JP2004137797A - Preventive maintenance method of steel structure by ultraviolet curing type frp - Google Patents

Preventive maintenance method of steel structure by ultraviolet curing type frp Download PDF

Info

Publication number
JP2004137797A
JP2004137797A JP2002304449A JP2002304449A JP2004137797A JP 2004137797 A JP2004137797 A JP 2004137797A JP 2002304449 A JP2002304449 A JP 2002304449A JP 2002304449 A JP2002304449 A JP 2002304449A JP 2004137797 A JP2004137797 A JP 2004137797A
Authority
JP
Japan
Prior art keywords
steel structure
ultraviolet
preventive maintenance
prepreg
maintenance method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002304449A
Other languages
Japanese (ja)
Inventor
Hiroyuki Suzuki
鈴木 博之
Koichiro Shimomo
紫桃 孝一郎
Yasushi Uehigashi
上東 泰
Nagayuki Suzuki
鈴木 永之
Akihiro Koshiba
小芝 明弘
Kiyoyuki Kaito
貝戸 清之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
B M C KK
SankoTechno Co Ltd
Original Assignee
B M C KK
SankoTechno Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by B M C KK, SankoTechno Co Ltd filed Critical B M C KK
Priority to JP2002304449A priority Critical patent/JP2004137797A/en
Publication of JP2004137797A publication Critical patent/JP2004137797A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Working Measures On Existing Buildindgs (AREA)
  • Reinforced Plastic Materials (AREA)
  • Laminated Bodies (AREA)
  • Bridges Or Land Bridges (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide the preventive maintenance method of a steel structure capable of flexibly corresponding to the shape of the steel structure. <P>SOLUTION: The generation of a crack by repeated stress is prevented and maintained by sticking a prepreg, in which reinforced fibers, through which ultraviolet rays are transmitted, are impregnated with an ultraviolet curing type resin, on the structural discontinuous section of the steel structure and curing the prepreg by an ultraviolet-light irradiaton or solar rays. A structure section excepting accessories for a bridge can be used as the steel structure. FRPs by a hand lay-up method can also be used in place of a prepreg type. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、振動を含む荷重等の繰り返し応力が作用する鋼構造体における疲労破壊を予防保全する技術に関する。
【0002】
【従来の技術】
鋼鉄製の構造物には、溶接による接合部、目的の形状に基づく切り欠き部や不連続部等、構造的な不連続部の存在は避けることができない。鋼鉄製の構造物に外力が作用すると、その様な構造的な不連続部で応力集中が生じ、破壊の基点となり易い。振動を含む荷重等の繰り返し荷重が作用するところでは、金属疲労によりき裂が発生し、破壊にまで至ることがある。ディテールを改善したり、じん性を高めたり、板厚を大きくすること等によって、それらの破壊や疲労破壊の多くは相当程度回避することができるが、費用的にも重量の面からも、自ずから限度がある。
【0003】
近年の交通量の増大に伴い、道路橋に作用する繰り返し荷重は、その頻度と荷重の大きさの面で、益々増加している。
本発明者は、先に、炭素繊維強化樹脂板(カーボン板)を用いて、既設鋼製橋脚の繰り返し載荷試験(非特許文献1参照)や、き裂を有する材の補強(非特許文献2参照)を試みてきた。そこでは、硬化させた炭素繊維強化樹脂板(カーボン板)をパテ状エポキシ樹脂接着剤を用いて所要個所に貼付している。炭素繊維強化樹脂板(カーボン板)は、極めて軽量で強度が強いので、複数枚の貼付により、き裂を有するものを含めて、鋼橋脚の強度改善に顕著な効果が得られた。
【0004】
【非特許文献1】
土木学会第56回年次学術講演会(平成13年10月)I−A281;p.562−563
【非特許文献2】
鋼構造年次論文報告集;第8巻(2000年11月);p.683−688
【0005】
【発明が解決しようとする課題】
しかし、既に硬化させた樹脂板を用いると、鋼構造体の形状に沿って柔軟に対応する点で難点がある。
本発明は、上記の問題点に鑑み、鋼構造体の形状に柔軟に対応できる鋼構造体の予防保全方法を提供することを課題とする。
【0006】
【課題を解決するための手段】
本発明は、上記の課題を解決するために、紫外線を透過する強化繊維に紫外線硬化型樹脂を含浸させたプリプレグを鋼構造体の構造的不連続部に貼付し、紫外線照射もしくは太陽光により硬化させることによって、繰り返し応力によるき裂の発生を予防保全することを特徴とする。前記鋼構造体としては、橋梁の付属物を除く構造部分であることができる。また、プリプレグタイプに替えて、ハンドレイアップ法によるFRPとすることもできる。
【0007】
【発明の実施の形態】
本発明は、紫外線硬化型プリプレグあるいはハンドレイアップ法による紫外線硬化型FRP材料を鋼構造体表面に貼付して硬化させることにより、FRP体に応力の一部を分担させることによって、鋼構造体の鋼部分の構造的不連続部における応力集中を緩和させ、金属疲労に基づくき裂の発生に対して延命効果を発揮させることを基本とする。
鋼構造体の構造的不連続部の例としては、例えば、溶接部がある。Y型開先またはレ型開先で厚板を付き合わせ溶接する場合、溶接金属と母材との接点にできる形状的な不連続(表、裏)、また、熱影響部などのミクロ組織的な不連続等があり、稀には溶接部にスラグを巻き込む場合もある。
【0008】
本発明を実施例に基づいて説明する。
【実施例】
鋼種SS400の板厚6mmの鋼板にビード溶接した500×100(mm)の試験体を用意し、その試験体の溶接ビードを覆うように中央部板幅一杯に、硬化後の板厚1.0mmのガラス繊維に紫外線硬化剤(商品名:パラタール:DSM社製)等を添加したビニルエステル樹脂を含浸させたプリプレグを3層貼付し紫外線照射して硬化させたもの(GFRP)と、そのままの無処理の試験体に、試験体の長手方向に引張・圧縮の繰り返し応力を作用させて、疲労試験を実施した場合、図1に示すような結果が得られた。
【0009】
図1によれば、無補強試験体では、○印で示されるように、190MPaで約5×10回の繰り返し回数と150MPaで約1.4×10回の繰り返し回数の点を結ぶ直線状にほぼ並び、△印で示すGFRP材補強試験体では、190MPaで1.7×10回の繰り返し回数、185MPaで約2.0×10回の繰り返し回数、165MPaで5.0×10回の繰り返し回数でも破断しないのでその段階で178MPaに増加して合計約9.1×10回の繰り返し回数で破断したことを示す。
図1に示される両直線から、例えば178MPaの大きな繰り返し外力が作用した場合、当該補強材の有無によって約5.3×10回の繰り返し回数から7.0×10回の繰り返し回数まで寿命が約13倍伸びるといえる。
溶接部に限らず、鋼構造体の構造的不連続部、例えば橋梁点検用のマンホールの入口の周囲部や、切欠き部、構造体の角部、架け違い部等にも、同様の寿命の延長が期待できる。
【0010】
本発明におけるプリプレグ用の強化繊維材料としては、紫外線照射に際して内部まで十分に紫外線が透過するように、透明なものであることが必要であり、ガラス繊維の外、アクリル繊維、透明ポリエステル繊維、ポリエチレン繊維、ナイロン繊維等が挙げられる。
なお、これらの繊維は平織、綾織等の適宜の方法で織ったクロス、ロービングクロス等の紡織形態、また、チョップドストランドマット、1方向性UDクロス、3軸および多軸に加工した形態で使用される。
プリプレグ用の強化繊維に含浸させる樹脂材料としては、ビニルエステル樹脂、不飽和ポリエステル樹脂、アクリル樹脂、ポリアミド樹脂、エポキシ樹脂等が挙げられる。
紫外線硬化性樹脂に添加される紫外線硬化剤としては、通常、波長域365〜410の紫外線を吸収する紫外線硬化剤が用いられる。光源としては、紫外線蛍光灯、高圧水銀灯、メタルハライドランプ等が挙げられるが、太陽光を用いて硬化しても良い。硬化時間は、紫外線の照度、プリプレグの厚さ、塗工の厚さにもよるが、5〜30分である。
【0011】
補強体は、事前に硬化させておくものでも差し支えないが、補強体が構造体の微少な凹凸にも対応・適用され得るように、含浸させた樹脂が未硬化のもの、あるいは半硬化状態のものを用いることが好ましい。貼付後に完全硬化させることによって、別途の接着剤を用いることなく、樹脂の硬化と同時に鋼構造体への接着・接合が図られる。
以上、主としてプリプレグタイプのFRPについて説明してきたが、本発明で適用するFRP体は、ハンドレイアップ法で形成するものであっても差し支えない。
本発明の補強体は、鋼製橋梁の桁部のような平面構造をなす部分に有利に適用され得るが、それに限られることなく、橋脚(矩形断面、円形断面ほか)部、水道管、ガス管、パイプライン等にも適用され得る。
紫外線を透過する強化繊維に1方向性UDクロスを用いた紫外線硬化型プリプレグを使用する場合は、想定される繰り返し応力による亀裂方向に直角に貼りつけ、接着することで延命効果を発揮する。
【0012】
【発明の効果】
本発明によれば、未硬化ないし半硬化のプリプレグの形で所要部に貼付されるので、鋼構造体表面の形状に柔軟に対応することができ、鋼構造体の亀裂発生等を効果的に予防保全することができる。
【図面の簡単な説明】
【図1】ガラス繊維強化樹脂補強材の有無による繰り返し引張圧縮応力と疲労破断との関係を示すグラフである。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a technology for preventing and maintaining fatigue fracture in a steel structure on which a repeated stress such as a load including vibration acts.
[0002]
[Prior art]
In steel structures, the existence of structural discontinuities such as welded joints, cutouts and discontinuities based on desired shapes cannot be avoided. When an external force acts on a steel structure, stress concentration occurs at such a structural discontinuity, and it is likely to be a starting point of destruction. Where a repeated load such as a load including vibration is applied, a crack may be generated due to metal fatigue, leading to breakage. Many of these fractures and fatigue failures can be avoided to a considerable extent by improving the details, increasing the toughness, and increasing the plate thickness.However, both in terms of cost and weight, There is a limit.
[0003]
With the increase in traffic volume in recent years, the repetitive load acting on a road bridge is increasing more and more in terms of the frequency and the magnitude of the load.
The inventor has previously used a carbon fiber reinforced resin plate (carbon plate) to repeatedly load test an existing steel pier (see Non-Patent Document 1) and reinforce a cracked material (Non-Patent Document 2). See). In this case, a cured carbon fiber reinforced resin plate (carbon plate) is attached to a required portion using a putty-like epoxy resin adhesive. Since the carbon fiber reinforced resin plate (carbon plate) is extremely lightweight and strong, a remarkable effect of improving the strength of the steel piers, including those having cracks, was obtained by sticking a plurality of sheets.
[0004]
[Non-patent document 1]
Japan Society of Civil Engineers 56th Annual Scientific Lecture (October 2001) IA281; p. 562-563
[Non-patent document 2]
Annual Report on Steel Structures; Volume 8 (November 2000); p. 683-688
[0005]
[Problems to be solved by the invention]
However, when a resin plate that has already been cured is used, there is a problem in that the resin plate flexibly corresponds to the shape of the steel structure.
In view of the above problems, an object of the present invention is to provide a preventive maintenance method for a steel structure that can flexibly respond to the shape of the steel structure.
[0006]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the present invention applies a prepreg obtained by impregnating an ultraviolet-curable resin to a reinforcing fiber that transmits ultraviolet light to a structural discontinuous portion of a steel structure, and cures by ultraviolet irradiation or sunlight. By doing so, the occurrence of cracks due to repeated stress is prevented and maintained. The steel structure may be a structural part other than a bridge accessory. Also, instead of the prepreg type, an FRP by a hand lay-up method can be used.
[0007]
BEST MODE FOR CARRYING OUT THE INVENTION
The present invention is to apply a part of the stress to the FRP body by applying an ultraviolet-curable FRP material to the surface of the steel structure by applying an ultraviolet-curable prepreg or an ultraviolet-curable FRP material by a hand lay-up method, thereby curing the steel structure. Basically, the stress concentration at the structural discontinuous portion of the steel part is relaxed, and the life extension effect is exerted on the occurrence of cracks due to metal fatigue.
An example of a structural discontinuity in a steel structure is, for example, a weld. When butt welding a thick plate with a Y-shaped groove or a L-shaped groove, a geometric discontinuity (front and back) that can be used as a contact point between the weld metal and the base material, and a microstructure such as a heat-affected zone There is a case where slag is involved in the welded portion in rare cases.
[0008]
The present invention will be described based on examples.
【Example】
A test specimen of 500 × 100 (mm) prepared by bead welding to a steel sheet of steel type SS400 having a thickness of 6 mm was prepared, and the central plate was filled to a width of 1.0 mm so as to cover the weld bead of the test specimen. A three-layer prepreg impregnated with a vinyl ester resin in which an ultraviolet curing agent (trade name: Paratar: manufactured by DSM) is added to the glass fiber of Example 1 and three layers are applied and cured by ultraviolet irradiation (GFRP). When a fatigue test was carried out by applying a tensile / compressive repetitive stress to the treated specimen in the longitudinal direction of the specimen, the results shown in FIG. 1 were obtained.
[0009]
According to FIG. 1, in the unreinforced test specimen, as indicated by a circle, a straight line connecting points of about 5 × 10 5 repetitions at 190 MPa and about 1.4 × 10 6 repetitions at 150 MPa. In the GFRP material reinforced test specimens indicated by a triangle, the number of repetitions was 1.7 × 10 6 at 190 MPa, the number of repetitions was about 2.0 × 10 6 at 185 MPa, and 5.0 × 10 at 165 MPa. Since it did not break even with the number of repetitions of 6 times, it increased to 178 MPa at that stage, indicating that it was broken by a total of about 9.1 × 10 6 times of repetition.
From both straight lines shown in FIG. 1, when a large repetitive external force of, for example, 178 MPa is applied, the life is increased from about 5.3 × 10 6 repetitions to 7.0 × 10 6 repetitions depending on the presence or absence of the reinforcing material. Is about 13 times longer.
Not only welds, but also structural discontinuities in steel structures, for example, around the entrance of manholes for bridge inspection, notches, corners of structures, misplaced parts, etc. Extension can be expected.
[0010]
As the reinforcing fiber material for the prepreg in the present invention, it is necessary that the material is transparent so that the ultraviolet rays can be sufficiently transmitted to the inside when irradiating the ultraviolet rays, and outside the glass fibers, acrylic fibers, transparent polyester fibers, and polyethylene. Fiber, nylon fiber and the like.
In addition, these fibers are used in a weaving form such as a cloth woven by an appropriate method such as a plain weave or a twill weave, a roving cloth, or a form processed into a chopped strand mat, a unidirectional UD cloth, triaxial and multiaxial. You.
Examples of the resin material for impregnating the reinforcing fibers for prepreg include vinyl ester resin, unsaturated polyester resin, acrylic resin, polyamide resin, epoxy resin and the like.
As the ultraviolet curing agent added to the ultraviolet curing resin, an ultraviolet curing agent that absorbs ultraviolet rays having a wavelength range of 365 to 410 is usually used. Examples of the light source include an ultraviolet fluorescent lamp, a high-pressure mercury lamp, and a metal halide lamp, and the light source may be cured using sunlight. The curing time is 5 to 30 minutes, depending on the illuminance of ultraviolet rays, the thickness of the prepreg, and the thickness of the coating.
[0011]
The reinforcing body may be one that has been cured in advance, but the impregnated resin is uncured or semi-cured so that the reinforcing body can respond to and apply to minute irregularities in the structure. It is preferable to use one. By completely curing after application, the resin can be cured and simultaneously bonded and joined to the steel structure without using an additional adhesive.
Although the prepreg-type FRP has been mainly described above, the FRP body applied in the present invention may be formed by a hand lay-up method.
The reinforcing body of the present invention can be advantageously applied to a part having a planar structure such as a girder part of a steel bridge, but is not limited thereto, and includes a pier (rectangular section, circular section, etc.) section, a water pipe, a gas pipe, and the like. It can also be applied to pipes, pipelines, etc.
When an ultraviolet-curable prepreg using a unidirectional UD cloth is used as a reinforcing fiber that transmits ultraviolet light, the prepreg is applied at right angles to a crack direction due to assumed repeated stress, and exhibits a life-prolonging effect by bonding.
[0012]
【The invention's effect】
According to the present invention, since it is affixed to a required part in the form of an uncured or semi-cured prepreg, it can flexibly respond to the shape of the surface of the steel structure, effectively preventing cracking of the steel structure and the like. Preventive maintenance can be performed.
[Brief description of the drawings]
FIG. 1 is a graph showing the relationship between repeated tensile and compressive stress and fatigue fracture with and without glass fiber reinforced resin reinforcement.

Claims (3)

紫外線を透過する強化繊維に紫外線硬化型樹脂を含浸させたプリプレグを鋼構造体の構造的不連続部に貼付し、紫外線照射もしくは太陽光により硬化させることによって、繰り返し応力によるき裂の発生を予防保全することを特徴とする鋼構造体の予防保全方法。Prevents the occurrence of cracks due to repeated stress by applying a prepreg made by impregnating a UV-curable resin to a reinforcing fiber that transmits UV rays to a structural discontinuity of a steel structure and curing it by UV irradiation or sunlight. A preventive maintenance method for steel structures characterized by performing maintenance. 前記鋼構造体が橋梁の付属物を除く構造部分である請求項1に記載の鋼構造体の予防保全方法。The preventive maintenance method for a steel structure according to claim 1, wherein the steel structure is a structural part other than an accessory of a bridge. 紫外線を透過する強化繊維を紫外線硬化剤等を添加した紫外線硬化性樹脂とともにハンドレイアップ法により施工後、紫外線照射もしくは太陽光により硬化させることによって、繰り返し応力による亀裂の発生を予防保全することを特徴とする鋼構造体の予防保全方法。After applying the hand-lay-up method to the reinforcing fiber that transmits ultraviolet light together with the ultraviolet curable resin to which an ultraviolet curing agent has been added, and curing by ultraviolet irradiation or sunlight, it is possible to prevent and maintain the occurrence of cracks due to repeated stress. Characteristic preventive maintenance method for steel structures.
JP2002304449A 2002-10-18 2002-10-18 Preventive maintenance method of steel structure by ultraviolet curing type frp Pending JP2004137797A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002304449A JP2004137797A (en) 2002-10-18 2002-10-18 Preventive maintenance method of steel structure by ultraviolet curing type frp

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002304449A JP2004137797A (en) 2002-10-18 2002-10-18 Preventive maintenance method of steel structure by ultraviolet curing type frp

Publications (1)

Publication Number Publication Date
JP2004137797A true JP2004137797A (en) 2004-05-13

Family

ID=32451870

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002304449A Pending JP2004137797A (en) 2002-10-18 2002-10-18 Preventive maintenance method of steel structure by ultraviolet curing type frp

Country Status (1)

Country Link
JP (1) JP2004137797A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006045833A (en) * 2004-08-03 2006-02-16 Mitsubishi Heavy Ind Ltd Steel bridge, method of reinforcing steel bridge, and method of repairing the same
JP2006102738A (en) * 2004-09-08 2006-04-20 Hiroyuki Suzuki Method for maintaining steel structure preventively
JP2006336393A (en) * 2005-06-06 2006-12-14 Anan Denki Kk Method for repairing member by fiber-reinforced resin sheet
JP2008297706A (en) * 2007-05-29 2008-12-11 Jfe Engineering Kk Sealing diaphragm of u-shaped rib of steel plate deck, its installation method, and method for repairing existing steel plate deck
JPWO2015159733A1 (en) * 2014-04-15 2017-04-13 大日本印刷株式会社 Method of repairing or reinforcing a structure using an adhesive sheet, method of manufacturing a structure repaired or reinforced using an adhesive sheet, adhesive sheet

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006045833A (en) * 2004-08-03 2006-02-16 Mitsubishi Heavy Ind Ltd Steel bridge, method of reinforcing steel bridge, and method of repairing the same
JP2006102738A (en) * 2004-09-08 2006-04-20 Hiroyuki Suzuki Method for maintaining steel structure preventively
JP2006336393A (en) * 2005-06-06 2006-12-14 Anan Denki Kk Method for repairing member by fiber-reinforced resin sheet
JP2008297706A (en) * 2007-05-29 2008-12-11 Jfe Engineering Kk Sealing diaphragm of u-shaped rib of steel plate deck, its installation method, and method for repairing existing steel plate deck
JP4643612B2 (en) * 2007-05-29 2011-03-02 Jfeエンジニアリング株式会社 Sealed diaphragm structure of steel slab U-rib, installation method of sealed diaphragm, and repair method of existing steel slab
JPWO2015159733A1 (en) * 2014-04-15 2017-04-13 大日本印刷株式会社 Method of repairing or reinforcing a structure using an adhesive sheet, method of manufacturing a structure repaired or reinforced using an adhesive sheet, adhesive sheet
US10597543B2 (en) 2014-04-15 2020-03-24 Dai Nippon Printing Co., Ltd. Method for repairing or reinforcing structure, method for producing repaired or reinforced structure, and adhesive sheet

Similar Documents

Publication Publication Date Title
Schnerch et al. Flexural strengthening of steel bridges with high modulus CFRP strips
Mahdi et al. A comparison of oven-cured and induction-cured adhesively bonded composite joints
Fam et al. Repair of damaged aluminum truss joints of highway overhead sign structures using FRP
Balaguru et al. Geopolymer for repair and rehabilitation of reinforced concrete beams
JP4870537B2 (en) Structure reinforcement method and fixing tool
AU706549B2 (en) Strengthening of structural members
Pantelides et al. Repair of cracked aluminum overhead sign structures with glass fiber reinforced polymer composites
Harries et al. Steel-FRP composite structural systems
Tudjono et al. An integrated system for enhancing flexural members’ capacity via combinations of the fiber reinforced plastic use, retrofitting, and surface treatment techniques
JP2004137797A (en) Preventive maintenance method of steel structure by ultraviolet curing type frp
JP2010255195A (en) Method for repairing steel structure
Balaguru et al. Use of inorganic polymer-fiber composites for repair and rehabilitation of infrastructures
JP2009024466A (en) Method for reinforcing weld part
Li et al. Fast repair of damaged RC beams using UV curing FRP composites
Dawood Fundamental behavior of steel-concrete composite beams strengthened with high modulus carbon fiber reinforced polymer (CFRP) materials
Pang et al. Fast joining of composite pipes using UV curing FRP composites
JP2006102738A (en) Method for maintaining steel structure preventively
JP2004211338A (en) Method for reinforcing steel structure by frp
JP3477118B2 (en) Method for reinforcing plate-like concrete structures
Peck et al. UV-cured FRP joint thickness effect on coupled composite pipes
JP2012097547A (en) Strengthening method using fiber reinforced sheet irradiated with uv, and composite fiber-resin of uv polymerization reaction type
JP4272781B2 (en) Seismic reinforcement method
JP4680550B2 (en) Method of repairing steel structure with carbon fiber reinforced resin plate, carbon fiber reinforced resin plate used in the method, and steel structure repaired and reinforced
Dawood et al. Bond and splice behavior of CFRP laminates for strengthening steel beams
US20040067335A1 (en) Repair of damaged concrete columns or other structures using fast-curing, fiber-reinforced polymer composites

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20051011

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20070523

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070606

A521 Written amendment

Effective date: 20070823

Free format text: JAPANESE INTERMEDIATE CODE: A523

RD02 Notification of acceptance of power of attorney

Effective date: 20070823

Free format text: JAPANESE INTERMEDIATE CODE: A7422

A02 Decision of refusal

Effective date: 20071011

Free format text: JAPANESE INTERMEDIATE CODE: A02