JP2004135410A - Current control device for electric motor - Google Patents

Current control device for electric motor Download PDF

Info

Publication number
JP2004135410A
JP2004135410A JP2002296327A JP2002296327A JP2004135410A JP 2004135410 A JP2004135410 A JP 2004135410A JP 2002296327 A JP2002296327 A JP 2002296327A JP 2002296327 A JP2002296327 A JP 2002296327A JP 2004135410 A JP2004135410 A JP 2004135410A
Authority
JP
Japan
Prior art keywords
current
value
voltage
electric motor
pwm pulse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
JP2002296327A
Other languages
Japanese (ja)
Inventor
Shinya Morimoto
森本 進也
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP2002296327A priority Critical patent/JP2004135410A/en
Publication of JP2004135410A publication Critical patent/JP2004135410A/en
Abandoned legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a current control device for an electric motor which simultaneously satisfies the improvement of current response performance and reduction in current ripple. <P>SOLUTION: This current control device for the electric motor comprises a current controller 3 for generating a voltage command by variation between a current detecting value and a current command value detected in a current detector 1; a PWM pulse generator 6 for converting the voltage command into the PWM pulse; and an inverter 7 for supplying an electric power to the electric motor M by switching a semiconductor element by using the PWM pulse. An average voltage in a sampling cycle based on the pulse voltage supplied from the PWM pulse to the electric motor M is calculated. A current correction means 10 for obtaining an electric current correction quantity from a difference value between the average voltage and an induced voltage of the electric motor, the current command value and an electric characteristic of the electric motor is provided. The current of the electric motor is detected by conducting sampling at a cycle which is earlier than a carrier frequency of the PWM pulse generator 6. The correction current detecting value obtained by subtracting the current correction value from the current detecting value is inputted into the current controller 3 as the current detecting value. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、PWMパルスにより電動機に電力を供給するインバータ装置を備えた電動機の電流制御装置に関する。
【0002】
【従来の技術】
従来のインバータ装置を備えた電動機の電流制御装置の構成を図4に示す。
この装置は、電動機Mの電流を検出する電流検出器1と、電流検出器1の検出した電流検出値を直交するdq軸の成分に変換するdq軸変換手段2と、dq軸に変換された電流検出値id_fb、iq_fbと電流指令値iq_ref、id_refとを比較して電圧指令を作成する電流制御器3と、電流制御器3の出力に対して電圧フィードフォワード補正を行う電圧FF補償器4と、dq軸の電圧指令を3相電圧指令値に変換する電圧変換手段5と、電圧指令をPWMパルスに変換するPWMパルス発生器6と、PWM(パルス幅変調)パルスを用いてスイッチングし電動機に電力を供給するインバータ7と、3相の電圧指令値に対して電圧補償を行う電圧補償手段8とを備えている。なお、図中9は電動機Mの角度θを検出するパルスジェネレータPGの出力を微分して各速度ωを出力する微分器である。
【0003】
この装置においては、電流検出器1により相電流を検出しdq軸変換手段2によりdq軸電流値を求める。求めたdq軸電流値をdq各軸について電流指令と比較して電流制御器3により電流制御を行う。電流制御器3は通常はPI制御を行う。電流制御器3の出力に対して電圧FF補償器4により電流指令iq_ref、id_refから作成した電圧FF補償値を加算してdq軸電圧指令を求める。求めたdq軸電圧指令値を電圧変換手段5により3相電圧指令値に変換する。電圧補償手段8は、PWMパルス発生器6のデッドタイムやインバータ7のスイッチング素子の電圧ドロップなどの電圧外乱成分を計算して、電圧変換手段5により求めた3相電圧指令値に加算して外乱成分を補償し、PWMパルス発生器6に設定する。PWMパルス発生器6から発生したパルスに従ってインバータ7は電動機Mに電力を供給する。
電流検出器1は、一般的にPWMパルス発生器6のPWMキャリア波の波形の頂点のタイミングでサンプリングを行うことにより、リップル成分の少ない電流を取り込み、制御を行っている。
一方、電流制御の応答性を向上させるために、キャリア周波数を上げる方法がとられており、応答性を重視する場合は、サンプリング周期をPWMパルスのキャリア周波数よりも速くする場合もある。
特許文献1では、サンプリングをPWMキャリア波の頂点とその中間あるいは4分割したタイミングで行って電流を検出し、キャリア波の頂点でないポイントの電流に対してキャリア波頂点からの検出電流にあるゲインをかけた値を積算し、これを補正値として検出電流に加える方法が提案されている。
【0004】
【特許文献1】
特開平9−154283号公報
【0005】
【発明が解決しようとする課題】
しかし、PWMパルスのキャリア周波数が高くなるとインバータ7の半導体素子における損失が増えて熱破壊を発生させることになるため、キャリア周波数には上限が設けられている。つまり、キャリア周波数同期による電流制御では半導体素子の限界からその上限が決まってしまう。
また応答性を重視してキャリア周波数よりも電流のサンプリング周期を速くすると、PWMパルスによるパルス電圧の影響で電流検出にはリップルが生じ、リップル成分を含む電流で電流制御を行うため、リップルを増幅してしまう場合がある。電流リップルが大きくなると、電動機の回転ムラや振動の要因となり、好ましくない。
さらに、特許文献1において提案された方法では、電流補正のためのゲインの選び方が難しく、またPWMパターンの変化によってはリップルが低減できない場合があるという問題点がある。
そこで本発明は、電流応答性能の向上と電流リップルの低減を同時に満たす電動機の電流制御装置を提供することを目的とする。
【0006】
【課題を解決するための手段】
上記課題を解決するため本発明は、電動機の電流を検出する電流検出器と、前記電流検出器で検出した電流検出値と電流指令値とを比較して電圧指令を作成する電流制御器と、前記電圧指令をPWMパルスに変換するPWMパルス発生器と、前記PWMパルスを用いて半導体素子をスイッチングし前記電動機に電力を供給するインバータ装置とを備えた電動機の電流制御装置において、
前記PWMパルス発生器の発生するパルスから前記電動機に供給されるパルス電圧に基づいてサンプリング周期間の平均電圧を計算し、前記平均電圧と前記電動機が発生する誘起電圧との差分値と、前記電流指令値と、前記電動機の電気的特性とから電流補正量を求める電流補正手段を設け、
前記電動機の電流を前記PWMパルス発生器のキャリア周波数よりも速い周期でサンプリングして電流検出を行い、前記電流補正手段により求めた電流補正値を前記電流検出値から減算して補正電流検出値を作成し、前記電流制御器に当該補正電流検出値を電流検出値として入力する構成としたものである。
【0007】
また、前記電流補正手段は、前記電流検出値i_detと前記パルス電圧の次のサンプリング時点までの平均電圧V_avと前記誘起電圧Eと電動機のインダクタンスLと電機子抵抗Rとから、ラプラス演算子をsとして次のサンプリング時点における電流変化量推定値i_hatを
i_hat={1/(Ls+R)}(V_av−E)
または、Ls>>Rの場合、
i_hat=(1/Ls)(V_av−E)
によって求め、
前回計算した現時点T0の電流理想値i_ideal0と、前記PWMパルス発生器のキャリア波の次の頂点の時間T1と、電流指令値i_refとから次回のサンプリング時点Tsまでの理想電流変化量i_idealを
Δi_ideal={(i_ref−i_ideal0)/(T1−T0)}Ts
により求め、前記理想電流変化量Δi_idealと前記電流変化量推定値i_hatとの差分を電流補正値とする構成としたものである。
【0008】
【発明の実施の形態】
以下、本発明の実施の形態を、図1から図3を用いて説明する。
図1は、本実施の形態に係る電動機の電流制御装置の構成を示すブロック図、図2は本実施の形態のPWMパルスによる1サンプリング周期における電流変化の例を示す説明図、図3は本実施の形態のPWMパルスによるある連続した時間における電流変化の例を示す説明図である。
本実施の形態においては、図4に示した従来例の構成に対して電流補正手段10を追加したことが特徴である。
【0009】
本実施の形態においては、図4に示した従来の構成と同様に、電流検出器1により相電流を検出しdq軸変換手段2によりdq軸電流値を求め、dq軸電流値をdq各軸について電流指令と比較して電流制御器3により電流制御を行う。電流制御器3は通常はPI制御を行う。電流制御器3の出力に対して電圧FF補償器4により電流指令iq_ref、id_refから作成した電圧FF補償値を加算してdq軸電圧指令を求める。求めたdq軸電圧指令値を電圧変換手段5により3相電圧指令値に変換する。電圧補償手段8は、PWMパルス発生器6のデッドタイムやインバータ7のスイッチング素子の電圧ドロップなどの電圧外乱成分を計算して、電圧変換手段5により求めた3相電圧指令値に加算して外乱成分を補償し、PWMパルス発生器6に設定する。PWMパルス発生器6から発生したパルスに従ってインバータ7は電動機Mに電力を供給する。
【0010】
電流補正手段10は、電圧変換手段11と電流変化量演算手段12と電流補正量演算手段13の3つにより構成される。
電圧変換手段11は電圧変換手段5で作成された3相電圧指令からPWMパルス電圧を作成してサンプリング周期間の平均電圧に変化した後にdq軸変換してdq軸電圧指令V_avを出力する。
電流変化量演算手段12は、パルスジェネレータPGで検出した電動機角度θを微分器9で微分して得られた電動機角速度ωと誘起電圧定数より誘起電圧Eを計算し、前記電圧変換手段11により得られたdq軸電圧指令V_avと比較して、電動機回路定数L、Rから電流変化量推定値i_hatを、
i_hat={1/(Ls+R)}(V_av−E)        [式1]
または、Ls>>Rの場合、
i_hat=(1/Ls)(V_av−E)            [式2]
によって求める。なお、sはラプラス演算子である。
電流補正量演算手段13は、前回計算した現時点T0の電流理想値i_ideal0と、PWMパルス発生器6のキャリア波の次の頂点の時間T1と、電流指令値i_refとから次回のサンプリング時点Tsまでの理想電流変化量Δi_idealを
Δi_ideal={(i_ref−i_ideal0)/(T1−T0)}Ts  [式3]
により求め、前記理想電流変化量Δi_idealと前記電流変化量推定値i_hatとから
i_cmp=i_hat−Δi_ideal                 [式4]
により電流補正値i_cmpを求める。これは電流のリップル成分に相当し、これを電流検出値i_fbから減算することによりリップル成分を除去した電流が得られる。また電流補正値i_cmpは電流指令値i_refに加算しても効果は同じである。
【0011】
図2はPWMパルスによる1サンプリング周期における電流変化の例を示している。同図において、あるサンプリング時点(n)における理想電流i_ideal0(n)からTs時間経過後の次のサンプリング時点(n+1)までの理想電流変化量Δi_idealと電圧指令i_refから推定される電流変化量想定値i_hatとの差分i_cmpを用いてi_fbを修正する。そうすると、時間(n+1)での理想電流値はi_ideal(n+1)=i_ideal(n)+Δi_idealとなる。
図3は、PWMパルスによるある連続した時間におけるある相の電流変化の例を示している。aで示すi_fbは電流検出値、bで示すi_refは電流指令値、cで示すi_idealは理想電流である。図3における電流補正量i_cmpは曲線i_idealと(i_ideal+i_hat)との距離になる。i_cmpをi_fbから減算した結果は、曲線i_fbと(i_ideal+i_hat)との距離を曲線i_idealに加えたものとなり、リップル成分を除去した電流が得られる。キャリア周期中に電流指令が変化した場合、図3の破線部分i_idealの傾きが修正されるため応答性を確保することができる。
【0012】
【発明の効果】
本発明によれば、PWMパルス発生器の発生するパルスから電動機に供給されるパルス電圧に基づいてサンプリング周期間の平均電圧を計算し、前記平均電圧と前記電動機が発生する誘起電圧との差分値と、電流指令値と、電動機の電気的特性とから電流補正量を求める電流補正手段を設け、電動機の電流をPWMパルス発生器のキャリア周波数よりも速い周期でサンプリングして電流検出を行い、前記電流補正手段により求めた電流補正値を電流検出値から減算して補正電流検出値を作成し、電流制御器に当該補正電流検出値を電流検出値として入力するようにしたことにより、PWMパルスによる電流のリップル成分を推定してあらかじめ除去するので、電流サンプリング周期をPWMキャリア周波数よりも速い周期としても、電流リップルを過度に増幅しない高応答の電流制御が実現できる。
【図面の簡単な説明】
【図1】本発明の本実施の形態に係る電動機の電流制御装置の構成を示すブロック図である。
【図2】本実施の形態のPWMパルスによる1サンプリング周期における電流変化の例を示す説明図である。
【図3】本実施の形態のPWMパルスによるある連続した時間における電流変化の例を示す説明図である。
【図4】従来のインバータ装置を備えた電動機の電流制御装置の構成を示すブロック図である。
【符号の説明】
1 電流検出器
2 dq軸変換手段
3 電流制御器
4 電圧FF補償器
5 電圧変換手段
6 PWMパルス発生器
7 インバータ
8 電圧補償器
9 微分器
10 電流補正手段
11 電圧変換手段
12 電流変化量演算手段
13 電流補正量演算手段
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a current control device for a motor including an inverter device that supplies power to the motor with a PWM pulse.
[0002]
[Prior art]
FIG. 4 shows the configuration of a current control device for a motor having a conventional inverter device.
This device has a current detector 1 for detecting the current of the electric motor M, dq-axis conversion means 2 for converting a current detection value detected by the current detector 1 into orthogonal dq-axis components, and dq-axis conversion. A current controller 3 that creates a voltage command by comparing the current detection values id_fb, iq_fb with the current command values iq_ref, id_ref; a voltage FF compensator 4 that performs voltage feedforward correction on the output of the current controller 3 , A dq-axis voltage command into a three-phase voltage command value, a voltage converting means 5, a PWM pulse generator 6 converting the voltage command into a PWM pulse, and switching using a PWM (pulse width modulation) pulse to produce an electric motor. An inverter 7 for supplying electric power and a voltage compensating means 8 for compensating voltage for a three-phase voltage command value are provided. In the figure, reference numeral 9 denotes a differentiator for differentiating the output of the pulse generator PG for detecting the angle θ of the electric motor M and outputting each speed ω.
[0003]
In this device, a phase detector is detected by a current detector 1 and a dq-axis current value is obtained by a dq-axis converter 2. The obtained dq-axis current value is compared with a current command for each of the dq axes, and current control is performed by the current controller 3. The current controller 3 normally performs PI control. A voltage FF compensation value created from the current commands iq_ref and id_ref by the voltage FF compensator 4 is added to the output of the current controller 3 to obtain a dq axis voltage command. The obtained dq-axis voltage command value is converted by the voltage conversion means 5 into a three-phase voltage command value. The voltage compensating means 8 calculates a voltage disturbance component such as a dead time of the PWM pulse generator 6 and a voltage drop of the switching element of the inverter 7, and adds the disturbance to the three-phase voltage command value obtained by the voltage converting means 5. The components are compensated and set in the PWM pulse generator 6. The inverter 7 supplies electric power to the electric motor M according to the pulse generated from the PWM pulse generator 6.
In general, the current detector 1 captures a current with a small ripple component by performing sampling at the timing of the peak of the waveform of the PWM carrier wave of the PWM pulse generator 6, and controls the current.
On the other hand, in order to improve the response of the current control, a method of increasing the carrier frequency has been adopted. When importance is placed on the response, the sampling cycle may be made faster than the carrier frequency of the PWM pulse.
In Patent Document 1, sampling is performed at the peak of the PWM carrier wave and at a timing intermediate or divided into four to detect the current, and the gain at the detected current from the top of the carrier wave is compared with the current at a point other than the top of the carrier wave. A method has been proposed in which the multiplied values are integrated and added to the detected current as a correction value.
[0004]
[Patent Document 1]
JP-A-9-154283
[Problems to be solved by the invention]
However, when the carrier frequency of the PWM pulse increases, the loss in the semiconductor element of the inverter 7 increases, causing thermal destruction. Therefore, an upper limit is set for the carrier frequency. That is, in the current control by carrier frequency synchronization, the upper limit is determined from the limit of the semiconductor element.
Also, if the current sampling period is made faster than the carrier frequency with emphasis on responsiveness, ripples will occur in current detection due to the influence of the pulse voltage due to the PWM pulse, and the current will be controlled with the current containing the ripple component, thus amplifying the ripple. In some cases. An increase in the current ripple is not preferable because it causes rotation unevenness and vibration of the electric motor.
Furthermore, the method proposed in Patent Document 1 has a problem that it is difficult to select a gain for current correction, and that ripples cannot be reduced depending on a change in a PWM pattern.
Therefore, an object of the present invention is to provide a current control device for a motor that simultaneously satisfies the improvement of the current response performance and the reduction of the current ripple.
[0006]
[Means for Solving the Problems]
In order to solve the above problems, the present invention is a current detector that detects the current of the electric motor, a current controller that creates a voltage command by comparing the current detection value and the current command value detected by the current detector, In a current control device for a motor, comprising: a PWM pulse generator that converts the voltage command into a PWM pulse; and an inverter device that switches a semiconductor element using the PWM pulse and supplies power to the motor.
An average voltage during a sampling period is calculated based on a pulse voltage supplied to the motor from a pulse generated by the PWM pulse generator, and a difference value between the average voltage and an induced voltage generated by the motor is calculated. A command value and current correction means for obtaining a current correction amount from the electric characteristics of the electric motor are provided,
The current of the motor is sampled at a cycle faster than the carrier frequency of the PWM pulse generator to perform current detection, and the current correction value obtained by the current correction means is subtracted from the current detection value to obtain a corrected current detection value. And the correction current detection value is input to the current controller as a current detection value.
[0007]
Further, the current correction means calculates a Laplace operator from the current detection value i_det, the average voltage V_av up to the next sampling time of the pulse voltage, the induced voltage E, the inductance L of the motor, and the armature resistance R by s. The current change estimated value i_hat at the next sampling time is calculated as i_hat = {1 / (Ls + R)} (V_av-E)
Or, if Ls >> R,
i_hat = (1 / Ls) (V_av-E)
Asked by
The ideal current change i_ideal from the current ideal value i_ideal0 of the current time T0 calculated last time, the time T1 of the next peak of the carrier wave of the PWM pulse generator and the current command value i_ref to the next sampling time Ts is Δi_ideal = {(I_ref-i_ideal0) / (T1-T0)} Ts
And a difference between the ideal current change amount Δi_ideal and the current change amount estimation value i_hat is used as a current correction value.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an embodiment of the present invention will be described with reference to FIGS.
FIG. 1 is a block diagram illustrating a configuration of a current control device for an electric motor according to the present embodiment. FIG. 2 is an explanatory diagram illustrating an example of a current change in one sampling cycle by a PWM pulse according to the present embodiment. FIG. 4 is an explanatory diagram illustrating an example of a current change in a certain continuous time by a PWM pulse according to the embodiment.
This embodiment is characterized in that a current correction unit 10 is added to the configuration of the conventional example shown in FIG.
[0009]
In the present embodiment, similarly to the conventional configuration shown in FIG. 4, a phase detector is detected by the current detector 1, a dq-axis current value is obtained by the dq-axis conversion means 2, and a dq-axis current value is calculated for each dq axis. , Current control is performed by the current controller 3 in comparison with the current command. The current controller 3 normally performs PI control. A voltage FF compensation value created from the current commands iq_ref and id_ref by the voltage FF compensator 4 is added to the output of the current controller 3 to obtain a dq axis voltage command. The obtained dq-axis voltage command value is converted by the voltage conversion means 5 into a three-phase voltage command value. The voltage compensating means 8 calculates a voltage disturbance component such as a dead time of the PWM pulse generator 6 and a voltage drop of the switching element of the inverter 7, and adds the disturbance to the three-phase voltage command value obtained by the voltage converting means 5. The components are compensated and set in the PWM pulse generator 6. The inverter 7 supplies electric power to the electric motor M according to the pulse generated from the PWM pulse generator 6.
[0010]
The current correction means 10 includes three components: a voltage conversion means 11, a current change amount calculation means 12, and a current correction amount calculation means 13.
The voltage conversion unit 11 generates a PWM pulse voltage from the three-phase voltage command generated by the voltage conversion unit 5, changes the average voltage during the sampling period, and then performs dq-axis conversion to output a dq-axis voltage command V_av.
The current change calculating means 12 calculates an induced voltage E from the motor angular velocity ω obtained by differentiating the motor angle θ detected by the pulse generator PG with the differentiator 9 and the induced voltage constant, and obtains the voltage by the voltage converting means 11. Compared with the obtained dq-axis voltage command V_av, the current change estimated value i_hat is obtained from the motor circuit constants L and R,
i_hat = {1 / (Ls + R)} (V_av-E) [Equation 1]
Or, if Ls >> R,
i_hat = (1 / Ls) (V_av-E) [Equation 2]
Ask by. Note that s is a Laplace operator.
The current correction amount calculating means 13 calculates the current ideal value i_ideal0 of the current time T0 calculated last time, the time T1 of the next peak of the carrier wave of the PWM pulse generator 6, and the current command value i_ref until the next sampling time Ts. The ideal current change amount Δi_ideal is represented by Δi_ideal = {(i_ref−i_ideal0) / (T1−T0)} Ts [Equation 3]
From the ideal current change amount Δi_ideal and the current change amount estimation value i_hat, i_cmp = i_hat−Δi_ideal [Equation 4]
To determine the current correction value i_cmp. This corresponds to the ripple component of the current, and by subtracting this from the current detection value i_fb, a current from which the ripple component has been removed can be obtained. The effect is the same even if the current correction value i_cmp is added to the current command value i_ref.
[0011]
FIG. 2 shows an example of a current change in one sampling cycle by a PWM pulse. In the same figure, an ideal current change amount Δi_ideal from an ideal current i_ideal0 (n) at a certain sampling time point (n) to a next sampling time point (n + 1) after elapse of the time Ts, and an estimated current change amount estimated from the voltage command i_ref. The i_fb is corrected using the difference i_cmp from i_hat. Then, the ideal current value at time (n + 1) is i_ideal (n + 1) = i_ideal (n) + Δi_ideal.
FIG. 3 shows an example of a current change of a certain phase at a certain continuous time by a PWM pulse. i_fb indicated by a is a current detection value, i_ref indicated by b is a current command value, and i_ideal indicated by c is an ideal current. The current correction amount i_cmp in FIG. 3 is the distance between the curve i_ideal and (i_ideal + i_hat). The result of subtracting i_cmp from i_fb is the result of adding the distance between curve i_fb and (i_ideal + i_hat) to curve i_ideal, and a current from which a ripple component has been removed is obtained. When the current command changes during the carrier cycle, the responsiveness can be ensured because the slope of the broken line portion i_ideal in FIG. 3 is corrected.
[0012]
【The invention's effect】
According to the present invention, an average voltage between sampling periods is calculated based on a pulse voltage supplied to a motor from a pulse generated by a PWM pulse generator, and a difference value between the average voltage and an induced voltage generated by the motor is calculated. And a current correction means for obtaining a current correction amount from the current command value and the electric characteristics of the motor, and performs current detection by sampling the current of the motor at a cycle faster than the carrier frequency of the PWM pulse generator. By subtracting the current correction value obtained by the current correction means from the current detection value to create a correction current detection value and inputting the correction current detection value to the current controller as a current detection value, Since the ripple component of the current is estimated and removed in advance, even if the current sampling period is set to a period faster than the PWM carrier frequency, the current ripple is removed. Current control of high response, not excessively amplify Le can be realized.
[Brief description of the drawings]
FIG. 1 is a block diagram showing a configuration of a current control device for a motor according to an embodiment of the present invention.
FIG. 2 is an explanatory diagram showing an example of a current change in one sampling cycle by a PWM pulse according to the present embodiment.
FIG. 3 is an explanatory diagram illustrating an example of a current change in a continuous time by a PWM pulse according to the present embodiment;
FIG. 4 is a block diagram illustrating a configuration of a current control device for a motor including a conventional inverter device.
[Explanation of symbols]
REFERENCE SIGNS LIST 1 current detector 2 dq axis conversion means 3 current controller 4 voltage FF compensator 5 voltage conversion means 6 PWM pulse generator 7 inverter 8 voltage compensator 9 differentiator 10 current correction means 11 voltage conversion means 12 current change amount calculation means 13 Current correction amount calculation means

Claims (2)

電動機の電流を検出する電流検出器と、前記電流検出器で検出した電流検出値と電流指令値とを比較して電圧指令を作成する電流制御器と、前記電圧指令をPWMパルスに変換するPWMパルス発生器と、前記PWMパルスを用いて半導体素子をスイッチングし前記電動機に電力を供給するインバータ装置とを備えた電動機の電流制御装置において、
前記PWMパルス発生器の発生するパルスから前記電動機に供給されるパルス電圧に基づいてサンプリング周期間の平均電圧を計算し、前記平均電圧と前記電動機が発生する誘起電圧との差分値と、前記電流指令値と、前記電動機の電気的特性とから電流補正量を求める電流補正手段を設け、
前記電動機の電流を前記PWMパルス発生器のキャリア周波数よりも速い周期でサンプリングして電流検出を行い、前記電流補正手段により求めた電流補正値を前記電流検出値から減算して補正電流検出値を作成し、前記電流制御器に当該補正電流検出値を電流検出値として入力する構成としたことを特徴とする電動機の電流制御装置。
A current detector for detecting a current of the electric motor, a current controller for creating a voltage command by comparing a current detection value detected by the current detector with a current command value, and a PWM for converting the voltage command into a PWM pulse A current control device for a motor, comprising: a pulse generator; and an inverter device for switching a semiconductor element using the PWM pulse to supply power to the motor.
An average voltage during a sampling period is calculated based on a pulse voltage supplied to the motor from a pulse generated by the PWM pulse generator, and a difference value between the average voltage and an induced voltage generated by the motor is calculated. A command value and current correction means for obtaining a current correction amount from the electric characteristics of the electric motor are provided,
The current of the motor is sampled at a cycle faster than the carrier frequency of the PWM pulse generator to perform current detection, and the current correction value obtained by the current correction means is subtracted from the current detection value to obtain a corrected current detection value. A current control device for an electric motor, wherein the current control device is configured to input the corrected current detection value as a current detection value to the current controller.
前記電流補正手段は、前記電流検出値i_detと前記パルス電圧の次のサンプリング時点までの平均電圧V_avと前記誘起電圧Eと電動機のインダクタンスLと電機子抵抗Rとから、ラプラス演算子をsとして次のサンプリング時点における電流変化量推定値i_hatを
i_hat={1/(Ls+R)}(V_av−E)
または、Ls>>Rの場合、
i_hat=(1/Ls)(V_av−E)
によって求め、
前回計算した現時点T0の電流理想値i_ideal0と、前記PWMパルス発生器のキャリア波の次の頂点の時間T1と、電流指令値i_refとから次回のサンプリング時点Tsまでの理想電流変化量Δi_idealを
Δi_ideal={(i_ref−i_ideal0)/(T1−T0)}Ts
により求め、前記理想電流変化量Δi_idealと前記電流変化量推定値i_hatとの差分を電流補正値とする構成としたことを特徴とする請求項1記載の電動機の電流制御装置。
The current correction unit calculates the Laplace operator as s from the current detection value i_det, the average voltage V_av up to the next sampling time of the pulse voltage, the induced voltage E, the inductance L of the motor, and the armature resistance R. The current change estimated value i_hat at the time of sampling is represented by i_hat = {1 / (Ls + R)} (V_av-E)
Or, if Ls >> R,
i_hat = (1 / Ls) (V_av-E)
Asked by
The ideal current change amount Δi_ideal from the current ideal value i_ideal0 calculated at the previous time T0, the next peak time T1 of the carrier wave of the PWM pulse generator, and the current command value i_ref to the next sampling time Ts is represented by Δi_ideal = {(I_ref-i_ideal0) / (T1-T0)} Ts
The current control device for an electric motor according to claim 1, wherein a difference between the ideal current change amount Δi_ideal and the current change amount estimation value i_hat is set as a current correction value.
JP2002296327A 2002-10-09 2002-10-09 Current control device for electric motor Abandoned JP2004135410A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002296327A JP2004135410A (en) 2002-10-09 2002-10-09 Current control device for electric motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002296327A JP2004135410A (en) 2002-10-09 2002-10-09 Current control device for electric motor

Publications (1)

Publication Number Publication Date
JP2004135410A true JP2004135410A (en) 2004-04-30

Family

ID=32286344

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002296327A Abandoned JP2004135410A (en) 2002-10-09 2002-10-09 Current control device for electric motor

Country Status (1)

Country Link
JP (1) JP2004135410A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007125826A1 (en) 2006-04-24 2007-11-08 Panasonic Corporation Inverter device and air conditioner
JP2012254017A (en) * 2012-08-24 2012-12-20 Yaskawa Electric Corp Winding changeover device of ac motor and inverter device
JP2013046514A (en) * 2011-08-25 2013-03-04 Semiconductor Components Industries Llc Drive signal generation circuit

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007125826A1 (en) 2006-04-24 2007-11-08 Panasonic Corporation Inverter device and air conditioner
EP2040373A1 (en) * 2006-04-24 2009-03-25 Panasonic Corporation Inverter device and air conditioner
EP2040373A4 (en) * 2006-04-24 2012-02-08 Panasonic Corp Inverter device and air conditioner
JP2013046514A (en) * 2011-08-25 2013-03-04 Semiconductor Components Industries Llc Drive signal generation circuit
JP2012254017A (en) * 2012-08-24 2012-12-20 Yaskawa Electric Corp Winding changeover device of ac motor and inverter device

Similar Documents

Publication Publication Date Title
US7053569B2 (en) Inverter control method and its device
US9257931B2 (en) Power conversion apparatus
JP3825434B2 (en) Apparatus and method for controlling brushless DC motor
US6850031B2 (en) Electric motor controller
US5717305A (en) Method and apparatus for starting an electric motor
US4437051A (en) Method and apparatus for controlling induction motor
KR101500402B1 (en) Motor Controller
JP2005192336A (en) Controller and control method for inverter
JP2010284017A (en) Device for controlling ac electric motor
US5923144A (en) Frequency generator for a motor controller
JP6579195B2 (en) Power control method and power control apparatus
JP6685765B2 (en) Power steering device control device and power steering device using the same
JP2009142112A (en) Motor controller and its control method
JP2656483B2 (en) Motor speed control device
JPH10327576A (en) Ac-dc converter
JP2012130131A (en) Controller for rotary machine
JP2004135410A (en) Current control device for electric motor
JP7111026B2 (en) Electric motor drive system and inverter control method in electric motor drive system
Zarchi et al. Variable structure direct torque control of encoderless synchronous reluctance motor drives with maximized efficiency
JP2004120854A (en) Controller for motor
JP3114866B2 (en) Motor speed control device
KR100313251B1 (en) Drive control device of motor
JP3107293B2 (en) Motor speed control device
JP3567809B2 (en) Maximum power control method for solar cells
JP2783721B2 (en) Inverter controlled electric resistance welding machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050831

A762 Written abandonment of application

Free format text: JAPANESE INTERMEDIATE CODE: A762

Effective date: 20061030