようにバーナ11に供給する燃焼用ガスと燃料との割合を調整して燃料を完全燃焼させるようにした場合、その燃焼部分においては高い温度が得られるが、燃焼部分から離れるにしたがって温度が低下し、炉10内における温度にばらつきが生じ、被加熱体1を適切に加熱させることが困難になったり、また上記のように燃料を完全燃焼させた場合、この燃焼部分における温度が非常に高くなり、燃焼用ガスに空気を用いた場合、この空気に含まれる窒素が酸化されてNOx が発生するようになり、環境を害するおそれもあった。
【0008】
【発明が解決しようとする課題】
この発明は、酸素を含む燃焼用ガスと燃料とをバーナに供給し、炉内において上記の燃料を燃焼させ、炉内に導かれた鋼帯や鋼材等の被加熱体を順々に加熱させるようにした加熱炉における上記のような問題を解決することを課題とするものである。
【0009】
すなわち、この発明においては、上記のような加熱炉において、燃焼排ガスにおける熱を有効に利用して、さらなる省エネルギー化を図ると共に、加熱炉内における温度のばらつきを少なくし、さらにNOx が発生するのを抑制することを課題とするものである。
【0010】
【課題を解決するための手段】
この発明においては、上記のような課題を解決するため、酸素を含む燃焼用ガスと燃料とをバーナに供給し、炉内において上記の燃料を燃焼させて、炉内に導かれた被加熱体を順々に加熱させる加熱炉において、蓄熱材が充填された蓄熱室を有する少なくとも一対の熱交換器を設け、この一対の熱交換器において、炉内における燃焼排ガスを上記の蓄熱室内に導き、この燃焼排ガスにおける熱を上記の蓄熱材に蓄熱させた後、この燃焼排ガスを排出させる操作と、蓄熱室内に酸素を含む燃焼用ガスを供給し、この燃焼用ガスを上記の蓄熱材と接触させて加熱させ、このように加熱された燃焼用ガスを炉内に供給する操作とを交互に行うようにすると共に、上記のバーナに酸素を含む燃焼用ガスに対して燃料を過剰に供給するようにしたのである。
【0011】
そして、この発明における加熱炉においては、上記のように蓄熱材が充填された蓄熱室を有する少なくとも一対の熱交換器において、炉内における燃焼排ガスを上記の蓄熱室内に導き、この燃焼排ガスにおける熱を上記の蓄熱材に蓄熱させた後、この燃焼排ガスを排出させる操作と、蓄熱室内に酸素を含む燃焼用ガスを供給し、この燃焼用ガスを上記の蓄熱材と接触させて加熱させ、このように加熱された燃焼用ガスを炉内に供給する操作とを交互に行うようにしたため、燃焼排ガスの熱が蓄熱室に充填された蓄熱材に蓄熱され、この熱により燃焼用ガスが十分に加熱されるようになり、燃焼排ガスの熱が効率よく利用されるようになる。さらに、このようにすると、煙道に導かれる高温の燃焼排ガスの量が少なくなり、従来のように、煙道の途中に熱交換器を設けたり、この熱交換器によって加熱された燃焼用ガスを各バーナに供給させるための配管を行う必要もなくなり、設備を簡略化できるようになる。
【0012】
また、この発明における加熱炉においては、上記のようにバーナに酸素を含む燃焼用ガスに対して燃料を過剰に供給するようにしたため、上記のように蓄熱室において加熱された酸素を含む燃焼用ガスを炉内に供給すると、バーナにおいて燃焼されずに残った燃料が、この加熱された燃焼用ガスと接触して、この部分においても燃料が燃焼されるようになる。
【0013】
そして、このようにバーナによる燃焼部分から離れた位置においても燃料が燃焼される結果、炉内における温度のばらつきが少なくなって、被加熱体が適切に加熱されるようになると共に、バーナにおいては燃料が完全燃焼されないため、その燃焼部分における温度が非常に高くなることが抑制され、燃焼用ガスに空気を用いた場合に、この空気に含まれる窒素が酸化されてNOx が発生するのも抑制されるようになる。
【0014】
また、上記のように熱交換器において、炉内における燃焼排ガスを蓄熱材が充填された蓄熱室を導く場合に、バーナ近傍において燃焼されずに残った燃料の一部がこの蓄熱室に導かれることがあるため、この蓄熱室内に酸素を含む燃焼用ガスを供給して、蓄熱室内に導かれた燃焼排ガス中に含まれる未燃焼燃料を燃焼させるようにすることが好ましい。このようにすると、蓄熱室内に導かれた未燃焼燃料が燃焼排ガスと一緒に排出されることが抑制されると共に、この蓄熱室内における燃焼により生じた熱が、この蓄熱室内に充填された蓄熱材に蓄熱されるようになる。
【0015】
また、上記の蓄熱室内に充填させる蓄熱材としては、耐熱性に優れたセラミックス材料を用いることが好ましく、例えば、ボール状やハニカム状になったセラミックス材料を用いることができる。
【0016】
【実施例】
以下、この発明の実施例に係る加熱炉を、添付図面に基づいて具体的に説明する。
【0017】
この実施例における加熱炉においても、従来の加熱炉と同様に、図2に示すように、炉10の天井10aや側壁10bに多数のバーナ11を設け、各バーナ11に酸素を含む燃焼用ガスと燃料とを供給して、燃料を炉10内において燃焼させると共に、鋼帯や鋼材等の被加熱体1を順々に導入口12を通して炉10内に導き、この炉10内において被加熱体1を加熱しながら、送り装置13によって被加熱体1を順々に送り、加熱された被加熱体1を取出口14から取り出すようになっている。
【0018】
一方、この実施例における加熱炉においては、上記の燃焼により生じた燃焼排ガスを排出させる煙道15の途中において、従来のような熱交換器を設けないようにすると共に、この熱交換器によって加熱された燃焼用ガスを各バーナ11に供給する供給パイプも設けないようにしている。
【0019】
そして、この実施例の加熱炉においては、図3及び図4に示すように、セラミック材料からなる蓄熱材21が充填された蓄熱室22を有する熱交換器20a,20bを炉10の側壁10bに少なくとも一対(この実施例では二対)設けるようにすると共に、上記のように燃焼用ガスと燃料とをバーナ11に供給して、炉10内において燃料を完全に燃焼させるにあたり、バーナ11に対して燃料を過剰にして供給するようにしている。
【0020】
そして、この実施例の加熱炉においては、上記のように燃料を過剰にしてバーナ11に燃焼用ガスと燃料とを供給し、炉10内において燃料を燃焼させて、炉10内に導かれた被加熱体1を加熱させるようにする。なお、このように燃料を過剰にしてバーナ11において燃料を燃焼させると、燃料が完全燃焼されないため、その燃焼部分における温度が非常に高くなることが抑制され、燃焼用ガスに空気を用いた場合に、この空気に含まれる窒素が酸化されてNOx が発生するのも抑制される。
【0021】
また、上記の一方の熱交換器20aにおいては、燃焼用ガスを蓄熱室22に供給する供給パイプ23に設けられた第1バルブ23aを閉じる一方、蓄熱室22内における燃焼排ガスを排出する排出パイプ24に設けられた第2バルブ24aを開いて、上記のように炉10内において燃焼された後の燃焼排ガスを連通口26を通して蓄熱室22内に吸引すると共に、この蓄熱室22内に補助パイプ25から酸素を含む燃焼用ガスを供給し、燃焼排ガス中に残っている未燃焼燃料をこの蓄熱室22内において燃焼させて消費させ、燃焼排ガス及びこの燃焼による熱を蓄熱室22内に充填された蓄熱材22に蓄積させた後、この燃焼排ガスを上記の排出パイプ24を通して煙道15に導き、この煙道15を通して炉10内からの燃焼排ガスと共に外部に排出させるようにする。
【0022】
一方、他方の熱交換器20bにおいては、燃焼用ガスを蓄熱室22に供給する供給パイプ23に設けられた第1バルブ23aを開ける一方、蓄熱室22内における燃焼排ガスを排出する排出パイプ24に設けられた第2バルブ24aを閉じて、上記の供給パイプ23を通して蓄熱室22内に酸素を含む燃焼用ガスを導き、この燃焼用ガスを蓄熱室22内に充填された上記の蓄熱材22と接触させて加熱させ、このように加熱された燃焼用ガスを連通口26を通して上記の炉10内に供給させるようにする。
【0023】
ここで、このように蓄熱室22内において加熱された燃焼用ガスを炉10内に供給すると、上記のバーナ11において燃焼されずに残った燃焼排ガス中における未燃焼燃料がこの加熱された燃焼用ガスと接触し、この部分において、未燃焼燃料が燃焼されるようになる。
【0024】
そして、このようにバーナ11による燃焼部分から離れた位置においても燃料が燃焼される結果、炉10内における温度のばらつきが少なくなり、被加熱体1が適切に加熱されるようになる。
【0025】
なお、この実施例においては、炉10の側壁10bに二対の熱交換器20a,20bを設けるようにしたが、熱交換器20a,20bを設ける位置やその数については、適宜変更して設けることができる。
【0026】
【発明の効果】
以上詳述したように、この発明においては、酸素を含む燃焼用ガスと燃料とをバーナに供給し、炉内において上記の燃料を燃焼させて、炉内に導かれた被加熱体を順々に加熱させる加熱炉において、蓄熱材が充填された蓄熱室を有する少なくとも一対の熱交換器を設け、この一対の熱交換器において、炉内における燃焼排ガスを上記の蓄熱室内に導き、この燃焼排ガスにおける熱を上記の蓄熱材に蓄熱させた後、この燃焼排ガスを排出させる操作と、蓄熱室内に酸素を含む燃焼用ガスを供給し、この燃焼用ガスを上記の蓄熱材と接触させて加熱させ、このように加熱された燃焼用ガスを炉内に供給する操作とを交互に行うようにしたため、燃焼排ガスの熱が蓄熱室に充填された蓄熱材に蓄熱され、この熱により燃焼用ガスが十分に加熱されるようになり、燃焼排ガスの熱が効率よく利用されるようになった。また、このようにすると、煙道に導かれる高温の燃焼排ガスの量が少なくなり、従来のように、煙道の途中に熱交換器を設けたり、この熱交換器によって加熱された燃焼用ガスを各バーナに供給させるための配管を行う必要もなくなり、設備を簡略化できるようになった。
【0027】
さらに、この発明における加熱炉においては、上記のように酸素を含む燃焼用ガスと燃料とをバーナに供給して、炉内において上記の燃料を燃焼させるにあたり、バーナに酸素を含む燃焼用ガスに対して燃料を過剰に供給するようにしたため、バーナにおいて燃料が完全燃焼されず、この燃焼部分における温度が非常に高くなるのが抑制され、燃焼用ガスに空気を用いた場合に、この空気に含まれる窒素が酸化されてNOx が発生するが抑制されるようになった。
【0028】
また、上記のように蓄熱室において加熱された燃焼用ガスを炉内に供給すると、バーナにおいて燃焼されずに残った燃料が、この加熱された燃焼用ガスと接触して、バーナによる燃焼部分から離れた位置においても燃料が燃焼されるようになり、炉内における温度のばらつきが少なくなって、被加熱体が適切に加熱されるようになった。
【0029】
さらに、この発明における加熱炉において、炉内における燃焼排ガスを蓄熱材が充填された蓄熱室に導く場合に、この蓄熱室内に酸素を含む燃焼用ガスを供給して、蓄熱室内に導かれた燃焼排ガス中に含まれる未燃焼燃料を燃焼させるようにすると、未燃焼燃料が燃焼排ガスと一緒に排出されるのが抑制されると共に、この蓄熱室内における燃焼により生じた熱が、この蓄熱室内に充填された蓄熱材に蓄熱されるようになった。
【図面の簡単な説明】
【図1】鋼帯や鋼材等の被加熱体を加熱させる従来の加熱炉の構造を示した概略断面説明図である。
【図2】この発明の一実施例に係る加熱炉の概略断面説明図である。
【図3】同実施例において、炉の側壁に二対の熱交換器を設けた状態を示した部分平面図である。
【図4】同実施例において、炉の側壁に設けた熱交換器の内部構造を示した断面説明図である。
【符号の説明】
1 被加熱体
10 炉
11 バーナ
20a,20b 熱交換器
21 蓄熱材
22 蓄熱室
23 供給パイプ
23a 第1バルブ
24 排出パイプ
24a 第2バルブ
25 補助パイプ
26 連通口
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention supplies a combustion gas containing oxygen and a fuel to a burner, burns the fuel in a furnace, and sequentially heats a heated object such as a steel strip or a steel material introduced into the furnace. as relates to the heating furnace, in particular, the energy saving by effectively utilizing the heat in the flue gas, to reduce the temperature variation in the furnace, that it further NO x is to be inhibited from occurring It is characterized by the following.
[0002]
[Prior art]
BACKGROUND ART Conventionally, when a steel strip, a steel material, or the like is rolled, an object to be heated such as the steel strip, the steel material, or the like is heated in a heating furnace.
[0003]
Here, as described above, when heating an object to be heated such as a steel strip or a steel material in a heating furnace, a number of burners 11 are provided on a ceiling 10a or a side wall 10b of the furnace 10 as shown in FIG. A combustion gas containing oxygen and a fuel are supplied to 11 and the fuel is burned in the heating furnace 10, and the above-mentioned heated object 1 is sequentially guided into the furnace 10 through the inlet 12. The heating target 1 is sequentially fed by the feeding device 13 while heating the heating target 1 in the inside, and the heated target 1 is taken out from the outlet 14.
[0004]
Also, in the conventional heating furnace, in order to effectively use the heat of the flue gas after burning the fuel in the furnace 10 as described above, a heat exchanger 16 is provided in the flue 15 for discharging the flue gas. The heat exchanger 16 applies the heat of the combustion exhaust gas to the combustion gas supplied to the burner 11, and supplies the combustion gas thus heated to each burner 11 through the supply pipe 17, The fuel is burned by the burned gas, and the temperature inside the furnace 10 is efficiently increased.
[0005]
However, the heat exchanger 16 provided in the middle of the flue 15 is generally made of metal and has a heat resistant temperature of about 600 ° C., whereas the flue gas guided to the flue 15 The temperature is about 900 ° C. Therefore, conventionally, cooling air is sent to the flue 15 to lower the temperature of the flue gas and guide it to the heat exchanger 16, so that the heat of the flue gas is sufficiently utilized. I couldn't.
[0006]
Further, when the combustion gas containing oxygen and the fuel are supplied to the burner 11 to burn the fuel in the furnace 10 as described above, conventionally, the combustion gas and the fuel generally supplied to the burner 11 are mixed with each other. The proportion was adjusted so that the fuel burned completely.
[0007]
Here, when the ratio of the combustion gas supplied to the burner 11 and the fuel is adjusted in such a manner to completely burn the fuel, a high temperature is obtained in the burning portion, but the temperature increases as the distance from the burning portion increases. Therefore, the temperature decreases, and the temperature in the furnace 10 varies, which makes it difficult to appropriately heat the body 1 to be heated, or when the fuel is completely burned as described above, the temperature in the burning portion is reduced. becomes very high, the use of air to the combustion gas, the nitrogen contained in the air is oxidized now NO x is generated, it was also likely to harm the environment.
[0008]
[Problems to be solved by the invention]
The present invention supplies a combustion gas containing oxygen and a fuel to a burner, burns the fuel in a furnace, and sequentially heats a heated object such as a steel strip or a steel material introduced into the furnace. An object of the present invention is to solve the above-described problems in the heating furnace.
[0009]
That is, in the present invention, in the heating furnace as described above, by effectively utilizing the heat in the flue gas, together achieve further energy savings, the less variation in the temperature in the heating furnace, further NO x is generated It is an object of the present invention to suppress the problem.
[0010]
[Means for Solving the Problems]
In the present invention, in order to solve the above problems, a combustion gas containing oxygen and a fuel are supplied to a burner, the fuel is burned in a furnace, and a heated object guided into the furnace. In a heating furnace that sequentially heats, at least a pair of heat exchangers having a heat storage chamber filled with a heat storage material are provided, and in this pair of heat exchangers, the combustion exhaust gas in the furnace is guided into the heat storage chamber, After storing the heat in the combustion exhaust gas in the heat storage material, an operation of discharging the combustion exhaust gas and supplying a combustion gas containing oxygen into the heat storage chamber, and bringing the combustion gas into contact with the heat storage material And the operation of supplying the combustion gas thus heated into the furnace is alternately performed, and the burner is supplied with an excessive amount of fuel with respect to the combustion gas containing oxygen. Because .
[0011]
In the heating furnace according to the present invention, at least a pair of heat exchangers having the heat storage chamber filled with the heat storage material as described above guide the combustion exhaust gas in the furnace into the heat storage chamber, After storing the heat in the heat storage material, an operation of discharging the combustion exhaust gas and supplying a combustion gas containing oxygen into the heat storage chamber, bringing the combustion gas into contact with the heat storage material and heating, The operation of supplying the heated combustion gas into the furnace is performed alternately, so that the heat of the combustion exhaust gas is stored in the heat storage material filled in the heat storage chamber, and the heat sufficiently reduces the combustion gas. As a result, the heat of the combustion exhaust gas is efficiently used. Further, in this case, the amount of the high-temperature flue gas led to the flue is reduced, and a heat exchanger is provided in the middle of the flue or the combustion gas heated by the heat exchanger as in the past. There is no need to provide a pipe for supplying the gas to each burner, and the equipment can be simplified.
[0012]
Further, in the heating furnace according to the present invention, as described above, the fuel is excessively supplied to the combustion gas containing oxygen to the burner, so that the combustion furnace containing oxygen heated in the heat storage chamber as described above is used. When the gas is supplied into the furnace, the remaining fuel that has not been burned in the burner comes into contact with the heated combustion gas, and the fuel is also burned in this portion.
[0013]
As a result, the fuel is burned even at a position distant from the burning portion by the burner, so that the temperature variation in the furnace is reduced, and the object to be heated is appropriately heated. since the fuel is not completely burned, the temperature that is very high is suppressed in that the combustion section, in the case of using the air in the combustion gases, also the nO x nitrogen contained in the air is oxidized to generate It will be suppressed.
[0014]
Further, in the heat exchanger, when the combustion exhaust gas in the furnace is guided to the heat storage chamber filled with the heat storage material, a part of the fuel remaining unburned in the vicinity of the burner is guided to the heat storage chamber. Therefore, it is preferable to supply a combustion gas containing oxygen into the heat storage chamber to burn unburned fuel contained in the combustion exhaust gas guided into the heat storage chamber. With this configuration, the unburned fuel guided into the heat storage chamber is prevented from being discharged together with the combustion exhaust gas, and the heat generated by the combustion in the heat storage chamber is filled with the heat storage material filled in the heat storage chamber. Will be stored.
[0015]
As the heat storage material to be filled in the heat storage chamber, it is preferable to use a ceramic material having excellent heat resistance. For example, a ball-shaped or honeycomb-shaped ceramic material can be used.
[0016]
【Example】
Hereinafter, a heating furnace according to an embodiment of the present invention will be specifically described with reference to the accompanying drawings.
[0017]
Also in the heating furnace in this embodiment, similarly to the conventional heating furnace, as shown in FIG. 2, a large number of burners 11 are provided on the ceiling 10a and the side walls 10b of the furnace 10, and each burner 11 includes a combustion gas containing oxygen. And the fuel are supplied, and the fuel is burned in the furnace 10, and the heated object 1 such as a steel strip or a steel material is sequentially guided into the furnace 10 through the inlet 12, and the heated object is The heating target 1 is sequentially fed by the feeding device 13 while heating the heating target 1, and the heated target 1 is taken out from the outlet 14.
[0018]
On the other hand, in the heating furnace in this embodiment, a conventional heat exchanger is not provided in the flue 15 for discharging the combustion exhaust gas generated by the above-described combustion, and the heating by the heat exchanger is performed. A supply pipe for supplying the burned gas to each burner 11 is not provided.
[0019]
In the heating furnace of this embodiment, as shown in FIGS. 3 and 4, heat exchangers 20 a and 20 b having a heat storage chamber 22 filled with a heat storage material 21 made of a ceramic material are attached to a side wall 10 b of the furnace 10. At least one pair (two pairs in this embodiment) is provided, and the combustion gas and the fuel are supplied to the burner 11 as described above to completely burn the fuel in the furnace 10. To supply excess fuel.
[0020]
In the heating furnace of this embodiment, the combustion gas and the fuel are supplied to the burner 11 with excess fuel as described above, and the fuel is burned in the furnace 10 and guided into the furnace 10. The object to be heated 1 is heated. When the burner 11 burns the fuel with excess fuel, the fuel is not completely burned, so that the temperature in the burning portion is prevented from becoming extremely high, and the air is used as the combustion gas. in, also suppressed the NO x is generated nitrogen contained in the air is oxidized.
[0021]
In the one heat exchanger 20a, the first valve 23a provided in the supply pipe 23 for supplying the combustion gas to the heat storage chamber 22 is closed, while the exhaust pipe for discharging the combustion exhaust gas in the heat storage chamber 22 is closed. By opening the second valve 24a provided in the heat storage chamber 24, the combustion exhaust gas after being burned in the furnace 10 as described above is sucked into the heat storage chamber 22 through the communication port 26, and the auxiliary pipe is inserted into the heat storage chamber 22. A combustion gas containing oxygen is supplied from 25, and unburned fuel remaining in the combustion exhaust gas is burned and consumed in the heat storage chamber 22, and the combustion exhaust gas and heat generated by the combustion are filled in the heat storage chamber 22. After being accumulated in the heat storage material 22, the flue gas is led to the flue 15 through the discharge pipe 24, and is discharged together with the flue gas from the furnace 10 through the flue 15. So as to be discharged to.
[0022]
On the other hand, in the other heat exchanger 20b, while opening the first valve 23a provided in the supply pipe 23 supplying the combustion gas to the heat storage chamber 22, the discharge pipe 24 discharging the combustion exhaust gas in the heat storage chamber 22 is opened. The provided second valve 24a is closed to guide the combustion gas containing oxygen into the heat storage chamber 22 through the supply pipe 23, and the heat storage material 22 filled in the heat storage chamber 22 with the combustion gas. The heating is performed by contact, and the combustion gas thus heated is supplied into the furnace 10 through the communication port 26.
[0023]
Here, when the combustion gas heated in the heat storage chamber 22 is supplied into the furnace 10, the unburned fuel in the combustion exhaust gas remaining without being burned in the burner 11 is used as the heated combustion gas. It comes into contact with the gas, where unburned fuel is burned.
[0024]
As a result, the fuel is burned even at a position distant from the burned portion by the burner 11, so that the temperature variation in the furnace 10 is reduced, and the object to be heated 1 is appropriately heated.
[0025]
In this embodiment, two pairs of heat exchangers 20a and 20b are provided on the side wall 10b of the furnace 10, but the positions and number of the heat exchangers 20a and 20b are changed as appropriate. be able to.
[0026]
【The invention's effect】
As described in detail above, in the present invention, the combustion gas containing oxygen and the fuel are supplied to the burner, the fuel is burned in the furnace, and the objects to be heated guided into the furnace are sequentially turned on. A heating furnace having at least a pair of heat exchangers having a heat storage chamber filled with a heat storage material. In the pair of heat exchangers, the combustion exhaust gas in the furnace is introduced into the heat storage chamber, and the combustion exhaust gas After storing the heat in the heat storage material, the operation of discharging the combustion exhaust gas and supplying a combustion gas containing oxygen into the heat storage chamber, and bringing the combustion gas into contact with the heat storage material and heating the combustion gas Since the operation of supplying the heated combustion gas into the furnace is performed alternately, the heat of the combustion exhaust gas is stored in the heat storage material filled in the heat storage chamber. Heated enough Uninari, heat of the combustion exhaust gas began to be utilized efficiently. In addition, in this case, the amount of high-temperature flue gas led to the flue is reduced, and a heat exchanger is provided in the middle of the flue or the combustion gas heated by the heat exchanger as in the conventional case. It is no longer necessary to provide a pipe for supplying to each burner, and the equipment can be simplified.
[0027]
Furthermore, in the heating furnace according to the present invention, the combustion gas containing oxygen and the fuel are supplied to the burner as described above to burn the fuel in the furnace. In contrast, since the fuel is supplied in excess, the burner does not completely burn the fuel, and the temperature in this burning portion is prevented from becoming extremely high. nitrogen contained is oxidized by NO x is generated but came to be suppressed.
[0028]
Further, when the combustion gas heated in the heat storage chamber is supplied into the furnace as described above, the remaining fuel that has not been burned in the burner comes into contact with the heated combustion gas, and the burner burns the fuel. The fuel is burned even at a distant position, the temperature variation in the furnace is reduced, and the object to be heated is appropriately heated.
[0029]
Further, in the heating furnace according to the present invention, when the combustion exhaust gas in the furnace is guided to a heat storage chamber filled with a heat storage material, a combustion gas containing oxygen is supplied into the heat storage chamber, and the combustion guided to the heat storage chamber. When the unburned fuel contained in the exhaust gas is burned, the unburned fuel is prevented from being discharged together with the combustion exhaust gas, and the heat generated by the combustion in the heat storage chamber is charged into the heat storage chamber. The heat is stored in the heat storage material.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional explanatory view showing a structure of a conventional heating furnace for heating an object to be heated such as a steel strip or a steel material.
FIG. 2 is a schematic sectional explanatory view of a heating furnace according to one embodiment of the present invention.
FIG. 3 is a partial plan view showing a state where two pairs of heat exchangers are provided on a side wall of a furnace in the embodiment.
FIG. 4 is an explanatory sectional view showing an internal structure of a heat exchanger provided on a side wall of a furnace in the embodiment.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Heated body 10 Furnace 11 Burner 20a, 20b Heat exchanger 21 Heat storage material 22 Heat storage chamber 23 Supply pipe 23a First valve 24 Discharge pipe 24a Second valve 25 Auxiliary pipe 26 Communication port

Claims (3)

酸素を含む燃焼用ガスと燃料とをバーナに供給し、炉内において上記の燃料を燃焼させて、炉内に導かれた被加熱体を順々に加熱させる加熱炉において、蓄熱材が充填された蓄熱室を有する少なくとも一対の熱交換器を設け、この一対の熱交換器において、炉内における燃焼排ガスを上記の蓄熱室内に導き、この燃焼排ガスにおける熱を上記の蓄熱材に蓄熱させた後、この燃焼排ガスを排出させる操作と、蓄熱室内に酸素を含む燃焼用ガスを供給し、この燃焼用ガスを上記の蓄熱材と接触させて加熱させ、このように加熱された燃焼用ガスを炉内に供給する操作とを交互に行うようにすると共に、上記のバーナに酸素を含む燃焼用ガスに対して燃料を過剰にして供給するようにしたことを特徴とする加熱炉。A heat storage material is filled in a heating furnace that supplies a combustion gas and fuel containing oxygen to a burner, burns the fuel in the furnace, and sequentially heats the objects to be heated guided in the furnace. After providing at least a pair of heat exchangers having a heat storage chamber, the combustion exhaust gas in the furnace is guided into the heat storage chamber in the pair of heat exchangers, and the heat in the combustion exhaust gas is stored in the heat storage material. An operation of discharging the combustion exhaust gas, supplying a combustion gas containing oxygen into the heat storage chamber, bringing the combustion gas into contact with the heat storage material and heating the same, and heating the combustion gas thus heated in a furnace. And an operation of supplying the fuel into the burner alternately, and supplying an excess amount of fuel to the combustion gas containing oxygen to the burner. 請求項1に記載した加熱炉において、上記の蓄熱室内に導かれた燃焼排ガス中に含まれる未燃焼燃料を燃焼させるように、この蓄熱室内に酸素を含む燃焼用ガスを供給するようにしたことを特徴とする加熱炉。In the heating furnace according to claim 1, a combustion gas containing oxygen is supplied into the heat storage chamber so as to burn unburned fuel contained in the combustion exhaust gas guided into the heat storage chamber. A heating furnace. 請求項1又は請求項2に記載した加熱炉において、上記の蓄熱室内に充填させる蓄熱材に、セラミックス材料を用いたことを特徴とする加熱炉。3. The heating furnace according to claim 1, wherein a ceramic material is used as the heat storage material to be filled in the heat storage chamber.
JP2002304448A 2002-10-18 2002-10-18 Heating furnace Pending JP2004138341A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002304448A JP2004138341A (en) 2002-10-18 2002-10-18 Heating furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002304448A JP2004138341A (en) 2002-10-18 2002-10-18 Heating furnace

Publications (1)

Publication Number Publication Date
JP2004138341A true JP2004138341A (en) 2004-05-13

Family

ID=32451869

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002304448A Pending JP2004138341A (en) 2002-10-18 2002-10-18 Heating furnace

Country Status (1)

Country Link
JP (1) JP2004138341A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010096404A (en) * 2008-10-16 2010-04-30 Ngk Insulators Ltd Heat storage type burner

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010096404A (en) * 2008-10-16 2010-04-30 Ngk Insulators Ltd Heat storage type burner

Similar Documents

Publication Publication Date Title
US6102691A (en) Combustion apparatus
CN106196058A (en) Ultralow NOx flame burning technology heat-accumulating burner
CN115574595A (en) Ammonia combustion reduction low NOx emission continuous heating furnace kiln and control method
JP2006308249A (en) HEAT STORAGE TYPE BURNER AND ITS LOW NOx COMBUSTION METHOD
JP2004093123A (en) Non-oxidation furnace and its control method
JPH08208240A (en) Glass-melting oven
JPH064171Y2 (en) Radiant chives
JP2004138341A (en) Heating furnace
JP3438354B2 (en) Thermal storage combustion device
JP3709775B2 (en) Regenerative burner and combustion method thereof
JPH10169925A (en) Radiant tube burner system and operation thereof
KR20090064633A (en) Regenerative burner injecting two-staged fuel and air
JP2004077005A (en) Continuous nonoxidization furnace and its control method
CN218994079U (en) Kiln waste gas treatment device
JPH1089614A (en) Radiant tube burner
JP3767414B2 (en) Operation method of regenerative burner furnace and regenerative burner furnace
JP3912061B2 (en) Regenerative burner and combustion method thereof
KR101407320B1 (en) Partially premixed fuel preheating regenerative oxyfuel combustion burner system and combustion method
JP4066519B2 (en) Reducing atmosphere furnace
JP4106699B2 (en) Operation method of regenerative burner in heat treatment furnace
JP2587588B2 (en) Thermal storage radiant tube burner device
JPS5827215Y2 (en) Low NOx burner
CN110425518A (en) A kind of realization NOxThe flameless combustion heating boiler system of near-zero release
JP2000283418A (en) LOW-NOx RADIANT TUBE BURNER AND METHOD FOR CONTROLLING ITS OPERATION
JP3371652B2 (en) heating furnace