JP2004135699A - Dental root canal filling material, method of filling root canal using the same, tubulus sealing type measuring device and method of tubulus sealing type measurement - Google Patents

Dental root canal filling material, method of filling root canal using the same, tubulus sealing type measuring device and method of tubulus sealing type measurement Download PDF

Info

Publication number
JP2004135699A
JP2004135699A JP2002300842A JP2002300842A JP2004135699A JP 2004135699 A JP2004135699 A JP 2004135699A JP 2002300842 A JP2002300842 A JP 2002300842A JP 2002300842 A JP2002300842 A JP 2002300842A JP 2004135699 A JP2004135699 A JP 2004135699A
Authority
JP
Japan
Prior art keywords
root canal
filling material
canal filling
dental
shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002300842A
Other languages
Japanese (ja)
Inventor
Takeshi Tsukada
塚田 岳司
Mitsuo Torii
鳥居 光男
Toshiaki Tanaka
田中 利明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2002300842A priority Critical patent/JP2004135699A/en
Publication of JP2004135699A publication Critical patent/JP2004135699A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Dental Tools And Instruments Or Auxiliary Dental Instruments (AREA)
  • Dental Preparations (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a novel method of filling a root canal capable of easily and closely sealing the root canal by adding a shape memory function to a dental root canal filling material. <P>SOLUTION: Trans-polyisoprene, most widely used as a main component of the dental root canal filling material in the current clinical operation, is easily cross-linked by sulfur or dicumylperoxide, and a molding obtained from the cross-linking has an excellent shape memory function. By paying attention to the above facts, the dental root canal filling material, molded in the shape larger than a root canal to be filled, is manufactured by the method as follows. The root canal filling material is softened with heat and deformed into an insertable shape inserted into the root canal. Then, the deformation is fixed by cooling the material at 0°C, and after that, the root canal filling point, thinly deformed and fixed, is inserted into the root canal. At the time, the root canal filling material is closely attached to the wall of the root canal while restroing the shape with the stimulation of the temperature in the mouth cavity. In this way, the root canal can be closely sealed. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明が属する技術分野】
本発明は、歯科の歯内療法における歯科用根管充填材およびこれを使用した根管充填法と封鎖性試験に関する。より詳しくは、形状記憶機能を付与した歯科用根管充填材を用いた根管充填法とそれを評価するための封鎖性試験法に関するものである。
【0002】
【従来の技術】
歯科の歯内療法において、不可逆性歯髄炎や根尖性歯周炎と診断された歯牙については、感染歯髄や感染歯質を除去するために一般的にリーマーやファイルといった歯科用の根管治療器具を用いて根管の拡大、形成がなされる。その後、十分に洗浄消毒が行われた根管は歯科用根管充填材を用いて根管充填処置がなされるが、この処置において最も重要なのは根管内を気密に密閉し空隙を無くすことである。それによって根管内の再感染や有害物質の貯留を防ぎ、また根管から歯周組織への感染経路を遮断することによって根尖部歯周組織の治癒を図り、歯髄が除去された死歯を生体にとって無害な状態で保存することが可能となる。すなわち、根管充填処置とは、歯内療法においてその予後の成否を左右する非常に重要な仕上げの処置であり、それまでの治療がいかに順調に進行していても根管充填処置が失敗してしまうと、予後不良となってしまう場合が多い。
【0003】
歯科用根管充填材として現在最も広く使用されている材料はトランスポリイソプレンであるが、臨床で一般的に行われているトランスポリイソプレンを用いた根管充填法の代表的なものとして側方加圧法と垂直加圧法の二種類が挙げられる。側方加圧法とは、テーパーのついたポイント状に成型したマスターポイントとアクセサリーポイント、さらにポイント間あるいはポイントと根管壁との空隙を補い、またポイントを固定するための役割を果たす歯科用根管充填用シーラーとを併用して行う方法である。一方、垂直加圧法とは、根管充填材を加熱軟化して可塑性が得られた状態で根管に挿入するか、もしくは根管内でこの材料を加熱軟化した後、歯冠側から根尖に向かって軟化した歯科用根管充填材を圧接し充填する方法である。側方加圧法で使用する歯科用根管充填用ポイントも垂直加圧法で使用する歯科用根管充填材も、未架橋のトランスポリイソプレンに酸化亜鉛、ワックス、レジンおよびエックス線造影剤等を添加した複合材料である。
【0004】
側方加圧法の術式について説明を行う。拡大形成した根管によく適合するマスターポイントを選択し、歯科用根管充填用シーラーをレンツロという器具を用いて根管壁に塗布した後、マスターポイントに歯科用根管充填用シーラー塗布した状態で根管に挿入し、スプレッダーという器具を用いてマスターポイントを側方に圧接することによって生じた空隙に歯科用根管充填用シーラー塗布したアクセサリーポイントを挿入し、再度スプレッダーで側方に圧接しアクセサリーポイントを挿入するという作業を繰り返して充填していく方法である。この歯科用根管充填用ポイントについては先行技術として特開平2002−80318号に記載がある。側方加圧法の問題点としては操作が煩雑であること、マスターポイントが適合しにくい形状が不規則な根管については緊密に充填することが困難であること、歯科用根管充填用シーラーの収縮が生じることなどが指摘されている。
【0005】
一方、側方加圧法の問題点を解消するといわれているのが垂直加圧法であり、この方法は比較的低温で軟化し高い流動性を得られる歯科用根管充填材が適しており、先行技術として特開平9−143020号、特開平2001−163717号に記載がある。
【0006】
本願発明者らは、第115回日本歯科保存学会において次のような内容を発表した。トランスポリイソプレンを架橋することによって形状記憶樹脂の作製を試みたが、結果として架橋剤の添加量が増加するにしたがって変形回復温度が低下した。この理由としては、分子内あるいは分子間の架橋点の増加によって網目構造が密になった結果、TPI分子の移動が制限され、変形を固定するための結晶化に寄与する部分が減少したことや、また、原形に回復するための復元力が増加したことなどが原因と考えられた。架橋剤の添加量を増加することは、変形回復温度を低下させるとともに転移温度以上における緩和弾性率や回復応力を高めるのにも有効であった。しかしながら、この内容を発表した時点で明らかになったのは樹脂の特性のみで用途応用については、まだ不明であった。
【0007】
【発明が解決しようとする課題】
垂直加圧法は、加熱軟化し可塑性が得られた状態の歯科用根管充填材を圧接して充填するために、不規則な形状の根管にも短時間で根管充填を行うことが可能である。しかしながら、垂直加圧法を行うにあたって、軟化した歯科用根管充填材がどの程度まで充填されたかを術中に確認する方法がなく、その判断は術者の勘に頼るところが大きいため歯科用根管充填材が根尖まで到達せず充填不足を起こしてしまうという問題点がある。
また、根尖口が大きく開いている場合には、多量の加熱された歯科用根管充填材を根尖歯周組織に押し出してしまった結果、炎症を惹起する危険性がある。
さらに、いかに緊密に根管充填を行っても、加熱軟化した歯科用根管充填材が根管内において冷却する過程で生じる収縮、およびトランスポリイソプレンの結晶化によって生じる収縮などによって歯科用根管充填材と根管壁との間に空隙が生じる可能性が高い。
本願発明者らの架橋剤の添加量が変形回復特性に及ぼす影響について、架橋剤の添加量を増加することは、変形回復温度が低下させるとともに転移温度以上における緩和弾性率や回復応力を高めるのに有効であるという内容の第115回日本歯科保存学会の発表においては、樹脂の緩和弾性率や回復応力についての効果を述べたに過ぎず、用途応用については不明であった。
本発明は、上記した側方加圧法および垂直加圧法の欠点を克服するものであり、形状記憶樹脂を用いて、操作性および封鎖性に優れた歯科用根管充填材および根管充填法を提供することを課題としている。
【0008】
【課題を解決するための手段】
本願発明者らは、細管封鎖性測定器を用いて封鎖性について鋭意研究を行った結果、形状記憶機能を付与した歯科用根管充填用材を試作し、この材料を用いて優れた操作性と長期にわたっての緊密な封鎖が得られ上記課題を解決した。
すなわち、現在の臨床において歯科用根管充填材として最も広く使用されているトランスポリイソプレンは、硫黄やジクミルペルオキサイドによって架橋すること、また、結晶性の高分子材料であるために容易に変形を固定することが可能であるという2つの性質を併せ持っており、この2つの性質を利用することによってトランスポリイソプレンは形状記憶という機能を持った材料となることに着目し、これを歯科分野に応用できることを見出した。
【0009】
根管充填予定の根管よりもひとまわり太目の形状に成型された歯科用根管充填材を加熱軟化して根管に挿入可能なサイズに変形し、さらに0℃で冷却することによって変形を固定した後、この細めに変形固定した歯科用根管充填用材を根管に挿入すると、口腔内温度による刺激によって形状が回復しながら根管壁に密着していき、根管内を緊密に封鎖することが可能となることを特徴とする根管充填法によって、根管を容易にかつ緊密に封鎖する新規の根管充填法を実現したものである。
【0010】
本発明の架橋剤としては硫黄、ジクミルペルオキサイドがあげられ、本発明の加硫促進剤としては酸化亜鉛、ステアリン酸が挙げられる。
本発明の連続した細管は、円形、楕円形のガラス製で直径1〜8mmである。
本発明の封入加重器は、棒状で直径0.5〜5mmのステンレス製で重量10〜1000gfである。
本発明の電気抵抗測定器は、デジタルマルチメーター(例えば、PC520M 三和電気計器社製)を用いた。
本発明の恒温槽は、インキュベーター(例えば、IC400 やまと社製)を用いた。
【0011】
本発明の歯科用根管充填材は、形状記憶樹脂で構成されている。この形状記憶樹脂がトランスポリイソプレンと、架橋剤と、加硫促進剤とを主成分として、これらを架橋させるものも含む。トランスポリイソプレン100部に対して架橋剤1.5〜10部より好ましくは6〜9部、加硫促進剤25〜35部の組成のものが好ましい。架橋剤としては硫黄とジクミルペルオキサイドとの組成比が1/3〜1/10が好ましい。
また、この形状記憶樹脂が口腔内温度の温度刺激によって、変形された形状を元来の記憶されていた固定形状に復元するものも本発明の歯科用根管充填材である。
この形状記憶樹脂の結晶化温度(冷却速度1℃/min)が、5〜30℃であって、口腔内温度の温度刺激によって変形された形状を元来の記憶されていた固定形状に復元するものも本発明の歯科用根管充填材である。
本発明の根管充填法は、これらの歯科用根管充填材を根管充填予定の根管よりもひとまわり大き目の形状に成型し、この歯科用根管充填材を45〜100℃に加熱軟化し、根管に挿入可能な形状に変形し、つぎに0℃で冷却することによって変形を固定し、この変形を固定した歯科用根管充填材を根管に挿入し、口腔内温度による刺激によって固定形状に復元し、根管内を緊密に封鎖する方法である。
【0012】
【発明の実施の形態】
本発明の形状記憶機能を持つ歯科用根管充填材は、トランスポリイソプレン、架橋剤として硫黄、ジクミルペルオキサイド、加硫促進剤として酸化亜鉛、ステアリン酸から構成されており、まず、これらの成分の混練りを行って未架橋ゴムを作製し、これを金型に填入した後、5〜50kgfの荷重をかけたまま150〜165℃で30分〜3時間の加硫処置を行い、試料作成を行った。
トランスポリイソプレン100部に対して架橋剤1.5〜10部より好ましくは6〜9部、加硫促進剤25〜35部の組成のものが好ましい。架橋剤としては硫黄とジクミルペルオキサイドとの組成比が1/3〜1/10が好ましい。
【0013】
〈封鎖性測定器について〉
図1に基づいて説明する。作製した試料を用いて細管の封鎖を行った後、封鎖性を評価するために、1%フクシン溶液の浸透およびデジタルマルチメーターによる抵抗値の測定によって漏洩の測定を行う。
【0014】
〈封鎖試験方法について〉
図2に基づいて説明する。実施例に示した配合例で混練りを行った未加硫ゴムを金型に填入し、20kgfの荷重を負荷し160℃で2時間の加硫処置を行い、直径6.0mm、長さ7.5mmの円柱状の試料を作製し、この試料を90℃水中で3分間加熱軟化した後、直径4.6mmの円柱状に変形させ、0℃で10分間冷却し変形の固定を行い、図2に示すように、変形が固定された試料を擬似根管として用いた内径5.5mmの細管に挿入し、100gfの荷重を加えたままの状態で37℃雰囲気中に10分間放置し、変形を回復させて細管の封鎖を行う。
【0015】
〔実施例1〕
歯科用根管充填材の成分を以下の組成比に調製した。
トランスポリイソプレン100部
酸化亜鉛30部
ステアリン酸1部
硫黄1.25部
ジクミルペルオキサイド7.5部
【0016】
これらの成分の混練りを行い、未架橋ゴムを作製した。これを金型たとえば、直径6.0mm、長さ9.0mmの金型に填入した後、20kgfの荷重をかけたまま160℃で2時間の加硫処置を行った。円柱状の試料を作製した。これを90℃水中で3分間加熱軟化して、長軸方向に30%圧縮変形させた後、0℃で10分間冷却し、変形の固定を行った。この変形が固定された試料を12〜80℃の温度範囲で1.0℃/分の速度で昇温および降温させた場合の各温度における試料長さをレーザー変位計にて測定した。変形させていない試料の24℃での試料長さをL24とし、各温度での試料長さをLtとした場合のLt/L24の値を図3に示した。X軸は温度を示しY軸はLt/L24を示す。
【0017】
同様に変形が固定された試料の上部にロードセルに接続した圧子をわずかに接触させて、圧子の位置はそのまま固定し、温度12〜80℃の範囲で1.0℃/分の速度で昇温および降温させた場合の変形の回復にともなって生じる変形回復応力について、圧縮試験機を用いて測定した結果を図4に示した。X軸は温度を示しY軸は回復応力を示す。
【0018】
圧縮試験機を用いて試料の長軸方向に圧縮速度10mm/分で5%のひずみを与え、4〜70℃の温度範囲で緩和弾性率の測定を昇温の場合について行った。
但し、緩和弾性率Erは、
Er(5)=f(5) /γ 〔f(5):5秒後の応力、γ:ひずみ〕
から求め、図5に示した。
【0019】
〔実施例2〕
次に、直径6.0mm、長さ7.5mmの円柱状の試料を作製し、この試料を90℃水中で3分間加熱軟化した後、直径4.6mmの円柱状に変形させ、0℃で10分間冷却して変形の固定を行い、図2に示すように変形が固定された試料を、擬似根管として用いた内径5.5mmの細管に挿入し、100gfの荷重を加えたままの状態で37℃雰囲気中に10分間放置し、変形を回復させて細管の封鎖を行った。その後、試料による細管の封鎖性を調べるために、図1に示すように1%フクシン溶液の浸透およびデジタルマルチメーターによる抵抗値の測定によって漏洩の測定を行った。
【0020】
実施例1の配合例に従って作製した試料は、実地例2〜4と比較して、図3に示されるように、最も低温側において変形の回復がおこり、また、転移温度以上においては図4に示されるようにて変形回復応力、緩和弾性率はいずれも最も高い値を示した。封鎖性試験については良好な封鎖が得られた。
【0021】
〔実施例3〕
歯科用根管充填材の成分を以下の組成比に調製した。
トランスポリイソプレン100部
酸化亜鉛30部
ステアリン酸1部
硫黄0.5部
ジクミルペルオキサイド3.0部
以上の配合例で、実施例1と同様な手順に従って試料を作製し、また同様な測定を行った。その結果を図3〜5に示した。図3に示されるように変形が回復する温度は実地例1よりも高く、また、転移温度以上においては図4,5に示されるように変形回復応力、緩和弾性率はいずれも実地例1よりも低い値を示した。また、実施例1と同様の封鎖性試験を行った結果、変形は回復し、緊密な封鎖が得られた。
【0022】
〔実地例4〕
歯科用根管充填材の成分を以下の組成比に調製した。
トランスポリイソプレン100部
酸化亜鉛30部
ステアリン酸1部
硫黄0.75部
ジクミルペルオキサイド4.5部
以上の配合例で、実施例1と同様な手順に従って試料を作製し、また同様な測定を行った。その結果を図3〜5に示した。図3に示されるように変形が回復する温度は実地例1よりも高く、また、図4、5に示されるように変形回復応力、緩和弾性率はいずれも実地例1よりも低い値を示した。また、実施例1と同様の封鎖性試験を行った結果、変形は回復し、緊密な封鎖が得られた。
【0023】
〔実施例5〕
歯科用根管充填材の成分を以下の組成比に調製した。
トランスポリイソプレン100部
酸化亜鉛30部
ステアリン酸1部
硫黄1.0部
ジクミルペルオキサイド6.0部
以上の配合例で、実施例1と同様な手順に従って試料を作製し、また同様な測定を行った。その結果を図3〜5に示した。図3に示されるように変形が回復する温度は実地例1よりも高く、また、図4,5に示されるように変形回復応力、緩和弾性率はいずれも実地例1よりも低い値を示した。また、実施例1と同様の封鎖性試験を行った結果、変形は回復し、緊密な封鎖が得られた。
【0024】
〔比較例1〕
現在、臨床でよく使用されている垂直加圧法用の歯科用根管充填材の市販品であるObtura(Obtura社製),オブチュレーションガッタハード(東洋化学研究所社製),Ultrafil regular set(Hygenic社製)の3種類について、それぞれメーカーの指示に従って試料を加熱軟化し、擬似根管として用いた5mlピペットの先端から15mmの部位までの部位をメーカー指定の充填器を用いて充填を行い、直ちに1分間の垂直加圧を行った。その後ピペットの先端を1%フクシン溶液に浸したまま37℃雰囲気中に保存し、色素の浸透を調べた結果、充填後60分後には3種類の市販品とも10mm以上の色素の浸透が認められた。垂直加圧法用の歯科用根管充填材の市販品は、いずれも緊密な封鎖が得られなかった。
【0025】
【発明の効果】
以上説明したように本発明により、操作性および封鎖性に優れた歯科用根管充填材およびそれを用いた新規の根管充填法が実現した。まず、側方加圧法で問題点として挙げられた操作の煩雑さについては、歯科用根管充填材が口腔内の温度刺激による変形の回復によって自ら根管壁に密着していくことにより著しく改善され、封鎖性も格段に向上する。
また、歯科用根管充填用シーラーと併用した場合、変形の回復によって太さが太くなることにより歯科用根管充填用シーラーの収縮を補うことも可能である。
【0026】
さらに、垂直加圧法で問題点でとして挙げたような充填不足や根尖口からの歯科用根管充填材の押し出しもなく、また、根管内における歯科用根管充填材の冷却による収縮も発生せず、むしろ根管壁を圧迫するような回復応力が歯科用根管充填材に生じることにより、さらに封鎖が確実なものとなる効果が生じる。
【図面の簡単な説明】
【図1】本発明の細管封鎖製測定装置を示す図である。
【図2】本発明の細管封鎖製測定装置に歯科用根管充填材を挿入し封入荷重器で荷重をかけたところを示す図である。
【図3】本発明の形状記憶樹脂の変形させた試料形状の回復を示す図である。
【図4】本発明の形状記憶樹脂の温度を上昇に伴って生じる変形回復応力を示す図である。
【図5】本発明の形状記憶樹脂の温度を上昇に伴う緩和弾性率を示す図である。
【符号の説明】
11  試料
22  恒温槽
33  細管
44  荷重
55  温度計
66  水
77  1%フクシン溶液
88  デジタルマルチメーター
99  水槽
100 電極
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a dental root canal filling material in dental endodontic treatment, a root canal filling method using the same, and a sealing test. More specifically, the present invention relates to a root canal filling method using a dental root canal filling material provided with a shape memory function and a sealing test method for evaluating the method.
[0002]
[Prior art]
For teeth diagnosed with irreversible pulpitis or apical periodontitis in dental endodontics, dental root canal treatments such as reamers and files are generally used to remove infected pulp and infected dentin The root canal is enlarged and formed using the instrument. After that, the root canal that has been sufficiently cleaned and disinfected is subjected to a root canal filling procedure using a dental root canal filling material.The most important thing in this procedure is to hermetically seal the inside of the root canal and eliminate voids. is there. This prevents reinfection and accumulation of harmful substances in the root canal, and cuts the route of infection from the root canal to the periodontal tissue, thereby healing the apical periodontal tissue and removing the pulp from the dead tooth Can be stored in a state harmless to the living body. In other words, the root canal filling procedure is a very important finishing treatment that determines the outcome of prognosis in endodontic treatment, and no matter how well the treatment is progressing, the root canal filling procedure fails. If so, the prognosis is often poor.
[0003]
Trans-polyisoprene is currently the most widely used material for dental root canal filling.However, a typical example of the trans-polyisoprene-based root canal filling method generally used in clinical practice is lateral side filling. There are two types, a pressing method and a vertical pressing method. The lateral pressing method is a dental root that plays the role of supplementing the gap between the master point and the accessory point, the gap between the points or between the point and the root canal wall, and fixing the point. This is a method that is performed in combination with a tube filling sealer. On the other hand, with the vertical pressing method, the root canal filling material is inserted into the root canal with the plasticity obtained by heating and softening, or this material is heated and softened in the root canal, and then the apex from the crown side This is a method of pressing and filling a dental root canal filling material softened toward the surface. Both the dental root canal filling point used in the lateral pressing method and the dental root canal filling material used in the vertical pressing method, zinc oxide, wax, resin, X-ray contrast agent, etc. were added to uncrosslinked trans polyisoprene It is a composite material.
[0004]
An operation method of the lateral pressing method will be described. Select a master point that fits well into the enlarged root canal, apply a dental root canal filling sealer to the root canal wall using an instrument called lenturo, and then apply a dental root canal filling sealer to the master point Insert the accessory point coated with the dental root canal filling sealer into the gap created by pressing the master point laterally using a device called a spreader, and press the spreader sideways again. This is a method of repeatedly filling the work of inserting accessory points. This dental root canal filling point is described in JP-A-2002-80318 as a prior art. The problems with the lateral pressurization method are that the operation is complicated, that it is difficult to tightly fill a root canal with an irregular shape that is difficult to match with a master point, and that a sealer for dental root canal filling is used. It has been pointed out that shrinkage occurs.
[0005]
On the other hand, the vertical pressing method is said to solve the problem of the lateral pressing method, and this method is suitable for dental root canal filling materials that can soften at relatively low temperature and obtain high fluidity. Techniques are described in JP-A-9-143020 and JP-A-2001-163717.
[0006]
The present inventors have announced the following contents at the 115th Japan Dental Conservation Society. An attempt was made to form a shape memory resin by crosslinking trans-polyisoprene, but as a result, the deformation recovery temperature decreased as the amount of the crosslinking agent added increased. The reason for this is that the network structure becomes dense due to the increase in intramolecular or intermolecular cross-linking points, thereby restricting the movement of TPI molecules and reducing the portion contributing to crystallization for fixing deformation. Also, it was considered that the cause was an increase in restoring force for restoring the original shape. Increasing the amount of the cross-linking agent was effective in lowering the deformation recovery temperature and increasing the relaxation modulus and the recovery stress above the transition temperature. However, when this content was announced, only the characteristics of the resin were revealed, and its application was not yet known.
[0007]
[Problems to be solved by the invention]
In the vertical pressing method, the root canal can be filled even in irregularly shaped root canals in a short period of time because the root canal filling material with the plasticity obtained by heating is pressed and filled. It is. However, there is no way to confirm the degree of softening of the dental root canal filling material during the operation when performing the vertical pressurization method, and the decision largely depends on the intuition of the surgeon. There is a problem that the material does not reach the apex and the filling is insufficient.
In addition, if the apical orifice is widely open, a large amount of the heated dental root canal filling material is pushed out into the apical periodontal tissue, which may cause inflammation.
In addition, no matter how tightly the root canal is filled, the dental root canal is shrunk by the heat-softened dental root canal filling material in the process of cooling in the root canal and the shrinkage caused by crystallization of trans polyisoprene. There is a high possibility that a gap is formed between the filler and the root canal wall.
Regarding the effect of the amount of the crosslinking agent of the present inventors on the deformation recovery characteristics, increasing the amount of the crosslinking agent decreases the deformation recovery temperature and increases the relaxation modulus and the recovery stress at the transition temperature or higher. In the 115th Annual Meeting of the Japanese Society of Conservation of Dentistry, which stated that it was effective for the above, it merely described the effects of the resin on the relaxation elastic modulus and the recovery stress, and its application was unknown.
The present invention overcomes the above-mentioned drawbacks of the lateral pressing method and the vertical pressing method, and provides a dental root canal filling material and a root canal filling method excellent in operability and sealing property using a shape memory resin. The task is to provide.
[0008]
[Means for Solving the Problems]
The inventors of the present application have conducted intensive studies on the sealing property using a capillary sealing property measuring instrument, and as a result, prototyped a dental root canal filling material having a shape memory function, and excellent operability using this material. Close sealing for a long time was obtained, and the above-mentioned problem was solved.
In other words, trans-polyisoprene, which is currently most widely used as a dental root canal filling material in clinical practice, is easily cross-linked by sulfur and dicumyl peroxide, and easily deformed because it is a crystalline polymer material. It has the two properties that it is possible to fix the surface of the tissue. By utilizing these two properties, trans polyisoprene is focused on becoming a material with the function of shape memory. I found that it can be applied.
[0009]
The dental root canal filling material molded into a shape that is slightly thicker than the root canal to be filled is heated and softened, deformed to a size that can be inserted into the root canal, and further cooled at 0 ° C. to reduce the deformation. After fixation, when the dental root canal filling material that has been finely deformed and fixed is inserted into the root canal, the shape recovers due to the stimulus due to the oral cavity temperature, and it closely adheres to the root canal wall, and the root canal is tightly closed. The present invention has realized a new root canal filling method for easily and tightly closing a root canal by a root canal filling method characterized in that the root canal filling method can be performed.
[0010]
The crosslinking agent of the present invention includes sulfur and dicumyl peroxide, and the vulcanization accelerator of the present invention includes zinc oxide and stearic acid.
The continuous thin tube of the present invention is made of circular or elliptical glass and has a diameter of 1 to 8 mm.
The enclosing weight of the present invention is a rod-shaped stainless steel having a diameter of 0.5 to 5 mm and a weight of 10 to 1000 gf.
A digital multimeter (for example, PC520M manufactured by Sanwa Electric Instruments Co., Ltd.) was used as the electric resistance measuring device of the present invention.
As the thermostat of the present invention, an incubator (for example, IC400 manufactured by Yamato Corporation) was used.
[0011]
The dental root canal filling material of the present invention is made of a shape memory resin. The shape memory resin includes trans polyisoprene, a cross-linking agent, and a vulcanization accelerator as main components, and those that cross-link them. Preferably, the composition has a composition of 1.5 to 10 parts, more preferably 6 to 9 parts, and 25 to 35 parts of a vulcanization accelerator based on 100 parts of transpolyisoprene. As the crosslinking agent, the composition ratio of sulfur to dicumyl peroxide is preferably 1/3 to 1/10.
The dental root canal filling material of the present invention also includes a material in which the shape memory resin restores the deformed shape to the originally stored fixed shape by the temperature stimulus of the intraoral temperature.
The crystallization temperature (cooling rate 1 ° C./min) of the shape memory resin is 5 to 30 ° C., and the shape deformed by the temperature stimulus of the intraoral temperature is restored to the originally stored fixed shape. These are also the dental root canal filling materials of the present invention.
In the root canal filling method of the present invention, the dental root canal filling material is molded into a shape slightly larger than the root canal to be filled, and the dental root canal filling material is heated to 45 to 100 ° C. Softens and deforms into a shape that can be inserted into the root canal, then fixes the deformation by cooling at 0 ° C., inserts the dental root canal filling material that has fixed this deformation into the root canal, and changes the temperature according to the intraoral temperature. This is a method of restoring to a fixed shape by stimulation and tightly closing the root canal.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
The dental root canal filling material having a shape memory function of the present invention is composed of trans polyisoprene, sulfur as a crosslinking agent, dicumyl peroxide, zinc oxide as a vulcanization accelerator, and stearic acid. An uncrosslinked rubber was prepared by kneading the components, and after filling this into a mold, a vulcanization treatment was performed at 150 to 165 ° C. for 30 minutes to 3 hours while applying a load of 5 to 50 kgf, A sample was prepared.
Preferably, the composition has a composition of 1.5 to 10 parts, more preferably 6 to 9 parts, and 25 to 35 parts of a vulcanization accelerator based on 100 parts of transpolyisoprene. As the crosslinking agent, the composition ratio of sulfur to dicumyl peroxide is preferably 1/3 to 1/10.
[0013]
<About the sealability measuring device>
A description will be given based on FIG. After sealing the thin tube using the prepared sample, in order to evaluate the sealing property, leakage is measured by permeating a 1% fuchsin solution and measuring the resistance value with a digital multimeter.
[0014]
<About block test method>
A description will be given based on FIG. The unvulcanized rubber kneaded in the formulation example shown in the examples was charged into a mold, subjected to a vulcanization treatment at 160 ° C. for 2 hours under a load of 20 kgf, and a diameter of 6.0 mm and a length of 6.0 mm. After preparing a columnar sample of 7.5 mm, this sample was heated and softened in water at 90 ° C. for 3 minutes, deformed into a columnar shape of 4.6 mm in diameter, cooled at 0 ° C. for 10 minutes to fix the deformation, As shown in FIG. 2, the sample with the fixed deformation was inserted into a 5.5 mm inner diameter thin tube used as a pseudo root canal, and left under a load of 100 gf in a 37 ° C. atmosphere for 10 minutes. The tube is sealed by restoring the deformation.
[0015]
[Example 1]
The components of the dental root canal filling material were prepared in the following composition ratios.
Trans polyisoprene 100 parts zinc oxide 30 parts stearic acid 1 part sulfur 1.25 parts dicumyl peroxide 7.5 parts
These components were kneaded to produce an uncrosslinked rubber. This was charged into a mold, for example, a mold having a diameter of 6.0 mm and a length of 9.0 mm, and then subjected to a vulcanization treatment at 160 ° C. for 2 hours while a load of 20 kgf was applied. A cylindrical sample was prepared. This was softened by heating in water at 90 ° C. for 3 minutes, subjected to 30% compression deformation in the major axis direction, and then cooled at 0 ° C. for 10 minutes to fix the deformation. When the temperature of the sample in which the deformation was fixed was raised and lowered at a rate of 1.0 ° C./min in a temperature range of 12 to 80 ° C., the sample length at each temperature was measured with a laser displacement meter. FIG. 3 shows the value of Lt / L24 when the sample length at 24 ° C. of the undeformed sample was L24 and the sample length at each temperature was Lt. The X axis indicates temperature and the Y axis indicates Lt / L24.
[0017]
Similarly, the indenter connected to the load cell is slightly contacted with the upper part of the sample in which the deformation is fixed, the position of the indenter is fixed as it is, and the temperature is raised at a rate of 1.0 ° C./min in a temperature range of 12 to 80 ° C. FIG. 4 shows the results of measuring the deformation recovery stress caused by the recovery of the deformation when the temperature is lowered by using a compression tester. The X axis shows temperature and the Y axis shows recovery stress.
[0018]
Using a compression tester, a 5% strain was applied at a compression rate of 10 mm / min in the major axis direction of the sample, and the relaxation elastic modulus was measured in a temperature range of 4 to 70 ° C for the case where the temperature was raised.
However, the relaxation modulus Er is
Er (5) = f (5) / γ [f (5): stress after 5 seconds, γ: strain]
And shown in FIG.
[0019]
[Example 2]
Next, a columnar sample having a diameter of 6.0 mm and a length of 7.5 mm was prepared, and this sample was heated and softened in water at 90 ° C. for 3 minutes, and then deformed into a columnar shape of 4.6 mm in diameter. After cooling for 10 minutes to fix the deformation, the sample whose deformation was fixed as shown in FIG. 2 was inserted into a 5.5 mm inner diameter thin tube used as a pseudo root canal, and a load of 100 gf was applied. For 10 minutes in an atmosphere of 37 ° C. to recover the deformation and seal the capillary. Then, in order to examine the sealing property of the capillary by the sample, the leakage was measured by permeation of a 1% fuchsin solution and measurement of the resistance value by a digital multimeter as shown in FIG.
[0020]
As shown in FIG. 3, the sample prepared according to the formulation example of Example 1 recovered from deformation at the lowest temperature as shown in FIG. As shown, both the deformation recovery stress and the relaxation modulus showed the highest values. In the sealing test, good sealing was obtained.
[0021]
[Example 3]
The components of the dental root canal filling material were prepared in the following composition ratios.
Transpolyisoprene 100 parts Zinc oxide 30 parts Stearic acid 1 part Sulfur 0.5 parts Dicumyl peroxide 3.0 parts or more A sample was prepared according to the same procedure as in Example 1, and the same measurement was performed. went. The results are shown in FIGS. As shown in FIG. 3, the temperature at which the deformation is recovered is higher than that of the first embodiment, and at the transition temperature or higher, both the deformation recovery stress and the relaxation elastic modulus are higher than those of the first embodiment, as shown in FIGS. Also showed low values. Further, as a result of the same sealing property test as in Example 1, the deformation was recovered, and a tight sealing was obtained.
[0022]
[Practical example 4]
The components of the dental root canal filling material were prepared in the following composition ratios.
Transpolyisoprene 100 parts Zinc oxide 30 parts Stearic acid 1 part Sulfur 0.75 parts Dicumyl peroxide 4.5 parts or more A sample was prepared according to the same procedure as in Example 1, and the same measurement was performed. went. The results are shown in FIGS. As shown in FIG. 3, the temperature at which the deformation is recovered is higher than that of the first embodiment, and the deformation recovery stress and the relaxation modulus are lower than those of the first embodiment, as shown in FIGS. Was. Further, as a result of the same sealing property test as in Example 1, the deformation was recovered, and a tight sealing was obtained.
[0023]
[Example 5]
The components of the dental root canal filling material were prepared in the following composition ratios.
Transpolyisoprene 100 parts Zinc oxide 30 parts Stearic acid 1 part Sulfur 1.0 part Dicumyl peroxide 6.0 parts or more A sample was prepared according to the same procedure as in Example 1, and the same measurement was carried out. went. The results are shown in FIGS. As shown in FIG. 3, the temperature at which the deformation is recovered is higher than that of the practical example 1, and the deformation recovery stress and the relaxation modulus are lower than those of the practical example 1 as shown in FIGS. Was. Further, as a result of the same sealing property test as in Example 1, the deformation was recovered, and a tight sealing was obtained.
[0024]
[Comparative Example 1]
At present, Obtura (manufactured by Obtura), obturation gutter hard (manufactured by Toyo Kagaku Kenkyusho), and Ultrafil regular set (manufactured by Obtura) are commercially available dental root canal filling materials for vertical pressurization that are often used in clinical practice. For each of the three types (Hygenic Co., Ltd.), the sample was heated and softened according to the manufacturer's instructions, and the site from the tip of the 5 ml pipette used as the pseudo root canal to the site 15 mm from the tip was filled using a manufacturer-specified filler. Immediately, vertical pressing was performed for 1 minute. Thereafter, the pipette tip was stored in an atmosphere of 37 ° C. while immersed in a 1% fuchsin solution, and as a result of examining the penetration of the dye, 60 minutes after filling, penetration of the dye of 10 mm or more was observed in all three commercial products. Was. None of the commercially available dental root canal filling materials for the vertical pressing method could obtain a tight seal.
[0025]
【The invention's effect】
As described above, according to the present invention, a dental root canal filling material excellent in operability and sealing property and a novel root canal filling method using the same are realized. First, the complexity of the operation, which was raised as a problem with the lateral pressure method, was significantly improved by the dental root canal filling material being brought into close contact with the root canal wall by recovering from deformation due to thermal stimulation in the oral cavity. As a result, the sealing property is remarkably improved.
When used together with a dental root canal filling sealer, the contraction of the dental root canal filling sealer can be compensated for by increasing the thickness by the recovery of deformation.
[0026]
Furthermore, there is no insufficient filling or extrusion of the dental root canal filling material from the apical apex, which was mentioned as a problem with the vertical pressurization method, and shrinkage due to cooling of the dental root canal filling material in the root canal. A recovery stress that does not occur, but rather presses against the root canal wall, is generated in the dental root canal filling material, which has the effect of further securing the sealing.
[Brief description of the drawings]
FIG. 1 is a view showing a measuring device made of a capillary tube of the present invention.
FIG. 2 is a view showing a state in which a dental root canal filling material is inserted into a measuring device made of a capillary tube sealing of the present invention and a load is applied by a sealing loader.
FIG. 3 is a view showing recovery of a deformed sample shape of the shape memory resin of the present invention.
FIG. 4 is a view showing a deformation recovery stress generated as the temperature of the shape memory resin of the present invention increases.
FIG. 5 is a diagram showing a relaxation modulus of the shape memory resin of the present invention as the temperature rises.
[Explanation of symbols]
11 sample 22 constant temperature bath 33 thin tube 44 load 55 thermometer 66 water 77 1% fuchsin solution 88 digital multimeter 99 water bath 100 electrode

Claims (6)

径の異なる連続した細管と、封入加重器と、電気抵抗測定器と、恒温槽から構成される細管封鎖性測定器。A capillary sealing measuring device composed of continuous thin tubes with different diameters, a sealing weight, an electric resistance measuring device, and a thermostat. 細管封鎖性を測定する方法。A method for measuring capillary sealing. 形状記憶樹脂で構成されている歯科用根管充填材。Dental root canal filling material composed of shape memory resin. 形状記憶樹脂がトランスポリイソプレンと、架橋剤と、加硫促進剤とを主成分として、これらを架橋してなる請求項3に記載の歯科用根管充填材。The dental root canal filling material according to claim 3, wherein the shape memory resin is mainly composed of trans polyisoprene, a cross-linking agent, and a vulcanization accelerator, and cross-linked. 形状記憶樹脂が口腔内温度の温度刺激によって、変形された形状を元来の記憶されていた固定形状に復元する請求項3または請求項4に記載の歯科用根管充填材。The dental root canal filling material according to claim 3 or 4, wherein the shape memory resin restores the deformed shape to the originally stored fixed shape by the temperature stimulation of the intraoral temperature. 請求項3から請求項5のいずれかに記載の歯科用根管充填材を根管充填予定の根管よりもひとまわり大き目の形状に成型し、この歯科用根管充填材を45〜100℃に加熱軟化し、根管に挿入可能な形状に変形し、つぎに0℃で冷却することによって変形を固定し、この変形を固定した歯科用根管充填材を根管に挿入し、口腔内温度による刺激によって固定形状に復元し、根管内を緊密に封鎖する根管充填法。The dental root canal filling material according to any one of claims 3 to 5 is molded into a shape slightly larger than the root canal to be filled with the root canal, and the dental root canal filling material is 45 to 100 ° C. Heat and soften, deform into a shape that can be inserted into the root canal, and then cool at 0 ° C. to fix the deformation, insert the dental root canal filling material with this deformation fixed into the root canal, A root canal filling method that restores to a fixed shape by temperature stimulation and tightly blocks the root canal.
JP2002300842A 2002-10-15 2002-10-15 Dental root canal filling material, method of filling root canal using the same, tubulus sealing type measuring device and method of tubulus sealing type measurement Pending JP2004135699A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002300842A JP2004135699A (en) 2002-10-15 2002-10-15 Dental root canal filling material, method of filling root canal using the same, tubulus sealing type measuring device and method of tubulus sealing type measurement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002300842A JP2004135699A (en) 2002-10-15 2002-10-15 Dental root canal filling material, method of filling root canal using the same, tubulus sealing type measuring device and method of tubulus sealing type measurement

Publications (1)

Publication Number Publication Date
JP2004135699A true JP2004135699A (en) 2004-05-13

Family

ID=32449414

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002300842A Pending JP2004135699A (en) 2002-10-15 2002-10-15 Dental root canal filling material, method of filling root canal using the same, tubulus sealing type measuring device and method of tubulus sealing type measurement

Country Status (1)

Country Link
JP (1) JP2004135699A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011115823A1 (en) * 2010-03-16 2011-09-22 Dentsply International Inc. Compositions for endodontic instruments

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011115823A1 (en) * 2010-03-16 2011-09-22 Dentsply International Inc. Compositions for endodontic instruments
AU2011227570B2 (en) * 2010-03-16 2015-01-29 Dentsply International Inc. Compositions for endodontic instruments

Similar Documents

Publication Publication Date Title
Grandini et al. SEM evaluation of the cement layer thickness after luting two different posts
Kosti et al. Ex vivo study of the efficacy of H‐files and rotary Ni–Ti instruments to remove gutta‐percha and four types of sealer
Hahn et al. Influence of resin cement viscosity on microleakage of ceramic inlays
Saunders et al. Ultrasonic root‐end preparation Part 2, Microleakage of EBA root‐end fillings
Paqué et al. Apical sealing ability of Resilon/Epiphany versus gutta‐percha/AH Plus: immediate and 16‐months leakage
Sattar et al. Clinical applications of polytetrafluoroethylene (PTFE) tape in restorative dentistry
Bru et al. Fibre post behaviour prediction factors. A review of the literature
Friedman et al. In vivo model for assessing the functional efficacy of endodontic filling materials and techniques
CA2063597C (en) Compositions and methods for repairing and sealing rubber dams and isolating tissue
Rud et al. Retrograde root filling with composite and a dentin‐bonding agent. 2.
Davalou et al. Assessment of apical and coronal root canal seals using contemporary endodontic obturation and restorative materials and techniques
US4483679A (en) Compounded thermoplasticized isoprene polymer resin for filling a dental root canal, and method of making same
Pawińska et al. New technology in endodontics-the Resilon-Epiphany system for obturation of root canals
JP4376336B2 (en) Dental root canal filling composition
Krell et al. Comparison of apical leakage in teeth obturated with a calcium phosphate cement or Grossman's cement using lateral condensation
Chong et al. Short‐term tissue response to potential root‐end filling materials in infected root canals
Mackenzie et al. Posterior composites: an update
Aksel et al. Vertical root fracture resistance of simulated immature permanent teeth filled with MTA using different vehicles
JP2004135699A (en) Dental root canal filling material, method of filling root canal using the same, tubulus sealing type measuring device and method of tubulus sealing type measurement
US20070218421A1 (en) Procedure and device enabling facile tooth impression
Hugh et al. Evaluation of intracanal sealer distribution with 5 different obturation techniques.
Uppalapati et al. Evaluation of push-out bond strengths of two different adhesive root canal obturation systems: An: in vitro: study
Woo et al. Evaluation of sealing properties of 70° C thermoplasticized gutta‐percha used as a retrograde root filling
Singh et al. A comparative evaluation of the effect of bonding agent on the tensile bond strength of two pit and fissure sealants using invasive and non-invasive techniques: An in–vitro study
Serino et al. Collagen cross-linker effect on the mechanical properties of the radicular hybrid layer in restorative dentistry: A nanoindentation study