JP2004135824A - High order brain disfunction diagnostic apparatus - Google Patents

High order brain disfunction diagnostic apparatus Download PDF

Info

Publication number
JP2004135824A
JP2004135824A JP2002302529A JP2002302529A JP2004135824A JP 2004135824 A JP2004135824 A JP 2004135824A JP 2002302529 A JP2002302529 A JP 2002302529A JP 2002302529 A JP2002302529 A JP 2002302529A JP 2004135824 A JP2004135824 A JP 2004135824A
Authority
JP
Japan
Prior art keywords
subject
operation input
input means
instruction
operated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002302529A
Other languages
Japanese (ja)
Other versions
JP3598385B2 (en
Inventor
Eriko Matsumoto
松本 絵理子
Satoru Miyauchi
宮内 哲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Communications Research Laboratory
Original Assignee
Communications Research Laboratory
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Communications Research Laboratory filed Critical Communications Research Laboratory
Priority to JP2002302529A priority Critical patent/JP3598385B2/en
Publication of JP2004135824A publication Critical patent/JP2004135824A/en
Application granted granted Critical
Publication of JP3598385B2 publication Critical patent/JP3598385B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high order brain disfunction diagnostic apparatus diagnosing the high order brain disfunction such as Alzheimer disease in an early stage where neither the memory disorder nor the memorization disturbance appears yet. <P>SOLUTION: This high order brain disfunction diagnostic apparatus 1 is provided with, at least, operation input means 11 and 12 disposed in a plurality of positions in a space and receiving an operation by a subject, an instruction means instructing to the subject to operate either one of the operation input means 11 and 12 and a reaction time measuring means measuring a reaction time, or a time difference from a time when the instruction means instructs the subject till a time when the operation input means 11 or 12 receives the operation by the subject. This apparatus can measure the reaction time under such conditions that the relative disposition of the operation input means 11 or 12 operated by the subject to the body center and the relative disposition of the body position used when the subject operates the operation input means 11 or 12 to the body center are nonconforming. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、アルツハイマー病に代表される高次脳機能障害を診断するための装置に関する。
【0002】
【従来の技術】
高次脳機能障害の一であるアルツハイマー病は、短期及び長期の記憶障害を基本症状とし、その他に抽象思考や判断の障害、失語、失行、失認、構成障害等の高次大脳皮質機能異常と性格変化等を惹起する。臨床では、アルツハイマー病の罹患の有無を診断する際にいわゆる長谷川式簡易知能評価スケールを用いることが多い。これは、痴呆態にある高齢者等をスクリーニングする目的で作成された簡易知能検査法である(非特許文献1を参照)。長谷川式簡易知能評価スケールの設問は見当識、記憶、記銘、計算、想起からなり、被験者に口頭で回答させることで大まかな知能障害の有無とおよその程度を判定可能である。上記のようなスクリーニングに加え、詳細な神経心理学的検査や血液検査、さらにCT、MRI等の諸検査を行った上で、アルツハイマー病の診断がなされている。
【0003】
また、近年では、PET(ポジトロンCT)、SPECT(シングルフォトンエミッションCT)を使用して、CTやMRIでは得られない脳局所のグルコース代謝、酸素消費率、脳血流等を測定できるようになり、アルツハイマー病の病態が明らかとなりつつある。例えば、若年性のアルツハイマー病では、頭頂葉のグルコース代謝の低下が著しい(非特許文献2を参照)。これらはアルツハイマー病の初期症状を捉え得る有望な手段ではあるが、放射性物質を被験者の体内に投与する必要があることもあって、現状では研究目的の利用が多く一般には普及していない。
【0004】
【非特許文献1】長谷川和夫、“改訂長谷川式簡易知能評価スケール”、[online]、平成14年9月9日検索、インターネット<URL  http://www.noge.or.jp/gaiyou/kango−bu/byoutou/suke−ru/hasegawa.htm>
【非特許文献2】Sakamoto S, Ishii K, Sasaki M, Hosaka K, Mori T, Matsui M, Hirono N, Mori E,“ Differences in cerebral metabolic impairment between early and late onset types of Alzheimer’s disease ”J Neurol Sci
2002 Aug 15;200(1−2):27−32
【0005】
【発明が解決しようとする課題】
アルツハイマー病の診断においては、記憶障害、記銘障害の有無や程度を調査することが基本とされている。しかしながら、アルツハイマー病の初期段階では、興味や関心の低減、集中力の低下等の、どことなく従来と違う、この人らしくないといった漠然とした印象を与えるに過ぎないことが多く、記憶障害、記銘障害が必ずしも顕在化しない。特に、若年性アルツハイマー病の初期段階では、記憶障害、記銘障害はあまり見られない。そのため、医師、患者本人や周囲の者がアルツハイマー病の発症に気づかないことも多く、病状がかなりの程度進行してはじめてアルツハイマー病と診断されることとなる。
【0006】
以上の問題に鑑みて、本発明は、アルツハイマー病等の高次脳機能障害の早期診断を可能とすることを目的とし、そのために有効な手段を提供しようとするものである。
【0007】
【課題を解決するための手段】
上述した課題を解決すべく、空間内の複数位置に配置され被験者による操作を受け付ける操作入力手段と、前記操作入力手段のうち何れを操作すべきかを被験者に対して指示する指示手段と、前記指示手段が被験者に対する指示を実行してから前記操作入力手段が被験者による操作を受け付けるまでの時間差である反応時間を測定する反応時間測定手段とを少なくとも具備する高次脳機能障害診断装置を構成した。
【0008】
アルツハイマー病の罹患者は、たとえ記憶障害、記銘障害が依然顕在化していないといえども、空間認識能力その他の脳機能にダメージを受けている。そして、例えば、罹患者から見て左側に存在する物を自身の右手を使って操作するような能力に衰えが生じる。本発明は、被験者が操作する操作入力手段の体中心に対する相対的な配置と被験者が該操作入力手段を操作するときに駆使する身体部位の体中心に対する相対的な配置とが不適合である「体中心座標系不適合」の条件下での反応時間を測定することにより、脳機能の損耗を検出して被験者が高次脳機能障害に罹患しているか否かを診断し得るようにしたものである。
【0009】
あるいは、空間内の複数位置に配置され被験者による操作を受け付ける操作入力手段と、前記操作入力手段のうち何れを操作すべきかを被験者に対して指示する指示手段と、被験者による操作を受け付けた操作入力手段が、操作すべきものとして前記指示手段が被験者に対し指示したものであるか否かを判定する判定手段とを少なくとも具備する高次脳機能障害診断装置を構成し、体中心座標系不適合の条件下での正答率若しくは誤答率を調査することにより、高次脳機能障害への罹患の有無を診断し得るようにしてもよい。
【0010】
加えて、前記指示手段は、空間内の複数位置の何れかにおいて被験者の五感に訴えかける態様の刺激を出力しその出力位置により被験者が操作すべき操作入力手段を指示するものであり、かつ刺激の出力位置と被験者が操作すべき操作入力手段との相関を変更可能なものであって、被験者が操作する操作入力手段の体中心に対する相対的な配置と該操作入力手段を操作すべき旨を指示する刺激の出力位置の体中心に対する相対的な配置とが適合及び不適合である条件下での反応時間を測定し得る、または正答率若しくは誤答率を調査し得ることが好ましい。このようなものであれば、被験者の体中心座標系不適合の状態に対処する機能の損耗をより明確に検知可能である。
【0011】
【発明の実施の形態】
以下、本発明の実施の形態を、図面を参照して説明する。図1に示すように、本実施形態における高次脳機能障害診断装置1は、空間内の複数位置に配置され被験者による操作を受け付ける操作入力手段11、12と、前記操作入力手段11、12のうち何れを操作すべきかを被験者に対して指示する指示手段13と、前記指示手段13が被験者に対する指示を実行してから前記操作入力手段11、12が被験者による操作を受け付けるまでの時間差である反応時間を測定する反応時間測定手段14と、被験者による操作を受け付けた操作入力手段11、12が操作すべきものとして指示したものであるか否かを判定する判定手段15とを具備する。被験者は、指示手段13による指示をもとに、操作すべき操作入力手段11、12を操作する。そして、反応時間測定手段14により反応時間を測定し、かつ判定手段15の機能を利用して正答率若しくは誤答率を調査するものである。
【0012】
アルツハイマー病に代表される高次脳機能障害の罹患者は様々な症状を呈するが、その一つとして体中心座標系不適合の状態に対処する能力の低下がある。ここで、体中心座標系適合あるいは体中心座標系不適合であるということについて述べると、被験者の体中心または体軸を基準とし、体外空間並びに被験者の身体を複数の空間区分、身体部位に区分した場合において、対比される要素が対応する区分にあること、即ち、空間内に配置した一の操作入力手段11、12が属する空間区分と該操作入力手段11、12を操作するときに駆使する身体部位とが対応していることを体中心座標系適合といい、対応していないことを体中心座標系不適合という。典型例を挙げると、体外空間を被験者から見て左右の空間区分、左側空間と右側空間とに区切るとともに被験者の身体を左半身と右半身とに区切った場合に、左側空間内に存在する操作入力手段11を左半身の所要部位を駆使して操作することが体中心座標系適合に該当し、右半身の所要部位を駆使して操作することが体中心座標系不適合に該当する。本発明に係る高次脳機能障害診断装置1を用いて反応時間を測定し及び/または正答率若しくは誤答率を調査することで、体中心座標系不適合の状態に対処する能力を定量的に評価でき、ひいては高次脳機能障害への罹患の有無を診断することが可能となる。
【0013】
高次脳機能障害診断装置1は、例えば、図2に示すように、プロセッサ1a、メインメモリ1b、補助記憶装置1c、表示制御装置1d、ディスプレイ1e、入力装置1f、等のハードウェア資源を具備する。補助記憶装置1cは、ハードディスクドライブ、フラッシュメモリ、DVD−ROMの如き光ディスクドライブ、その他であるが、着脱自在なもの、即ちカートリッジ式のメモリカードや外付け式のディスクドライブ等であっても構わない。表示制御装置1dは、プロセッサ1aより受けた描画指示をもとに表示させるべき画像データを生成してディスプレイ1eに向けて送出する機能を有するビデオチップ(あるいは、グラフィクスチップ)1d1、画像データ等を一時的に格納しておく役割を担うビデオメモリ(Video RAM)1d2等の既知のデバイスを用いて構成できる。入力装置1fは、被験者の手指により操作可能な押下ボタン、キーボード、マウス、トラックパッド、タッチパネルその他をおしなべて包含する。
【0014】
通常、プロセッサ1aによって実行されるべきプログラムが補助記憶装置1cに格納されており、プログラムの実行の際には補助記憶装置1cからメインメモリ1bに読み込まれ、プロセッサ1aによって解読される。そして、該プログラムに従い上記のハードウェア資源を作動して、図3に示す操作入力手段11、12、指示手段13、反応時間測定手段14、判定手段15としての機能を発揮するようにしている。
【0015】
既に述べたように、操作入力手段11、12は、被験者による操作を受け付けるものである。操作入力手段11、12は、入力装置1f及びそのデバイスドライバを利用して構成される。なお、図4(a)、(b)に示すように、二つの操作入力手段11、12を空間内の左右位置に配置し、その一方を被験者の左手(または、右手)により操作させ、他方を右手(左手)により操作させるようにすることが好ましい。本実施形態では、被験者の手指で操作できる二つの押下ボタン等を被験者の正中正面より左右に配置して操作入力手段11、12としている。但し、操作入力手段11、12の態様は種々のものが考えられ、例えば、汎用的なキーボード上の離間した二つのキー(「z」キーと「/」キー、等)をもって操作入力手段11、12としても構わない。
【0016】
指示手段13は、被験者の五感に訴えかける態様にて被験者が操作すべき操作入力手段11、12を指示する。本実施形態では、空間内の複数位置L1、L2の何れかにおいて被験者の五感、特に視覚に訴えかける態様の刺激を出力し、その出力位置により操作すべき操作入力手段11、12を指示するものとしている。本実施形態において、指示手段13は、表示制御装置1d及びディスプレイ1eの機能を利用して構成される。そして、図5(a)、(b)に示すように、ディスプレイ1eの画面1e1上の左右の所定位置L1、L2の何れかに刺激たるサインSNを表示することにより、左右何れかの操作入力手段11、12を操作すべき旨の指示を被験者に与えるようにしている。なお、画面1e1上の左の位置L1にサインSNを表示することが、被験者から見て左側の操作入力手段11を操作すべき旨を指示するものであることもあれば、逆に被験者から見て右側の操作入力手段12を操作すべき旨を指示するものであることもある。この点については、後述する。
【0017】
反応時間測定手段14は、指示手段13が被験者に対する指示を実行してから操作入力手段11、12が被験者による操作を受け付けるまでの時間差である反応時間を測定する。測定した反応時間に係るデータは、メインメモリ1b若しくは補助記憶装置1cの所要の記憶領域に格納される。
【0018】
判定手段15は、被験者による操作を受け付けた操作入力手段11、12が、操作すべきものとして前記指示手段13が被験者に対し指示したものであるか否かを判定する。判定結果に係るデータは、メインメモリ1b若しくは補助記憶装置1cの所要の記憶領域に格納される。
【0019】
因みに、上記の各部の機能が電気通信回線を介して通信可能に接続している複数の情報処理装置に分担され、これらが協働することにより高次脳機能障害診断装置1として成立していてもよい。
【0020】
上述のような構成を有する高次脳機能障害診断装置1を用い、図4に示すように、左側に配置した操作入力手段11を被験者の左手で操作させ右側に配置した操作入力手段12を被験者の右手で操作させる体中心座標系適合(図4(a)に示す)及び左側に配置した操作入力手段11を被験者の右手で操作させ右側に配置した操作入力手段12を被験者の左手で操作させる体中心座標系不適合(図4(b)に示す)の条件下で、被験者に対する試験を行う。
【0021】
加えて、体中心座標系不適合の状態に対処する能力をより的確に評価すべく、被験者が操作する操作入力手段11、12の体中心に対する相対的な配置と前記指示手段13が出力する刺激の出力位置L1、L2の体中心に対する相対的な配置とが適合及び不適合である条件下での反応時間を測定する、または正答率若しくは誤答率を調査することが望ましい。詳述すると、被験者の体中心または体軸を基準とし、指示手段13により刺激が出力される体外空間の領域(いわゆる刺激空間)並びに操作入力手段11、12が配置され被験者が操作を行う体外空間の領域(いわゆる反応空間)を複数の空間区分に区分した場合において、対比される要素が対応する区分にあること、即ち、刺激空間内での刺激の出力位置L1、L2が属する空間区分と反応空間内に配置した一の操作入力手段11、12が属する空間区分とが対応していることがここにいう適合であり、対応していないことがここにいう不適合である。特に、本実施形態では、ディスプレイ1eを介して被験者の視覚に訴えかける態様の刺激たるサインSNを刺激空間たる画面1e1上に出力することとしており、上記の「適合」を網膜中心座標系適合、上記の「不適合」を網膜中心座標系不適合と呼称することができる。典型例を挙げると、図5に示すように、刺激空間、反応空間をそれぞれ被験者から見て左右の空間区分に区切った場合に、刺激空間の左側(右側)の区分で刺激を出力することに対し反応空間の左側(右側)の区分に存在する操作入力手段11、12を被験者に操作させることが網膜中心座標系適合(図5(a)に示す)に該当し、反応空間の右側(左側)の区分に存在する操作入力手段11、12を被験者に操作させることが網膜中心座標系不適合(図5(b)に示す)に該当する。体中心座標系適合/不適合の条件に、さらに網膜中心座標系適合/不適合の条件を合わせると、2×2=4通りの試験条件が生成される。これら各条件の下で、指示手段13により被験者に対し指示を与えこの指示をもとに操作すべき操作入力手段11、12を操作させる試行を行い、反応時間を測定し、正答率若しくは誤答率を調査する。通常、試行は、各条件下でそれぞれ複数回行う。
【0022】
さらに、前記指示手段13は、刺激の出力位置L1、L2と被験者が操作すべき操作入力手段11、12との相関を無作為に、あるいは予め設定されたパターンに従い変更可能であることが好ましい。本実施形態に当てはめて言い換えれば、網膜中心座標系適合/不適合の条件を無作為に、あるいは予め設定されたパターンに従い試行毎に変更可能であることが好ましい。このとき、指示手段13が、被験者に対する指示である刺激の出力に先立ち、刺激の出力位置L1、L2と被験者が操作すべき操作入力手段11、12との相関を被験者に教示するものであればより好適である。例えば、図6に示すように、次回以降の試行が網膜中心座標系適合の条件の下に行われることを被験者に教示するための表示T1(図6(a)に示す)あるいは網膜中心座標系不適合の条件の下に行われることを被験者に教示するための表示T2(図6(b)に示す)を適宜画面1e1上に出力するものとして、前記指示手段13を構成する。
【0023】
本実施形態における高次脳機能障害診断装置1が実行する処理の手順を、図7のフローチャートを参照して述べる。まず、次回以降の試行が網膜中心座標系適合の条件下で行われるか網膜中心座標系不適合の条件下で行われるかを無作為に、あるいは予め設定されたパターンに従い決定する(ステップS1)。指示手段13は、前記ステップS1にて決定した網膜中心座標系適合/不適合の条件を(図6(a)あるいは図6(b)に例示した表示T1、T2を画面1e1上に出力するという形で)被験者に教示する(ステップS2)。そして、指示手段13が、刺激空間たる画面1e1上の何れかの位置L1、L2を選択して(ステップS3)刺激たるサインSNを出力する(ステップS4)。続いて、各操作入力手段11、12が、被験者による操作入力を待ち受ける(ステップS6)とともに、反応時間測定手段14が、何れかの操作入力手段11、12が操作を受け付けるまでの経過時間の計測を開始する(ステップS5)。何れかの操作入力手段11、12が操作を受け付けたとき(ステップS6)、反応時間測定手段14による経過時間の計測を完了する(ステップS7)。また、判定手段15が、指示手段13による指示に合致する正しい操作入力手段11、12を被験者が操作したか否かを判定する(ステップS8)。このとき、前記ステップS1にて決定した網膜中心座標系適合/不適合の条件に基づき、操作を受け付けた操作入力手段11、12が操作すべきものとして指示したものであるか否かを判定する。具体例を挙げて言えば、画面1e1上の左側の位置L1にサインSNを出力したときに被験者から見て左側の操作入力手段11が操作された場合に、網膜中心座標系適合の条件下では正答と判定し、網膜中心座標系不適合の条件下では誤答と判定する。しかして、必要に応じて上記のステップS1ないしステップS8、あるいはステップS3ないしステップS8を繰り返す。試行により得た反応時間の測定データまたは正答/誤答の判定結果のデータは、電気通信回線を介して外部の情報処理装置へ送信、ディスプレイ1eの画面1e1上に表示、ハードディスクやフレキシブルディスクその他の記憶媒体へ書き込み、プリントアウト、等の態様にて出力する。
【0024】
以降、本発明に係る高次脳機能障害診断装置1を用いて行った試験の結果に関して述べる。図8に示すものは、アルツハイマー病に罹患していない健常者(20名、平均年齢23.5歳)の反応時間の測定結果である。それぞれ、uUは体中心座標系適合・網膜中心座標系適合、uIは体中心座標系適合・網膜中心座標系不適合、cCは体中心座標系不適合・網膜中心座標系適合、cIは体中心座標系不適合・網膜中心座標系適不適合の条件下での試行における反応時間を表している。図9に示すように、体中心座標系適合の条件下での反応時間よりも体中心座標系不適合の条件下での反応時間の方が遅れる傾向にある。しかし、uIの条件下での反応時間とcCの条件下での反応時間との間に大きな差は見られない。一方で、図9に示すものは、初期の若年性アルツハイマー病の罹患者(50歳代)の反応時間の測定結果である。全体的な傾向として反応時間の遅れが見られる(反応時間は加齢等による影響も受ける)が、uIの条件下での反応時間とcCの条件下での反応時間とを比較しても明白なように、特に体中心座標系不適合の条件下での反応時間の遅延化が顕著となる。さらに、この被験者の正答率は、図10に示すものとなった。体中心座標系不適合の条件下での正答率が明らかに低下している。なお、健常者を被験者とした場合には、試験条件に依存した正答率の大きな変動は見られない。
【0025】
当該試験において、その被験者は、外部より入力される視覚情報と、固有受容器(proprioceptive)を介して入力される、自身の身体部位の空間内での体位や姿勢に関する情報とを統合して、動作(即ち、操作入力手段11、12を操作すること)を実行するための空間的コーディングを行う必要がある。このとき、特に脳の前頭−頭頂及び上側頭回(STG)を機能させている。ところが、アルツハイマー病等に起因してこれら前頭−頭頂あるいは上側頭回に損傷が発生すると、空間的コーディング能力が低減し、その結果体中心座標系不適合の状態に対処することが困難となる。本発明はこの点に着目してなされたものであり、被験者の体中心座標系不適合の状態への対処能力を定量評価することでアルツハイマー病等の高次脳機能障害への罹患の有無を早期に診断することを可能としている。
【0026】
以上に詳述した本実施形態によれば、空間内の複数位置に配置され被験者による操作を受け付ける操作入力手段11、12と、前記操作入力手段11、12のうち何れを操作すべきかを被験者に対して指示する指示手段13と、前記指示手段13が被験者に対する指示を実行してから前記操作入力手段11、12が被験者による操作を受け付けるまでの時間差である反応時間を測定する反応時間測定手段14とを具備し、被験者が操作する操作入力手段11、12の体中心に対する相対的な配置と被験者が該操作入力手段11、12を操作するときに駆使する身体部位の体中心に対する相対的な配置とが不適合である体中心座標系不適合の条件下での反応時間を測定し得るように構成した高次脳機能障害診断装置1を用いることで、被験者の体中心座標系不適合の状態への対処能力を定量的に評価することができ、特徴的な症状が必ずしも顕著でない初期の高次脳機能障害の罹患者であってもその罹患を診断可能となる。該高次脳機能障害診断装置1は、高価な検査機器や特殊な薬品等を必要としないため、低コストで利用できる。しかも、非侵襲性のものであり被験者への精神的、肉体的負担が軽く、定期的に診断を実施したとしても副作用のおそれが極めて少ない。
【0027】
同様に、空間内の複数位置に配置され被験者による操作を受け付ける操作入力手段11、12と、前記操作入力手段11、12のうち何れを操作すべきかを被験者に対して指示する指示手段13と、被験者による操作を受け付けた操作入力手段11、12が、操作すべきものとして前記指示手段13が被験者に対し指示したものであるか否かを判定する判定手段15とを具備し、被験者が操作する操作入力手段11、12の体中心に対する相対的な配置と被験者が該操作入力手段11、12を操作するときに駆使する身体部位の体中心に対する相対的な配置とが不適合である条件下での正答率若しくは誤答率を調査し得るように構成した高次脳機能障害診断装置1用いることでも、体中心座標系不適合の状態に対処する能力を定量評価でき、高次脳機能障害の早期診断が可能となる。
【0028】
さらに、前記指示手段13が、空間内の複数位置L1、L2の何れかにおいて被験者の五感に訴えかける態様の刺激SNを出力しその出力位置L1、L2により被験者が操作すべき操作入力手段11、12を指示するものであり、かつ刺激SNの出力位置L1、L2と被験者が操作すべき操作入力手段11、12との相関を変更可能なものであれば、被験者が操作する操作入力手段11、12の体中心に対する相対的な配置と該操作入力手段11、12を操作すべき旨を指示する刺激SNの出力位置L1、L2の体中心に対する相対的な配置とが適合及び不適合である条件下での反応時間を測定し得る、または正答率若しくは誤答率を調査し得る。即ち、上述例におけるuI(体中心座標系不適合・網膜中心座標系適合)、cI(体中心座標系不適合・網膜中心座標系適不適合)の条件下での反応時間を測定し得る、または正答率若しくは誤答率を調査し得る。そして、被験者の体中心座標系不適合の状態に対処する機能の損耗をより的確に検知することが可能となり、結果として高次脳機能障害の早期診断に資する。
【0029】
なお、本発明は以上に詳述した実施形態に限られるものではない。特に、指示手段13による刺激は、ディスプレイ1eの画面1e1上にサインSNを表示するという視覚に訴えかけるものには限られず、例えば、聴覚や触覚に訴えかけるものであってもよい。
【0030】
その他、各部の具体的構成や図7に示す処理の手順等もまた、上記実施形態に限られるものではなく、本発明の趣旨を逸脱しない範囲で種々変形が可能である。勿論、パーソナルコンピュータその他の汎用的な情報処理装置にプログラムをインストールして本発明に係る高次脳機能障害診断装置1を構成することも可能であって、専用の装置を製造することが必須であるわけではない。
【0031】
【発明の効果】
以上に詳述した本発明によれば、アルツハイマー病等の高次脳機能障害を早期に診断することが可能となる。
【図面の簡単な説明】
【図1】本発明の一実施形態における高次脳機能障害診断装置の全体構成を示す図。
【図2】同高次脳機能障害診断装置が具備するハードウェア資源を示す図。
【図3】同高次脳機能障害診断装置の機能ブロック図。
【図4】同高次脳機能障害診断装置を用いた試験方法を模式的に示す図。
【図5】同高次脳機能障害診断装置を用いた試験方法を模式的に示す図。
【図6】試験条件の教示の態様を例示する図。
【図7】同高次脳機能障害診断装置が実行する処理の手順を示すフローチャート。
【図8】健常者の反応時間の測定結果を示す図。
【図9】アルツハイマー病患者の反応時間の測定結果を示す図。
【図10】アルツハイマー病患者の正答率の調査結果を示す図。
【符号の説明】
1…高次脳機能障害診断装置
11、12…操作入力手段
13…指示手段
14…反応時間測定手段
15…判定手段
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an apparatus for diagnosing higher brain dysfunction represented by Alzheimer's disease.
[0002]
[Prior art]
Alzheimer's disease, one of the higher brain dysfunctions, has short-term and long-term memory deficits as basic symptoms, as well as higher cerebral cortical functions such as disability in abstract thinking and judgment, aphasia, apraxia, agnosia, and structural disorders Causes abnormalities and personality changes. In clinical practice, a so-called Hasegawa-type simple intelligence evaluation scale is often used when diagnosing the presence or absence of Alzheimer's disease. This is a simple intelligence test method created for the purpose of screening elderly people with dementia or the like (see Non-Patent Document 1). The questions on the Hasegawa-style simplified intelligence evaluation scale consist of orientation, memory, memorization, calculation, and recall, and by having the subjects answer verbally, it is possible to determine the presence or absence and approximate degree of general intelligence disorders. In addition to the screening described above, a detailed neuropsychological test, blood test, and various tests such as CT and MRI are performed, and Alzheimer's disease is diagnosed.
[0003]
In recent years, PET (positron CT) and SPECT (single photon emission CT) can be used to measure glucose metabolism, oxygen consumption rate, cerebral blood flow, and the like in the brain, which cannot be obtained by CT or MRI. Alzheimer's disease is becoming evident. For example, in young Alzheimer's disease, glucose metabolism in the parietal lobe is significantly reduced (see Non-Patent Document 2). Although these are promising means that can capture the early symptoms of Alzheimer's disease, radioactive substances need to be administered to the body of the subject, and at present, they are not widely used for research purposes.
[0004]
[Non-Patent Document 1] Kazuo Hasegawa, "Revised Hasegawa-type simple intelligence evaluation scale", [online], searched on September 9, 2002, Internet <URL http: // www. noge. or. jp / gaiyou / kango-bu / byoutou / suke-ru / hasegawa. htm>
[Non-Patent Document 2] Sakamoto S, Ishii K, Sasaki M, Hosaka K, Mori T, Matsui M, Hirono N, Mori E, "Differences in cerebral metabolic impairment between early and late onset types of Alzheimer's disease" J Neurol Sci
2002 Aug 15; 200 (1-2): 27-32.
[0005]
[Problems to be solved by the invention]
In diagnosing Alzheimer's disease, it is fundamental to investigate the presence and degree of memory impairment and memory impairment. However, in the early stages of Alzheimer's disease, they often give a vague impression that they are somewhat different from the past, such as reduced interest, reduced concentration, etc. Is not always apparent. Especially in the early stage of juvenile Alzheimer's disease, memory impairment and memory impairment are rare. For this reason, doctors, patients, and those around them often do not notice the onset of Alzheimer's disease, and the disease is diagnosed only after the disease progresses to a considerable extent.
[0006]
In view of the above problems, an object of the present invention is to enable early diagnosis of higher brain dysfunction such as Alzheimer's disease, and to provide an effective means for that purpose.
[0007]
[Means for Solving the Problems]
In order to solve the above-described problem, an operation input unit that is arranged at a plurality of positions in a space and receives an operation by a subject, an instruction unit that instructs the subject which of the operation input units is to be operated, and the instruction A higher cerebral dysfunction diagnostic device is provided, which comprises at least a reaction time measuring means for measuring a reaction time, which is a time difference from when the means executes an instruction to the subject until the operation input means receives an operation by the subject.
[0008]
Alzheimer's disease suffers from spatial cognitive abilities and other brain functions, even though memory and memory deficits are not yet apparent. Then, for example, the ability to operate an object existing on the left side with respect to the affected patient using his / her right hand is reduced. According to the present invention, the relative arrangement with respect to the center of the body of the operation input means operated by the subject and the body center used when the subject operates the operation input means are incompatible with each other. By measuring the reaction time under the condition of `` center coordinate system mismatch '', it is possible to detect the loss of brain function and diagnose whether the subject is suffering from higher brain dysfunction .
[0009]
Alternatively, operation input means arranged at a plurality of positions in the space to receive an operation by the subject, instruction means for instructing the subject on which of the operation input means to operate, and an operation input receiving the operation by the subject Means for determining whether or not the instructing means has instructed the subject as an operation to be performed. By examining the correct answer rate or the incorrect answer rate below, it may be possible to diagnose the presence or absence of higher brain dysfunction.
[0010]
In addition, the instruction means outputs a stimulus in a form appealing to the subject's five senses at any of a plurality of positions in the space, and indicates the operation input means to be operated by the subject according to the output position. The correlation between the output position of the subject and the operation input means to be operated by the subject can be changed, and the relative arrangement of the operation input means operated by the subject with respect to the body center and the effect that the operation input means should be operated are described. It is preferable to be able to measure the response time under conditions where the relative position of the output position of the indicated stimulus with respect to the body center is compatible and incompatible, or to investigate the correct or incorrect rate. With such a configuration, it is possible to more clearly detect the wear of the function for coping with the incompatibility of the subject's body center coordinate system.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings. As shown in FIG. 1, a higher cerebral dysfunction diagnostic device 1 according to the present embodiment includes operation input units 11 and 12 that are arranged at a plurality of positions in a space and receive an operation by a subject. An instructing means 13 for instructing the subject on which of them should be operated, and a reaction which is a time difference from when the instructing means 13 executes an instruction to the subject until the operation input means 11, 12 receives an operation by the subject. It comprises a reaction time measuring means 14 for measuring time, and a judging means 15 for judging whether or not the operation input means 11 and 12 which have received the operation by the subject are instructed to be operated. The subject operates the operation input units 11 and 12 to be operated based on the instruction from the instruction unit 13. Then, the reaction time is measured by the reaction time measuring means 14 and the correct answer rate or the incorrect answer rate is investigated by using the function of the judging means 15.
[0012]
Patients with higher brain dysfunction represented by Alzheimer's disease exhibit various symptoms, one of which is a decrease in the ability to cope with a state in which the body center coordinate system is incompatible. Here, it is described that the body center coordinate system conforms or the body center coordinate system does not conform.Based on the subject's body center or body axis, the extracorporeal space and the subject's body are divided into a plurality of space divisions and body parts. In the case, the element to be compared is in the corresponding section, that is, the space section to which one of the operation input means 11 and 12 arranged in the space belongs and the body used when operating the operation input means 11 and 12 Correspondence between the parts is called body center coordinate system adaptation, and incompatibility is called body center coordinate system incompatibility. As a typical example, when the extracorporeal space is viewed from the subject, it is divided into left and right space, left space and right space, and when the subject's body is divided into left half and right half, the operation existing in the left space Operating the input means 11 using the required part of the left body corresponds to body center coordinate system adaptation, and operating the input means 11 using the required part of the right body corresponds to body center coordinate system mismatch. By measuring the reaction time and / or examining the correct answer rate or incorrect answer rate using the higher brain dysfunction diagnostic apparatus 1 according to the present invention, the ability to cope with the state of incompatibility with the body center coordinate system can be quantitatively determined. It is possible to evaluate and, in turn, to diagnose the presence or absence of higher brain dysfunction.
[0013]
The higher cerebral dysfunction diagnosis device 1 includes, for example, hardware resources such as a processor 1a, a main memory 1b, an auxiliary storage device 1c, a display control device 1d, a display 1e, and an input device 1f, as shown in FIG. I do. The auxiliary storage device 1c is a hard disk drive, a flash memory, an optical disk drive such as a DVD-ROM, or the like, but may be a detachable one, that is, a cartridge type memory card, an external type disk drive, or the like. . The display control device 1d generates a video chip (or graphics chip) 1d1 having a function of generating image data to be displayed based on a drawing instruction received from the processor 1a and transmitting the generated image data to the display 1e, an image data and the like. It can be configured using a known device such as a video memory (Video RAM) 1d2 that plays a role of temporarily storing. The input device 1f generally includes a push button, a keyboard, a mouse, a trackpad, a touch panel, and the like that can be operated by the fingers of the subject.
[0014]
Usually, a program to be executed by the processor 1a is stored in the auxiliary storage device 1c. When the program is executed, the program is read from the auxiliary storage device 1c into the main memory 1b and decoded by the processor 1a. Then, the above-mentioned hardware resources are operated according to the program, so that the functions as the operation input means 11 and 12, the instruction means 13, the reaction time measurement means 14 and the determination means 15 shown in FIG.
[0015]
As described above, the operation input means 11 and 12 receive an operation by a subject. The operation input means 11 and 12 are configured using the input device 1f and its device driver. As shown in FIGS. 4A and 4B, two operation input means 11 and 12 are arranged at left and right positions in the space, one of which is operated by the subject's left hand (or right hand), and the other is operated. Is preferably operated by the right hand (left hand). In this embodiment, the operation input means 11 and 12 are arranged by pressing two push buttons and the like which can be operated with the fingers of the subject on the left and right sides from the front of the median of the subject. However, various forms of the operation input means 11 and 12 are conceivable. For example, the operation input means 11 and 12 are provided with two separated keys ("z" key and "/" key, etc.) on a general-purpose keyboard. It may be set to 12.
[0016]
The instruction means 13 instructs the operation input means 11 and 12 to be operated by the subject in a manner appealing to the subject's five senses. In the present embodiment, a stimulus in a manner that appeals to the subject's five senses, particularly to the visual sense, is output at any one of a plurality of positions L1 and L2 in the space, and the output position instructs operation input means 11 and 12 to be operated. And In the present embodiment, the instruction unit 13 is configured using the functions of the display control device 1d and the display 1e. Then, as shown in FIGS. 5 (a) and 5 (b), a sign SN to be stimulated is displayed at one of left and right predetermined positions L1 and L2 on the screen 1e1 of the display 1e, so that either left or right operation input is performed. An instruction to operate the means 11 and 12 is given to the subject. The display of the sign SN at the left position L1 on the screen 1e1 may indicate that the operation input unit 11 on the left side should be operated when viewed from the subject, or the right side when viewed from the subject. The operation input means 12 may be instructed to be operated. This will be described later.
[0017]
The reaction time measuring unit 14 measures a reaction time, which is a time difference from when the instruction unit 13 executes an instruction to the subject to when the operation input units 11 and 12 accept the operation by the subject. Data relating to the measured reaction time is stored in a required storage area of the main memory 1b or the auxiliary storage device 1c.
[0018]
The judging means 15 judges whether or not the operation input means 11 and 12 which have received the operation by the subject are what the instructing means 13 has instructed the subject to perform. Data relating to the determination result is stored in a required storage area of the main memory 1b or the auxiliary storage device 1c.
[0019]
Incidentally, the functions of the above-described units are shared by a plurality of information processing devices communicably connected via an electric communication line, and are realized as a higher cerebral dysfunction diagnosis device 1 by cooperating with each other. Is also good.
[0020]
As shown in FIG. 4, the operation input means 11 arranged on the left side is operated with the left hand of the subject, and the operation input means 12 arranged on the right side of the subject is And the operation input means 11 arranged on the left side is operated by the right hand of the subject, and the operation input means 12 arranged on the right side is operated by the left hand of the subject. The test is performed on the subject under the condition of the body center coordinate system mismatch (shown in FIG. 4B).
[0021]
In addition, in order to more accurately evaluate the ability to cope with the state of incompatibility with the body center coordinate system, the relative arrangement of the operation input means 11 and 12 operated by the subject with respect to the body center and the stimulus output by the instruction means 13 are described. It is desirable to measure the reaction time under conditions where the relative positions of the output positions L1 and L2 with respect to the body center are compatible and incompatible, or to investigate the correct answer rate or the incorrect answer rate. More specifically, based on the body center or body axis of the subject, a region of the extracorporeal space in which the stimulus is output by the instruction means 13 (so-called stimulation space) and the extracorporeal space in which the operation input means 11 and 12 are arranged and the subject operates. Is divided into a plurality of space sections, the element to be compared is in the corresponding section, that is, the space section to which the stimulus output positions L1 and L2 in the stimulus space belong and the reaction The correspondence here corresponds to the space section to which one of the operation input means 11 and 12 arranged in the space belongs, and the non-compliance here means that they do not correspond. In particular, in the present embodiment, the sign SN that is a stimulus in a form that appeals to the subject's vision via the display 1e is output on the screen 1e1 that is a stimulus space. The above “mismatch” can be referred to as “retinal center coordinate system mismatch”. As a typical example, as shown in FIG. 5, when the stimulus space and the reaction space are each divided into left and right space divisions as viewed from the subject, the stimulus is output in the left (right) division of the stimulus space. On the other hand, causing the subject to operate the operation input means 11 and 12 existing in the left (right) section of the reaction space corresponds to the retinal center coordinate system adaptation (shown in FIG. 5A), and the right (left) of the reaction space. The operation of the operation input means 11 and 12 existing in the section (1) by the subject corresponds to the retinal center coordinate system mismatch (shown in FIG. 5B). If the condition of conformity / non-conformity of the body center coordinate system is further matched with the condition of conformity / non-conformity of the retinal center coordinate system, 2 × 2 = 4 test conditions are generated. Under these conditions, an instruction is given to the subject by the instruction means 13 and an attempt is made to operate the operation input means 11, 12 to be operated based on the instruction, the reaction time is measured, and the correct answer rate or incorrect answer is measured. Investigate rates. Usually, the trial is performed a plurality of times under each condition.
[0022]
Further, it is preferable that the instruction means 13 can change the correlation between the stimulus output positions L1 and L2 and the operation input means 11 and 12 to be operated by the subject at random or according to a preset pattern. In other words, it is preferable that the condition of conformity / non-conformity of the retinal center coordinate system can be changed at random or for each trial according to a preset pattern. At this time, if the instruction means 13 teaches the correlation between the stimulus output positions L1 and L2 and the operation input means 11 and 12 to be operated by the subject prior to the output of the stimulus which is an instruction to the subject, More preferred. For example, as shown in FIG. 6, a display T1 (shown in FIG. 6A) or a retinal center coordinate system for instructing the subject that the next and subsequent trials are performed under the conditions of the retinal center coordinate system adaptation. The indication means 13 is configured to appropriately output a display T2 (shown in FIG. 6B) for instructing the subject to be performed under the non-conforming condition on the screen 1e1.
[0023]
The procedure of the process executed by the higher brain dysfunction diagnostic device 1 in the present embodiment will be described with reference to the flowchart of FIG. First, it is determined at random or according to a preset pattern whether the next and subsequent trials are performed under the condition of conformity with the retinal central coordinate system or under the condition of non-conformity of the retinal central coordinate system (step S1). The instruction means 13 outputs the conditions of conformity / non-conformity of the retinal center coordinate system determined in step S1 (displaying the display T1, T2 illustrated in FIG. 6A or FIG. 6B on the screen 1e1). Instruct the subject (step S2). Then, the instruction means 13 selects any one of the positions L1 and L2 on the screen 1e1 as the stimulus space (Step S3) and outputs the stimulus signature SN (Step S4). Subsequently, each of the operation input units 11 and 12 waits for an operation input by the subject (step S6), and the reaction time measurement unit 14 measures the elapsed time until one of the operation input units 11 and 12 receives the operation. Is started (step S5). When one of the operation input units 11 and 12 receives an operation (step S6), the measurement of the elapsed time by the reaction time measurement unit 14 is completed (step S7). The determining means 15 determines whether or not the subject has operated the correct operation input means 11 and 12 that match the instruction from the instruction means 13 (step S8). At this time, it is determined whether or not the operation input means 11 and 12 that have received the operation have instructed that the operation should be performed, based on the conditions for conformity / non-conformity of the retinal center coordinate system determined in step S1. To give a specific example, when the operation input means 11 on the left side as viewed from the subject is operated when the sign SN is output at the left position L1 on the screen 1e1, under the condition of conformity with the retinal center coordinate system, The answer is determined to be correct, and is determined to be incorrect under conditions where the retinal center coordinate system is incompatible. The steps S1 to S8 or the steps S3 to S8 are repeated as necessary. The measurement data of the reaction time obtained by the trial or the data of the judgment result of the correct answer / wrong answer is transmitted to an external information processing device via a telecommunication line, displayed on the screen 1e1 of the display 1e, and hard disk, flexible disk, or the like. The data is output in a form such as writing to a storage medium, printing out, and the like.
[0024]
Hereinafter, results of a test performed using the higher brain dysfunction diagnostic device 1 according to the present invention will be described. FIG. 8 shows the measurement results of the reaction times of healthy persons (20 persons, average age 23.5 years) not suffering from Alzheimer's disease. UU is suitable for the body center coordinate system and the retinal center coordinate system, uI is suitable for the body center coordinate system and the retinal center coordinate system is not suitable, cC is not suitable for the body center coordinate system and the retinal center coordinate system is suitable, and cI is the body center coordinate system. It shows the reaction time in the trial under the conditions of non-conformity / fitness to the central retinal coordinate system. As shown in FIG. 9, the reaction time under the condition that the body center coordinate system is not suitable tends to be later than the reaction time under the condition that the body center coordinate system is suitable. However, there is no significant difference between the reaction time under uI conditions and the reaction time under cC conditions. On the other hand, what is shown in FIG. 9 is the measurement result of the reaction time of the early-stage juvenile Alzheimer's disease sufferer (50's). As a general tendency, the reaction time is delayed (the reaction time is also affected by aging and the like), but is apparent even when the reaction time under the uI condition and the reaction time under the cC condition are compared. As described above, the delay of the reaction time becomes remarkable especially under the condition that the body center coordinate system is incompatible. Further, the correct answer rate of this subject was as shown in FIG. The correct answer rate under the condition that the body center coordinate system is incompatible is clearly reduced. In addition, when a healthy person is used as a subject, a large change in the correct answer rate depending on the test condition is not observed.
[0025]
In the test, the subject integrates the visual information input from the outside with the information on the body position and posture in the space of his / her body part input via the proprioceptive, It is necessary to perform spatial coding for performing the operation (ie, operating the operation input means 11, 12). At this time, especially the frontal-parietal and superior temporal gyrus (STG) of the brain are functioning. However, if the frontal-parietal or superior temporal gyrus is damaged due to Alzheimer's disease or the like, spatial coding ability is reduced, and as a result, it is difficult to cope with a state in which the body center coordinate system is incompatible. The present invention has been made with a focus on this point, and the presence or absence of a higher cerebral dysfunction such as Alzheimer's disease can be determined at an early stage by quantitatively evaluating the test subject's ability to cope with a state of incompatibility with the body center coordinate system. It is possible to make a diagnosis.
[0026]
According to the present embodiment described in detail above, the operation input means 11 and 12 which are arranged at a plurality of positions in the space and receive an operation by the subject, and which of the operation input means 11 and 12 is to be operated, Instruction means 13 for instructing a subject, and a reaction time measuring means 14 for measuring a reaction time which is a time difference between when the instruction means 13 executes an instruction to the subject and when the operation input means 11 and 12 accept an operation by the subject. And the relative arrangement of the operation input means 11 and 12 operated by the subject with respect to the body center and the relative arrangement of the body part used when the subject operates the operation input means 11 and 12 with respect to the body center By using the higher cerebral dysfunction diagnosis device 1 configured to be able to measure the reaction time under the condition of the body center coordinate system incongruity with The ability to cope state of the central coordinate system incompatibility can be quantitatively evaluated, even sufferers characteristic symptoms is not always pronounced initial higher brain dysfunction is possible diagnose the diseased. The higher cerebral dysfunction diagnostic device 1 can be used at low cost because it does not require expensive test equipment or special chemicals. In addition, it is non-invasive and has a light mental and physical burden on the subject, and has very little risk of side effects even if the diagnosis is performed periodically.
[0027]
Similarly, operation input means 11 and 12 arranged at a plurality of positions in the space to receive an operation by the subject, instruction means 13 for instructing the subject which of the operation input means 11 and 12 should be operated, The operation input means 11 and 12 having received the operation by the subject are provided with a determination means 15 for determining whether or not the instruction means 13 has instructed the subject as an operation to be performed. Correct answer under the condition that the relative arrangement of the input means 11 and 12 with respect to the body center and the relative arrangement of the body part used when the subject operates the operation input means 11 and 12 with respect to the body center are incompatible. By using the higher cerebral dysfunction diagnosis device 1 configured to be able to investigate the rate or wrong answer rate, it is possible to quantitatively evaluate the ability to cope with a state in which the body center coordinate system is incompatible, Early diagnosis of the following brain dysfunction is possible.
[0028]
Further, the instructing means 13 outputs a stimulus SN in a mode of appealing to the subject's five senses at one of a plurality of positions L1 and L2 in the space, and the operation input means 11 to be operated by the subject according to the output positions L1 and L2. 12, if the correlation between the output positions L1, L2 of the stimulus SN and the operation input means 11, 12 to be operated by the subject can be changed, the operation input means 11, operated by the subject, Conditions in which the relative arrangement of the stimulus SN indicating that the operation input means 11 and 12 should be operated and the relative arrangement of the output positions L1 and L2 of the stimulus SN relative to the body center with respect to the body center are compatible and incompatible. Can be measured, or the rate of correct or incorrect answers can be investigated. That is, the reaction time under the conditions of uI (inappropriate body center coordinate system / conformity in retinal center coordinate system) and cI (inappropriate body center coordinate system / inappropriate retinal coordinate system) in the above example can be measured, or the correct answer rate Or you can investigate the wrong answer rate. Then, it becomes possible to more accurately detect the wear of the function for coping with the state of the subject's incompatibility with the body center coordinate system, which contributes to early diagnosis of higher brain dysfunction.
[0029]
Note that the present invention is not limited to the embodiment described in detail above. In particular, the stimulus by the instruction unit 13 is not limited to the one that appeals to the visual sense of displaying the sign SN on the screen 1e1 of the display 1e, and may be, for example, one that appeals to the sense of hearing or touch.
[0030]
In addition, the specific configuration of each unit, the procedure of the process shown in FIG. 7, and the like are not limited to the above embodiment, and various modifications can be made without departing from the spirit of the present invention. Of course, it is also possible to configure the higher brain dysfunction diagnosis device 1 according to the present invention by installing a program in a personal computer or other general-purpose information processing device, and it is essential to manufacture a dedicated device. Not necessarily.
[0031]
【The invention's effect】
According to the present invention described in detail above, higher brain dysfunction such as Alzheimer's disease can be diagnosed at an early stage.
[Brief description of the drawings]
FIG. 1 is a diagram showing an entire configuration of a higher brain dysfunction diagnosis apparatus according to an embodiment of the present invention.
FIG. 2 is a diagram showing hardware resources included in the higher brain dysfunction diagnosis apparatus.
FIG. 3 is a functional block diagram of the higher brain dysfunction diagnosis apparatus.
FIG. 4 is a view schematically showing a test method using the higher brain dysfunction diagnosis apparatus.
FIG. 5 is a diagram schematically showing a test method using the higher brain dysfunction diagnostic device.
FIG. 6 is a diagram illustrating an embodiment of teaching of test conditions.
FIG. 7 is a flowchart showing a procedure of processing executed by the higher brain dysfunction diagnosis device.
FIG. 8 is a view showing a result of measuring a reaction time of a healthy person.
FIG. 9 is a graph showing the results of measuring the reaction time of Alzheimer's disease patients.
FIG. 10 is a diagram showing the results of a survey on the correct answer rate of Alzheimer's disease patients.
[Explanation of symbols]
1. Higher brain dysfunction diagnostic device
11, 12 ... operation input means
13 Instruction means
14 ... Reaction time measuring means
15. Judging means

Claims (6)

空間内の複数位置に配置され被験者による操作を受け付ける操作入力手段と、
前記操作入力手段のうち何れを操作すべきかを被験者に対して指示する指示手段と、
前記指示手段が被験者に対する指示を実行してから前記操作入力手段が被験者による操作を受け付けるまでの時間差である反応時間を測定する反応時間測定手段とを少なくとも具備し、
被験者が操作する操作入力手段の体中心に対する相対的な配置と被験者が該操作入力手段を操作するときに駆使する身体部位の体中心に対する相対的な配置とが不適合である条件下での反応時間を測定し得るように構成した高次脳機能障害診断装置。
Operation input means arranged at a plurality of positions in the space to receive an operation by a subject;
Instruction means for instructing the subject which of the operation input means to operate,
At least a reaction time measuring unit that measures a reaction time that is a time difference from when the instruction unit executes an instruction to the subject until the operation input unit receives an operation by the subject,
Reaction time under conditions where the relative arrangement of the operation input means operated by the subject with respect to the body center and the relative arrangement of the body part used when the subject operates the operation input means with respect to the body center are incompatible. A higher-order brain dysfunction diagnostic device configured to be able to measure the blood pressure.
空間内の複数位置に配置され被験者による操作を受け付ける操作入力手段と、
前記操作入力手段のうち何れを操作すべきかを被験者に対して指示する指示手段と、
被験者による操作を受け付けた操作入力手段が、操作すべきものとして前記指示手段が被験者に対し指示したものであるか否かを判定する判定手段とを少なくとも具備し、
被験者が操作する操作入力手段の体中心に対する相対的な配置と被験者が該操作入力手段を操作するときに駆使する身体部位の体中心に対する相対的な配置とが不適合である条件下での正答率若しくは誤答率を調査し得るように構成した高次脳機能障害診断装置。
Operation input means arranged at a plurality of positions in the space to receive an operation by a subject;
Instruction means for instructing the subject which of the operation input means to operate,
The operation input unit that has received the operation by the subject, at least comprises a determination unit that determines whether or not the instruction unit has instructed the subject as an operation to be performed,
Correct answer rate under the condition that the relative arrangement of the operation input means operated by the subject with respect to the body center and the relative arrangement of the body part used when the subject operates the operation input means with respect to the body center are incompatible. Alternatively, a higher brain dysfunction diagnostic device configured to investigate a wrong answer rate.
前記指示手段は、空間内の複数位置の何れかにおいて被験者の五感に訴えかける態様の刺激を出力しその出力位置により被験者が操作すべき操作入力手段を指示するものであり、かつ刺激の出力位置と被験者が操作すべき操作入力手段との相関を変更可能なものであって、
被験者が操作する操作入力手段の体中心に対する相対的な配置と該操作入力手段を操作すべき旨を指示する刺激の出力位置の体中心に対する相対的な配置とが適合及び不適合である条件下での反応時間を測定し得るまたは正答率若しくは誤答率を調査し得ることを特徴とする請求項1または2記載の高次脳機能障害診断装置。
The instruction means outputs a stimulus in a manner appealing to the senses of the subject at any of a plurality of positions in the space, and indicates the operation input means to be operated by the subject according to the output position, and the output position of the stimulus And the correlation between the operation input means to be operated by the subject and
Under the condition that the relative arrangement of the operation input means operated by the subject with respect to the body center and the relative arrangement of the stimulus output position indicating that the operation input means should be operated with respect to the body center are compatible and incompatible. 3. The apparatus for diagnosing higher brain dysfunction according to claim 1, wherein the reaction time can be measured or the correct answer rate or incorrect answer rate can be investigated.
請求項1記載の高次脳機能障害診断装置を構成するために用いられるものであって、情報処理装置を、少なくとも
空間内の複数位置に配置され被験者による操作を受け付ける操作入力手段、
前記操作入力手段のうち何れを操作すべきかを被験者に対して指示する指示手段、及び、
前記指示手段が被験者に対する指示を実行してから前記操作入力手段が被験者による操作を受け付けるまでの時間差である反応時間を測定する反応時間測定手段として機能させるプログラム。
An operation input unit that is used to configure the higher brain dysfunction diagnosis device according to claim 1, wherein the information processing device is disposed at least at a plurality of positions in a space and receives an operation by a subject.
Instruction means for instructing the subject which of the operation input means to operate, and
A program functioning as reaction time measuring means for measuring a reaction time, which is a time difference from when the instruction means executes an instruction to a subject until the operation input means receives an operation by the subject.
請求項2記載の高次脳機能障害診断装置を構成するために用いられるものであって、情報処理装置を、少なくとも
空間内の複数位置に配置され被験者による操作を受け付ける操作入力手段、
前記操作入力手段のうち何れを操作すべきかを被験者に対して指示する指示手段、及び
被験者による操作を受け付けた操作入力手段が、操作すべきものとして前記指示手段が被験者に対し指示したものであるか否かを判定する判定手段として機能させるプログラム。
An operation input unit that is used to configure the higher cerebral dysfunction diagnosis device according to claim 2, wherein the information processing device is arranged at least at a plurality of positions in a space and receives an operation by a subject.
Instruction means for instructing the subject on which of the operation input means to operate, and whether the operation input means that has accepted the operation by the subject is what the instruction means has instructed the subject to operate. A program that functions as a determination unit for determining whether or not the determination is made.
前記指示手段は、空間内の複数位置の何れかにおいて被験者の五感に訴えかける態様の刺激を出力しその出力位置により被験者が操作すべき操作入力手段を指示するものであり、かつ刺激の出力位置と被験者が操作すべき操作入力手段との相関を変更可能なものであることを特徴とする請求項4または5記載のプログラム。The instruction means outputs a stimulus in a form appealing to the senses of the subject at any of a plurality of positions in the space, and indicates the operation input means to be operated by the subject according to the output position, and the output position of the stimulus 6. The program according to claim 4, wherein a correlation between the operation input means to be operated by the subject and the operation input means can be changed.
JP2002302529A 2002-10-17 2002-10-17 Higher brain dysfunction diagnostic device Expired - Lifetime JP3598385B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002302529A JP3598385B2 (en) 2002-10-17 2002-10-17 Higher brain dysfunction diagnostic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002302529A JP3598385B2 (en) 2002-10-17 2002-10-17 Higher brain dysfunction diagnostic device

Publications (2)

Publication Number Publication Date
JP2004135824A true JP2004135824A (en) 2004-05-13
JP3598385B2 JP3598385B2 (en) 2004-12-08

Family

ID=32450570

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002302529A Expired - Lifetime JP3598385B2 (en) 2002-10-17 2002-10-17 Higher brain dysfunction diagnostic device

Country Status (1)

Country Link
JP (1) JP3598385B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007532219A (en) * 2004-04-13 2007-11-15 ケンブリッジ ユニバーシティー テクニカル サービシズ リミティッド Methods for assessing neurocognitive disorders
JP2009504298A (en) * 2005-08-19 2009-02-05 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ System and method for analyzing user movement
JP2009506415A (en) * 2005-08-23 2009-02-12 ケンブリッジ エンタープライズ リミテッド Methods for assessing psychotic disorders
JP2010511413A (en) * 2004-07-19 2010-04-15 ケンブリッジ・エンタープライズ・リミテッド How to assess cognitive impairment
JP2010178920A (en) * 2009-02-05 2010-08-19 Anthrax Spores Killer Co Ltd Dementia-forgetfulness testing apparatus
JP2010273879A (en) * 2009-05-28 2010-12-09 Yamaha Corp Motion evaluation device and program
JP2010273878A (en) * 2009-05-28 2010-12-09 Yamaha Corp Motion evaluation device and program
WO2012077313A1 (en) * 2010-12-06 2012-06-14 国立大学法人岡山大学 Method and device for verifying onset of dementia
WO2013136800A1 (en) * 2012-03-16 2013-09-19 国立大学法人岡山大学 Stimulation provision method for providing stimulation to confirm presence of dementia symptoms, method using same to confirm presence of dementia symptoms, and stimulation provision device
JP2015112183A (en) * 2013-12-10 2015-06-22 国立大学法人 岡山大学 Stimulation provision device
WO2019082691A1 (en) 2017-10-23 2019-05-02 パナソニックIpマネジメント株式会社 Dementia determination system
CN112773331A (en) * 2021-01-14 2021-05-11 成都福瑞至脑健康科技有限公司 Brain health state monitoring and evaluating method and system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4765059B2 (en) * 2005-02-10 2011-09-07 国立大学法人北海道大学 Cognitive task response measurement system and cognitive task response measurement method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0653107B2 (en) * 1992-07-09 1994-07-20 株式会社エイ・ティ・アール視聴覚機構研究所 Medical diagnostic device using line-of-sight detection
JPH0655203B2 (en) * 1992-07-09 1994-07-27 株式会社エイ・ティ・アール視聴覚機構研究所 Medical diagnostic device using line-of-sight detection
JPH074345B2 (en) * 1992-08-12 1995-01-25 株式会社エイ・ティ・アール視聴覚機構研究所 Medical diagnostic device by masking the gazing point
JPH1015003A (en) * 1996-07-02 1998-01-20 Matsushita Electric Ind Co Ltd Rehabilitation supporting device
JP3147557B2 (en) * 1992-12-22 2001-03-19 オージー技研株式会社 Exercise play equipment with evaluation and training functions
JP2001079050A (en) * 1999-09-16 2001-03-27 Japan Science & Technology Corp Rehabilitation unit for high function disorder of brain

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0653107B2 (en) * 1992-07-09 1994-07-20 株式会社エイ・ティ・アール視聴覚機構研究所 Medical diagnostic device using line-of-sight detection
JPH0655203B2 (en) * 1992-07-09 1994-07-27 株式会社エイ・ティ・アール視聴覚機構研究所 Medical diagnostic device using line-of-sight detection
JPH074345B2 (en) * 1992-08-12 1995-01-25 株式会社エイ・ティ・アール視聴覚機構研究所 Medical diagnostic device by masking the gazing point
JP3147557B2 (en) * 1992-12-22 2001-03-19 オージー技研株式会社 Exercise play equipment with evaluation and training functions
JPH1015003A (en) * 1996-07-02 1998-01-20 Matsushita Electric Ind Co Ltd Rehabilitation supporting device
JP2001079050A (en) * 1999-09-16 2001-03-27 Japan Science & Technology Corp Rehabilitation unit for high function disorder of brain

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007532219A (en) * 2004-04-13 2007-11-15 ケンブリッジ ユニバーシティー テクニカル サービシズ リミティッド Methods for assessing neurocognitive disorders
JP2010511413A (en) * 2004-07-19 2010-04-15 ケンブリッジ・エンタープライズ・リミテッド How to assess cognitive impairment
US8696359B2 (en) 2004-07-19 2014-04-15 Cambridge University Technical Services Limited Methods of assessing cognitive dysfunction
JP2009504298A (en) * 2005-08-19 2009-02-05 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ System and method for analyzing user movement
JP2009506415A (en) * 2005-08-23 2009-02-12 ケンブリッジ エンタープライズ リミテッド Methods for assessing psychotic disorders
JP2010178920A (en) * 2009-02-05 2010-08-19 Anthrax Spores Killer Co Ltd Dementia-forgetfulness testing apparatus
JP2010273879A (en) * 2009-05-28 2010-12-09 Yamaha Corp Motion evaluation device and program
JP2010273878A (en) * 2009-05-28 2010-12-09 Yamaha Corp Motion evaluation device and program
JP5614599B2 (en) * 2010-12-06 2014-10-29 国立大学法人 岡山大学 Method and apparatus for confirming presence or absence of onset of dementia
WO2012077313A1 (en) * 2010-12-06 2012-06-14 国立大学法人岡山大学 Method and device for verifying onset of dementia
WO2013136800A1 (en) * 2012-03-16 2013-09-19 国立大学法人岡山大学 Stimulation provision method for providing stimulation to confirm presence of dementia symptoms, method using same to confirm presence of dementia symptoms, and stimulation provision device
JPWO2013136800A1 (en) * 2012-03-16 2015-08-03 国立大学法人 岡山大学 Stimulus providing method for providing stimulus for confirming the onset of dementia, method for confirming the onset of dementia using the same, and stimulus providing apparatus
JP2015112183A (en) * 2013-12-10 2015-06-22 国立大学法人 岡山大学 Stimulation provision device
WO2019082691A1 (en) 2017-10-23 2019-05-02 パナソニックIpマネジメント株式会社 Dementia determination system
CN112773331A (en) * 2021-01-14 2021-05-11 成都福瑞至脑健康科技有限公司 Brain health state monitoring and evaluating method and system
CN112773331B (en) * 2021-01-14 2022-07-12 成都福瑞至脑健康科技有限公司 Brain health state monitoring and evaluating method and system

Also Published As

Publication number Publication date
JP3598385B2 (en) 2004-12-08

Similar Documents

Publication Publication Date Title
Mayaudon et al. A new simple method for assessing sudomotor function: relevance in type 2 diabetes
Tilson et al. Meaningful gait speed improvement during the first 60 days poststroke: minimal clinically important difference
Jack Jr et al. Comparison of different MRI brain atrophy rate measures with clinical disease progression in AD
Larrieu et al. Incidence and outcome of mild cognitive impairment in a population-based prospective cohort
Tarnanas et al. Can a novel computerized cognitive screening test provide additional information for early detection of Alzheimer's disease?
Scarmeas et al. Cognitive reserve–mediated modulation of positron emission tomographic activations during memory tasks in Alzheimer disease
Mason et al. The predictive validity of a diagnosis of schizophrenia: a report from the International Study of Schizophrenia (ISoS) coordinated by the World Health Organization and the Department of Psychiatry, University of Nottingham
JP3598385B2 (en) Higher brain dysfunction diagnostic device
US11589788B2 (en) Prediction of mood and associated outcomes based on correlation of autonomous and endocrine parameters
US20130252215A1 (en) Method and device for verifying onset of dementia
Gaubert et al. A machine learning approach to screen for preclinical Alzheimer's disease
Dimitrova et al. A neurostructural biomarker of dissociative amnesia: a hippocampal study in dissociative identity disorder
Shi et al. The utilization of retinal nerve fiber layer thickness to predict cognitive deterioration
Türközer et al. Integrated assessment of visual perception abnormalities in psychotic disorders and relationship with clinical characteristics
Kandel et al. Neuropsychological testing predicts cerebrospinal fluid amyloid-β in mild cognitive impairment
van der Stelt et al. Intellectual awareness of naming abilities in people with chronic post-stroke aphasia
Al Saif et al. Sensitivity and specificity of the amer dizziness diagnostic scale (adds) for patients with vestibular disorders
Henning et al. Validating the walking while talking test to measure motor, cognitive, and dual-task performance in ambulatory individuals with multiple sclerosis
Borda et al. Timed up and go in people with subjective cognitive decline is associated with faster cognitive deterioration and cortical thickness
da Silva Alves et al. Comparison of cognitive functions among frail and prefrail older adults: a clinical perspective
Leal et al. Physiologic and behavioural signs during a dental appointment in children and teenagers with cerebral palsy: a comparative cross-sectional study
Ozsoy et al. Optimal cut-off points of 4-meter gait speed to discriminate functional exercise capacity and health status in older patients with chronic obstructive pulmonary disease
Hu et al. Prediction of conscious awareness recovery after severe acute ischemic stroke
US20170360355A1 (en) Methods and systems of screening and monitoring alzheimer&#39;s disease using the king-devick test
Monteiro et al. Could salt intake directly affect the cerebral microvasculature in hypertension?

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040803

R150 Certificate of patent or registration of utility model

Ref document number: 3598385

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term