JP2004138136A - Rolling screw device - Google Patents

Rolling screw device Download PDF

Info

Publication number
JP2004138136A
JP2004138136A JP2002302549A JP2002302549A JP2004138136A JP 2004138136 A JP2004138136 A JP 2004138136A JP 2002302549 A JP2002302549 A JP 2002302549A JP 2002302549 A JP2002302549 A JP 2002302549A JP 2004138136 A JP2004138136 A JP 2004138136A
Authority
JP
Japan
Prior art keywords
rolling
roller
rolling element
rolling elements
spiral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002302549A
Other languages
Japanese (ja)
Other versions
JP4292779B2 (en
Inventor
Masahito Taniguchi
谷口 雅人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2002302549A priority Critical patent/JP4292779B2/en
Publication of JP2004138136A publication Critical patent/JP2004138136A/en
Application granted granted Critical
Publication of JP4292779B2 publication Critical patent/JP4292779B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a rolling screw device capable of enlarging load capacity compared to a case of using a spherical type rolling element as a rolling element, and reducing friction torque compared to a case of using a roller type rolling element as the rolling element. <P>SOLUTION: Between a number of roller type rolling elements 15 rolling between spiral raceway grooves 13 and 14 formed to face each other in an outer circumferential surface of a screw shaft 11 and an inner circumferential surface of a nut 12, spherical type rolling elements 71 of a larger diameter than outer diameter of the roller type rolling elements 15 are disposed. Since the roller type rolling elements 15 get in linear-contact with groove surfaces of the spiral raceway grooves 13 and 14, large load capacity can be obtained. Since the spherical type rolling elements 17 get in point-contact with groove surfaces of the spiral type raceway grooves 13 and 14, friction torque is reduced. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、例えば工作機械のワークテーブルを一軸方向に送り駆動するテーブル送り装置などに用いられる転がりねじ装置に関する。
【0002】
【従来の技術】
工作機械のテーブル送り装置などでは、モータ等の回転運動を直線運動に変換する装置としてボールねじが使用されている。このボールねじは、例えば図5に示されるように、断面円形のねじ軸1と、このねじ軸1に外嵌する円筒状のナット2とを備えており、ねじ軸1の外周面には螺旋状軌道溝3が形成されている。この螺旋状軌道溝3はナット2の内周面に形成された螺旋状軌道溝4と対向しており、ねじ軸1またはナット2の一方が軸回りに回転すると、ナット2に組み込まれた多数のボール5が螺旋状軌道溝3,4間を転動するようになっている。
【0003】
このようなボールねじは、転動体としてのボール5が螺旋状軌道溝3,4に点接触した状態で転動する。このため、比較的小さい摩擦トルクでテーブル等を送り駆動することができるが、あまり大きな負荷容量を得ることができないため、射出成形機やプレス成形機などの可動盤を送り駆動する装置としては不向きであった。そこで、特許文献1や特許文献2に開示の転がりねじ装置では、転動体としてころ状転動体を用いることによって、より大きな負荷容量を得るようにしている。
【0004】
【特許文献1】
特開平7−77261号公報
【特許文献2】
特開2001−241527公報
【0005】
【発明が解決しようとする課題】
しかしながら、転動体としてころ状転動体を用いると、ころ状転動体が螺旋状軌道溝と線接触した状態で転動するため、ころ状転動体と螺旋状軌道溝との線接触部にすべり速度成分がころ状転動体の軸方向に発生する。このため、転動体としてころ状転動体を用いた場合には、ころ状転動体と螺旋状軌道溝との接触部にすべり摩擦力が転動体の軸方向に発生し、転がりねじ装置の摩擦トルクを増大させるという問題がある。
【0006】
また、転動体が円錐ころの場合は、ねじ軸及びナットから円錐ころに垂直なラジアル荷重が加わると、その分力が円錐ころの軸方向に作用することによって円錐ころの端面が螺旋状軌道溝の溝面に接触し、すべり摩擦が発生する。ころ状転動体の支持荷重が大きいときは、軸方向への摩擦力や分力も無視できない。ころ状転動体の端面と螺旋状軌道溝の溝面との接触は、ころ状転動体の周面部が螺旋状軌道溝の溝面に接触するのに比べ、大きなすべり速度を持つため、発熱や摩擦トルクが大きくなる。すべての転動体をころ状転動体とした転がりねじ装置では、軽荷重下でもころ状転動体の端面と螺旋状軌道溝とのすべり接触に起因して摩擦トルクが増大するという問題がある。
【0007】
本発明はこのような問題点に着目してなされたものであり、その目的とするところは、転動体として球状転動体を用いた場合よりも負荷容量を大きくすることができ、かつ転動体としてころ状転動体を用いた場合よりも摩擦トルクを低減することのできる転がりねじ装置を提供しようとするものである。
【0008】
【課題を解決するための手段】
上記の目的を達成するために、請求項1の発明は、外周面に螺旋状軌道溝を有するねじ軸と、前記螺旋状軌道溝に対向する螺旋状軌道溝を内周面に有するナットと、前記ねじ軸または前記ナットの回転運動に伴って前記螺旋状軌道溝間を転動する多数の転動体とを備えてなる転がりねじ装置において、前記転動体を球状転動体ところ状転動体の二種類としたことを特徴とする。
【0009】
このような構成によると、螺旋状軌道溝間を転動する全ての転動体のうち約半数の転動体が螺旋状軌道溝と点接触し、この接触部分ではすべり摩擦が小さくなるので、すべての転動体をころ状転動体とした場合よりも摩擦トルクを低減することができる。
請求項2の発明は、請求項1記載の転がりねじ装置において、前記球状転動体と前記ころ状転動体が同一の軌道溝中に混在することを特徴とする。
【0010】
請求項3の発明は、請求項1記載の転がりねじ装置において、前記球状転動体と前記ころ状転動体は、夫々別の軌道溝に配置される。
請求項4の発明は、請求項1乃至3のいずれかに記載の転がりねじ装置において、前記ねじ軸に負荷される軸方向荷重が小さいときは、前記球状転動体のみが前記ねじ軸及びナットの両軌道溝と接触して、前記ころ状転動体と前記ねじ軸及びナットの両軌道溝との間に隙間が生じるように、前記球状転動体と前記ころ状転動体の径を調節したことを特徴とする。
【0011】
請求項5の発明は、請求項1乃至3のいずれかに記載の転がりねじ装置において、前記ねじ軸に負荷される軸方向荷重が小さいときは、前記球状転動体のみが前記ねじ軸及びナットの両軌道溝と接触して、前記ころ状転動体と前記ねじ軸及びナットの両軌道溝との間に隙間が生じるように、前記軌道溝を軸方向にオフセットしたことを特徴とする。
【0012】
請求項6の発明は、請求項1乃至3のいずれかに記載の転がりねじ装置において、前記ねじ軸に負荷される軸方向荷重が小さいときは、前記球状転動体のみが前記ねじ軸及びナットの両軌道溝と接触して、前記ころ状転動体と前記ねじ軸及びナットの両軌道溝との間に隙間が生じるように、前記軌道溝の深さを調節したことを特徴とする。
【0013】
請求項7の発明は、請求項1乃至6のいずれかに記載の転がりねじ装置において、前記多数のころ状転動体のうち二つの隣り合う転動体の端面が互いに異なる方向を向くように前記ころ状転動体を前記螺旋状軌道溝間に配列したことを特徴とする。
請求項8の発明は、請求項1乃至6のいずれかに記載の転がりねじ装置において、前記多数のころ状転動体のうち二つの隣り合う転動体の端面が同じ方向を向くように前記ころ状転動体を前記螺旋状軌道溝間に配列したことを特徴とする。
【0014】
【発明の実施の形態】
以下、図面を参照して本発明の実施の形態について説明する。
図1は、本発明の第1の実施形態に係る転がりねじ装置の軸方向断面図である。同図に示されるように、本発明の第1の実施形態に係る転がりねじ装置10は、断面円形のねじ軸11と、このねじ軸11に外嵌する円筒状のナット12とを備えており、ねじ軸11の外周面には螺旋状軌道溝13が形成されている。この螺旋状軌道溝13はナット12の内周面に形成された螺旋状軌道溝14と対向しており、ねじ軸11またはナット12の一方が軸回りに回転すると、ナット12に組み込まれた多数のころ状転動体15が螺旋状軌道溝13,14間を転動するようになっている。また、転がりねじ装置10は転動体戻し部材としての転動体戻しチューブ16を備えており、螺旋状軌道溝13,14間を転動したころ状転動体15は転動体戻しチューブ16内を通って初期位置に戻るようになっている。
【0015】
ころ状転動体15は二つの隣り合う転動体15の端面15aが互いに反対方向を向くように螺旋状軌道溝13,14間に配列されており、これらのころ状転動体15の間には、ころ状転動体15の外径よりも大径の球状転動体17が設けられている。なお、この第1の実施形態では、螺旋状軌道溝13,14はその幅方向断面が90°の頂角を有する二等辺三角形状となっている。
【0016】
上述のように、螺旋状軌道溝13,14間を転動する多数のころ状転動体15の間にころ状転動体15の外径よりも大径の球状転動体17を配置すると、ころ状転動体15が螺旋状軌道溝13,14と接触する部分では両者の接触状態が線接触となるが、球状転動体17が螺旋状軌道溝13,14と接触する部分では両者の接触状態が点接触となる。これにより、球状転動体17が螺旋状軌道溝13,14と接触する部分ではすべり摩擦が小さいので、すべての転動体をころ状転動体とした場合に比較して摩擦トルクを低減することができる。また、ころ状転動体15が螺旋状軌道溝13,14と接触する部分では両者の接触状態が線接触となるので、すべての転動体を球状転動体とした場合よりも負荷容量を大きくすることができる。
【0017】
また、上述した第1の実施形態のように、球状転動体17の直径をころ状転動体15の外径より大きくすると、ねじ軸11とナット12の間に作用する軸方向荷重が小さいときには、球状転動体17のみが螺旋状軌道溝13,14に接触して軸方向荷重を支持するので、ころ状転動体15と螺旋状軌道溝13,14との間にすべり摩擦が生じることを抑制することができる。また、ナット12の軸方向に作用する負荷荷重が大きくなると、球状転動体17と螺旋状軌道溝13,14との接触部分が弾性変形する。これにより、ころ状転動体15が螺旋状軌道溝13,14と接触するようになり、ナット12の軸方向に作用する負荷荷重がころ状転動体15で支持されることになるので、すべての転動体を球状転動体とした場合に比較して、より大きな負荷容量を得ることができる。
【0018】
さらに、二つの隣り合う転動体15の端面15aが互いに異なる方向を向くようにころ状転動体15を螺旋状軌道溝13.14間に配列すると、ねじ軸11およびナット12に加わる二方向のアキシアル荷重をころ状転動体15で支持することができる。
球状転動体17の直径をころ状転動体15の外径より大きい値に選定すると、外部荷重がかからない状態で、球状転動体17は螺旋状軌道溝13,14に接触している(予圧状態)にあるが、ころ状転動体15と螺旋状軌道溝13,14との間には隙間がある状態にすることができる。この場合、無負荷状態でもガタがなく、ある程度の剛性を得ることができる。また、隙間のある場合と同様に、無負荷〜軽荷重下での摩擦トルクを抑えながら、重荷重下では大きな負荷容量を得ることができる。
【0019】
なお、上述した第1の実施形態では、ねじ軸11およびナット12に加わる二方向のアキシアル荷重を支持するために、二つの隣り合う転動体15の端面15aが互いに異なる方向を向くように、ころ状転動体15を螺旋状軌道溝13,14間に配列したが、一方向のアキシアル荷重のみをころ状転動体15で支持するのであれば、二つの隣り合う転動体15の端面15aが互いに同じ方向を向くようにころ状転動体15を螺旋状軌道溝13,14間に配列してもよい。
【0020】
次に、図2を参照して本発明の第2の実施形態について説明する。
図2において、本発明の第2の実施形態に係る転がりねじ装置20は、断面円形のねじ軸21と、このねじ軸21に外嵌する円筒状のナット22とを備えており、ねじ軸21の外周面には螺旋状軌道溝23,24が形成されている。これらの螺旋状軌道溝23,24はナット22の内周面に形成された螺旋状軌道溝25,26と夫々対向しており、ねじ軸21またはナット22の一方が軸回りに回転すると、ナット22に組み込まれた多数の転動体27,28が螺旋状軌道溝23,25及び24,26間をそれぞれ転動するようになっている。また、転がりねじ装置20は転動体戻し部材としての転動体戻しチューブ29,30を備えており、螺旋状軌道溝23,25間を転動した転動体27は転動体戻しチューブ29内を通って初期位置に戻り、螺旋状軌道溝24,26間を転動した転動体28は転動体戻しチューブ30内を通って初期位置に戻るようになっている。
【0021】
転動体27,28は、それぞれ転動体列を構成している。これらの転動体27,28のうち転動体27は、円筒ころ状に形成されている。また、これらのころ状転動体27は、二つの隣り合う転動体27の端面27aが互いに異なる方向を向くように螺旋状軌道溝23,25間に配列されている。
一方、転動体28は球状に形成されており、これらの球状転動体28が転動する螺旋状軌道溝24,26は、その幅方向断面が例えば曲率の等しい2つの円弧をゴシックアーチ状に組み合わせた形状あるいは楕円形状となっている。なお、ころ状転動体27が転動する螺旋状軌道溝23,25はその幅方向断面が90°の頂角を有する二等辺三角形状となっている。
【0022】
上述のように、ねじ軸21の外周面とナット22の内周面にそれぞれ二条ずつ形成された螺旋状軌道溝23〜26のうち螺旋状軌道溝23,25間を転動する転動体27をころ状転動体とし、螺旋状軌道溝24,26間を転動する転動体28を球状転動体にすると、ころ状転動体27と螺旋状軌道溝23,25との接触部分では両者の接触状態が線接触となるので、転動体を軌道溝に点接触させた場合よりも比較的大きな軸方向の負荷荷重を支持することができ、負荷容量の向上を図ることができる。また、球状転動体28と螺旋状軌道溝24,26との接触部分では両者の接触状態が点接触となり、この部分ではすべり摩擦が小さいので、すべての転動体をころ状転動体とした場合に比較して摩擦トルクを低減することができる。
【0023】
また、ねじ軸21に負荷される軸方向荷重が小さい場合、球状転動体28のみがねじ軸21及びナット22の両軌道溝24,25と接触して、ころ状転動体27とねじ軸21及びナット22の両軌道溝23,25との間に隙間が生じるように、球状転動体28ところ状転動体27の径を調節または軌道溝23,25を軸方向にオフセット或いは軌道溝23,25の深さを調節することによって、軽荷重で低トルクかつ重荷重で大負荷容量の転がりねじ装置を得ることができる。
【0024】
また、球状転動体28の径を大きくするなどの方法で、ねじ軸21に作用する外部荷重がない状態で球状転動体28のみを軌道溝24,26に接触させて予圧を与えることができ、上記の効果に加えて無負荷状態での剛性が得られる。
さらに、第2の実施形態では、上述した第1の実施形態よりも寿命の長い転がりねじ装置を得ることができる。すなわち、第1の実施形態ではころ状転動体15および球状転動体17が共通の軌道上を転動するため、軌道溝13,14の断面形状を90°の頂角を有する二等辺三角形状とし、軌道溝13,14の溝断面を直線形状とする必要がある。このため、軌道溝13,14の溝面と接触する球状転動体17の接触面圧が高くなり、球状転動体17の転がり疲労寿命を低下させるおそれがある。これに対して、第2の実施形態ではころ状転動体27および球状転動体28が共通の軌道上を転動しないので、球状転動体28が転動する軌道溝24,26の断面形状をゴシックアーチ形や楕円形とすることができ、これにより、軌道溝24,26の溝面と接触する球状転動体28の接触面圧が低く抑えられるので、寿命の長い転がりねじ装置を得ることができる。
【0025】
次に、図3を参照して本発明の第3の実施形態について説明する。
図3において、本発明の第3の実施形態に係る転がりねじ装置40は、断面円形のねじ軸41と、このねじ軸41に外嵌する円筒状のナット42とを備えており、ねじ軸41の外周面には螺旋状軌道溝43,44が形成されている。これらの螺旋状軌道溝43,44はナット42の内周面に形成された螺旋状軌道溝45,46と夫々対向しており、ねじ軸41またはナット42の一方が軸回りに回転すると、ナット42に組み込まれた多数の転動体47,48,49,50が螺旋状軌道溝43,45間又は44,46間を転動するようになっている。また、転がりねじ装置40は転動体戻し部材としての転動体戻しチューブ51,52,53,54を備えており、螺旋状軌道溝43,45間を転動した転動体47,49は転動体戻しチューブ51又は53内を転動して初期位置に戻り、螺旋状軌道溝44,46間を転動した転動体48,50は転動体戻しチューブ52又は54内を転動して初期位置に戻るようになっている。
【0026】
転動体47〜50は転動体列をそれぞれ構成しており、これらの転動体47〜50のうち転動体47,49は円筒ころ状に形成されている。また、転動体47,49は二つの隣り合う転動体47(又は49)の端面47a(又は49a)が同じ方向を向くように螺旋状軌道溝43.45間に配列され、さらにその中心軸線を他の転動体列を構成するころ状転動体49(又は47)の中心軸線と異なる側に傾斜させて螺旋状軌道溝43.45間に配列されている。
【0027】
一方、転動体48,50は球状に形成されており、これらの球状転動体48,50が転動する螺旋状軌道溝44,46は、その幅方向断面が例えば曲率の等しい2つの円弧をゴシックアーチ状に組み合わせた形状あるいは楕円形状となっている。なお、ころ状転動体47,49が転動する螺旋状軌道溝43,45はその幅方向断面が90°の頂角を有する二等辺三角形状となっている。
【0028】
上述のように、ナット42に組み込まれた多数の転動体47〜50のうち螺旋状軌道溝43,45間を転動する転動体47,49を円筒ころ状に形成するとともに、螺旋状軌道溝44,46間を転動する転動体48,50を球状に形成すると、転動体47,49が螺旋状軌道溝43,45と接触する部分では両者の接触状態が線接触となるので、転動体を軌道溝に点接触させた場合よりも比較的大きな軸方向の負荷荷重を支持することができ、負荷容量の向上を図ることができる。また、転動体48,50が螺旋状軌道溝44,46と接触する部分では両者の接触状態が点接触となり、この部分ではすべり摩擦が小さいので、すべての転動体をころ状転動体とした場合に比較して摩擦トルクを低減することができる。
【0029】
また、上述した第3の実施形態のように、ころ状転動体47(又は49)の中心軸線を他の転動体列を構成するころ状転動体49(又は47)の中心軸線と異なる側に傾斜させてころ状転動体47(又は49)を螺旋状軌道溝43.45間に配列すると、第1及び第2の実施形態と同様に、ねじ軸11およびナット12に加わる二方向のアキシアル荷重をころ状転動体47,49で支持することができる。
【0030】
次に、図4を参照して本発明の第4の実施形態について説明する。
図4において、本発明の第4の実施形態に係る転がりねじ装置60は、断面円形のねじ軸61と、このねじ軸61に外嵌する円筒状のナット62とを備えており、ねじ軸61の外周面には螺旋状軌道溝63,64が形成されている。これらの螺旋状軌道溝63,64はナット62の内周面に形成された螺旋状軌道溝65,66と夫々対向しており、ねじ軸61またはナット62の一方が軸回りに回転すると、ナット62に組み込まれた多数の転動体67,68,69,70が螺旋状軌道溝63,65又は64,66間を転動するようになっている。また、転がりねじ装置60は転動体戻し部材としての転動体戻しチューブ71,72,73,74を備えており、螺旋状軌道溝63,65間を転動した転動体67,69は転動体戻しチューブ71又は73内を通って初期位置に戻り、螺旋状軌道溝64,66間を転動した転動体68,70は転動体戻しチューブ72又は74内を通って初期位置に戻るようになっている。
【0031】
転動体67〜70はそれぞれ転動体列を構成しており、これらの転動体67〜70のうち転動体67,69は円筒ころ状に形成されている。また、転動体67,69は二つの隣り合う転動体67(又は69)の端面67a(又は69a)が同じ方向を向くように螺旋状軌道溝63.65間に配列されている。
一方、転動体68,70は球状に形成されており、これらの球状転動体68,70が転動する螺旋状軌道溝64,66は、その幅方向断面が例えば曲率の等しい2つの円弧をゴシックアーチ状に組み合わせた形状あるいは楕円形状となっている。なお、ころ状転動体67,69が転動する螺旋状軌道溝63,65はその幅方向断面が90°の頂角を有する二等辺三角形状となっている。
【0032】
このように構成される第4の実施形態では、上述した第3の実施形態と同様に、転動体67,69が螺旋状軌道溝63,65と接触する部分では両者の接触状態が線接触となるので、転動体を軌道溝に点接触させた場合よりも比較的大きな軸方向の負荷荷重を支持することができ、負荷容量の向上を図ることができる。また、転動体68,70が螺旋状軌道溝64,66と接触する部分では両者の接触状態が点接触となり、この部分ではすべり摩擦が小さいので、すべての転動体をころ状転動体とした場合に比較して摩擦トルクを低減することができる。
【0033】
また、この第4の実施形態では、二つの隣り合うころ状転動体67,69の端面67a,69aが同じ方向を向くようにころ状転動体67,69が螺旋状軌道溝63.65間に配列されているので、射出成形機やプレス成形機のように、一方向のアキシアル荷重が他方に比べて著しく大きい場合には、大きいほうのアキシアル荷重をころ状転動体67,69で支持し、小さいほうのアキシアル荷重を球状転動体68,70で支持することによって、より大きな高負荷容量が得られると共に摩擦トルクを低く抑えることができる。
【0034】
なお、本発明は上述した実施形態に限定されるものではない。たとえば、上述した各実施形態では転動体戻し部材として転動体戻しチューブを用いたが、転動体戻しチューブの代わりに、デフレクタ(循環こま)やエンドキャップ等を用いてもよい。また、上述した各実施形態ではころ状転動体として円筒状の転動体を使用したが、これの代わりに円錐状のころ状転動体を使用してもよい。さらに、上述した各実施形態では転動体同士の直接接触を許容する構成としたが、転動体の間に金属または樹脂からなる保持ピースを介在させたり、あるいは各転動体を保持器で保持したりすることによって、転動体同士の直接接触を防止する構成としてもよい。また、動作ストロークは限られるが、循環路を持たないボールねじにも適用可能である。さらに、球状転動体ところ状転動体との個数比や配置、同じ向きを持つころ状転動体と異なる向きを持つころ状転動体との個数比や配置等は任意としても良い。また、軌道溝の条数、巻き数、回路数についても、荷重等のその他の条件に応じて任意としても良い。また、球状転動体が転動する軌道溝の断面を単一円弧の断面形状としても良い。さらに、ころ状転動体が転動する軌道溝の断面形状は、90°の頂角を有する二等辺三角形状に限定されるものではない。
【0035】
【発明の効果】
以上説明したように、請求項1乃至3の発明によれば、螺旋状軌道溝間を転動する全ての転動体のうち約半数の転動体が螺旋状軌道溝と点接触し、この接触部分ではすべり摩擦が小さいので、より大きな負荷荷重を得られると共に摩擦トルクを低く抑えることができる。
【0036】
請求項4乃至6の発明によれば、軸方向の負荷荷重が比較的小さいときには球状転動体のみが螺旋状軌道溝と接触するので、軽荷重で低トルクかつ重荷重で大負荷容量の転がりねじ装置を得ることができる。
請求項7の発明によれば、上述した効果に加え、両方向の軸方向荷重を支持することができる。
【0037】
請求項8の発明によれば、上述した請求1乃至6の発明の効果に加え、特に一方向について大きな軸方向荷重を支持することができる。
【図面の簡単な説明】
【図1】本発明の第1の実施形態に係る転がりねじ装置の軸方向断面図である。
【図2】本発明の第2の実施形態に係る転がりねじ装置の軸方向断面図である。
【図3】本発明の第3の実施形態に係る転がりねじ装置の軸方向断面図である。
【図4】本発明の第4の実施形態に係る転がりねじ装置の軸方向断面図である。
【図5】ボールねじの軸方向断面図である。
【符号の説明】
11  ねじ軸
12  ナット
13,14  螺旋状軌道溝
15  ころ状転動体
16  転動体戻しチューブ
17  球状転動体
21  ねじ軸
22  ナット
23,24,25,26  螺旋状軌道溝
27,28  転動体
29,30  転動体戻しチューブ
41  ねじ軸
42  ナット
43,44,45,46  螺旋状軌道溝
47,48,49,50  転動体
51,52,53,54  転動体戻しチューブ
61  ねじ軸
62  ナット
63,64,65,66  螺旋状軌道溝
67,68,69,70  転動体
71,72,73,74  転動体戻しチューブ
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a rolling screw device used for, for example, a table feed device that feeds and drives a work table of a machine tool in one axial direction.
[0002]
[Prior art]
2. Description of the Related Art In a table feed device of a machine tool, a ball screw is used as a device for converting a rotary motion of a motor or the like into a linear motion. For example, as shown in FIG. 5, the ball screw includes a screw shaft 1 having a circular cross section and a cylindrical nut 2 fitted on the screw shaft 1. An orbital groove 3 is formed. The spiral raceway groove 3 is opposed to the spiral raceway groove 4 formed on the inner peripheral surface of the nut 2, and when one of the screw shaft 1 and the nut 2 rotates around the axis, the spiral raceway groove 3 is incorporated into the nut 2. Ball 5 rolls between the spiral track grooves 3 and 4.
[0003]
Such a ball screw rolls in a state where the ball 5 as a rolling element is in point contact with the spiral raceway grooves 3 and 4. For this reason, a table or the like can be fed and driven with a relatively small friction torque, but since a large load capacity cannot be obtained, it is not suitable as a device for feeding and driving a movable plate such as an injection molding machine or a press molding machine. Met. Therefore, in the rolling screw devices disclosed in Patent Literature 1 and Patent Literature 2, a larger load capacity is obtained by using a roller-shaped rolling element as the rolling element.
[0004]
[Patent Document 1]
JP-A-7-77261 [Patent Document 2]
JP 2001-241527 A
[Problems to be solved by the invention]
However, when a roller-type rolling element is used as the rolling element, the roller-type rolling element rolls in a state of linear contact with the spiral raceway groove, so that a sliding speed is applied to the line contact portion between the roller-type rolling element and the spiral raceway groove. The component is generated in the axial direction of the roller-shaped rolling element. For this reason, when a roller-shaped rolling element is used as a rolling element, a sliding frictional force is generated in the contact portion between the roller-shaped rolling element and the spiral raceway groove in the axial direction of the rolling element, and the friction torque of the rolling screw device is increased. There is a problem that increases.
[0006]
When the rolling element is a tapered roller, when a vertical radial load is applied to the tapered roller from the screw shaft and the nut, the component force acts in the axial direction of the tapered roller, so that the end face of the tapered roller is formed in a spiral raceway groove. , Causing sliding friction. When the supporting load of the roller-shaped rolling elements is large, frictional force and component force in the axial direction cannot be ignored. The contact between the end surface of the roller-shaped rolling element and the groove surface of the spiral raceway groove has a larger sliding speed than that of the peripheral surface of the roller-shaped rolling member contacting the groove surface of the spiral raceway groove, so that heat is generated. The friction torque increases. In a rolling screw device in which all rolling elements are roller-shaped rolling elements, there is a problem that even under a light load, friction torque increases due to sliding contact between the end face of the roller-shaped rolling elements and the spiral raceway groove.
[0007]
The present invention has been made in view of such a problem, and an object thereof is to make it possible to increase the load capacity as compared with a case where a spherical rolling element is used as a rolling element, and as a rolling element. An object of the present invention is to provide a rolling screw device that can reduce friction torque as compared with a case where a roller-shaped rolling element is used.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, the invention according to claim 1 includes a screw shaft having a spiral raceway groove on an outer peripheral surface, a nut having a spiral raceway groove on the inner peripheral surface facing the spiral raceway groove, In a rolling screw device comprising: a plurality of rolling elements that roll between the spiral raceway grooves in accordance with the rotational movement of the screw shaft or the nut, the rolling elements are spherical rolling elements and two types of rolling elements. It is characterized by having.
[0009]
According to such a configuration, about half of the rolling elements rolling between the spiral raceway grooves make point contact with the spiral raceway groove, and the sliding friction is reduced at this contact portion. The friction torque can be reduced as compared with the case where the rolling elements are roller-shaped rolling elements.
According to a second aspect of the present invention, in the rolling screw device according to the first aspect, the spherical rolling element and the roller-shaped rolling element are mixed in the same raceway groove.
[0010]
According to a third aspect of the present invention, in the rolling screw device according to the first aspect, the spherical rolling element and the roller-shaped rolling element are arranged in different raceway grooves.
According to a fourth aspect of the present invention, in the rolling screw device according to any one of the first to third aspects, when the axial load applied to the screw shaft is small, only the spherical rolling element includes the screw shaft and the nut. The diameter of the spherical rolling element and the diameter of the roller-shaped rolling element are adjusted so that the roller-shaped rolling element is in contact with both the raceway grooves, so that a gap is formed between the roller-shaped rolling element and both the raceway grooves of the screw shaft and the nut. Features.
[0011]
According to a fifth aspect of the present invention, in the rolling screw device according to any one of the first to third aspects, when the axial load applied to the screw shaft is small, only the spherical rolling element is mounted on the screw shaft and the nut. The raceway grooves are offset in the axial direction so that the raceway grooves are in contact with the raceway grooves and a gap is formed between the raceway grooves of the screw shaft and the nut.
[0012]
According to a sixth aspect of the present invention, in the rolling screw device according to any one of the first to third aspects, when the axial load applied to the screw shaft is small, only the spherical rolling element includes the screw shaft and the nut. The depth of the raceway groove is adjusted such that a gap is formed between the roller-shaped rolling element and the raceway grooves of the screw shaft and the nut in contact with the raceway grooves.
[0013]
According to a seventh aspect of the present invention, in the rolling screw device according to any one of the first to sixth aspects, the rollers are such that end faces of two adjacent rolling elements among the plurality of roller-shaped rolling elements face different directions. The rolling elements are arranged between the spiral track grooves.
According to an eighth aspect of the present invention, in the rolling screw device according to any one of the first to sixth aspects, the rollers are arranged such that end faces of two adjacent rolling elements of the plurality of rolling elements face in the same direction. The rolling elements are arranged between the spiral track grooves.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is an axial sectional view of a rolling screw device according to a first embodiment of the present invention. As shown in FIG. 1, a rolling screw device 10 according to a first embodiment of the present invention includes a screw shaft 11 having a circular cross section, and a cylindrical nut 12 fitted on the screw shaft 11. A spiral track groove 13 is formed on the outer peripheral surface of the screw shaft 11. The spiral raceway groove 13 is opposed to a spiral raceway groove 14 formed on the inner peripheral surface of the nut 12, and when one of the screw shaft 11 or the nut 12 rotates around the axis, a number of spiral raceway grooves 13 incorporated in the nut 12 are formed. The roller-shaped rolling elements 15 roll between the spiral track grooves 13 and 14. In addition, the rolling screw device 10 includes a rolling element return tube 16 as a rolling element return member, and the roller-shaped rolling element 15 that has rolled between the spiral track grooves 13 and 14 passes through the rolling element return tube 16. It returns to the initial position.
[0015]
The roller-shaped rolling elements 15 are arranged between the spiral raceway grooves 13 and 14 such that the end faces 15a of two adjacent rolling elements 15 face in opposite directions, and between these roller-shaped rolling elements 15, A spherical rolling element 17 having a larger diameter than the outer diameter of the roller-shaped rolling element 15 is provided. In the first embodiment, the spiral raceway grooves 13 and 14 have an isosceles triangular cross section in the width direction having an apex angle of 90 °.
[0016]
As described above, when the spherical rolling elements 17 having a diameter larger than the outer diameter of the roller-shaped rolling elements 15 are arranged between the many roller-shaped rolling elements 15 rolling between the spiral raceway grooves 13 and 14, At the portion where the rolling element 15 contacts the spiral raceway grooves 13 and 14, the contact state between the two forms a line contact, but at the part where the spherical rolling element 17 contacts the spiral raceway grooves 13 and 14, the contact state between the two points is reduced. It comes into contact. Thereby, since the sliding friction is small at the portion where the spherical rolling element 17 comes into contact with the spiral raceway grooves 13 and 14, the friction torque can be reduced as compared with the case where all the rolling elements are roller-shaped rolling elements. . Further, since the contact state between the roller-shaped rolling elements 15 and the spiral raceway grooves 13 and 14 is a line contact at a portion where the roller-shaped rolling elements 15 are in contact with the spiral raceway grooves 13 and 14, the load capacity should be larger than when all the rolling elements are spherical rolling elements. Can be.
[0017]
When the diameter of the spherical rolling element 17 is larger than the outer diameter of the roller rolling element 15 as in the first embodiment described above, when the axial load acting between the screw shaft 11 and the nut 12 is small, Since only the spherical rolling elements 17 are in contact with the spiral raceway grooves 13 and 14 to support the axial load, the occurrence of sliding friction between the roller rolling elements 15 and the spiral raceway grooves 13 and 14 is suppressed. be able to. When the load acting on the nut 12 in the axial direction increases, the contact portion between the spherical rolling element 17 and the spiral raceway grooves 13 and 14 is elastically deformed. As a result, the roller-shaped rolling elements 15 come into contact with the spiral raceway grooves 13 and 14, and the load applied to the nut 12 in the axial direction is supported by the roller-shaped rolling elements 15. A larger load capacity can be obtained as compared with a case where the rolling elements are spherical rolling elements.
[0018]
Further, when the roller-shaped rolling elements 15 are arranged between the spiral raceway grooves 13.14 so that the end faces 15a of the two adjacent rolling elements 15 face different directions, the biaxial axial force applied to the screw shaft 11 and the nut 12 is increased. The load can be supported by the roller 15.
If the diameter of the spherical rolling element 17 is selected to be larger than the outer diameter of the roller rolling element 15, the spherical rolling element 17 is in contact with the spiral raceway grooves 13, 14 in a state where no external load is applied (preload state). However, there can be a state where there is a gap between the roller-shaped rolling element 15 and the spiral raceway grooves 13 and 14. In this case, there is no backlash even in a no-load state, and a certain degree of rigidity can be obtained. Further, similarly to the case where there is a gap, it is possible to obtain a large load capacity under a heavy load while suppressing the friction torque under no load to a light load.
[0019]
In the above-described first embodiment, in order to support axial loads in two directions applied to the screw shaft 11 and the nut 12, the rollers 15 are arranged such that the end faces 15a of two adjacent rolling elements 15 face different directions. The rolling elements 15 are arranged between the spiral raceway grooves 13 and 14, but if only the axial load in one direction is supported by the roller rolling elements 15, the end faces 15a of two adjacent rolling elements 15 are the same. The roller-shaped rolling elements 15 may be arranged between the spiral track grooves 13 and 14 so as to face in the direction.
[0020]
Next, a second embodiment of the present invention will be described with reference to FIG.
In FIG. 2, a rolling screw device 20 according to a second embodiment of the present invention includes a screw shaft 21 having a circular cross section, and a cylindrical nut 22 fitted on the screw shaft 21. Spiral track grooves 23 and 24 are formed on the outer peripheral surface of. The spiral raceway grooves 23 and 24 are opposed to the spiral raceway grooves 25 and 26 formed on the inner peripheral surface of the nut 22, respectively. When one of the screw shaft 21 or the nut 22 rotates around the axis, the nut raceway groove 23 or 24 is rotated. A large number of rolling elements 27 and 28 incorporated in the rolling element 22 roll between the spiral track grooves 23, 25 and 24 and 26, respectively. The rolling screw device 20 includes rolling element return tubes 29 and 30 as rolling element return members. The rolling element 27 that has rolled between the spiral raceway grooves 23 and 25 passes through the rolling element return tube 29. The rolling element 28 that has returned to the initial position and rolled between the spiral track grooves 24 and 26 passes through the rolling element return tube 30 and returns to the initial position.
[0021]
The rolling elements 27 and 28 each constitute a rolling element row. The rolling element 27 among these rolling elements 27 and 28 is formed in a cylindrical roller shape. Further, these roller-shaped rolling elements 27 are arranged between the spiral raceway grooves 23 and 25 such that end surfaces 27a of two adjacent rolling elements 27 face different directions.
On the other hand, the rolling element 28 is formed in a spherical shape. The spiral raceway grooves 24 and 26 on which the spherical rolling element 28 rolls are formed by combining two arcs having the same curvature in the width direction cross section in a gothic arch shape. Shape or elliptical shape. The spiral raceway grooves 23 and 25 on which the roller-shaped rolling elements 27 roll have an isosceles triangular shape having a cross section in the width direction having an apex angle of 90 °.
[0022]
As described above, of the spiral raceway grooves 23 to 26 formed on the outer peripheral surface of the screw shaft 21 and the inner peripheral surface of the nut 22, the rolling elements 27 rolling between the spiral raceway grooves 23 and 25 are formed. When the rolling element 28 that rolls between the spiral track grooves 24 and 26 is a spherical rolling element, the contact state between the roller rolling element 27 and the spiral track grooves 23 and 25 is a contact state between them. Is in line contact, so that a relatively large axial load can be supported as compared with the case where the rolling element is brought into point contact with the raceway groove, and the load capacity can be improved. Further, at the contact portion between the spherical rolling element 28 and the spiral raceway grooves 24 and 26, the contact state between them is point contact, and since sliding friction is small at this point, when all the rolling elements are roller-shaped rolling elements, The friction torque can be reduced in comparison.
[0023]
When the axial load applied to the screw shaft 21 is small, only the spherical rolling element 28 comes into contact with the raceway grooves 24 and 25 of the screw shaft 21 and the nut 22, and the roller-shaped rolling element 27 and the screw shaft 21 and The diameter of the spherical rolling element 28 or the rolling element 27 is adjusted or the track grooves 23 and 25 are offset in the axial direction or the raceway grooves 23 and 25 are formed so that a gap is formed between the two raceways 23 and 25 of the nut 22. By adjusting the depth, it is possible to obtain a rolling screw device having a light load, a low torque and a heavy load and a large load capacity.
[0024]
In addition, by applying a method such as increasing the diameter of the spherical rolling element 28, the preload can be applied by bringing only the spherical rolling element 28 into contact with the raceway grooves 24 and 26 without an external load acting on the screw shaft 21, In addition to the above effects, rigidity in a no-load state can be obtained.
Further, in the second embodiment, it is possible to obtain a rolling screw device having a longer life than the first embodiment described above. That is, in the first embodiment, since the roller-shaped rolling elements 15 and the spherical rolling elements 17 roll on a common track, the cross-sectional shape of the track grooves 13 and 14 is an isosceles triangular shape having a vertex angle of 90 °. It is necessary to make the groove cross sections of the track grooves 13 and 14 straight. For this reason, the contact surface pressure of the spherical rolling element 17 that comes into contact with the groove surfaces of the raceway grooves 13 and 14 increases, and the rolling fatigue life of the spherical rolling element 17 may be reduced. On the other hand, in the second embodiment, since the roller-shaped rolling elements 27 and the spherical rolling elements 28 do not roll on a common track, the cross-sectional shapes of the track grooves 24 and 26 on which the spherical rolling elements 28 roll are Gothic. The contact surface pressure of the spherical rolling element 28 that contacts the groove surfaces of the raceway grooves 24 and 26 can be suppressed to be low, so that a long-life rolling screw device can be obtained. .
[0025]
Next, a third embodiment of the present invention will be described with reference to FIG.
In FIG. 3, a rolling screw device 40 according to a third embodiment of the present invention includes a screw shaft 41 having a circular cross section, and a cylindrical nut 42 fitted around the screw shaft 41. Are formed with spiral track grooves 43 and 44 on the outer peripheral surface thereof. The spiral race grooves 43 and 44 are opposed to the spiral race grooves 45 and 46 formed on the inner peripheral surface of the nut 42, respectively, and when one of the screw shaft 41 and the nut 42 rotates around the axis, the nut race A large number of rolling elements 47, 48, 49, 50 incorporated in 42 roll between the spiral track grooves 43, 45 or 44, 46. The rolling screw device 40 includes rolling element return tubes 51, 52, 53, and 54 as rolling element returning members, and the rolling elements 47 and 49 that have rolled between the spiral raceway grooves 43 and 45 return the rolling elements. The rolling elements 48 and 50 that have rolled in the tube 51 or 53 and returned to the initial position, and have rolled between the spiral raceway grooves 44 and 46 roll in the rolling element return tube 52 or 54 and return to the initial position. It has become.
[0026]
The rolling elements 47 to 50 constitute rolling element rows, respectively, and among the rolling elements 47 to 50, the rolling elements 47 and 49 are formed in cylindrical roller shapes. The rolling elements 47 and 49 are arranged between the spiral raceway grooves 43 and 45 so that the end faces 47a (or 49a) of two adjacent rolling elements 47 (or 49) face the same direction. The other rolling element row is arranged between the spiral raceway grooves 43 and 45 so as to be inclined to a side different from the center axis of the roller-shaped rolling elements 49 (or 47).
[0027]
On the other hand, the rolling elements 48 and 50 are formed in a spherical shape, and the spiral raceway grooves 44 and 46 on which the spherical rolling elements 48 and 50 roll are formed into two circular arcs having the same cross section in the width direction, for example, the curvature. It has a shape combined with an arch or an elliptical shape. The spiral raceway grooves 43, 45 on which the roller-shaped rolling elements 47, 49 roll are formed in an isosceles triangular shape having a 90 ° vertical angle in a cross section in the width direction.
[0028]
As described above, among the many rolling elements 47 to 50 incorporated in the nut 42, the rolling elements 47 and 49 that roll between the spiral track grooves 43 and 45 are formed in a cylindrical roller shape, and the spiral track grooves are formed. When the rolling elements 48 and 50 that roll between the rolling elements 44 and 46 are formed in a spherical shape, the contact state between the rolling elements 47 and 49 is a line contact at a portion where the rolling elements 47 and 49 are in contact with the spiral raceway grooves 43 and 45. Can be supported in a relatively large axial load as compared with a case where the shaft is brought into point contact with the raceway groove, and the load capacity can be improved. When the rolling elements 48 and 50 are in contact with the spiral raceway grooves 44 and 46, the contact state between them is point contact, and since sliding friction is small in this area, all the rolling elements are roller-type rolling elements. , The friction torque can be reduced.
[0029]
Further, as in the third embodiment described above, the center axis of the roller-shaped rolling element 47 (or 49) is located on a side different from the center axis of the roller-shaped rolling element 49 (or 47) constituting another row of rolling elements. When the roller-shaped rolling elements 47 (or 49) are inclined and arranged between the spiral raceway grooves 43 and 45, a bidirectional axial load applied to the screw shaft 11 and the nut 12 as in the first and second embodiments. Can be supported by the roller-shaped rolling elements 47 and 49.
[0030]
Next, a fourth embodiment of the present invention will be described with reference to FIG.
In FIG. 4, a rolling screw device 60 according to a fourth embodiment of the present invention includes a screw shaft 61 having a circular cross section, and a cylindrical nut 62 fitted around the screw shaft 61. Are formed on the outer peripheral surface thereof with spiral track grooves 63 and 64. These spiral race grooves 63, 64 are opposed to the spiral race grooves 65, 66 formed on the inner peripheral surface of the nut 62, respectively, and when one of the screw shaft 61 or the nut 62 rotates around the axis, the nut race nut 63 A large number of rolling elements 67, 68, 69, 70 incorporated in 62 roll between the spiral track grooves 63, 65 or 64, 66. The rolling screw device 60 includes rolling element return tubes 71, 72, 73, and 74 as rolling element returning members, and the rolling elements 67 and 69 that have rolled between the spiral track grooves 63 and 65 return the rolling elements. The rolling elements 68 and 70 that have returned between the spiral raceway grooves 64 and 66 after returning to the initial position through the tubes 71 or 73 return to the initial position through the rolling element return tubes 72 or 74. I have.
[0031]
The rolling elements 67 to 70 each constitute a rolling element row, and among the rolling elements 67 to 70, the rolling elements 67 and 69 are formed in a cylindrical roller shape. The rolling elements 67 and 69 are arranged between the spiral track grooves 63 and 65 so that the end faces 67a (or 69a) of two adjacent rolling elements 67 (or 69) face the same direction.
On the other hand, the rolling elements 68 and 70 are formed in a spherical shape, and the spiral raceway grooves 64 and 66 on which the spherical rolling elements 68 and 70 roll form two arcs having the same cross-section in the width direction, for example, Gothic. It has a shape combined with an arch or an elliptical shape. The spiral raceway grooves 63, 65 on which the roller-shaped rolling elements 67, 69 roll are formed in an isosceles triangular shape having a cross section in the width direction having an apex angle of 90 °.
[0032]
In the fourth embodiment configured as described above, as in the above-described third embodiment, the contact state between the rolling elements 67 and 69 is linear contact at the portion where the rolling elements 67 and 69 contact the spiral track grooves 63 and 65. Therefore, a relatively large axial load can be supported as compared with the case where the rolling element is brought into point contact with the raceway groove, and the load capacity can be improved. When the rolling elements 68 and 70 are in contact with the spiral raceway grooves 64 and 66, the contact state between them is point contact, and since sliding friction is small in this area, all the rolling elements are roller-type rolling elements. , The friction torque can be reduced.
[0033]
Further, in the fourth embodiment, the roller-shaped rolling elements 67, 69 are positioned between the spiral track grooves 63, 65 such that the end faces 67a, 69a of the two adjacent roller-shaped rolling elements 67, 69 face the same direction. When the axial load in one direction is significantly larger than the other, as in the case of an injection molding machine or a press molding machine, the larger axial load is supported by the roller-shaped rolling elements 67 and 69, By supporting the smaller axial load by the spherical rolling elements 68 and 70, a larger high load capacity can be obtained and the friction torque can be suppressed low.
[0034]
Note that the present invention is not limited to the embodiment described above. For example, in each of the above-described embodiments, the rolling element return tube is used as the rolling element return member, but a deflector (circulation top), an end cap, or the like may be used instead of the rolling element return tube. Further, in each of the above-described embodiments, a cylindrical rolling element is used as the roller-shaped rolling element, but a conical roller-shaped rolling element may be used instead. Furthermore, in each of the above-described embodiments, the configuration is such that direct contact between the rolling elements is allowed, but a holding piece made of metal or resin is interposed between the rolling elements, or each rolling element is held by a retainer. By doing so, the configuration may be such that direct contact between the rolling elements is prevented. Although the operation stroke is limited, the present invention can be applied to a ball screw having no circulation path. Furthermore, the number ratio and arrangement of the spherical rolling elements and the rolling elements, and the number ratio and arrangement of the roller rolling elements having the same direction and the roller rolling elements having different directions may be arbitrary. Further, the number of tracks, the number of turns, and the number of circuits of the raceway groove may be arbitrary depending on other conditions such as load. Further, the cross section of the raceway groove on which the spherical rolling element rolls may have a single circular arc cross section. Further, the cross-sectional shape of the raceway groove on which the roller-shaped rolling element rolls is not limited to an isosceles triangle having an apex angle of 90 °.
[0035]
【The invention's effect】
As described above, according to the first to third aspects of the present invention, about half of the rolling elements rolling between the spiral raceway grooves make point contact with the spiral raceway groove, and this contact portion Thus, since the sliding friction is small, a larger load can be obtained and the friction torque can be suppressed low.
[0036]
According to the invention of claims 4 to 6, when the axial load is relatively small, only the spherical rolling element comes into contact with the spiral raceway groove, so that the rolling screw has a light load, a low torque and a heavy load and a large load capacity. A device can be obtained.
According to the seventh aspect of the invention, in addition to the above-described effects, it is possible to support axial loads in both directions.
[0037]
According to the eighth aspect, in addition to the effects of the first to sixth aspects, it is possible to support a large axial load particularly in one direction.
[Brief description of the drawings]
FIG. 1 is an axial sectional view of a rolling screw device according to a first embodiment of the present invention.
FIG. 2 is an axial sectional view of a rolling screw device according to a second embodiment of the present invention.
FIG. 3 is an axial sectional view of a rolling screw device according to a third embodiment of the present invention.
FIG. 4 is an axial sectional view of a rolling screw device according to a fourth embodiment of the present invention.
FIG. 5 is an axial sectional view of a ball screw.
[Explanation of symbols]
11 Screw shaft 12 Nut 13, 14 Spiral raceway groove 15 Roller rolling element 16 Rolling element return tube 17 Spherical rolling element 21 Screw shaft 22 Nut 23, 24, 25, 26 Spiral raceway groove 27, 28 Rolling element 29, 30 Rolling member return tube 41 Screw shaft 42 Nuts 43, 44, 45, 46 Helical raceway grooves 47, 48, 49, 50 Rolling members 51, 52, 53, 54 Rolling member return tube 61 Screw shaft 62 Nuts 63, 64, 65 , 66 Spiral raceway groove 67, 68, 69, 70 Rolling element 71, 72, 73, 74 Rolling element return tube

Claims (8)

外周面に螺旋状軌道溝を有するねじ軸と、前記螺旋状軌道溝に対向する螺旋状軌道溝を内周面に有するナットと、前記ねじ軸または前記ナットの回転運動に伴って前記螺旋状軌道溝間を転動する多数の転動体とを備えてなる転がりねじ装置において、
前記転動体を球状転動体ところ状転動体の二種類としたことを特徴とする転がりねじ装置。
A screw shaft having a spiral raceway groove on an outer peripheral surface, a nut having a spiral raceway groove facing the spiral raceway groove on an inner peripheral surface, and the spiral raceway with the rotational movement of the screw shaft or the nut In a rolling screw device comprising a number of rolling elements rolling between grooves,
A rolling screw device characterized in that the rolling elements are of two types: spherical rolling elements and rolling elements.
前記球状転動体と前記ころ状転動体は、同一の軌道溝中に混在することを特徴とする請求項1記載の転がりねじ装置。The rolling screw device according to claim 1, wherein the spherical rolling element and the roller-shaped rolling element are mixed in the same raceway groove. 前記球状転動体と前記ころ状転動体は、夫々別の軌道溝に配置されることを特徴とする請求項1記載の転がりねじ装置。The rolling screw device according to claim 1, wherein the spherical rolling element and the roller-shaped rolling element are arranged in different raceway grooves, respectively. 前記ねじ軸に負荷される軸方向荷重が小さいときは、前記球状転動体のみが前記ねじ軸及びナットの両軌道溝と接触して、前記ころ状転動体と前記ねじ軸及びナットの両軌道溝との間に隙間が生じるように、前記球状転動体と前記ころ状転動体の径を調節したことを特徴とする請求項1乃至3のいずれかに記載の転がりねじ装置。When the axial load applied to the screw shaft is small, only the spherical rolling element comes into contact with both the raceway grooves of the screw shaft and the nut, and the two raceway grooves of the roller-like rolling element and the screw shaft and the nut are formed. The rolling screw device according to any one of claims 1 to 3, wherein the diameters of the spherical rolling element and the roller-shaped rolling element are adjusted so that a gap is formed between the rolling element and the spherical rolling element. 前記ねじ軸に負荷される軸方向荷重が小さいときは、前記球状転動体のみが前記ねじ軸及びナットの両軌道溝と接触して、前記ころ状転動体と前記ねじ軸及びナットの両軌道溝との間に隙間が生じるように、前記軌道溝を軸方向にオフセットしたことを特徴とする請求項1乃至3のいずれかに記載の転がりねじ装置。When the axial load applied to the screw shaft is small, only the spherical rolling element comes into contact with both the raceway grooves of the screw shaft and the nut, and the two raceway grooves of the roller-like rolling element and the screw shaft and the nut are formed. The rolling screw device according to any one of claims 1 to 3, wherein the raceway groove is offset in the axial direction so that a gap is formed between the rolling screw device and the rolling screw device. 前記ねじ軸に負荷される軸方向荷重が小さいときは、前記球状転動体のみが前記ねじ軸及びナットの両軌道溝と接触して、前記ころ状転動体と前記ねじ軸及びナットの両軌道溝との間に隙間が生じるように、前記軌道溝の深さを調節したことを特徴とする請求項1乃至3のいずれかに記載の転がりねじ装置。When the axial load applied to the screw shaft is small, only the spherical rolling element comes into contact with both the raceway grooves of the screw shaft and the nut, and the two raceway grooves of the roller-like rolling element and the screw shaft and the nut are formed. 4. The rolling screw device according to claim 1, wherein the depth of the raceway groove is adjusted so that a gap is formed between the rolling screw device and the rolling screw device. 前記多数のころ状転動体のうち二つの隣り合う転動体の端面が互いに異なる方向を向くように前記ころ状転動体を前記螺旋状軌道溝間に配列したことを特徴とする請求項1乃至6のいずれかに記載の転がりねじ装置。7. The roller-shaped rolling elements are arranged between the spiral raceway grooves so that end faces of two adjacent rolling elements of the plurality of roller-shaped rolling elements face different directions. The rolling screw device according to any one of the above. 前記多数のころ状転動体のうち二つの隣り合う転動体の端面が同じ方向を向くように前記ころ状転動体を前記螺旋状軌道溝間に配列したことを特徴とする請求項1乃至6のいずれかに記載の転がりねじ装置。The roller-shaped rolling elements are arranged between the spiral raceway grooves such that end faces of two adjacent rolling elements among the plurality of roller-shaped rolling elements face in the same direction. The rolling screw device according to any one of the above.
JP2002302549A 2002-10-17 2002-10-17 Rolling screw device Expired - Fee Related JP4292779B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002302549A JP4292779B2 (en) 2002-10-17 2002-10-17 Rolling screw device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002302549A JP4292779B2 (en) 2002-10-17 2002-10-17 Rolling screw device

Publications (2)

Publication Number Publication Date
JP2004138136A true JP2004138136A (en) 2004-05-13
JP4292779B2 JP4292779B2 (en) 2009-07-08

Family

ID=32450584

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002302549A Expired - Fee Related JP4292779B2 (en) 2002-10-17 2002-10-17 Rolling screw device

Country Status (1)

Country Link
JP (1) JP4292779B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006118649A (en) * 2004-10-22 2006-05-11 Thk Co Ltd Roller screw
JP2006170318A (en) * 2004-12-15 2006-06-29 Ntn Corp Electric linear actuator
WO2006135038A1 (en) 2005-06-17 2006-12-21 Thk Co., Ltd. Screw device and method of manufacturing the same
WO2009011282A1 (en) * 2007-07-18 2009-01-22 Thk Co., Ltd. Motion guide device, and screw device
TWI555924B (en) * 2014-09-10 2016-11-01 上銀科技股份有限公司 Six rows of ball type linear guideway
EP3586037A4 (en) * 2017-02-27 2020-12-16 Concept & Design Ltd. An anti-backlash device and method

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006118649A (en) * 2004-10-22 2006-05-11 Thk Co Ltd Roller screw
JP4634116B2 (en) * 2004-10-22 2011-02-16 Thk株式会社 Roller screw
JP2006170318A (en) * 2004-12-15 2006-06-29 Ntn Corp Electric linear actuator
WO2006135038A1 (en) 2005-06-17 2006-12-21 Thk Co., Ltd. Screw device and method of manufacturing the same
EP1900970A1 (en) * 2005-06-17 2008-03-19 THK Co., Ltd. Screw device and method of manufacturing the same
EP1900970A4 (en) * 2005-06-17 2011-03-02 Thk Co Ltd Screw device and method of manufacturing the same
US8051729B2 (en) 2005-06-17 2011-11-08 Thk Co., Ltd. Screw device and method of manufacturing the same
JP4907527B2 (en) * 2005-06-17 2012-03-28 Thk株式会社 Screw device and method of manufacturing screw device
WO2009011282A1 (en) * 2007-07-18 2009-01-22 Thk Co., Ltd. Motion guide device, and screw device
JPWO2009011282A1 (en) * 2007-07-18 2010-09-24 Thk株式会社 Motion guide device and screw device
TWI555924B (en) * 2014-09-10 2016-11-01 上銀科技股份有限公司 Six rows of ball type linear guideway
EP3586037A4 (en) * 2017-02-27 2020-12-16 Concept & Design Ltd. An anti-backlash device and method

Also Published As

Publication number Publication date
JP4292779B2 (en) 2009-07-08

Similar Documents

Publication Publication Date Title
US8141445B2 (en) Supporting structure of ball screw shaft
JP2006349060A (en) Ball screw
JPH079260B2 (en) Combined movement guide device
WO2012144371A1 (en) Linear motion guide mechanism
JP2007285367A (en) Rolling bearing corresponding to thrust load
JP6804783B1 (en) Ball screw mechanism and linear moving device
JP2004138136A (en) Rolling screw device
EP1067315A3 (en) Ball screw with ball retainer
JP5182145B2 (en) Ball screw
JP3952466B2 (en) Ball spacing device and its roll parts
WO2005038301A1 (en) Roller screw
JP5130841B2 (en) Linear motion device
JP2004068882A (en) Roller screw unit
JP4244610B2 (en) Ball screw device and method of manufacturing the device
JP2007155037A (en) Spline device and screw device
JP2007046688A (en) Double-row rolling bearing and barrel supporting structure
JP3656440B2 (en) Top ball screw
JP2016205619A (en) Ball Screw
JP4829436B2 (en) Ball screw with alternately inserted steel balls and ceramic balls
JP5179978B2 (en) Reduction gear
JP2005003179A (en) Roller screw device
JPH03223518A (en) Bearing device
JP2004036702A (en) Rolling screw device
JP2004100762A (en) Roller screw device
JPH0777261A (en) Screw device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051005

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080822

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080826

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081024

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090317

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090330

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120417

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4292779

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130417

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130417

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140417

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees