JP2004137133A - Porous composite material, its manufacture method, and capacitor using porous composite material, and its manufacture method - Google Patents

Porous composite material, its manufacture method, and capacitor using porous composite material, and its manufacture method Download PDF

Info

Publication number
JP2004137133A
JP2004137133A JP2002305751A JP2002305751A JP2004137133A JP 2004137133 A JP2004137133 A JP 2004137133A JP 2002305751 A JP2002305751 A JP 2002305751A JP 2002305751 A JP2002305751 A JP 2002305751A JP 2004137133 A JP2004137133 A JP 2004137133A
Authority
JP
Japan
Prior art keywords
porous composite
pore
pore diameter
chemical substance
porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002305751A
Other languages
Japanese (ja)
Inventor
Takashi Okubo
大久保 崇史
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electronic Components Co Ltd
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electronic Components Co Ltd, Sanyo Electric Co Ltd filed Critical Sanyo Electronic Components Co Ltd
Priority to JP2002305751A priority Critical patent/JP2004137133A/en
Publication of JP2004137133A publication Critical patent/JP2004137133A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Abstract

<P>PROBLEM TO BE SOLVED: To provide a porous composite material for manufacturing a capacitor having an electrical capacitance, and to provide a method for manufacturing thereof. <P>SOLUTION: The porous composite material is obtained by selectively coating a pore portion having the pore size of 0.8 nm or less of the porous material, for example, submicron pore 2 with a compound.Thus, the total electric capacitance is enlarged due to a false electric capacitance by a conductive polymer formed in the submicron pore 2 without damaging the electric capacitance with the larger pore size 1 than the submicron pore in which the conductive polymer is not formed by using a carbon material of the porous material having a pore and the conductive polymer of the compound as the porous composite material for the capacitor electrode. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、キャパシタ、特に電気二重層キャパシタ用材料として用いられる多孔質複合体に関する。詳しくは、多孔質材料の一定径以下の細孔に対して選択的に化合物を形成した多孔質複合体に関する。
【0002】
【従来の技術】
近年の電子機器等の小型化や高性能化に伴い、電子機器の駆動用または補助電源として小型軽量で高電気容量のキャパシタ、二次電池等の開発が活発に行なわれている。
【0003】
この中で、電気二重層キャパシタは、リチウムイオン二次電池やニッケル水素二次電池に比べ大電流特性およびサイクル特性に優れている点で注目されているが、これらの二次電池に比べ電気容量が少ないのが問題である。
【0004】
そこで、最近、電気二重層キャパシタ用電極材料として、活性炭等の炭素材料に金属酸化物や導電性高分子を担持または被覆させたものを用いて、または導電性高分子そのものを用いて、電気容量を向上させることが検討されている(たとえば、前者は特許文献1参照、後者は非特許文献1参照。)。
【0005】
しかし、導電性高分子そのものでは、通常用いられている重合方法を用いては活性炭等のように大きな表面積を持たせることが困難であり、表面積による電気容量の確保が難しいという問題があり、導電性高分子で活性炭を被覆する場合には、図5に示すように、活性炭全面に存在する細孔をことごとくを被覆してしまい、重合による高分子化等によって導電性高分子内に空洞を生じることもあり、電気容量を向上させることが困難であった。
【0006】
【特許文献1】
特開2002−25868号公報
【0007】
【非特許文献1】
Katsuhiko Naoi、他2名,Electrochemistry of Poly(1,5−diaminoanthraquinone) and Its Application in Electrochemical Capacitor Materials,“Journal of The Electrochemical Society”, The Electrochemical Society Inc.,2000,147(2),p420−426
【0008】
【発明が解決しようとする課題】
本発明は、かかる問題点を解決して、電気容量の大きいキャパシタを作成するための多孔質複合体およびその製造方法を提供することを目的とする。
【0009】
【課題を解決するための手段】
上記目的を達成するため、本発明にかかる多孔質複合体は、多孔質材料の細孔径0.8nm以下の細孔に対して化合物を被覆することを特徴とする。さらに、本発明において、上記多孔質材料が細孔を有する炭素材料であること、上記化合物が、導電性高分子であることは好ましい。
【0010】
ここで、図6に多孔質材料の表面の模式図を示す。図1に、多孔質材料のサブミクロ孔に選択的に導電性化合物を形成した多孔質複合体表面の模式図を示す。
【0011】
発明者は、電気二重層キャパシタ用電極材料として用いられている活性炭中に含まれるサブミクロ孔2と呼ばれる細孔径0.8nm以下の細孔部分は、電解液の浸入が困難であり電気二重層キャパシタとしての電気容量増大に寄与していないことを見出し、図1に示すように、サブミクロ孔2に対して選択的に導電性化合物を形成することにより、導電性化合物による擬似電気容量とサブミクロ孔より大きい細孔1における電気二重層容量を効果的に発現させ、キャパシタ全体の電気容量を向上させることにより本発明を完成させるに至った。
【0012】
また、本発明にかかる多孔質複合体の製造方法は、多孔質材料の特定の細孔径をD0、D0より小さな細孔径をD1とするとき、(1)細孔径がD1以上の細孔部分を化学物質により被覆する工程、(2)細孔径がD0より大きい細孔部分を被覆した化学物質を除去する工程を含むことを特徴とすることが好ましい。さらに、化合物が化学物質を重合することによって得られる重合体である場合には、(1)細孔径がD1以上の細孔部分を化学物質により被覆する工程、(2)細孔径がD0より大きい細孔部分を被覆した化学物質を除去する工程、(3)化学物質を重合して重合体を形成する工程を含むことを特徴とすることが好ましい。
【0013】
また、本発明にかかるキャパシタは、上記多孔質複合体を用いたものである。さらに、本発明にかかる多孔質複合体を用いたキャパシタの製造方法は、多孔質複合体の製造における細孔径がD0より大きい細孔部分を被覆した化学物質を除去する工程において用いた溶媒と同じ溶媒を、キャパシタの製造においてキャパシタ用電解液として用いることを特徴とすることが好ましい。
【0014】
【発明の実施の形態】
本発明は、多孔質材料の細孔径0.8nm以下の細孔部分に対して化合物を被覆することを特徴とする多孔質複合体である。かかる複合体を形成することにより、多孔質材料の見かけ上の体積を変えることなく新たな機能を付加することができる。たとえば、上記のように多孔質材料であるキャパシタ用炭素材料の一定細孔径以下の細孔に導電性化合物を形成することによって、通常の電気容量に加えて導電性化合物による擬似電気容量を付加できる。細孔径0.8nm以下のサブミクロ孔は、電解質の侵入が困難なため電気二重層容量として作用していない部分であり、かかる部分に化合物を形成することにより従来の機能を損なわずに新たな機能を付加できるからである。また、多孔質材料である吸着用炭素材料の一定細孔径以下の細孔に触媒化合物を形成することによって、通常の吸着機能に加えて触媒化合物による触媒機能を付加できる。
【0015】
ここで、多孔質材料の細孔部分に化合物を被覆するとは、該化合物によって細孔の孔の全てが埋まる場合のみならず、細孔部分に蓋のように覆い被さる形状や橋かけ形状等によって孔の一部が埋まる場合をも含む。
【0016】
本発明に用いる多孔質材料は、細孔を有する材料であれば特に制限はないが、上記サブミクロ孔を有する表面積の大きい材料という観点から、活性炭、アセチレンブラック、ケッチェンブラック等の細孔を有する炭素材料であることが好ましい。
【0017】
本発明に用いる化合物は、付加する機能に応じて種々の化合物を用いることができるが、多孔質材料の電気容量を向上させる観点からは、導電性化合物、特に導電性高分子が好ましい。導電性化合物としては、酸化チタン、酸化ルテニウム、酸化バナジウム、酸化マンガン、酸化コバルト、酸化ニッケル、酸化タングステン、酸化ニオブ、酸化タンタル、酸化クロム等の金属酸化物の他、導電性高分子としてポリジアミノアントラキノン、ポリベンゾキノン等のキノン系高分子、ポリフェニルキノキサリン等のキノキサリン系高分子、ポリニトロインドール等のインドール系高分子、ポリアセチレン、ポリ−p−フェニレン、ポリ−p−フェニレンビニレン、ポリアセン、ポリピロール、ポリフラン、ポリチオフェン、ポリアニリン、ポリピリジンジイル、ポリイソチアナフテン、ポリアルキルチェニレン等のドーピング可能な導電性高分子が挙げられる。
【0018】
上記導電性高分子に対するドーピング剤としては、アクセプタドーピング剤であるI、Cl等のハロゲン、BF、SO等のルイス酸、HSO、HCl等のプロトン酸、FeCl、TiCl等の遷移金属化合物、Cl、PF 等を含む電解質アニオン等が、ドナードーピング剤であるLi、Na等のアルカリ金属、Ca、Sr等のアルカリ土類金属、Eu等の希土類元素等が挙げられる。
【0019】
本発明にかかる多孔質複合体の製造方法は、特定の細孔径以下の細孔に対して上記化合物を形成することができる方法であれば、特に制限はないが、多孔質材料の特定の細孔径をD0、D0より小さな細孔径をD1とするとき、(1)細孔径がD1以上の細孔部分を化学物質により被覆する工程、(2)細孔径がD0より大きい細孔部分を被覆した化学物質を除去する工程を含むことを特徴とする多孔質複合体の製造方法であることが好ましい。また、化合物が化学物質を重合することによって得られる重合体である場合には、多孔質材料の特定の細孔径をD0、D0より小さな細孔径をD1とするとき、(1)細孔径がD1以上の細孔部分を化学物質により被覆する工程、(2)細孔径がD0より大きい細孔部分を被覆した化学物質を除去する工程、(3)化学物質を重合して重合体を形成する工程を含むことを特徴とする多孔質複合体の製造方法であることが好ましい。かかる製造方法により、特定細孔径D0以下の細孔に対して選択的に化合物を形成することができるからである。
【0020】
ここで、化学物質とは、目的とする細孔部分を被覆して化合物を形成する物質をいう。形成される化合物が金属酸化物の場合はその金属酸化物を、形成される化合物が導電性高分子の場合はそのモノマーまたは低分子量のオリゴマーをいう。
【0021】
上記細孔径D0より小さい細孔径D1以上の細孔部分を化学物質により被覆する方法は、該細孔表面を被覆できる方法であれば特に制限はないが、該化学物質を気化させて細孔表面に吸着させることにより、または該化学物質を溶解した溶液を細孔表面に含浸後乾燥させることにより行なうことが好ましい。
【0022】
図2に、本発明にかかる多孔質複合体の製造方法の一実施形態を示す。まず、図2(a)に示すように、導電性高分子のモノマー4を気化させて多孔質材料表面全体に吸着させる、または、導電性高分子のモノマー4を溶解した溶液を多孔質材料表面全体に含浸させた後乾燥させることによって、サブミクロ孔2およびサブミクロ孔より大きい細孔1全体を導電性高分子のモノマー4で被覆する。
【0023】
このとき、溶液を用いる場合には、溶液が含浸し得る細孔径はウオッシュバーンの式(1)によって表される。
D=−4γcosθ/P     (1)
ここで、Dは細孔径、γは溶液の表面張力、θは多孔質材料と溶液の接触角およびPは圧力である。また、γとθの数値は物質固有の値であり、特定の細孔径D0より、式1のDが小さくなるような条件で溶液浸漬を行なう必要がある。
【0024】
上記モノマーを溶解する溶媒としては、水、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、γ−ブチルラクトン、γ−バレロラクトン、アセトニトリル、グルタロニトリル、アジポニトリル、メトキシアセトニトリル、3−メトキシプロピオニトリル、N,N−ジメチルホルムアミド、N−メチルピロリドン、N−メチルオキサゾリジノン、N,N−ジメチルイミダゾリジノン、ニトロメタン、ニトロエタン、スルホラン、ジメチルスルホオキシド、トリメチルホスフェイト、ジメチロルカーボネート、エチルメチルカーボネート、3−メチルスルホラン等から選択することができる。
【0025】
次に、図2(b)に示すように、特定の細孔径D0より大きい細孔径の細孔部分、たとえばサブミクロ孔以外の細孔1を被覆した上記導電性高分子のモノマーを、上記導電性高分子のモノマーを溶解する溶媒5に接触させることによって除去する。すなわち、式(1)において、溶媒の圧力Pを調整することにより、特定の細孔径D0以下の細孔部分を被覆している上記モノマーを残存させ、細孔径がD0より大きい細孔部分を被覆している上記モノマーを溶解させて除去する。このためには、かかる場合のDを特定の細孔径D0の±30%の範囲内すなわち0.7×D0から1.3×D0の範囲内にすることが好ましく、さらに好ましくは、±5%の範囲内すなわち0.95×D0から1.05×D0の範囲内である。
【0026】
最後に、図2(c)に示すように、重合開始剤の気体または重合開始剤を含有する溶液6をサブミクロン孔2に残存した導電性高分子のモノマー4に接触させることにより、サブミクロン孔2に導電性高分子3を形成する。すなわち、重合開始剤を気化させて細孔部分に吸着させることにより、または、重合開始剤を溶解した溶液を細孔部分に含浸させることによりサブミクロン孔(特定細孔径D1以下の細孔径の細孔部分)2を被覆した上記導電性高分子のモノマー4を重合させて導電性高分子3を形成する。ここで、重合開始剤としては、過酸化水素、硫酸等のプロトン酸、酸化クロム、酸化鉄等の固体酸、フッ化ホウ素、塩化アルミニウム等のルイス酸、塩素、ヨウ素等のハロゲン等を用いることができる。
【0027】
なお、上記においては、目的とする細孔部分を被覆する化合物が導電性高分子の場合について説明したが、該細孔部分を被覆する化合物が金属酸化物等の重合工程を要しない場合は、上記図2(c)に相当する工程が不要となり、上記図2(a)および(b)に準じて行なうことができる。目的とする細孔部分を金属酸化物で被覆するために、金属酸化物の含浸および除去の際に用いる溶媒は、該金属酸化物を溶解することができる溶媒であれば特に制限はなく、上記溶媒の中から選択することができるが、溶解性の観点から、水が好ましい。また、該金属酸化物の溶解度をさらに高める観点から、被覆される多孔質材料の表面の吸着特性を損なわない範囲で、硝酸等の無機酸、酢酸等の有機酸を添加することも好ましい。
【0028】
上記の様にして作成した多孔質複合体を用いてキャパシタを作成する場合は、キャパシタの使用目的、用途に応じて、従来の種々の構成、製造方法を選択することができる。たとえば、作製した上記多孔質複合体を電極缶に貼り付け、両電極をセパレータで挟み、電極缶に電解液を充填して封止することにより、コイン型キャパシタを製造することができる。また、アルミニウム箔等の電極箔に作製した上記多孔質複合体を貼り付け、2枚の電極をセパレータで挟み、それを巻回することによって巻回型キャパシタを製造することができる。小型のキャパシタとしては前者のコイン型のものが優れ、大型のキャパシタとしては後者の巻回型のものが優れている。
【0029】
かかるキャパシタの製造工程において、キャパシタを構成する電解液の溶媒を、多孔質複合体の製造工程において特定の細孔径より大きい細孔径の細孔部分を被覆している化合物を除去するのに用いた溶媒と同じ溶媒を用いることは、除去溶媒と電解液の到達する細孔径が等しくなり被覆化合物と電解液の接触性を向上する観点から、好ましい。
【0030】
キャパシタの電解液の溶媒としては、水、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、γ−ブチルラクトン、γ−バレロラクトン、アセトニトリル、グルタロニトリル、アジポニトリル、メトキシアセトニトリル、3−メトキシプロピオニトリル、N,N−ジメチルホルムアミド、N−メチルピロリドン、N−メチルオキサゾリジノン、N,N−ジメチルイミダゾリジノン、ニトロメタン、ニトロエタン、スルホラン、ジメチルスルホオキシド、トリメチルホスフェイト、ジメチロルカーボネート、エチルメチルカーボネート、3−メチルスルホラン等が好ましいものとして挙げられる。
【0031】
【実施例】
以下の実施例において、本発明をさらに具体的に説明する。以下に示す実施例および比較例にしたがって多孔質複合体を作成した。各多孔質複合体の細孔を0.8nm以下のサブミクロ孔、0.8〜2nmのミクロ孔、2〜50nmのメソ孔、50nm以上のマクロ孔に分類し、化合物被覆前の多孔質材料である活性炭に対する表面積の百分率を調べた。実施例および比較例で得た多孔質複合体の細孔のうちミクロ孔、メソ孔、マクロ孔のそれぞれの表面積(cm/g)を窒素ガス吸着法(300℃、1.33×10−1Pa、3時間条件下によるBET3点吸着法)によって測定し(サブミクロ孔については機械の精度上測定できない)、化合物被覆前における活性炭の各孔の表面積を100%としたときの百分率を表1に示した。なお、表面積における単位質量は、多孔質複合体においても化合物被覆前の活性炭の質量に換算したものを用いた。
【0032】
また、透過型電子顕微鏡を用いて、各多孔質複合体の表面状態を測定し、各実子例または比較例におけるサブミクロ孔の被覆状況を調べ、図3に多孔質複合体表面近傍の拡大模式図を示し、被覆の程度を百分率で表1に示した。
【0033】
さらに、各実施例または比較例において得られた多孔質複合体を用いて、図4に示すようなキャパシタを作製した。上記多孔質複合体と多孔質複合体質量に対して10質量%のポリテトラフルオロエチレンからなる結着剤とを混練した混合物を質量0.05g、直径1cm、厚さ1mmの錠剤を作製し、これを電極11とした。セパレータ13としては、直径1cm、厚さ50μmの多孔性ポリプロピレンフィルムを用いた。電解液14としては、1Mのホウフッ化テトラエチルアンモニウムを溶かしたプロピレンカーボネート溶液を用いた。ステンレス製の電極缶12に電極11を貼り付け、2つの電極11でセパレータ13を挟み、電極缶12内部に電解液14を充填し、ポリプロピレン製のガスケット15を介して封入した。このようにして作製したコイン型キャパシタの放電容量(mAh/g)を測定し、表1に示した。ここで、放電容量の単位における質量gは、電極の質量を示す。
【0034】
(実施例1)
1,5−ジアミノアントラキノンモノマー1gを350℃に加熱して気化させて活性炭(武田薬品社製KP−191)1gの全面を被覆した。次に、プロピレンカーボネートを用いて細孔径0.8nmより大きい細孔径の細孔部分を被覆する上記モノマーを溶解させて除去した。続いて、重合開始剤であるヨウ素を100℃、1×10−3Paで気化させて、細孔に残存するモノマーに接触させて該モノマーを重合させて、図3(a)に示すような活性炭のサブミクロ孔(細孔径0.8nm以下の細孔部分)8に対して1,5−ジアミノアントラキノンポリマー9が被覆された多孔質複合体を得た。この複合体の活性炭7と1,5−ジアミノアントラキノンポリマー9の質量比は98.1:1.9であった。
【0035】
(実施例2)
1,5−ジアミノアントラキノンモノマー1gを350℃に加熱して気化させて活性炭(武田薬品社製KP−191)1gの全面を被覆した。次に、プロピレンカーボネートを用いて細孔径0.8nmより大きい細孔径の細孔部分を被覆する上記モノマーを溶解させて除去した。続いて、重合開始剤として1.1gの過硫酸アンモニウムを溶解したジメチルホルムアミド溶液100cmに該モノマーを被覆した活性炭10gを投入し、図3(b)に示すような活性炭のサブミクロ孔(細孔径0.8nm以下の細孔部分)8に対して1,5−ジアミノアントラキノンポリマー9が被覆された多孔質複合体を得た。この複合体の活性炭7と1,5−ジアミノアントラキノンポリマー9の質量比は97.4:2.6であった。
【0036】
(実施例3)
1,5−ジアミノアントラキノンモノマー1gをジメチルホルムアミド100cmに溶解させ、40℃に加熱した溶液に活性炭(武田薬品社製KP−191)1gを投入して該モノマーを該活性炭に含浸、乾燥させることにより、活性炭全面を該モノマーで被覆した。次に、プロピレンカーボネートを用いて細孔径0.8nmより大きい細孔径の細孔部分を被覆する上記モノマーを溶解させて除去した。続いて、重合開始剤として1.1gの過硫酸アンモニウムを溶解したジメチルホルムアミド溶液100cmに該モノマーを被覆した活性炭10gを投入し、図3(c)に示すような活性炭のサブミクロ孔(細孔径0.8nm以下の細孔部分)8に対して1,5−ジアミノアントラキノンポリマー9が被覆された多孔質複合体を得た。この複合体の活性炭7と1,5−ジアミノアントラキノンポリマー9の質量比は98.0:2.0であった。
【0037】
(比較例1)
1,5−ジアミノアントラキノンモノマー1gをジメチルホルムアミド90cmに溶解させた溶液に、常温で活性炭(武田薬品社製KP−191)1gを投入、分散させた後、重合開始剤である過硫酸アンモニウム1.1gをジメチルホルムアミド10cmに溶かした溶液を滴下し、図3(d)に示すような活性炭7と1,5−ジアミノアントラキノンポリマー9の複合体を得た。この複合体の活性炭7と1,5−ジアミノアントラキノンポリマー9の質量比は98.0:2.0であった。
【0038】
(比較例2)
比較例1と同様の方法において、1,5−ジアミノアントラキノンポリマーの質量比を向上させるため、モノマーを1.5g(モノマー濃度:0.015g/cm)、重合開始剤を1.7g(重合開始剤濃度:0.017g/cm)として、図3(e)に示すような複合体を調製した。この複合体の活性炭7と1,5−ジアミノアントラキノンポリマー9の質量比は40:60であった。
【0039】
(比較例3)
図3(f)に示すような、1,5−ジアミノアントラキノンポリマーで被覆させる前の活性炭7について対照試験を行なった。
【0040】
【表1】

Figure 2004137133
【0041】
表1に示すように、実施例1〜3においては、ミクロ孔、メソ孔、マクロ孔というサブミクロ孔以外の細孔部分にはほとんど導電性高分子が被覆されず、サブミクロ孔に対して選択的に導電性高分子が被覆されているため、サブミクロ孔より大きい細孔部分に由来する電気容量を損なわずに、サブミクロ孔に被覆された導電性高分子に由来する擬似電気容量が付加されることによって、放電容量が多くなる。
【0042】
一方、比較例1および比較例2においては、導電性高分子がサブミクロ孔に対してだけでなく、ミクロ孔、メソ孔をも被覆してしまうため、サブミクロ孔より大きい細孔に由来する電気容量を著しく損ない、放電容量が少なくなる。
【0043】
今回開示された実施の形態および実施例はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した説明でなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内のすべての変更が含まれることが意図される。
【0044】
【発明の効果】
以上のように、本発明のように、多孔質材料の細孔径0.8nm以下の細孔部分であるサブミクロ孔に対して導電性化合物を形成することによって、通常の電気容量に加えて導電性化合物による擬似電気容量を付加し、電気容量の向上を図ることができる。
【図面の簡単な説明】
【図1】多孔質材料のサブミクロ孔に選択的に導電性化合物を形成した多孔質複合体表面の模式図である。
【図2】本発明にかかる多孔質複合体の製造方法の一実施形態を示す模式図である。
【図3】サブミクロ孔の被覆状況を示す多孔質複合体表面近傍の拡大模式図である。
【図4】多孔質複合体を用いて作製したキャパシタの一実施形態を示す概略図である。
【図5】多孔質材料の細孔に導電性化合物を形成した従来の多孔質複合体表面の模式図である。
【図6】多孔質材料表面の模式図である。
【符号の説明】
1 サブミクロ孔より大きい細孔、2 サブミクロ孔、3 形成された導電性高分子、4 導電性高分子のモノマー、5 導電性高分子のモノマーを溶解する溶媒、6 重合開始剤の気体または重合開始剤を含有する溶液、7 活性炭、8活性炭のサブミクロ孔、9 1,5−ジアミノアントラキノンポリマー、11電極、12 電極缶、13 セパレータ、14 電解液、15 ガスケット。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a capacitor, particularly to a porous composite used as a material for an electric double layer capacitor. More specifically, the present invention relates to a porous composite in which a compound is selectively formed on pores having a certain diameter or less in a porous material.
[0002]
[Prior art]
With the recent miniaturization and high performance of electronic devices and the like, the development of small, lightweight, high-capacitance capacitors, secondary batteries, and the like as driving or auxiliary power supplies for electronic devices has been actively conducted.
[0003]
Among them, the electric double layer capacitor has attracted attention because it has better large current characteristics and cycle characteristics than lithium ion secondary batteries and nickel hydride secondary batteries. Is a problem.
[0004]
Therefore, recently, as an electrode material for an electric double layer capacitor, a material obtained by supporting or coating a metal oxide or a conductive polymer on a carbon material such as activated carbon, or by using a conductive polymer itself, (For example, refer to Patent Literature 1 for the former and Non Patent Literature 1 for the latter).
[0005]
However, it is difficult for a conductive polymer itself to have a large surface area, such as activated carbon, using a commonly used polymerization method, and there is a problem that it is difficult to secure electric capacity by the surface area. When the activated carbon is coated with a conductive polymer, as shown in FIG. 5, all the pores existing on the entire surface of the activated carbon are covered, and cavities are generated in the conductive polymer due to polymerization or the like by polymerization. In some cases, it has been difficult to improve the electric capacity.
[0006]
[Patent Document 1]
JP 2002-25868 A
[Non-patent document 1]
Katsuhiko Naoi, and two others, Electrochemistry of Poly (1,5-diaminoanthraquinone) and Its Application in Electrochemical Capacitor Materials, "Journal of The Electrochemical Society", The Electrochemical Society Inc. , 2000, 147 (2), p420-426.
[0008]
[Problems to be solved by the invention]
An object of the present invention is to solve the above problems and to provide a porous composite for producing a capacitor having a large electric capacity and a method for producing the same.
[0009]
[Means for Solving the Problems]
In order to achieve the above object, a porous composite according to the present invention is characterized in that a porous material having a pore diameter of 0.8 nm or less is coated with a compound. Further, in the present invention, it is preferable that the porous material is a carbon material having pores and the compound is a conductive polymer.
[0010]
Here, FIG. 6 shows a schematic diagram of the surface of the porous material. FIG. 1 shows a schematic diagram of the surface of a porous composite in which a conductive compound is selectively formed in submicropores of a porous material.
[0011]
The inventor of the present application has reported that the pores having a pore diameter of 0.8 nm or less, called submicropores 2, contained in activated carbon used as an electrode material for electric double layer capacitors are difficult to penetrate the electrolytic solution, and As shown in FIG. 1, by forming a conductive compound selectively with respect to the sub-micropores 2, the pseudo-capacitance due to the conductive compound and the sub-micropores are reduced. The present invention has been completed by effectively expressing the electric double layer capacity in the large pores 1 and improving the electric capacity of the entire capacitor.
[0012]
The method for producing a porous composite according to the present invention is characterized in that, when the specific pore diameter of the porous material is D0 and the pore diameter smaller than D0 is D1, (1) the pore portion having the pore diameter of D1 or more is It is preferable that the method includes a step of coating with a chemical substance, and a step of (2) removing a chemical substance covering a pore portion having a pore diameter larger than D0. Further, when the compound is a polymer obtained by polymerizing a chemical substance, (1) a step of coating a pore portion having a pore diameter of D1 or more with a chemical substance, and (2) a pore diameter larger than D0. It is preferable that the method includes a step of removing the chemical substance covering the pore portion, and a step of (3) polymerizing the chemical substance to form a polymer.
[0013]
Further, a capacitor according to the present invention uses the above porous composite. Further, the method for producing a capacitor using the porous composite according to the present invention is the same as the solvent used in the step of removing the chemical substance covering the pore portion having a pore diameter larger than D0 in the production of the porous composite. Preferably, the solvent is used as an electrolytic solution for the capacitor in the production of the capacitor.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
The present invention is a porous composite, which is characterized in that a porous material having a pore diameter of 0.8 nm or less is coated with a compound. By forming such a composite, a new function can be added without changing the apparent volume of the porous material. For example, as described above, by forming a conductive compound in pores having a certain pore diameter or less in a carbon material for a capacitor, which is a porous material, pseudo-capacitance due to the conductive compound can be added to normal electric capacity. . The submicropores having a pore diameter of 0.8 nm or less are portions that do not act as an electric double layer capacity due to difficulty in infiltration of an electrolyte. By forming a compound in such portions, new functions can be provided without impairing the conventional functions. Is added. In addition, by forming a catalyst compound in pores having a certain pore diameter or less of the carbon material for adsorption, which is a porous material, a catalyst function by the catalyst compound can be added in addition to a normal adsorption function.
[0015]
Here, to cover the pores of the porous material with the compound means not only when all of the pores are filled with the compound, but also when the pores are covered like a lid or cross-linked. This includes the case where a part of the hole is filled.
[0016]
The porous material used in the present invention is not particularly limited as long as it is a material having pores.From the viewpoint of a material having a large surface area having the above-mentioned submicropores, it has pores such as activated carbon, acetylene black, and Ketjen black. It is preferably a carbon material.
[0017]
As the compound used in the present invention, various compounds can be used depending on the function to be added. However, from the viewpoint of improving the electric capacity of the porous material, a conductive compound, particularly a conductive polymer is preferable. Examples of the conductive compound include metal oxides such as titanium oxide, ruthenium oxide, vanadium oxide, manganese oxide, cobalt oxide, nickel oxide, tungsten oxide, niobium oxide, tantalum oxide, and chromium oxide, and polydiamino as a conductive polymer. Anthraquinone, quinone polymers such as polybenzoquinone, quinoxaline polymers such as polyphenylquinoxaline, indole polymers such as polynitroindole, polyacetylene, poly-p-phenylene, poly-p-phenylenevinylene, polyacene, polypyrrole, Dopable conductive polymers such as polyfuran, polythiophene, polyaniline, polypyridinediyl, polyisothianaphthene, and polyalkylchenylene are given.
[0018]
Examples of the dopant for the conductive polymer include acceptor dopants such as halogens such as I 2 and Cl 2 , Lewis acids such as BF 3 and SO 3 , proton acids such as H 2 SO 4 and HCl, FeCl, TiCl 4. Transition metal compounds such as Cl , PF 6 − and the like, and anions such as alkali metals such as Li and Na as donor doping agents, alkaline earth metals such as Ca and Sr, and rare earth elements such as Eu. No.
[0019]
The method for producing a porous composite according to the present invention is not particularly limited as long as it can form the above compound in pores having a specific pore diameter or less, but specific methods for producing a porous material are not particularly limited. When the pore size is D0 and the pore size smaller than D0 is D1, (1) the step of coating the pore portion having the pore size of D1 or more with a chemical substance, and (2) the pore portion having the pore size larger than D0 is covered. It is preferable that the method is a method for producing a porous composite, which comprises a step of removing a chemical substance. When the compound is a polymer obtained by polymerizing a chemical substance, when the specific pore diameter of the porous material is D0 and the pore diameter smaller than D0 is D1, (1) the pore diameter is D1. A step of coating the above-mentioned pores with a chemical substance, a step of (2) a step of removing the chemical substance covering the pores having a pore diameter larger than D0, and a step of (3) a step of polymerizing the chemical substances to form a polymer. Preferably, the method is a method for producing a porous composite, comprising: This is because such a production method allows a compound to be selectively formed with respect to pores having a specific pore diameter D0 or less.
[0020]
Here, the chemical substance refers to a substance that covers a target pore portion to form a compound. When the compound to be formed is a metal oxide, the compound refers to the metal oxide. When the compound to be formed is a conductive polymer, the compound refers to the monomer or oligomer having a low molecular weight.
[0021]
There is no particular limitation on the method of coating the pore portion having a pore diameter D1 or more smaller than the pore diameter D0 with a chemical substance as long as the method can cover the pore surface. It is preferable to carry out the adsorption by adsorbing the solution or by impregnating the surface of the pores with a solution in which the chemical substance is dissolved and then drying.
[0022]
FIG. 2 shows an embodiment of the method for producing a porous composite according to the present invention. First, as shown in FIG. 2A, the conductive polymer monomer 4 is vaporized and adsorbed on the entire surface of the porous material, or a solution in which the conductive polymer monomer 4 is dissolved is applied to the surface of the porous material. The whole of the submicropores 2 and the pores 1 larger than the submicropores are covered with the conductive polymer monomer 4 by being impregnated and dried.
[0023]
At this time, when a solution is used, the pore diameter that can be impregnated with the solution is represented by Washburn equation (1).
D = -4γ cos θ / P (1)
Here, D is the pore diameter, γ is the surface tension of the solution, θ is the contact angle between the porous material and the solution, and P is the pressure. Further, the numerical values of γ and θ are values specific to the substance, and it is necessary to perform the solution immersion under such a condition that D in the formula 1 becomes smaller than the specific pore diameter D0.
[0024]
Examples of the solvent for dissolving the monomer include water, ethylene carbonate, propylene carbonate, butylene carbonate, γ-butyl lactone, γ-valerolactone, acetonitrile, glutaronitrile, adiponitrile, methoxyacetonitrile, 3-methoxypropionitrile, N, N-dimethylformamide, N-methylpyrrolidone, N-methyloxazolidinone, N, N-dimethylimidazolidinone, nitromethane, nitroethane, sulfolane, dimethylsulfoxide, trimethylphosphate, dimethylolcarbonate, ethylmethylcarbonate, 3-methylsulfolane Etc. can be selected.
[0025]
Next, as shown in FIG. 2 (b), a monomer of the conductive polymer covering a pore portion having a pore diameter larger than the specific pore diameter D0, for example, the pores 1 other than the sub-micropores is mixed with the conductive polymer. The polymer monomer is removed by contact with a solvent 5 that dissolves the polymer monomer. That is, in the formula (1), by adjusting the pressure P of the solvent, the monomer covering the pore portion having a specific pore size of D0 or less remains, and the pore portion having the pore size larger than D0 is covered. The above monomer is dissolved and removed. For this purpose, it is preferable that D in such a case be within the range of ± 30% of the specific pore diameter D0, that is, within the range of 0.7 × D0 to 1.3 × D0, and more preferably ± 5%. , That is, within the range of 0.95 × D0 to 1.05 × D0.
[0026]
Finally, as shown in FIG. 2C, the gas of the polymerization initiator or the solution 6 containing the polymerization initiator is brought into contact with the monomer 4 of the conductive polymer remaining in the submicron hole 2 to obtain the submicron. The conductive polymer 3 is formed in the hole 2. That is, the submicron pores (fine pores having a diameter smaller than the specific pore diameter D1) can be obtained by vaporizing the polymerization initiator and adsorbing the polymerization initiator in the pores, or by impregnating the pores with a solution in which the polymerization initiator is dissolved. The conductive polymer 3 is formed by polymerizing the conductive polymer monomer 4 covering the hole portion 2. Here, as the polymerization initiator, proton acids such as hydrogen peroxide and sulfuric acid, solid acids such as chromium oxide and iron oxide, Lewis acids such as boron fluoride and aluminum chloride, and halogens such as chlorine and iodine are used. Can be.
[0027]
In the above, the case where the compound covering the target pore portion is a conductive polymer has been described, but when the compound covering the pore portion does not require a polymerization step of a metal oxide or the like, The step corresponding to FIG. 2C is not required, and can be performed according to FIGS. 2A and 2B. In order to coat the target pore portion with the metal oxide, the solvent used for impregnation and removal of the metal oxide is not particularly limited as long as the solvent can dissolve the metal oxide. Although it can be selected from solvents, water is preferred from the viewpoint of solubility. From the viewpoint of further increasing the solubility of the metal oxide, it is also preferable to add an inorganic acid such as nitric acid and an organic acid such as acetic acid within a range that does not impair the adsorption characteristics of the surface of the porous material to be coated.
[0028]
When a capacitor is prepared using the porous composite prepared as described above, various conventional configurations and manufacturing methods can be selected according to the purpose and use of the capacitor. For example, a coin-type capacitor can be manufactured by attaching the produced porous composite to an electrode can, sandwiching both electrodes with a separator, filling the electrode can with an electrolytic solution, and sealing. In addition, a wound capacitor can be manufactured by attaching the produced porous composite to an electrode foil such as an aluminum foil, sandwiching two electrodes with a separator, and winding the separator. As the small capacitors, the former coin type is excellent, and as the large capacitors, the wound type is excellent.
[0029]
In the production process of such a capacitor, the solvent of the electrolytic solution constituting the capacitor was used in the production process of the porous composite to remove the compound covering the pore portion having a pore diameter larger than the specific pore diameter. It is preferable to use the same solvent as the solvent from the viewpoint that the removal solvent and the electrolytic solution reach the same pore size to improve the contact between the coating compound and the electrolytic solution.
[0030]
Examples of the solvent for the electrolytic solution of the capacitor include water, ethylene carbonate, propylene carbonate, butylene carbonate, γ-butyl lactone, γ-valerolactone, acetonitrile, glutaronitrile, adiponitrile, methoxyacetonitrile, 3-methoxypropionitrile, N, N-dimethylformamide, N-methylpyrrolidone, N-methyloxazolidinone, N, N-dimethylimidazolidinone, nitromethane, nitroethane, sulfolane, dimethylsulfoxide, trimethylphosphate, dimethylolcarbonate, ethylmethylcarbonate, 3-methylsulfolane And the like are preferred.
[0031]
【Example】
The present invention will be described more specifically in the following examples. Porous composites were prepared according to the following Examples and Comparative Examples. The pores of each porous composite are classified into sub-micropores of 0.8 nm or less, micropores of 0.8 to 2 nm, mesopores of 2 to 50 nm, and macropores of 50 nm or more. The percentage of surface area for a given activated carbon was determined. The surface area (cm 2 / g) of each of the micropores, mesopores, and macropores among the pores of the porous composite obtained in Examples and Comparative Examples was measured by a nitrogen gas adsorption method (300 ° C., 1.33 × 10 −). 1 Pa, BET three-point adsorption method under 3 hours conditions) (Submicropores cannot be measured due to mechanical precision), and the percentages when the surface area of each pore of activated carbon before compound coating is 100% are shown in Table 1. It was shown to. The unit mass in the surface area was converted to the mass of the activated carbon before coating the compound in the porous composite.
[0032]
In addition, the surface state of each porous composite was measured using a transmission electron microscope, and the covering state of the submicropores in each of the seed examples or the comparative examples was examined. FIG. 3 is an enlarged schematic diagram of the vicinity of the porous composite surface. And the degree of coating is shown in Table 1 as a percentage.
[0033]
Further, a capacitor as shown in FIG. 4 was produced using the porous composite obtained in each of the examples or comparative examples. A tablet having a mass of 0.05 g, a diameter of 1 cm, and a thickness of 1 mm was prepared by kneading a mixture obtained by kneading the porous composite and a binder composed of 10% by mass of polytetrafluoroethylene with respect to the mass of the porous composite, This was used as electrode 11. As the separator 13, a porous polypropylene film having a diameter of 1 cm and a thickness of 50 μm was used. As the electrolytic solution 14, a propylene carbonate solution in which 1M tetraethylammonium borofluoride was dissolved was used. The electrode 11 was attached to an electrode can 12 made of stainless steel, a separator 13 was sandwiched between the two electrodes 11, an electrolytic solution 14 was filled inside the electrode can 12, and sealed through a gasket 15 made of polypropylene. The discharge capacity (mAh / g) of the coin-type capacitor thus manufactured was measured and is shown in Table 1. Here, the mass g in the unit of the discharge capacity indicates the mass of the electrode.
[0034]
(Example 1)
1 g of 1,5-diaminoanthraquinone monomer was heated to 350 ° C. and vaporized to cover the entire surface of 1 g of activated carbon (KP-191 manufactured by Takeda Pharmaceutical Co., Ltd.). Next, using propylene carbonate, the above-mentioned monomer covering the pore portion having a pore diameter larger than 0.8 nm was dissolved and removed. Subsequently, iodine, which is a polymerization initiator, is vaporized at 100 ° C. and 1 × 10 −3 Pa, and is brought into contact with a monomer remaining in the pores to polymerize the monomer, as shown in FIG. A porous composite was obtained in which the 1,5-diaminoanthraquinone polymer 9 was coated on the submicropores (pores having a pore diameter of 0.8 nm or less) 8 of activated carbon. The mass ratio of the activated carbon 7 to the 1,5-diaminoanthraquinone polymer 9 in the composite was 98.1: 1.9.
[0035]
(Example 2)
1 g of 1,5-diaminoanthraquinone monomer was heated to 350 ° C. and vaporized to cover the entire surface of 1 g of activated carbon (KP-191 manufactured by Takeda Pharmaceutical Co., Ltd.). Next, using propylene carbonate, the above-mentioned monomer covering the pore portion having a pore diameter larger than 0.8 nm was dissolved and removed. Subsequently, 10 g of activated carbon coated with the monomer was added to 100 cm 3 of a dimethylformamide solution in which 1.1 g of ammonium persulfate was dissolved as a polymerization initiator, and the sub-micropores (pore diameter 0) of the activated carbon as shown in FIG. A porous composite was obtained in which 1,5-diaminoanthraquinone polymer 9 was coated on (pore portion having a diameter of 0.8 nm or less) 8. The mass ratio of the activated carbon 7 and the 1,5-diaminoanthraquinone polymer 9 in this composite was 97.4: 2.6.
[0036]
(Example 3)
Dissolving 1 g of 1,5-diaminoanthraquinone monomer in 100 cm 3 of dimethylformamide, adding 1 g of activated carbon (KP-191 manufactured by Takeda Pharmaceutical Co., Ltd.) to a solution heated to 40 ° C., impregnating the activated carbon with the monomer, and drying. The whole surface of the activated carbon was coated with the monomer. Next, using propylene carbonate, the above-mentioned monomer covering the pore portion having a pore diameter larger than 0.8 nm was dissolved and removed. Subsequently, 10 g of activated carbon coated with the monomer was added to 100 cm 3 of a dimethylformamide solution in which 1.1 g of ammonium persulfate was dissolved as a polymerization initiator, and the sub-micropores (pore diameter 0) of the activated carbon as shown in FIG. A porous composite was obtained in which 1,5-diaminoanthraquinone polymer 9 was coated on (pore portion having a diameter of 0.8 nm or less) 8. The mass ratio of the activated carbon 7 and the 1,5-diaminoanthraquinone polymer 9 in this composite was 98.0: 2.0.
[0037]
(Comparative Example 1)
1 g of activated carbon (KP-191, manufactured by Takeda Pharmaceutical Co., Ltd.) was added to a solution of 1 g of 1,5-diaminoanthraquinone monomer dissolved in 90 cm 3 of dimethylformamide at room temperature and dispersed, and then ammonium persulfate, a polymerization initiator, was added. A solution of 1 g in 10 cm 3 of dimethylformamide was added dropwise to obtain a complex of activated carbon 7 and 1,5-diaminoanthraquinone polymer 9 as shown in FIG. The mass ratio of the activated carbon 7 and the 1,5-diaminoanthraquinone polymer 9 in this composite was 98.0: 2.0.
[0038]
(Comparative Example 2)
In the same manner as in Comparative Example 1, in order to improve the mass ratio of 1,5-diaminoanthraquinone polymer, 1.5 g of a monomer (monomer concentration: 0.015 g / cm 3 ) and 1.7 g of a polymerization initiator (polymerization) As the initiator concentration: 0.017 g / cm 3 ), a complex as shown in FIG. 3 (e) was prepared. The mass ratio of activated carbon 7 and 1,5-diaminoanthraquinone polymer 9 in this composite was 40:60.
[0039]
(Comparative Example 3)
A control test was performed on the activated carbon 7 before being coated with the 1,5-diaminoanthraquinone polymer as shown in FIG.
[0040]
[Table 1]
Figure 2004137133
[0041]
As shown in Table 1, in Examples 1 to 3, pores other than sub-micropores such as micropores, mesopores, and macropores were hardly coated with the conductive polymer, and were selectively applied to the submicropores. Since the conductive polymer is coated on the sub-micropore, the pseudo-capacitance derived from the conductive polymer coated on the sub-micropore is added without impairing the capacity derived from the pore portion larger than the sub-micropore. This increases the discharge capacity.
[0042]
On the other hand, in Comparative Examples 1 and 2, since the conductive polymer covers not only the sub-micropores but also the micropores and mesopores, the capacitance derived from the pores larger than the submicropores And the discharge capacity is reduced.
[0043]
The embodiments and examples disclosed this time are to be considered in all respects as illustrative and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
[0044]
【The invention's effect】
As described above, as described in the present invention, by forming a conductive compound on submicropores which are pore portions having a pore diameter of 0.8 nm or less of a porous material, the conductivity is increased in addition to the normal electric capacity. The pseudo electric capacity of the compound can be added to improve the electric capacity.
[Brief description of the drawings]
FIG. 1 is a schematic view of a porous composite surface in which a conductive compound is selectively formed in submicropores of a porous material.
FIG. 2 is a schematic view showing one embodiment of a method for producing a porous composite according to the present invention.
FIG. 3 is an enlarged schematic view of the vicinity of the surface of a porous composite showing the covering state of sub-micropores.
FIG. 4 is a schematic diagram showing one embodiment of a capacitor manufactured using a porous composite.
FIG. 5 is a schematic diagram of the surface of a conventional porous composite in which a conductive compound is formed in pores of a porous material.
FIG. 6 is a schematic view of the surface of a porous material.
[Explanation of symbols]
1 Pores larger than submicropores, 2 submicropores, 3 formed conductive polymer, 4 conductive polymer monomer, 5 solvent for dissolving conductive polymer monomer, 6 polymerization initiator gas or polymerization initiation Solution containing the agent, 7 activated carbon, 8 activated carbon submicropores, 9 1,5-diaminoanthraquinone polymer, 11 electrodes, 12 electrode cans, 13 separators, 14 electrolytes, 15 gaskets.

Claims (11)

多孔質材料の細孔径0.8nm以下の細孔部分に対して化合物を被覆することを特徴とする多孔質複合体。A porous composite, wherein a compound is coated on a pore portion of a porous material having a pore diameter of 0.8 nm or less. 多孔質材料が、細孔を有する炭素材料である請求項1に記載の多孔質複合体。The porous composite according to claim 1, wherein the porous material is a carbon material having pores. 化合物が、導電性高分子である請求項1または請求項2に記載の多孔質複合体。3. The porous composite according to claim 1, wherein the compound is a conductive polymer. 多孔質材料の特定の細孔径をD0、D0より小さな細孔径をD1とするとき、
(1)細孔径がD1以上の細孔部分を化学物質により被覆する工程、
(2)細孔径がD0より大きい細孔部分を被覆した化学物質を除去する工程
を含むことを特徴とする多孔質複合体の製造方法。
When the specific pore diameter of the porous material is D0 and the pore diameter smaller than D0 is D1,
(1) a step of coating a pore portion having a pore diameter of D1 or more with a chemical substance;
(2) A method for producing a porous composite, comprising a step of removing a chemical substance covering a pore portion having a pore diameter larger than D0.
化合物が化学物質を重合することによって得られる重合体であって、多孔質材料の特定の細孔径をD0、D0より小さな細孔径をD1とするとき、
(1)細孔径がD1以上の細孔部分を化学物質により被覆する工程、
(2)細孔径がD0より大きい細孔部分を被覆した化学物質を除去する工程
(3)化学物質を重合して重合体を形成する工程
を含むことを特徴とする多孔質複合体の製造方法。
When the compound is a polymer obtained by polymerizing a chemical substance, and a specific pore diameter of the porous material is D0, and a pore diameter smaller than D0 is D1,
(1) a step of coating a pore portion having a pore diameter of D1 or more with a chemical substance;
(2) a step of removing a chemical substance covering a pore portion having a pore diameter larger than D0 (3) a method of producing a porous composite, comprising a step of polymerizing a chemical substance to form a polymer .
細孔径がD1以上の細孔部分を化学物質により被覆する工程を、化学物質を気化させて吸着させることにより、または化学物質を溶解した溶液を含浸させた後乾燥させることにより、行なうことを特徴とする請求項4または請求項5に記載の多孔質複合体の製造方法。The step of coating the pore portion having a pore diameter of D1 or more with a chemical substance is performed by vaporizing and adsorbing the chemical substance, or by impregnating a solution in which the chemical substance is dissolved and then drying it. A method for producing a porous composite according to claim 4 or claim 5. 細孔径がD1以上の細孔部分を化学物質により被覆する工程を、化学物質を溶解した溶液を含浸させた後乾燥させることにより行なう場合において、溶液の表面張力をγ、多孔質材料と溶液の接触角をθ、溶液の圧力をPとするとき、D1が、
D1≧−4γcosθ/P
を満たすことを特徴とする請求項6に記載の多孔質複合体の製造方法。
In the case where the step of coating a pore portion having a pore diameter of D1 or more with a chemical substance is performed by impregnating with a solution in which the chemical substance is dissolved and then drying, the surface tension of the solution is set to γ, When the contact angle is θ and the pressure of the solution is P, D1 is
D1 ≧ -4γcosθ / P
The method for producing a porous composite according to claim 6, wherein:
細孔径がD0より大きい細孔部分を被覆した化学物質を除去する工程を、化学物質を溶解させるのに必要とされる溶媒を用いた溶液にて行ない、
溶液の表面張力をγ、多孔質材料と溶液の接触角をθ、溶液の圧力をPとし、
D2=−4γcosθ/PとおくときのD2が、
0.7×D0≦D2≦1.3×D0
を満たすことを特徴とする請求項4から請求項7のいずれかに記載の多孔質複合体の製造方法。
The step of removing the chemical substance covering the pore portion having a pore diameter larger than D0 is performed with a solution using a solvent required to dissolve the chemical substance,
The surface tension of the solution is γ, the contact angle between the porous material and the solution is θ, and the pressure of the solution is P,
When D2 = -4γcosθ / P, D2 is
0.7 × D0 ≦ D2 ≦ 1.3 × D0
The method for producing a porous composite according to any one of claims 4 to 7, wherein:
化学物質を重合して重合体を形成する工程を、重合開始剤を気化し吸着させて重合反応を起こすことにより、または重合開始剤を溶解した溶液を含浸させて重合反応を起こすことにより、行なうことを特徴とする請求項5から請求項8のいずれかに記載の多孔質複合体の製造方法。The step of polymerizing a chemical substance to form a polymer is performed by causing a polymerization reaction by vaporizing and adsorbing a polymerization initiator, or by causing a polymerization reaction by impregnating a solution in which the polymerization initiator is dissolved. The method for producing a porous composite according to any one of claims 5 to 8, wherein: 請求項1から請求項3のいずれかに記載された多孔質複合体を用いたキャパシタ。A capacitor using the porous composite according to claim 1. 多孔質複合体の製造において請求項4、請求項5または請求項8のいずれかに記載した細孔径がD0より大きい細孔部分を被覆した化学物質を除去する工程において用いた溶媒と同じ溶媒を、キャパシタの製造においてキャパシタ用電解液として用いることを特徴とする多孔質複合体を用いたキャパシタの製造方法。The same solvent as the solvent used in the step of removing the chemical substance covering the pore portion having a pore diameter larger than D0 according to any one of claims 4, 5 and 8 in the production of the porous composite is used. A method for producing a capacitor using a porous composite, wherein the method is used as an electrolytic solution for a capacitor in the production of a capacitor.
JP2002305751A 2002-10-21 2002-10-21 Porous composite material, its manufacture method, and capacitor using porous composite material, and its manufacture method Withdrawn JP2004137133A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002305751A JP2004137133A (en) 2002-10-21 2002-10-21 Porous composite material, its manufacture method, and capacitor using porous composite material, and its manufacture method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002305751A JP2004137133A (en) 2002-10-21 2002-10-21 Porous composite material, its manufacture method, and capacitor using porous composite material, and its manufacture method

Publications (1)

Publication Number Publication Date
JP2004137133A true JP2004137133A (en) 2004-05-13

Family

ID=32452773

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002305751A Withdrawn JP2004137133A (en) 2002-10-21 2002-10-21 Porous composite material, its manufacture method, and capacitor using porous composite material, and its manufacture method

Country Status (1)

Country Link
JP (1) JP2004137133A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007005724A (en) * 2005-06-27 2007-01-11 Nicca Chemical Co Ltd Carbonaceous/conductive polymer compound material and manufacturing method thereof
JP2010003940A (en) * 2008-06-23 2010-01-07 Mazda Motor Corp Active carbon for electrode material and energy storage device
JP2011233845A (en) * 2010-04-30 2011-11-17 Nihon Gore Co Ltd Polarizable electrode material for electric double layer capacitor with improved voltage resistance, and electric double layer capacitor using the same
JP2012033783A (en) * 2010-07-30 2012-02-16 Nitto Denko Corp Electric double layer capacitor
WO2014156511A1 (en) * 2013-03-28 2014-10-02 国立大学法人東北大学 Electricity storage device and electrode material therefor
JP2015195645A (en) * 2014-03-31 2015-11-05 デクセリアルズ株式会社 Polymer element, electronic apparatus, camera module, and imaging apparatus
WO2017135405A1 (en) * 2016-02-04 2017-08-10 Tpr株式会社 Core-shell composite, method for producing same, electrode material, catalyst, electrode, secondary battery, and electric double-layer capacitor

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007005724A (en) * 2005-06-27 2007-01-11 Nicca Chemical Co Ltd Carbonaceous/conductive polymer compound material and manufacturing method thereof
JP2010003940A (en) * 2008-06-23 2010-01-07 Mazda Motor Corp Active carbon for electrode material and energy storage device
JP2011233845A (en) * 2010-04-30 2011-11-17 Nihon Gore Co Ltd Polarizable electrode material for electric double layer capacitor with improved voltage resistance, and electric double layer capacitor using the same
JP2012033783A (en) * 2010-07-30 2012-02-16 Nitto Denko Corp Electric double layer capacitor
WO2014156511A1 (en) * 2013-03-28 2014-10-02 国立大学法人東北大学 Electricity storage device and electrode material therefor
US9620297B2 (en) 2013-03-28 2017-04-11 Tohoku University Electricity storage device and electrode material therefor
JP2015195645A (en) * 2014-03-31 2015-11-05 デクセリアルズ株式会社 Polymer element, electronic apparatus, camera module, and imaging apparatus
WO2017135405A1 (en) * 2016-02-04 2017-08-10 Tpr株式会社 Core-shell composite, method for producing same, electrode material, catalyst, electrode, secondary battery, and electric double-layer capacitor
JPWO2017135405A1 (en) * 2016-02-04 2018-02-08 Tpr株式会社 Core-shell composite and manufacturing method thereof, electrode material, catalyst, electrode, secondary battery, electric double layer capacitor
CN108604503A (en) * 2016-02-04 2018-09-28 帝伯爱尔株式会社 Nucleocapsid complex and its manufacturing method, electrode material, catalyst, electrode, secondary cell, double layer capacitor
CN108604503B (en) * 2016-02-04 2019-07-05 帝伯爱尔株式会社 Nucleocapsid complex and its manufacturing method, electrode material, catalyst, electrode, secondary cell, double layer capacitor
US10510493B2 (en) 2016-02-04 2019-12-17 Tpr Co., Ltd. Core-shell composite, method for producing the same, electrode material, catalyst, electrode, secondary battery, and electric double-layer capacitor

Similar Documents

Publication Publication Date Title
JP6368977B2 (en) Core-shell composite and manufacturing method thereof, electrode material, catalyst, electrode, secondary battery, electric double layer capacitor
Snook et al. Conducting-polymer-based supercapacitor devices and electrodes
US11551878B2 (en) Electricity storage device
JP5440003B2 (en) Electric storage device and method for manufacturing electrode active material
US6038123A (en) Electric double layer capacitor, and carbon material and electrode therefor
JP2009238945A (en) Energy storage device
KR20100065112A (en) Positive electrode active material for lithium ion storage device, and lithium ion storage device making use of the same
JP5888385B2 (en) Polarizable electrode for electric double layer capacitor and electric double layer capacitor using the same
JP2007281107A (en) Electricity storage device
JP2004127774A (en) Material for ion conductor
Anothumakkool et al. Improved electro-grafting of nitropyrene onto onion-like carbon via in situ electrochemical reduction and polymerization: tailoring redox energy density of the supercapacitor positive electrode
JP2009295881A (en) Energy storage device
KR100914643B1 (en) Method of manufacturing electric double-layer capacitor
JP2004137133A (en) Porous composite material, its manufacture method, and capacitor using porous composite material, and its manufacture method
JPH1131637A (en) Electric double-layer capacitor, carbon material for it and electrode
TWI498931B (en) Energy storage device
JP2004123653A (en) Method for producing ionic material
JP2015103602A (en) Lithium ion capacitor
JP3800810B2 (en) Electric double layer capacitor
EP3109877A1 (en) Capacitor and method for charging and discharging same
KR20220049723A (en) Manufacturing method of electrode active material for supercapacitor co-doped with nitrogen and fluorine and high power supercapacitor using the same and method of manufacturing thereof
JP2009099978A (en) Polarizable electrode for electric double layer capacitor and electric double layer capacitor using the same
JP2004123652A (en) Method for producing ionic material
JP2015103603A (en) Lithium ion capacitor
KR102639923B1 (en) Manufacturing method of nitrogen doped electrode active material with reduced chemical amount by using surface modifier, and supercapacitor using the same and method of manufacturing thereof

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040310

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050401

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20070706