JP2004136173A - Manifold for filter membrane module bundle - Google Patents

Manifold for filter membrane module bundle Download PDF

Info

Publication number
JP2004136173A
JP2004136173A JP2002301687A JP2002301687A JP2004136173A JP 2004136173 A JP2004136173 A JP 2004136173A JP 2002301687 A JP2002301687 A JP 2002301687A JP 2002301687 A JP2002301687 A JP 2002301687A JP 2004136173 A JP2004136173 A JP 2004136173A
Authority
JP
Japan
Prior art keywords
filtration membrane
branch pipe
main pipe
membrane module
branch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002301687A
Other languages
Japanese (ja)
Other versions
JP4069246B2 (en
Inventor
Takashi Tsukahara
塚原 隆史
Yoshihiko Mori
森 吉彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Chemicals Corp
Original Assignee
Asahi Kasei Chemicals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Chemicals Corp filed Critical Asahi Kasei Chemicals Corp
Priority to JP2002301687A priority Critical patent/JP4069246B2/en
Publication of JP2004136173A publication Critical patent/JP2004136173A/en
Application granted granted Critical
Publication of JP4069246B2 publication Critical patent/JP4069246B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manifold for a filter membrane module bundle capable of arranging filter membrane modules in the closest packing state and capable of maximizing a membrane filling density because the intervals between the filter membrane modules can be made closest to miniaturize a membrane separator. <P>SOLUTION: The monifold is characterized by being constituted so that the intersecting points of the center axis 7m of the main pipe part 7 of the manifold 1A and the planes, which are vertical to a plurality of the center axes 3ma, 3mb and 3mc passing the centers of the leading end parts 3a1-3c1 of manifold parts 3a-3c, are positioned at the middle point of the longest segment 8a partitioned by the perpendicular lines (a) and (b) drawn on a line symmetric axis (s) from the apexes of the regular triangle 8 formed by connecting the intersecting points of the center axes 3ma, 3mb and 3mc and the planes thereof. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、少なくとも一端部が筒状である3本以上の濾過膜モジュール束を主配管に液密に接続し得る濾過膜モジュール束用多分岐管に関するものである。
【0002】
【従来の技術】
従来、浄水処理、下水処理、産業排水処理等における固液分離は、凝集沈殿槽、重力沈殿槽等を用いて行われていた。しかしながら、近年では、膜技術の発達により濾過膜モジュールを用いて被処理水を固液分離する方法が採用されるに至っている。
【0003】
即ち、懸濁物質を含む被処理水を加圧、水頭差或いは吸引圧等の膜間差圧を与えて濾過膜モジュールにより濾過を行い、得られた濾過水が濾過膜モジュールの外部に引き出される。
【0004】
このような方法によれば、被処理水中の懸濁物質は、濾過膜モジュールの供給側に固形分として残り、濾過膜モジュールの透過側において、除濁、除菌された清浄な濾過水が得られる。
【0005】
このような膜分離装置においては、濾過膜モジュールへ被処理水を送水したり、或いは、濾過膜モジュールにより得られた濾過水を集水するために濾過膜モジュールの被処理水入口及び濾過水出口は、被処理水用配管及び濾過水用配管へ各々接続されている。
【0006】
この時、これ等の配管へ接続される濾過膜モジュールにおいて、隣り合う濾過膜モジュールの間隔が広いと膜分離装置の設置床面積あたりの膜面積、即ち、膜充填密度が小さくなる。
【0007】
この結果、処理水量が増加するほど、即ち、必要な濾過膜モジュールの本数が増加するほど、膜分離装置の設置床面積が大きくなり膜分離装置が大型化する。また、各濾過膜モジュールを各々被処理水用配管及び濾過水用配管に接続すると、濾過膜モジュールの本数分の接続個所が必要であり、また、各配管との接続部品点数も増加するため膜分離装置のメンテナンス作業等が煩雑になる。
【0008】
このような問題に鑑み、設置床面積あたりの膜面積、即ち、膜充填密度を高めるため矩形型濾過膜モジュールを縦方向に数段積み重ねた濾過膜ユニットが提案されている(例えば、特許文献1参照。)。
【0009】
また、4本の濾過膜モジュールを正方形の角部に配置して1組とした濾過膜ユニットを複数個配置した膜分離装置が提案されている(例えば、特許文献2参照。)。
【0010】
また、タンク或いはケース内に管板等を用いて正三角形状に濾過膜モジュールを配置した膜分離装置が開示されている(例えば、特許文献3〜6参照。)。
【0011】
【特許文献1】
特開平11−314026号公報
【特許文献2】
国際公開第00/62908号パンフレット
【特許文献3】
特公昭64−5925号公報
【特許文献4】
特開平9−38470号公報
【特許文献5】
特開平7−8763号公報
【特許文献6】
特開2001−137670号公報
【0012】
【発明が解決しようとする課題】
しかしながら、前述の従来例において、特許文献1、2に開示されている濾過膜モジュールの配置方法では、濾過膜モジュールが最密充填の位置に配置されておらず膜充填密度が十分ではないため処理水量が増加するほど膜分離装置が大型化するという問題を解決するには至っていない。
【0013】
また、特許文献3〜6に開示されているタンクまたはケース内に正三角形状に濾過膜モジュールを配置した膜分離装置では、管板と濾過膜モジュールを液密にするために多数のボルト及び専用治具により濾過膜モジュールを固定しなければならず多数の接続部品が必要である。また、ボルトや専用治具を使用するため濾過膜モジュールの間隔を密にすることが困難である。
【0014】
また、部品点数が多いため膜分離装置の維持管理が煩雑である。また、正三角形状に配置するための管板等に精密な加工をする必要があり装置製作コストが上昇する。また、多数本の濾過膜モジュールを同一の管板で支持する場合、管板に十分な強度を確保する必要があり非常に重厚な膜分離装置となってしまうという問題があった。
【0015】
本発明は前記課題を解決するものであり、その目的とするところは、複数の濾過膜モジュールを充填密度の高い位置に容易に配置出来、膜充填密度を最大限まで高めることにより膜分離装置を小型化し、また、濾過膜モジュールと主配管との接続部品点数を少なくすることにより膜分離装置のメンテナンスが容易になり、更には、濾過膜モジュールと主配管との接続部分の損失水頭を小さくすることによりエネルギー損失を小さく出来る濾過膜モジュール束用多分岐管を提供せんとするものである。
【0016】
【課題を解決するための手段】
前記目的を達成するための本発明に係る濾過膜モジュール束用多分岐管は、少なくとも一端部が筒状である3本以上の濾過膜モジュール束を主配管に液密に接続し得る濾過膜モジュール束用多分岐管であって、一端が前記主配管に連結される主管部と、前記主管部の他端から分岐した複数の分岐管部とを有し、前記分岐管部の夫々の先端部は同方向で、且つ前記濾過膜モジュールの筒状端部との連結部を構成し、該先端部の中心を通る複数の中心軸と、該中心軸に垂直な平面との交点を結んでなる多角形が、最隣接の中心軸間距離を一辺の長さとする正三角形の組み合わせから構成されることを特徴とする。
【0017】
本発明は、上述の如く構成したので、濾過膜モジュール束用多分岐管の各分岐管部の先端部が隣り合う3本以上の濾過膜モジュールの端部に接続されており、該分岐管部の先端部が正三角形の頂点にある多分岐管を用いることにより濾過膜モジュールを充填密度の高い位置に容易に配置出来、且つ各濾過膜モジュールの間隔を密にすることにより膜充填密度を最大限まで高めることが出来、これにより膜分離装置を小型化出来る。
【0018】
また、前記主管部の中心軸と、前記分岐管部の先端部の中心を通る複数の中心軸に垂直な平面との交点は、前記先端部の中心を通る複数の中心軸と、該中心軸に垂直な平面との交点を結んでなる多角形において該多角形を線対称に区分する線対称軸上にあり、且つ前記多角形の各頂点から前記線対称軸上に引いた垂線で区切られる最長の線分の中点に位置する場合には、配列された複数の膜濾過モジュール束用多分岐管の主管部を直線上に配列することが容易に出来、主配管と膜濾過モジュール束用多分岐管の主管部とを直管で接続することが出来るため損失水頭を低減することが出来る。
【0019】
【発明の実施の形態】
図により本発明に係る膜濾過モジュール束用多分岐管の一実施形態を具体的に説明する。図1及び図2は本発明に係る濾過膜モジュール束用多分岐管を用いて3本、或いは4本の濾過膜モジュールを1組とした濾過膜ユニットの一例を示す平面説明図、図3は図1及び図2に示す濾過膜ユニットの側面説明図、図4は本発明に係る濾過膜モジュール束用多分岐管を用いて3本の濾過膜モジュールを1組とした濾過膜ユニットを多数配列した様子を示す平面模式図、図5は比較例を示す図である。
【0020】
本発明に係る膜濾過モジュール束用多分岐管(以下、単に「多分岐管」という)は、例えば、河川水、湖沼水、地下水、海水、生活排水、工場排水、下水二次処理水等の被処理水を膜分離により除濁、除菌する濾過膜モジュールを用いて、各濾過膜モジュールより得られる濾過水を複数本分一括して集水したり、或いは、被処理水を複数本の濾過膜モジュールへ一括して送水するための濾過膜モジュール束用多分岐管である。
【0021】
図1は、3本の濾過膜モジュール2を多分岐管1Aにより連結した濾過膜ユニットAを上から見た平面図であり、図2は4本の濾過膜モジュール2を多分岐管1Bにより連結した濾過膜ユニットBを上から見た平面図である。
【0022】
また、図3は図1及び図2に示す各多分岐管1A,1Bと連結される側の濾過膜モジュール2の上部ヘッダがキャップ5によるネジ込み式構造を有しており、且つ濾過膜モジュール2において各多分岐管1A,1Bと連結していない側が専用の固定治具6により固定されている濾過膜ユニットA,Bの一例を示す概略図である。
【0023】
ここで、濾過膜ユニットA,Bとは複数本の濾過膜モジュール2を多分岐管1A,1Bを用いて束ねた構成単位のことである。多分岐管1A,1Bは少なくとも一端部が円筒状、角筒状等の筒状である3本、或いは4本(3本以上)の濾過膜モジュール2束を主配管4に液密に接続し得るものであり、一端が主配管4に連結される主管部7と、該主管部7の他端から分岐した複数の分岐管部3とを有している。
【0024】
図1〜図3に示すように、分岐管部3の夫々の先端部は同方向(図3の上下方向)であって濾過膜モジュール2の筒状端部との連結部を構成し、該先端部の中心を通る複数の中心軸3mと、該中心軸3mに垂直な平面との交点を結んでなる多角形が、最隣接する中心軸3m間の距離を一辺の長さとする正三角形の組み合わせから構成されるように設定されている。
【0025】
また、主管部7の中心軸7mと、分岐管部3の先端部の中心を通る複数の中心軸3mに垂直な平面との交点は、中心軸3mと該中心軸3mに垂直な平面との交点を結んでなる多角形において該多角形を線対称に区分する線対称軸s上にあり、且つその多角形の各頂点から線対称軸s上に引いた垂線で区切られる最長の線分の中点に位置するように設定されている。
【0026】
例えば、図1に示す濾過膜ユニットAは、多分岐管1Aを用いて3本の濾過膜モジュール2を1組とし、多分岐管1Aの各分岐管部3a,3b,3cと接続された各濾過膜モジュール2の中心軸と一致する各分岐管部3a,3b,3cの夫々の先端部3a1,3b1,3c1の中心軸3ma,3mb,3mcが正三角形8の頂点に配置された一例である。
【0027】
各分岐管部3a〜3cが接続される主管部7の中心軸7mは、各濾過膜モジュール2と接続された各分岐管部3a〜3cの先端部3a1〜3c1の中心軸3ma,3mb,3mcと、該中心軸3ma,3mb,3mcと垂直な平面との交点を結んでなる正三角形8において、その正三角形8の線対称軸s上にあり、且つその正三角形8の各頂点から線対称軸s上に引いた垂線a,bで区切られる最長の線分8aの中点に位置している。
【0028】
一方、図2に示す濾過膜ユニットBは、多分岐管1Bを用いて4本の濾過膜モジュール2を1組とし、多分岐管1Bの各分岐管部3d,3e,3f,3gと接続された各濾過膜モジュール2の中心軸と一致する各分岐管部3d〜3gの夫々の先端部3d1,3e1,3f1,3g1の中心軸3md,3me,3mf,3mgが正三角形を2つ組み合わせた菱形9の頂点に配置された一例である。
【0029】
各分岐管部3d〜3gが接続される主管部7の中心軸7mは、各濾過膜モジュール2と接続された各分岐管部3d〜3gの先端部3d1〜3g1の中心軸3md,3me,3mf,3mgと、該中心軸3md,3me,3mf,3mgと垂直な平面との交点を結んでなる菱形9において、その菱形9の線対称軸s上にあり、且つその菱形9の各頂点から線対称軸s上に引いた垂線a,bで区切られる最長の線分9aの中点に位置している。
【0030】
ここで、多分岐管に連結する濾過膜モジュール2の本数は任意の数で良いが、5本以上の濾過膜モジュール2を多分岐管を用いて濾過膜ユニットにすると、濾過膜モジュール2を連結するための多分岐管の形状が複雑になり、多分岐管の損失水頭が増加してしまう。
【0031】
また、メンテナンス時には、多数本の濾過膜モジュール2を同時に停止させる必要があり、メンテナンス作業等が煩雑になってしまう。
【0032】
一方、2本の濾過膜モジュール2を1組とした濾過膜ユニットとすると、多分岐管と主配管4の接続点数が増加するため配管製作等が困難となる。また、接続に必要な部品点数が増加してしまう等の問題がある。
【0033】
このため、濾過膜ユニットを構成する濾過膜モジュール2の本数としては、好ましくは3本或いは4本で、より好ましくは3本であることが望ましい。即ち、多分岐管の主管部7から分岐した分岐管部3の数が3或いは4であることが好ましく、より好ましくは3であることが望ましい。
【0034】
図3は、多分岐管1A,1Bと、濾過膜モジュール2及び主配管4との連結方法の一例を示したものである。多分岐管1A,1Bと濾過膜モジュール2との連結方法としては、両者を直接連結する方法、或いは、図3に示すように、キャップ5等を介して連結する方法のいずれでも良いが、濾過膜モジュール2の脱着の容易さからキャップ5等を介して連結する方法が望ましい。
【0035】
濾過膜モジュール2とキャップ5の連結方法としては、隣設される濾過膜モジュール2相互の間隔が密に出来るものであれば特に限定されないが、ネジ込み式の構造が濾過膜モジュール2を密に構成することが出来るため望ましい。
【0036】
更に、濾過膜モジュール2を取り付けたキャップ5と、多分岐管1A,1Bとの接続方法としては、フランジ接続、クランプ接続、ヘルール接続、ヴィクトリックジョイント接続、ネジ接続等があるが、隣設される濾過膜モジュール2相互の間隔が密に出来るものであれば特に限定されない。
【0037】
また、多分岐管1A,1Bと、濾過膜モジュール2とを直接接続する場合においても略同様な接続用治具を用いれば良い。多分岐管1A,1Bと主配管4との接続方法としては、両者を溶接等により直接固定する方法、或いは、フランジ接続、クランプ接続、ヘルール接続、接続長さを変えられる接続(例えば、ヴィクトリックジョイント接続)等による脱着可能な方法のいずれでも良い。
【0038】
更には、隣設される濾過膜モジュール2相互の間隔が密になった濾過膜ユニットA,Bにおいては、濾過膜モジュール2同士が接触することにより破損する恐れがあるため固定治具6等により濾過膜モジュール2下部を固定することが好ましい。
【0039】
図3に示す濾過膜モジュール2は、筒形状の中空糸膜の下端部が接着固定されて閉塞され、上端部が開口されたものであり、接着固定される下端部の断面形状としては、円形の他、三角形、四角形、六角形、楕円形等であっても良いが、特に膜充填密度を高く出来る円形が好ましい。
【0040】
また、濾過膜モジュール2に用いる中空糸膜としては、ナノ濾過膜、限外濾過膜、精密濾過膜のいずれでも良い。
【0041】
図3に示す濾過膜ユニットA,Bは多数組み連結されて槽10、或いはタンク内に収容されており、例えば、主配管4から供給される原液が多分岐管1A,1Bにより各濾過膜モジュール2に分岐されて流通し、中空糸膜を通って濾過された濾過液が槽10或いはタンク内部に貯留され、図示しない排出口から取り出されるか、または、図示しない供給口からタンク内に原液が供給されて各濾過膜モジュール2の中空糸膜を通って濾過された濾過液が多分岐管1A,1Bにより集液されて主配管4から外部に排出される。
【0042】
上記構成の多分岐管1Aを使用して主配管4に接続した場合、図4に示すように、多分岐管1Aの主管部7が接続される主配管4の分岐管部4aの配列位置を一直線上に配列することが可能であり、多分岐管1Aの主管部7と、主配管4の分岐管部4aとを損失水頭が少ない直管により接続することが容易に出来る。
【0043】
また、図示しないが、多分岐管1Bを使用して主配管4に接続した場合も同様に主配管4の分岐管部4aの配列位置を一直線上に配列することが可能であり、多分岐管1Bの主管部7と、主配管4の分岐管部4aとを損失水頭が少ない直管により接続することが容易に出来る。
【0044】
ここで、比較例として、図5に示すように、各濾過膜モジュール2の中心軸と、該中心軸と垂直な平面との交点を結んでなる正三角形8の重心位置に多分岐管1Aの主管部7の中心軸7mを設定した場合には、配列された多分岐管1Aの主配管4の位置が千鳥状に配列されてしまう。
【0045】
このため、多分岐管1Aの主管部7と主配管4の分岐管部4aとをエルボ等の管継手を用いて接続しなければならず直管と比較して損失水頭が大きくなるという問題がある。
【0046】
以下、濾過膜モジュール2を最密充填の位置に容易に配置出来、且つ濾過膜モジュール2の間隔を密にすることにより膜充填密度を最大限まで高めて膜分離装置を小型化出来る濾過膜モジュール束用多分岐管の具体的な実施例を詳細に説明する。
【0047】
<実施例1>
図1に示した多分岐管1Aを用いて該多分岐管1Aの分岐管部3a〜3cと濾過膜モジュール2の濾過水出口を接続し、3本の濾過膜モジュール2を1組とした16個の濾過膜ユニットAを用いて該濾過膜ユニットAを8個ずつ2本の濾過水用配管に接続した。
【0048】
上記膜分離装置を上部端面の形状が長方形である槽10内へ直接設置した。使用した濾過膜モジュール2は、概略寸法で直径6インチ(約15.24cm)、長さ2mであり、ポリフッ化ビニリデン製の公称孔径0.1μmの中空糸型精密濾過膜を膜面積50mに束ねたものを用いた。
【0049】
また、濾過膜モジュール2のキャップ5はネジ込み式構造を有するものを使用した。膜分離装置が設置された槽10のサイズは2330mm×680mmである。この膜分離装置の全膜面積は2400mであり、設置床面積は1.58mとなる。
【0050】
従って、設置床面積あたりの膜面積、即ち、膜充填密度は1515m/m(設置床面積1mあたり膜面積が1515mある)である。これは、多分岐管1Aを用いることにより、濾過膜モジュール2を最密充填の位置に配置出来、且つ濾過膜モジュール2のキャップ5がネジ込み式構造を有することにより、隣設される濾過膜モジュール2の相互の間隔を密に出来るため膜分離装置を小型化出来た。
【0051】
<比較例1>
前述した特許文献2に開示されたように、多分岐管の分岐管部の先端部が正方形の頂点にある多分岐管を用いて各分岐管部と濾過膜モジュール2の濾過水出口を接続し、4本の濾過膜モジュール2を1組とした12個の濾過膜ユニットを用いて各濾過膜ユニットを6個ずつ2本の濾過水用配管に接続した。
【0052】
上記膜分離装置を上部端面の形状が長方形である槽10内へ直接設置した。使用した濾過膜モジュール2は、中空糸膜、膜面積等は前記実施例1と同じであるが、濾過膜モジュール2の上部ヘッダが前述した特許文献2と同様にネジ込み式構造を持たないものを使用した。
【0053】
この多分岐管を用いた場合、濾過膜モジュール2は最密充填の位置に配置されず、且つ、濾過膜モジュール2の間隔も密にはならない。膜分離装置が設置された槽10のサイズは2800mm×930mmである。この膜分離装置の全膜面積は2400mであり、設置床面積は2.61mとなる。
【0054】
従って、設置床面積あたりの膜面積、即ち、槽10内の膜充填密度は920m/m(設置床面積1mあたり膜面積が920mある)であり、前記実施例1の膜充填密度と比べて約40%小さかった。これは、濾過膜モジュール2が最密充填の位置に配置出来ないこと、及び濾過膜モジュール2の上部ヘッダがネジ込み式構造になっていないことにより隣設される濾過膜モジュール2相互の間隔が広くなったためである。
【0055】
<比較例2>
各濾過膜モジュール2の中心軸と、該中心軸と垂直な平面との交点を結んでなる正三角形8の重心位置に主管部7の中心軸7mを設定した多分岐管を用いて、各分岐管部3a〜3cと濾過膜モジュール2の濾過水出口を接続し、3本の濾過膜モジュール2を1組とした6個の濾過膜ユニットを直線上に配列した例を図5に示す。
【0056】
ここで用いた多分岐管の主管部7に接続される主配管4は呼び径75mmの配管を用いた。また、各多分岐管の分岐管部3a〜3cに接続した濾過膜モジュール2は、中空糸膜、膜面積等は前記実施例1と同じである。
【0057】
この多分岐管を用いた場合、濾過膜モジュール2は最密充填の位置に配置され、且つ、濾過膜モジュール2の間隔も密になるが、図5に示すように、各主管部7の位置が交互にずれるため、主配管4の分岐管部4aとはエルボ等の管継手により接続しなければならず、エルボ等の管継手は直管に比べて損失水頭が大きくなるという問題がある。
【0058】
例えば、呼び径75mmの90゜エルボの場合、相当する直管管長は3.0mであり、呼び径75mmの45゜エルボの場合、相当する直管管長は1.8mになる。即ち、図5に示した装置の場合、6箇所に呼び径75mmの45゜エルボが必要であり、相当管長は10.8mとなるため損失水頭が増加した分だけ余分なポンプ動力が必要となる。
【0059】
【発明の効果】
本発明は、上述の如き構成と作用とを有するので、濾過膜モジュールを最密充填の位置に容易に配置出来、膜充填密度を最大限まで高めることにより膜分離装置を小型化することが出来、また、濾過膜モジュールと主配管との接続部品数を少なくすることにより膜分離装置のメンテナンスが容易になり、更には、濾過膜モジュールと主配管との接続部分の損失水頭を小さくすることによりエネルギー損失を小さく出来る。
【図面の簡単な説明】
【図1】本発明に係る濾過膜モジュール束用多分岐管を用いて3本の濾過膜モジュールを1組とした濾過膜ユニットの一例を示す平面説明図である。
【図2】本発明に係る濾過膜モジュール束用多分岐管を用いて4本の濾過膜モジュールを1組とした濾過膜ユニットの一例を示す平面説明図である。
【図3】図1及び図2に示す濾過膜ユニットの側面説明図である。
【図4】本発明に係る濾過膜モジュール束用多分岐管を用いて3本の濾過膜モジュールを1組とした濾過膜ユニットを多数配列した様子を示す平面模式図である。
【図5】比較例を示す図である。
【符号の説明】
A,B…濾過膜ユニット
1A,1B…多分岐管
2…濾過膜モジュール
3,3a〜3g…分岐管部
3a1〜3g1…先端部
3m,3ma〜3mg…中心軸
4…主配管
4a…分岐管部
5…キャップ
6…固定治具
7…主管部
7m…中心軸
8…正三角形
8a…線分
9…菱形
9a…線分
10…槽
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a multi-branch tube for a bundle of filtration membrane modules capable of liquid-tightly connecting three or more filtration membrane module bundles having at least one cylindrical end portion to a main pipe.
[0002]
[Prior art]
Conventionally, solid-liquid separation in water purification treatment, sewage treatment, industrial wastewater treatment, and the like has been performed using a coagulation sedimentation tank, a gravity sedimentation tank, and the like. However, in recent years, due to the development of membrane technology, a method of solid-liquid separation of water to be treated using a filtration membrane module has been adopted.
[0003]
That is, water to be treated containing suspended solids is filtered through a membrane filter module by applying a transmembrane pressure difference such as pressurization, water head difference or suction pressure, and the obtained filtered water is drawn out of the membrane filter module. .
[0004]
According to such a method, the suspended matter in the water to be treated remains as a solid content on the supply side of the filtration membrane module, and clean filtrate water that is turbid and sterilized is obtained on the permeation side of the filtration membrane module. It is done.
[0005]
In such a membrane separation device, the treated water inlet and the filtered water outlet of the filtration membrane module are used to feed the treated water to the filtration membrane module or collect the filtered water obtained by the filtration membrane module. Are connected to the pipe for water to be treated and the pipe for filtered water, respectively.
[0006]
At this time, in the filtration membrane module connected to these pipes, if the interval between adjacent filtration membrane modules is wide, the membrane area per installed floor area of the membrane separation device, that is, the membrane packing density becomes small.
[0007]
As a result, as the amount of treated water increases, that is, as the number of necessary filtration membrane modules increases, the installation floor area of the membrane separation device increases and the membrane separation device increases in size. In addition, when each filtration membrane module is connected to the pipe for water to be treated and the piping for filtrate, the number of connection points for the number of filtration membrane modules is required, and the number of connecting parts with each pipe increases, so the membrane Maintenance work of the separation apparatus becomes complicated.
[0008]
In view of such a problem, in order to increase the membrane area per installed floor area, that is, the membrane packing density, a filtration membrane unit in which several rectangular filtration membrane modules are stacked in the vertical direction has been proposed (for example, Patent Document 1). reference.).
[0009]
In addition, a membrane separation device has been proposed in which a plurality of filtration membrane units are arranged in a square corner portion of four filtration membrane modules (see, for example, Patent Document 2).
[0010]
Further, a membrane separation device is disclosed in which filtration membrane modules are arranged in an equilateral triangle shape using a tube plate or the like in a tank or a case (see, for example, Patent Documents 3 to 6).
[0011]
[Patent Document 1]
JP 11-314026 A [Patent Document 2]
International Publication No. 00/62908 Pamphlet [Patent Document 3]
Japanese Patent Publication No. 64-5925 [Patent Document 4]
Japanese Patent Laid-Open No. 9-38470 [Patent Document 5]
JP-A-7-8863 [Patent Document 6]
Japanese Patent Laid-Open No. 2001-137670
[Problems to be solved by the invention]
However, in the above-described conventional example, in the method of arranging the filtration membrane module disclosed in Patent Documents 1 and 2, the filtration membrane module is not arranged at the closest packing position, and the membrane filling density is not sufficient. It has not yet solved the problem that the size of the membrane separation device increases as the amount of water increases.
[0013]
Moreover, in the membrane separation apparatus which arrange | positioned the filtration membrane module in the equilateral triangle shape in the tank or case currently disclosed by patent documents 3-6, in order to make a tube plate and a filtration membrane module liquid-tight, many bolts and exclusive use The membrane filter module must be fixed by a jig, and a large number of connecting parts are required. In addition, since the bolts and the dedicated jig are used, it is difficult to close the intervals between the filtration membrane modules.
[0014]
In addition, since the number of parts is large, maintenance of the membrane separation apparatus is complicated. In addition, it is necessary to perform precise processing on a tube plate or the like for arranging in an equilateral triangle, and the device manufacturing cost increases. Further, when a large number of filtration membrane modules are supported by the same tube plate, there is a problem that it is necessary to ensure sufficient strength for the tube plate, resulting in a very heavy membrane separation device.
[0015]
The present invention solves the above-mentioned problems, and an object of the present invention is to easily arrange a plurality of filtration membrane modules at a position with a high packing density, and to increase the membrane packing density to the maximum extent. By reducing the size and reducing the number of connecting parts between the filtration membrane module and the main pipe, maintenance of the membrane separation device is facilitated, and further, the head loss at the connection between the filtration membrane module and the main pipe is reduced. Therefore, it is intended to provide a multi-branch tube for a bundle of filtration membrane modules that can reduce energy loss.
[0016]
[Means for Solving the Problems]
In order to achieve the above object, a multi-branch pipe for a membrane filter module bundle according to the present invention is a membrane filter module capable of liquid-tightly connecting three or more membrane membrane module bundles having at least one cylindrical end to a main pipe. A multi-branch pipe for bundling, one end of which is connected to the main pipe, and a plurality of branch pipe parts branched from the other end of the main pipe part, each of the leading ends of the branch pipe parts Are connected to the cylindrical end of the filtration membrane module in the same direction, and connect intersections of a plurality of central axes passing through the center of the tip and a plane perpendicular to the central axis. The polygon is composed of a combination of equilateral triangles having the length of one side as the distance between the nearest adjacent central axes.
[0017]
Since the present invention is configured as described above, the tip of each branch pipe part of the multi-branch pipe for a bundle of filtration membrane modules is connected to the end part of three or more filtration membrane modules adjacent to each other. By using a multi-branch tube whose tip is the apex of an equilateral triangle, it is possible to easily place the filtration membrane module at a high packing density position, and the membrane packing density is maximized by making the intervals between the filtration membrane modules dense. As a result, the membrane separation apparatus can be reduced in size.
[0018]
The intersection of the central axis of the main pipe portion and a plurality of planes perpendicular to the central axes passing through the center of the distal end portion of the branch pipe portion includes a plurality of central axes passing through the center of the distal end portion, and the central axis A polygon formed by connecting an intersection with a plane perpendicular to the axis is on a line symmetry axis that divides the polygon in line symmetry, and is delimited by a perpendicular drawn from each vertex of the polygon on the line symmetry axis When located at the midpoint of the longest line segment, it is easy to arrange the main pipes of multiple arranged multi-branch pipes for membrane filtration module bundles on a straight line, and for main pipes and membrane filtration module bundles. Loss head can be reduced because the main pipe portion of the multi-branch pipe can be connected with a straight pipe.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
An embodiment of a multi-branch tube for a membrane filtration module bundle according to the present invention will be specifically described with reference to the drawings. FIG. 1 and FIG. 2 are explanatory plan views showing an example of a filtration membrane unit in which three or four filtration membrane modules are used as a set using the multi-branch pipe for filtration membrane module bundle according to the present invention. FIG. 4 is an explanatory side view of the filtration membrane unit shown in FIG. 1 and FIG. 2, and FIG. 4 is an array of a large number of filtration membrane units each consisting of three filtration membrane modules using the multi-branch tube for filtration membrane module bundle according to the present invention. FIG. 5 is a schematic plan view showing a state of the above, and FIG. 5 is a view showing a comparative example.
[0020]
The multi-branch pipe for membrane filtration module bundle according to the present invention (hereinafter simply referred to as “multi-branch pipe”) is, for example, river water, lake water, ground water, sea water, domestic waste water, factory waste water, sewage secondary treated water, etc. Using a filtration membrane module that clarifies and disinfects the treated water by membrane separation, collects a plurality of filtered waters obtained from each filtration membrane module, or collects a plurality of treated waters. It is a multi-branch pipe for bundles of filtration membrane modules for collectively feeding water to the filtration membrane modules.
[0021]
FIG. 1 is a plan view of a filtration membrane unit A in which three filtration membrane modules 2 are connected by a multi-branch tube 1A, and FIG. 2 is a diagram in which four filtration membrane modules 2 are connected by a multi-branch tube 1B. It is the top view which looked at the filtered membrane unit B from the top.
[0022]
3 shows that the upper header of the filtration membrane module 2 on the side connected to each of the multi-branch pipes 1A and 1B shown in FIGS. 1 and 2 has a screwed structure with a cap 5, and the filtration membrane module. 2 is a schematic view showing an example of filtration membrane units A and B in which the side not connected to the multi-branch pipes 1A and 1B is fixed by a dedicated fixing jig 6. FIG.
[0023]
Here, the filtration membrane units A and B are structural units in which a plurality of filtration membrane modules 2 are bundled using the multi-branch pipes 1A and 1B. The multi-branch pipes 1A and 1B are liquid-tightly connected to the main pipe 4 with two bundles of three or four (three or more) filtration membrane modules each having a cylindrical shape such as a cylindrical shape or a rectangular tube at one end. It has a main pipe part 7 whose one end is connected to the main pipe 4 and a plurality of branch pipe parts 3 branched from the other end of the main pipe part 7.
[0024]
As shown in FIGS. 1-3, each front-end | tip part of the branch pipe part 3 is the same direction (up-down direction of FIG. 3), and comprises the connection part with the cylindrical edge part of the filtration membrane module 2, A polygon formed by connecting intersections of a plurality of central axes 3m passing through the center of the tip and a plane perpendicular to the central axis 3m is an equilateral triangle whose distance between the adjacent central axes 3m is one side length. It is set to be composed of combinations.
[0025]
The intersection of the central axis 7m of the main pipe portion 7 and a plane perpendicular to the plurality of central axes 3m passing through the center of the tip of the branch pipe portion 3 is the intersection of the central axis 3m and the plane perpendicular to the central axis 3m. In the polygon formed by connecting the intersections, the longest line segment that is on the line symmetry axis s that divides the polygon line symmetrically and that is divided by the perpendicular drawn from each vertex of the polygon onto the line symmetry axis s It is set to be located at the midpoint.
[0026]
For example, the filtration membrane unit A shown in FIG. 1 uses a multi-branch pipe 1A as a set of three filtration membrane modules 2 and is connected to each branch pipe portion 3a, 3b, 3c of the multi-branch pipe 1A. This is an example in which the central axes 3ma, 3mb, 3mc of the respective distal end portions 3a1, 3b1, 3c1 of the branch pipe portions 3a, 3b, 3c that coincide with the central axis of the filtration membrane module 2 are arranged at the apexes of the equilateral triangle 8. .
[0027]
The central axis 7m of the main pipe part 7 to which the branch pipe parts 3a to 3c are connected is the central axis 3ma, 3mb, 3mc of the tip parts 3a1 to 3c1 of the branch pipe parts 3a to 3c connected to the filtration membrane modules 2. And the center axis 3ma, 3mb, 3mc and the perpendicular triangle 8 are connected to the plane perpendicular to the equilateral triangle 8 on the line symmetry axis s of the equilateral triangle 8 and line symmetric from each vertex of the equilateral triangle 8 It is located at the midpoint of the longest line segment 8a delimited by the perpendicular lines a and b drawn on the axis s.
[0028]
On the other hand, the filtration membrane unit B shown in FIG. 2 uses a multi-branch pipe 1B to make a set of four filtration membrane modules 2 and is connected to each branch pipe portion 3d, 3e, 3f, 3g of the multi-branch pipe 1B. The central axes 3md, 3me, 3mf, and 3mg of the respective distal end portions 3d1, 3e1, 3f1, and 3g1 of the branch pipe portions 3d to 3g that coincide with the central axis of each filtration membrane module 2 are combined with two equilateral triangles. It is an example arrange | positioned at the vertex of 9.
[0029]
The central axis 7m of the main pipe part 7 to which the branch pipe parts 3d to 3g are connected is the central axis 3md, 3me, 3mf of the tip parts 3d1 to 3g1 of the branch pipe parts 3d to 3g connected to the filtration membrane modules 2. , 3 mg and the rhomboid 9 formed by connecting the intersections of the central axes 3 md, 3 me, 3 mf, and 3 mg with a plane perpendicular to the central axis 3 s of the rhombus 9 and from each vertex of the rhombus 9 It is located at the midpoint of the longest line segment 9a delimited by the perpendicular lines a and b drawn on the symmetry axis s.
[0030]
Here, the number of the filtration membrane modules 2 to be connected to the multi-branch pipe may be any number. However, if five or more filtration membrane modules 2 are made into a filtration membrane unit using the multi-branch pipe, the filtration membrane modules 2 are connected. This complicates the shape of the multi-branch pipe to increase the loss head of the multi-branch pipe.
[0031]
Moreover, at the time of maintenance, it is necessary to stop many filtration membrane modules 2 simultaneously, and maintenance work etc. will become complicated.
[0032]
On the other hand, if the filtration membrane unit includes two filtration membrane modules 2 as a set, the number of connection points between the multi-branch pipe and the main pipe 4 increases, so that it is difficult to manufacture the pipe. There is also a problem that the number of parts required for connection increases.
[0033]
Therefore, the number of the filtration membrane modules 2 constituting the filtration membrane unit is preferably 3 or 4, more preferably 3. That is, the number of branch pipe portions 3 branched from the main pipe portion 7 of the multi-branch pipe is preferably 3 or 4, more preferably 3.
[0034]
FIG. 3 shows an example of a method of connecting the multi-branch pipes 1A and 1B with the filtration membrane module 2 and the main pipe 4. As a method for connecting the multi-branch pipes 1A and 1B and the filtration membrane module 2, either a method of directly connecting them or a method of connecting them via a cap 5 or the like as shown in FIG. The method of connecting through the cap 5 etc. is desirable from the ease of attachment or detachment of the membrane module 2.
[0035]
The method for connecting the filtration membrane module 2 and the cap 5 is not particularly limited as long as the gap between the adjacent filtration membrane modules 2 can be made close, but the screw-in type structure makes the filtration membrane module 2 dense. This is desirable because it can be configured.
[0036]
Furthermore, there are flange connection, clamp connection, ferrule connection, victoic joint connection, screw connection, etc. as a connection method between the cap 5 attached with the filtration membrane module 2 and the multi-branch pipes 1A and 1B. There is no particular limitation as long as the distance between the filtration membrane modules 2 can be close.
[0037]
Also, when the multi-branch pipes 1A and 1B and the filtration membrane module 2 are directly connected, a substantially similar connecting jig may be used. As a method of connecting the multi-branch pipes 1A, 1B and the main pipe 4, a method of directly fixing them together by welding or the like, or a flange connection, a clamp connection, a ferrule connection, or a connection whose connection length can be changed (for example, Victor Any of detachable methods such as joint connection may be used.
[0038]
Furthermore, in the filtration membrane units A and B in which the adjacent membrane membrane modules 2 are closely spaced, the filtration membrane modules 2 may be damaged due to contact with each other. It is preferable to fix the lower part of the filtration membrane module 2.
[0039]
The filtration membrane module 2 shown in FIG. 3 is one in which the lower end of a cylindrical hollow fiber membrane is bonded and fixed and closed, and the upper end is opened. In addition, a triangle, a quadrangle, a hexagon, an ellipse, and the like may be used, but a circle that can increase the film packing density is particularly preferable.
[0040]
Moreover, as a hollow fiber membrane used for the filtration membrane module 2, any of a nanofiltration membrane, an ultrafiltration membrane, and a microfiltration membrane may be sufficient.
[0041]
A large number of filtration membrane units A and B shown in FIG. 3 are connected to each other and accommodated in the tank 10 or in the tank. For example, the stock solution supplied from the main pipe 4 is supplied to each filtration membrane module through the multi-branch pipes 1A and 1B. The filtrate that is branched and distributed to 2 and filtered through the hollow fiber membrane is stored in the tank 10 or the tank, and is taken out from a discharge port (not shown), or the undiluted solution is introduced into the tank from a supply port (not shown). The filtrate that has been supplied and filtered through the hollow fiber membrane of each filtration membrane module 2 is collected by the multi-branch pipes 1A and 1B and discharged from the main pipe 4 to the outside.
[0042]
When connecting to the main pipe 4 using the multi-branch pipe 1A having the above configuration, as shown in FIG. 4, the arrangement position of the branch pipe part 4a of the main pipe 4 to which the main pipe part 7 of the multi-branch pipe 1A is connected is shown. They can be arranged in a straight line, and the main pipe portion 7 of the multi-branch pipe 1A and the branch pipe portion 4a of the main pipe 4 can be easily connected by a straight pipe with little loss head.
[0043]
Although not shown, when the multi-branch pipe 1B is used to connect to the main pipe 4, the arrangement positions of the branch pipe portions 4a of the main pipe 4 can be similarly arranged on a straight line. It is possible to easily connect the main pipe portion 7 of 1B and the branch pipe portion 4a of the main pipe 4 with a straight pipe having a small loss head.
[0044]
Here, as a comparative example, as shown in FIG. 5, the multi-branch pipe 1 </ b> A is placed at the center of gravity of an equilateral triangle 8 connecting the intersection of the central axis of each filtration membrane module 2 and a plane perpendicular to the central axis. When the center axis 7m of the main pipe portion 7 is set, the positions of the main pipes 4 of the arranged multi-branch pipes 1A are arranged in a staggered manner.
[0045]
For this reason, the main pipe part 7 of the multi-branch pipe 1A and the branch pipe part 4a of the main pipe 4 must be connected using a pipe joint such as an elbow, resulting in a problem that the loss head is increased compared to a straight pipe. is there.
[0046]
Hereinafter, a filtration membrane module that can easily arrange the filtration membrane module 2 at the closest packing position, and can increase the membrane packing density to the maximum by making the interval between the filtration membrane modules 2 small, thereby reducing the size of the membrane separation device. Specific examples of the multi-branch pipe for bundling will be described in detail.
[0047]
<Example 1>
The multi-branch pipe 1A shown in FIG. 1 is used to connect the branch pipe portions 3a to 3c of the multi-branch pipe 1A and the filtrate outlet of the filtration membrane module 2 to form a set of three filtration membrane modules 2 16 The filtration membrane units A were connected to two filtrate water pipes by 8 pieces each.
[0048]
The membrane separation apparatus was directly installed in the tank 10 whose upper end surface was rectangular. The used filtration membrane module 2 is approximately 6 inches in diameter (about 15.24 cm) and 2 m in length, and a hollow fiber type microfiltration membrane made of polyvinylidene fluoride and having a nominal pore diameter of 0.1 μm has a membrane area of 50 m 2 . A bundle was used.
[0049]
The cap 5 of the filtration membrane module 2 has a screwed structure. The size of the tank 10 in which the membrane separation apparatus is installed is 2330 mm × 680 mm. Total membrane area of the membrane separation unit is 2400 m 2, floor space becomes 1.58 m 2.
[0050]
Thus, membrane area per floor space, i.e., membrane packing density is 1515m 2 / m 2 (floor space 1 m 2 per membrane area is 1515m 2). This is because by using the multi-branch pipe 1A, the filtration membrane module 2 can be arranged at the closest packing position, and the cap 5 of the filtration membrane module 2 has a screw-in structure, so that the filtration membrane provided next to the membrane membrane 2 Since the distance between the modules 2 can be increased, the membrane separation apparatus can be miniaturized.
[0051]
<Comparative Example 1>
As disclosed in Patent Document 2 described above, the branch pipe portions of the multi-branch pipes are connected to each branch pipe portion and the filtrate outlet of the filtration membrane module 2 using a multi-branch pipe having a square apex. Each of the filtration membrane units was connected to two filtrate water pipes by 6 using 12 filtration membrane units each including four filtration membrane modules 2.
[0052]
The membrane separation apparatus was directly installed in the tank 10 whose upper end surface was rectangular. The used filtration membrane module 2 has the same hollow fiber membrane, membrane area, and the like as in Example 1, but the upper header of the filtration membrane module 2 does not have a screw-in structure as in Patent Document 2 described above. It was used.
[0053]
When this multi-branch tube is used, the filtration membrane module 2 is not disposed at the closest packing position, and the interval between the filtration membrane modules 2 is not dense. The size of the tank 10 in which the membrane separation apparatus is installed is 2800 mm × 930 mm. The total membrane area of this membrane separator is 2400 m 2 and the installation floor area is 2.61 m 2 .
[0054]
Accordingly, membrane area per installation floor area, i.e., membrane packing density of the vessel 10 has a 920m 2 / m 2 (floor space 1 m 2 per membrane area is 920m 2), film packing density of the Example 1 About 40% smaller. This is because the filtration membrane module 2 cannot be arranged at the closest packing position, and because the upper header of the filtration membrane module 2 does not have a screw-in structure, the distance between adjacent filtration membrane modules 2 is increased. It is because it became wide.
[0055]
<Comparative example 2>
Each branch using a multi-branch pipe in which the central axis 7m of the main pipe portion 7 is set at the center of gravity of the equilateral triangle 8 connecting the intersection between the central axis of each filtration membrane module 2 and a plane perpendicular to the central axis. FIG. 5 shows an example in which six filtration membrane units in which the pipe portions 3a to 3c and the filtrate water outlet of the filtration membrane module 2 are connected and the three filtration membrane modules 2 are set as one set are arranged in a straight line.
[0056]
The main pipe 4 connected to the main pipe portion 7 of the multi-branch pipe used here was a pipe having a nominal diameter of 75 mm. Moreover, the filtration membrane module 2 connected to the branch pipe portions 3a to 3c of each multi-branch pipe has the same hollow fiber membrane, membrane area and the like as in the first embodiment.
[0057]
When this multi-branch pipe is used, the filtration membrane module 2 is arranged at the closest packing position, and the interval between the filtration membrane modules 2 is also close. However, as shown in FIG. Are alternately connected to the branch pipe portion 4a of the main pipe 4 through a pipe joint such as an elbow, and the pipe joint such as an elbow has a problem that the loss head is larger than that of the straight pipe.
[0058]
For example, in the case of a 90 ° elbow having a nominal diameter of 75 mm, the corresponding straight pipe length is 3.0 m, and in the case of a 45 ° elbow having a nominal diameter of 75 mm, the corresponding straight pipe length is 1.8 m. That is, in the case of the apparatus shown in FIG. 5, 45 ° elbows having a nominal diameter of 75 mm are required at six locations, and the corresponding pipe length is 10.8 m, so that extra pump power is required for the increased loss head. .
[0059]
【The invention's effect】
Since the present invention has the above-described configuration and operation, the filtration membrane module can be easily arranged at the closest packing position, and the membrane separation apparatus can be miniaturized by increasing the membrane packing density to the maximum. Also, by reducing the number of connecting parts between the filtration membrane module and the main pipe, the maintenance of the membrane separation device is facilitated, and furthermore, by reducing the head loss at the connection between the filtration membrane module and the main pipe. Energy loss can be reduced.
[Brief description of the drawings]
FIG. 1 is an explanatory plan view showing an example of a filtration membrane unit in which three filtration membrane modules are made into one set using a multi-branch pipe for a filtration membrane module bundle according to the present invention.
FIG. 2 is an explanatory plan view showing an example of a filtration membrane unit in which four filtration membrane modules are made into one set by using the multi-branch pipe for a filtration membrane module bundle according to the present invention.
3 is an explanatory side view of the filtration membrane unit shown in FIGS. 1 and 2. FIG.
FIG. 4 is a schematic plan view showing a state in which a large number of filtration membrane units each including three filtration membrane modules are arranged using the multi-branch tube for bundles of filtration membrane modules according to the present invention.
FIG. 5 is a diagram showing a comparative example.
[Explanation of symbols]
A, B: Filtration membrane unit 1A, 1B ... Multi-branch pipe 2 ... Filtration membrane module 3, 3a-3g ... Branch pipe part 3a1-3g1 ... Tip part 3m, 3ma-3mg ... Center axis 4 ... Main pipe 4a ... Branch pipe Part 5 ... Cap 6 ... Fixing jig 7 ... Main pipe part 7m ... Center axis 8 ... Equilateral triangle 8a ... Line segment 9 ... Rhombus 9a ... Line segment 10 ... Tank

Claims (2)

少なくとも一端部が筒状である3本以上の濾過膜モジュール束を主配管に液密に接続し得る濾過膜モジュール束用多分岐管であって、
一端が前記主配管に連結される主管部と、
前記主管部の他端から分岐した複数の分岐管部と、
を有し、
前記分岐管部の夫々の先端部は同方向で、且つ前記濾過膜モジュールの筒状端部との連結部を構成し、該先端部の中心を通る複数の中心軸と、該中心軸に垂直な平面との交点を結んでなる多角形が、最隣接の中心軸間距離を一辺の長さとする正三角形の組み合わせから構成されることを特徴とする濾過膜モジュール束用多分岐管。
A multi-branch pipe for a bundle of filtration membrane modules capable of liquid-tightly connecting three or more filtration membrane module bundles having at least one end in a cylindrical shape to a main pipe,
A main pipe part having one end connected to the main pipe;
A plurality of branch pipe parts branched from the other end of the main pipe part;
Have
Each distal end portion of the branch pipe portion is in the same direction and constitutes a connecting portion with the cylindrical end portion of the filtration membrane module, and a plurality of central axes passing through the center of the distal end portion, and perpendicular to the central axis A multi-branch tube for a bundle of filtration membrane modules, characterized in that a polygon formed by connecting an intersection with a flat surface is composed of a combination of equilateral triangles having the distance between the nearest adjacent central axes as one side length.
前記主管部の中心軸と、前記分岐管部の先端部の中心を通る複数の中心軸に垂直な平面との交点は、前記先端部の中心を通る複数の中心軸と、該中心軸に垂直な平面との交点を結んでなる多角形において該多角形を線対称に区分する線対称軸上にあり、且つ前記多角形の各頂点から前記線対称軸上に引いた垂線で区切られる最長の線分の中点に位置することを特徴とする請求項1に記載の濾過膜モジュール束用多分岐管。The intersections of the central axis of the main pipe part and the planes perpendicular to the central axes passing through the center of the tip of the branch pipe part are perpendicular to the central axis and the central axes passing through the center of the tip. A polygon formed by connecting an intersection with a flat plane on a line symmetry axis that divides the polygon line-symmetrically, and is the longest divided by a perpendicular drawn from each vertex of the polygon onto the line symmetry axis The multi-branch tube for a bundle of filtration membrane modules according to claim 1, wherein the multi-branch tube is located at a midpoint of the line segment.
JP2002301687A 2002-10-16 2002-10-16 Multi-branch tube for membrane membrane module bundle Expired - Lifetime JP4069246B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002301687A JP4069246B2 (en) 2002-10-16 2002-10-16 Multi-branch tube for membrane membrane module bundle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002301687A JP4069246B2 (en) 2002-10-16 2002-10-16 Multi-branch tube for membrane membrane module bundle

Publications (2)

Publication Number Publication Date
JP2004136173A true JP2004136173A (en) 2004-05-13
JP4069246B2 JP4069246B2 (en) 2008-04-02

Family

ID=32449972

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002301687A Expired - Lifetime JP4069246B2 (en) 2002-10-16 2002-10-16 Multi-branch tube for membrane membrane module bundle

Country Status (1)

Country Link
JP (1) JP4069246B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013214090A1 (en) * 2013-07-18 2015-01-22 Mahle International Gmbh Cross-flow filter for wine
JP2019214031A (en) * 2018-06-14 2019-12-19 三浦工業株式会社 Water treatment device and water treatment device connection unit
NO20181546A1 (en) * 2018-11-30 2020-06-01 Aker Solutions As A filter device, and method of assembly

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013214090A1 (en) * 2013-07-18 2015-01-22 Mahle International Gmbh Cross-flow filter for wine
EP3022282B1 (en) * 2013-07-18 2018-02-21 JOMA Service GmbH Cross-flow filter for wine
JP2019214031A (en) * 2018-06-14 2019-12-19 三浦工業株式会社 Water treatment device and water treatment device connection unit
JP7110744B2 (en) 2018-06-14 2022-08-02 三浦工業株式会社 Water treatment equipment and water treatment equipment connection unit
NO20181546A1 (en) * 2018-11-30 2020-06-01 Aker Solutions As A filter device, and method of assembly
NO345138B1 (en) * 2018-11-30 2020-10-12 Aker Solutions As A filter device, and method of assembly
US11964236B2 (en) 2018-11-30 2024-04-23 Aker Carbon Capture Norway As Filter device, and method of assembly

Also Published As

Publication number Publication date
JP4069246B2 (en) 2008-04-02

Similar Documents

Publication Publication Date Title
AU762091B2 (en) Membrane filtration manifold system
EP1189682B1 (en) Membrane filtration manifold system
EP1598105B1 (en) Hollow fiber membrane module and module arrangement group thereof
EP0777521B1 (en) Apparatus for processing fluid and method for producing separated fluid
JP4445862B2 (en) Hollow fiber membrane module, hollow fiber membrane module unit, membrane filtration device using the same, and operating method thereof
JP3008886B2 (en) Hollow fiber type selectively permeable membrane module
EP1252921B1 (en) Apparatus for withdrawing permeate from a multicomponent liquid substrate
US11383205B2 (en) Integrated membrane module rack
US8795527B2 (en) Filtration system
US9504965B2 (en) Filtering apparatus
JP2004202480A (en) Membrane separation apparatus and membrane separation method
US7686955B2 (en) Submerged hollow fiber membrane module
JP2013052386A (en) Hollow fiber membrane module and hollow fiber membrane module unit
WO2002004100A1 (en) Multi-stage filtration and softening module and reduced scaling operation
JP4069246B2 (en) Multi-branch tube for membrane membrane module bundle
US20150217214A1 (en) Filtering apparatus
JPH07178321A (en) Hollow-fiber membrane module assembly
JP2008183561A (en) Membrane separation device and membrane separation method
US9795926B2 (en) Aeration unit and filtering apparatus comprising the same
EP1170052B1 (en) System for withdrawing permeate from a multicomponent liquid substrate
WO2011150210A2 (en) Hollow fiber membrane module
WO2011150206A2 (en) Hollow fiber membrane module
US20180369723A1 (en) Method for operating filtration apparatus and filtration apparatus
CN216303341U (en) High salt effluent treatment plant based on RO membrane
JP2003033629A (en) Filtration device using hollow fiber membrane

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050909

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070925

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071225

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4069246

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110125

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110125

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110125

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110125

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120125

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120125

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130125

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140125

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term