JP2004135206A - Pixel signal color mixture reduction apparatus - Google Patents

Pixel signal color mixture reduction apparatus Download PDF

Info

Publication number
JP2004135206A
JP2004135206A JP2002299738A JP2002299738A JP2004135206A JP 2004135206 A JP2004135206 A JP 2004135206A JP 2002299738 A JP2002299738 A JP 2002299738A JP 2002299738 A JP2002299738 A JP 2002299738A JP 2004135206 A JP2004135206 A JP 2004135206A
Authority
JP
Japan
Prior art keywords
signal
pixel signal
specific color
pixel
adjacent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002299738A
Other languages
Japanese (ja)
Inventor
Makoto Kawakami
川上 誠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2002299738A priority Critical patent/JP2004135206A/en
Publication of JP2004135206A publication Critical patent/JP2004135206A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Color Television Image Signal Generators (AREA)
  • Processing Of Color Television Signals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a color mixture reduction apparatus for reducing pixel-like non-uniformity caused by color mixture trouble of imaging device output pixel signals in a primary color single plate digital camera. <P>SOLUTION: The pixel signal color mixture reduction apparatus is provided with a correction processing means (103) for subtracting signal components of a fixed ratio which is calculated from pixel signals except for a specific color transversely adjacent with specific color pixel signals from the specific color pixel signals, and a processing stop instruction means (104) for instructing stop of adjacent pixel signal leakage reduction correction processing to the specific color pixel signals when the specific color pixel signals reach a saturation level. Even in the case of a pixel signal transversely adjacent to a correction target pixel signal and the correction target pixel signal, when its signal level is saturated, a correction target pixel signal which is not corrected by the correction processing means (103) is selectively outputted and when the signal level of the correction target pixel signal is not saturated, a corrected pixel signal which is corrected by the correction processing means (103) is selectively outputted, thereby reducing pixel signal level non-uniformity (dispersion) and suppressing occurrence of trouble in the correction processing means (103) when the pixel signal level is saturated. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、原色単板デジタルカメラにおける撮像素子出力画素信号の混色不具合の抑制処理に関するものである。詳しくは、撮像素子の高画素化にともなう画素サイズの微細化で隣接画素に信号が漏れ込みによる混色、撮像素子の高画素化にともなう高速駆動化で特に水平転送漏れによる混色で、画素信号の信号レベルにムラ(バラつき)が発生するので、これを低減する混色不具合の抑制処理に関するものである。
【0002】
【従来の技術】
CCD撮像素子(イメージセンサ)の基本構造について、IT−CCD( Interline Transfer Charge−Coupled−Device )を例に挙げて説明する。
【0003】
IT−CCDは、被写体の光の情報を電荷の情報(画像信号)に光電変換するフォトダイオード(以降、PDとする)がマトリックス状に配列されており、各列のPDの間に、垂直CCDが配列されている。垂直CCDの一方の端には水平CCDが配置されており、水平CCDの端部に電荷検出部と出力回路(信号出力端子)がある。
【0004】
CCDイメージセンサは、光電変換,電荷蓄積,電荷転送,電荷検出の4つの基本動作を順次行い、二次元画像を電気信号に変えて出力する。
すなわち、入射した光がPDで電荷(電子)に変換されて蓄えられる。PDに蓄えられた信号電荷は、一斉に垂直CCDへ移送される。垂直CCDへ移送された信号電荷は、水平CCDに近い方(ライン)から順番に水平CCDに移送される。この1ライン分ずつの信号電荷は、水平CCDによって電荷検出部に近い方(画素)から1画素ずつ電荷検出部へと送り込まれ、電圧に変換されて信号出力端子に現れる。これらの基本動作を繰り返すことによりすべてのラインを出力して1画面の画像を構成する。
【0005】
このように、水平CCDに移送された1ライン分の全ての画素の電荷検出を行ってから、垂直転送を1ラインだけ行うので、垂直転送周期に対し、水平転送・電荷検出処理(電荷検出を終えた信号電荷を捨ててから、次の信号電荷を電荷検出部に移送して電荷検出を行う。このような処理を1画素毎に行う)周期は遥かに短く、高速な処理となっている。
【0006】
さらに、光電変換を行うPD上には、図33のように光情報の色分離を行うカラーフィルタがマトリックス状に配列されている。図33はRGBベイヤー配列カラーフィルタの例である。
【0007】
光の情報はカラーフィルタを透過後、PDに入射して信号電荷に変換され、光の明暗と同時に色の情報も識別できる。
これらの従来技術は、例えば(非特許文献1)に記載されている。
【0008】
【非特許文献1】
「CCDカメラ技術入門」 竹村裕夫著 発行所:コロナ社
1997年12月初版発行 第23〜35頁
【0009】
【発明が解決しようとする課題】
CCD撮像素子は、近年の高画素化にともない、光学系(レンズ)のコンパクト化のための画素サイズの微細化や、面更新レートを上げるための高速駆動化が進行している。
【0010】
高画素化にともなう画素サイズの微細化における課題について説明する。
図34(a),図34(b)ともCCD撮像素子の画素部(PDと垂直CCDで構成)の水平方向の断面の概略図である。図34(a),図34(b)とも同じ番号を用いている。10は光の集光率を上げるためのマイクロレンズ、12はカラーフィルタ、13は垂直転送CCDで信号電荷を垂直転送しているときに光が入らないようにするための遮光膜、14は垂直転送電極・信号電荷読出し電極、15は垂直CCD、16は信号電荷読出し部、17はPD、18は入射光である。
【0011】
図34(b)は、図34(a)に対して高画素化にともなう画素サイズの微細化が進んでいる状態を示す。図34(b)から分かるように画素間のピッチが狭まり、マイクロレンズ10によって集光されカラーフィルタ12を通過した光が、水平両隣の垂直CCD15や垂直両隣のPD17に漏れやすくなっている。
【0012】
次に高画素化にともなうCCD撮像素子高速駆動化における課題について説明する。
図35(a)はPD2に蓄積されたRGB信号電荷が一斉にVCCD1に読み出されるところ、図35(b)はVCCD1に移送されたRGB信号電荷が、1ラインずつ垂直転送され、水平CCD3に一番近いラインの信号電荷が水平CCD3に移送されるところ、図36(a)は電荷検出部4に近い画素の信号電荷から、1画素ずつ電荷検出部4へと移送されているところ、図36(b)は水平CCD3に一番近いラインの画素信号が電圧に変換されて出力しているところ、図37(a)は水平CCD3に一番近いラインの全ての画素信号が電圧に変換・出力され、VCCD1がまた1ラインずつ垂直転送され、水平CCD3に2番目に近かったラインの信号電荷が水平CCDに移送されているところ、図37(b)は図36(a)と同様電荷検出部に近い画素の信号電荷から1画素ずつ電荷検出部4へと送りこまれているところ、図37(c)は水平CCD3に2番目に近かったラインの信号電荷が電圧に変換されて出力しているところである。
【0013】
RGB信号電荷が理想的に読み出されれば、不具合は生じないが、前述のように垂直転送に比べ、水平転送・信号電荷検出、特に信号電荷検出は1画素ずつ信号電荷を検出・電圧変換を行い、信号電荷検出・電圧変換後、リセットパルス信号で信号電荷を排出し、その後、次の信号電荷の検出・電圧変換処理を行うので、高速な処理となっている高画素化に伴なう高速駆動化で、この信号電荷検出・電圧変換処理後の信号電荷が完全に排出しきれず信号電荷が残りやすくなった。この信号電荷排出残りと次の信号電荷が混合して、CCD撮像素子から実際に読み出されたRGB画素信号は、信号電荷が横漏れした状態になる。
【0014】
以上のように、R信号とB信号の漏れ込みの影響を受けて、RGラインのG信号とBGラインのG信号との信号レベル差による画素ムラが発生する。
R信号もB信号もG信号の漏れ込みの影響を受け、純粋なR信号、B信号でないので、分光特性劣化はあるが、画素ムラ(ライン段差)は発生しない。
【0015】
次に、光の漏れ込み、信号電荷の漏れ込みが画質に与える影響について、説明する。
一般的にRとBのカラーフィルタの透過率の差によりG信号に混ざるR成分の信号レベルとB成分の信号レベルが異なるので、白色・黄色・シアン色の被写体でRGラインのG信号とBGラインのG信号との信号レベル差による画素ムラ(ライン段差)が発生する。
【0016】
RとBのカラーフィルタの透過率の差が無ければ、白色被写体についてはR信号成分とB信号成分が同じようにG信号側に漏れ込むので、画素ムラは発生しないが、この場合でも、黄色被写体ではB信号成分のG信号側の漏れ込みがなくR信号成分だけがG信号側に漏れ込み、シアン色被写体ではR信号成分のG信号側の漏れ込みがなくB信号成分だけがG信号側に漏れ込み、画素ムラは発生する。
【0017】
CCD撮像素子の高画素化あるいは光学系(レンズ)のコンパクト化のためのCCDの小型化に伴う画素サイズの微細化、高画素化に伴なう面更新レートを上げるための高速駆動化が進めば、上記の格子縞の画質の不具合が顕著になる。CCD撮像素子の特性改善だけでは画素状ムラ画質の不具合を回避するのは困難である。
【0018】
本発明は上記の課題に鑑み、CCDのカメラシステムにおいて、画素状ムラを低減できる画素信号混色低減装置を提供することを目的とする。
【0019】
【課題を解決するための手段】
本発明の画素信号混色低減装置は、R(赤),G(緑),B(青)の3原色を有しそのうちの特定色を市松状に配列された画素信号の混色不具合の抑制処理を実行する画素信号混色低減装置であって、特定色画素信号から、特定色画素信号と横方向に隣接する特定色以外の画素信号より算出した一定割合の信号成分を減算する補正処理手段と、特定色画素信号が飽和レベルに達した場合に特定色画素信号に対する隣接画素信号漏れ込み低減補正処理の停止を命令する処理停止命令手段とを備えたことを特徴とする。
【0020】
この構成によると、例えば、補正対象画画素信号をG信号とした場合に、画素ムラ(画素信号レベルムラ)不具合の原因となるG信号あるいはR信号・B信号の隣接画素信号成分漏れ込みを低減するとともに、G信号あるいはR信号・B信号の信号レベルが飽和したときに、または、RGラインのG信号とBGラインのG信号のうちいずれか一方のG信号が飽和したときに、隣接画素信号成分漏れ込み低減補正の弊害を抑制する。
【0021】
【発明の実施の形態】
以下、本発明の各実施の形態を図1〜図32に基づいて説明する。
(実施の形態1)
図1,図2(a)(b),図3〜図8は本発明の(実施の形態1)を示す。
【0022】
本発明の(実施の形態1)の画素信号混色低減装置を図1に示す。
この構成図は、駆動クロック周期が1画素レートと同一である場合の図である。
【0023】
101,102はDフリップフロップで、元々の画素信号(遅延無し画素信号)に対して1画素分遅延した画素信号,2画素分遅延した画素信号を生成する。
103は補正処理手段で、R(赤),G(緑),B(青)の3原色を有しそのうちの特定色を市松状に配列された画素信号で、特定色画素信号の信号レベルが飽和していない場合に、特定色画素信号から、特定色画素信号と横方向に隣接する特定色以外の画素信号より算出した一定割合の信号成分を減算する。
【0024】
具体的には、この補正処理手段103は、平均値算出回路103aと、第1の信号切換回路103bと、漏れ込み信号成分算出回路103cと、減算処理回路103dとで構成されている。
【0025】
平均値算出回路103aは、元々の画素信号S0と、Dフリップフロップ101,102で2画素分遅延した画素信号S2とを入力信号として補正対象画素(この構成図では1画素分遅延した画素信号)の横方向に隣接する画素信号の平均値を算出する。
【0026】
第1の信号切換回路103bは、RGライン・BGライン判別信号CO1を切換信号として、RGラインR信号のRGラインG信号側の漏れ込み割合設定値N1とBGラインB信号のBGラインG信号側の漏れ込み割合設定値N2とを切り換えて出力する。
【0027】
なお、補正対象の画素信号ラインがRGラインの場合の補正対象画素Gを図2(a)に示す。補正対象の画素信号ラインがBGラインの場合の補正対象画素Gを図2(b)に示す。
【0028】
漏れ込み信号成分算出回路103cは、前記平均値算出回路103aで算出した補正対象画素の横方向に隣接する画素信号の平均値と前記第1の信号切換回路103bから出力したG信号側の漏れ込み割合設定値から漏れ込み信号成分を算出する。具体的には、漏れ込み信号成分算出回路103cは、例えば、漏れ込み割合のレジスタ設定値が8bitデータの場合、補正対象画素の横方向隣接画素信号の平均値と漏れ込み割合のレジスタ設定値を乗算回路で乗算した後ビットシフトダウンで1/256するという構成である。
【0029】
減算処理回路103dは、補正対象画素信号(この構成図では1画素分遅延した画素信号)から漏れ込み信号成分算出回路103cで算出したG信号側の漏れ込み信号成分を減算する。
【0030】
このようにして補正処理手段103は、1画素分遅延した画素信号(補正対象画素信号)から、この補正処理手段103のブロック内部で算出した横方向に隣接する画素信号への漏れ込み信号成分を減算する。
【0031】
104は処理停止命令手段で、特定色画素信号が飽和レベルに達した場合に、特定色画素信号に対する隣接画素信号漏れ込み低減補正処理の停止を命令する。具体的には、この処理停止命令手段104は、飽和非飽和判別回路104aと、論理和回路104bとで構成されている。論理和回路104bの入力には、飽和非飽和判別回路104aの出力と、排他論理和回路105bの出力とが入力されている。排他論理和回路105bの入力には、駆動クロック2分周信号発生回路105aの出力と、ライン判別信号CO1とが入力されている。
【0032】
詳しくは、G信号はRGラインかBGラインかによって奇数番目の画素信号となるか偶数番目の画素信号となるかが変わるので、排他論理和回路105bは、駆動クロック2分周信号とRGライン・BGライン判別信号の排他論理和をとってRGライン・BGラインとも1画素分遅延した画素信号がG信号のときは‘L’を、1画素分遅延した画素信号がRGラインのR信号またはBGラインのB信号のときは‘H’の、すなわちG信号判別信号を出力する。
【0033】
飽和非飽和判別回路104aは、1画素分遅延した画素信号S1が飽和している場合(信号レベルが1023のとき)は‘H’を出力し、1画素分遅延した画素信号が飽和していない場合(信号レベルが1023より小さいのとき)には‘L’を出力する。
【0034】
論理和回路104bは、1画素分遅延した画素信号がRGラインのR信号またはBGラインのB信号のとき若しくはRGライン・BGラインともG信号飽和時は‘H’を出力し、それ以外の1画素分遅延した画素信号がRGライン・BGラインともG信号(G信号非飽和時)の時は‘L’を出力するようにG信号判別信号と飽和非飽和判別回路104aの出力との論理和をとる。
【0035】
このようにして処理停止命令手段104は、信号切換回路106の切換信号の発生ブロックとして作用しており、1画素分遅延した画素信号がRGラインのR信号またはBGラインのB信号のとき若しくはRGライン・BGラインともG信号が飽和時は‘H’を出力し、それ以外の1画素分遅延した画素信号がRGライン・BGラインとも非飽和時のG信号の時は‘L’を出力する。
【0036】
信号切換回路106は、処理停止命令手段104で発生した切換信号の位相が‘H’の時は1画素分遅延した画素信号S1を出力するように切り換えられ、処理停止命令手段104で発生した切換信号の位相が‘L’の時には、補正処理手段103によって1画素分遅延した画素信号S1から漏れ込み信号成分を減算補正した補正画素信号SSに切り換えて出力する。これによりR信号・B信号および飽和時のG信号の場合は1画素分遅延した画素信号を、非飽和時のG信号の場合は漏れ込み信号成分を減算補正した画素信号を出力する。
【0037】
図1のように構成された画素信号混色低減装置の動作について、図3〜図8を用いて説明する。
図4のような3原色カラーフィルタ配列(ベイヤー配列)の撮像素子で、図3のような信号レベル50%白色、信号レベル50%黄色、信号レベル50%シアン色、信号レベル100%白色、信号レベル100%黄色、信号レベル100%シアン色の被写体を撮像したとき、本来の理想的な撮像素子出力を、図5に示す。
【0038】
図3〜図8では、撮像素子出力を10bitデータの十進数という形式で示し、説明を簡単にするため、例えば、無彩色撮像時は
R信号レベル = G信号レベル = B信号レベル
というように色バランスがとれた理想的な信号としている。
【0039】
例えば、RGラインR信号の1/32の信号成分が横方向に隣接するRGラインG信号側に、RGラインG信号の1/16の信号成分が横方向に隣接するRGラインR信号側に、BGラインG信号の1/16の信号成分が横方向に隣接するBGラインB信号側に、BGラインB信号の1/64の信号成分が横方向に隣接するBGラインG信号側に漏れ込んだときの信号データを図6に示す。
【0040】
特に問題となるのは、G信号が飽和していないときのRGラインのG信号とBGラインのG信号の段差であるが(図5〜図8では、RGラインR信号成分が横方向に隣接するRGラインG信号側に、RGラインG信号成分が横方向に隣接するRGラインR信号側に、BGラインG信号の信号成分が横方向に隣接するBGラインB信号側に、BGラインB信号の信号成分が横方向に隣接するBGラインG信号側に漏れ込む量が異なっている場合についての説明となっているが、漏れ込む量が一致していてもR信号・G信号・B信号の3原色が全て存在する白色被写体ではRGラインのG信号とBGラインのG信号の段差は発生しないが、例えば、シアン色の被写体の場合はG信号・B信号、黄色の被写体の場合はR信号・G信号しか存在しないのでRGラインのG信号とBGラインのG信号の段差は発生する。またG信号飽和時は、隣接画素信号の漏れ込みがあっても飽和レベル以上になることはありえないのでRGラインのG信号とBGラインのG信号の段差は発生しない)、この(実施の形態1)の補正処理手段103で、例えば、漏れ込み割合のレジスタ設定値が8bitデータでかつ補正対象画素の横方向隣接画素信号の平均値と漏れ込み割合のレジスタ設定値を乗算回路で乗算した後、ビットシフトダウンで1/256という構成の場合、RGラインR信号のG信号側の漏れ込み割合レジスタ設定値を8(8/256=1/32)・BGラインB信号のG信号側の漏れ込み割合レジスタ設定値を4(4/256)とした場合、RGラインG信号からRGラインG信号の横方向隣接のRGラインR信号の1/32の信号成分をBGラインG信号からBGラインG信号の横方向隣接のBGラインB信号の1/64の信号成分を減算していることになり、その処理結果を図7に示す。
【0041】
以上のG信号側の漏れ込み信号成分減算処理により、図7から分かるように、G信号が飽和していないときは、RGラインのG信号とBGラインのG信号の段差は解消するが、G信号が飽和しているときは、上記G信号側の漏れ込み信号成分減算処理の弊害があらわれ、G信号飽和部分にはなかったRGラインのG信号とBGラインのG信号の段差が発生する。
【0042】
そこでさらに、この(実施の形態1)の画素信号混色低減装置では図1の処理停止命令手段104内の飽和非飽和判別回路104aでG信号が飽和しているかどうかを判別してG信号飽和時は漏れ込み信号成分減算処理をしていない画素信号選択出力させて、漏れ込み信号成分減算処理はG信号が飽和していない場合に限定している。
【0043】
その結果、図8に示すようにG信号が飽和していない場合は隣接画素信号の横方向の漏れ込み信号成分によるRGラインのG信号とBGラインのG信号の段差が低減され、かつG信号飽和部分には漏れ込み信号成分減算処理の弊害は発生しなくなる。
【0044】
(実施の形態2)
本発明の(実施の形態2)の画素信号混色低減装置を図9に示す。
101,102はDフリップフロップで、元々の画素信号S0(遅延無し画素信号)に対して1画素分遅延した画素信号S1,2画素分遅延した画素信号S2を生成する。
【0045】
補正処理手段303は、元々の画素信号S0と、Dフリップフロップ101,102で2画素分遅延した画素信号S2とを入力信号として補正対象画素(この構成図では1画素分遅延した画素信号)の横方向に隣接する画素信号の平均値を算出する。平均値算出回路303aと、平均値算出回路303aの出力を入力として特定色画素信号と横方向に隣接する特定色以外の画素信号より算出した一定割合の信号成分を減算する第1の補正処理手段と、平均値算出回路303aの出力を入力として特定色以外の画素信号から、特定色以外の画素信号と横方向に隣接する特定色画素信号より算出した一定割合の信号成分を減算する第2の補正処理手段とを有している。
【0046】
詳しくは、第1の補正処理手段は、第1の信号切換回路303bと、第1の漏れ込み信号成分算出回路303cと、減算処理回路303gとで構成されている。
【0047】
第1の信号切換回路303bでは、RGライン・BGライン判別信号CO1を切換信号として、RGラインR信号のRGラインG信号側の漏れ込み割合設定値N1,BGラインB信号のBGラインG信号側の漏れ込み割合設定値N2の切り換えを行う。
【0048】
第2の補正処理手段は、第2の信号切換回路303dと、第2の漏れ込み信号成分算出回路303eと、前記減算処理回路303gとで構成されている。
第2の信号切換回路303dは、RGライン・BGライン判別信号CO1を切換信号として、RGラインG信号のRGラインR信号側の漏れ込み割合設定値N3,BGラインG信号のBGラインB信号側の漏れ込み割合設定値N4の切り換えを行う。
【0049】
第1の漏れ込み信号成分算出回路303cでは、平均値算出回路303aで算出した補正対象画素の横方向に隣接する画素信号の平均値と切換回路303bから出力したG信号側の漏れ込み割合設定値から漏れ込み信号成分を算出する。
【0050】
第2の漏れ込み信号成分算出回路303eでは、平均値算出回路303aで算出した補正対象画素の横方向に隣接する画素信号の平均値と第2の信号切換回路303dから出力したR信号側またはB信号側の漏れ込み割合設定値から漏れ込み信号成分を算出する。例えば、漏れ込み割合のレジスタ設定値が8bitデータの場合、補正対象画素の横方向隣接画素信号の平均値と漏れ込み割合のレジスタ設定値を乗算回路で乗算した後ビットシフトダウンで1/256という構成。
【0051】
排他論理和回路304aでは、G信号はRGラインかBGラインかによって奇数番目の画素信号となるか偶数番目の画素信号となるかが変わるので、駆動クロック2分周信号発生回路304bとRGライン・BGライン判別信号CO1の排他論理和をとってRGライン・BGラインとも1画素分遅延した画素信号がG信号のときは‘L’を、1画素分遅延した画素信号がRGラインのR信号またはBGラインのB信号のときは‘H’、すなわちG信号判別信号を出力する。
【0052】
第3の信号切換回路303fでは、排他論理和回路304aの出力信号(G信号判別信号)を切換信号として、第1の漏れ込み信号成分算出回路303cまたは第2の漏れ込み信号成分算出回路303eの出力の切り換えを行う。
【0053】
減算処理回路303gは、補正対象画素信号(この構成図では1画素分遅延した画素信号S1)から第3の信号切換回路303fの回路出力のG信号隣接R信号またはB信号によるG信号側の漏れ込み信号成分、またはR信号またはB信号隣接G信号によるR信号またはB信号側の漏れ込み信号成分の減算処理を行う。
【0054】
従って、補正処理手段303は、1画素分遅延した画素信号(補正対象画素信号)から、303のブロック内部で算出した横方向に隣接する画素信号への漏れ込み信号成分を減算する。
【0055】
第1,第2の補正処理手段による補正処理の停止を命令する処理停止命令手段としての飽和非飽和判別回路305では、1画素分遅延した画素信号S1が飽和している場合は‘H’を1画素分遅延した画素信号が飽和していないときは‘L’を出力する。
【0056】
第4の信号切換回路306では、飽和非飽和判別回路305で発生した切換信号の位相が‘H’の時は1画素分遅延した画素信号に、飽和非飽和判別回路305で発生した切換信号の位相が‘L’の時は、漏れ込み信号成分減算処理ブロック303で1画素分遅延した画素信号から漏れ込み信号成分を減算補正した補正画素信号に切り換えて出力する。
【0057】
これにより飽和時のR信号・G信号・B信号の場合は1画素分遅延した画素信号を(漏れ込み信号成分減算処理をしない)、非飽和時のR信号・G信号・B信号の場合は漏れ込み信号成分を減算補正した画素信号を出力する。
【0058】
このような構成にすることで、隣接画素信号の横方向の漏れ込み信号成分によるRGラインのG信号とBGラインのG信号の段差およびR信号・B信号のG信号成分漏れ込みが低減され、かつR信号・G信号・B信号飽和部分には漏れ込み信号成分減算処理の弊害は発生しなくなる。
【0059】
なお、図9では第3の信号切換回路303fによって、第1の漏れ込み信号成分算出回路303cの出力と、第2の漏れ込み信号成分算出回路303eの出力とを切り換えて、減算処理回路303gに選択的に減算する補正信号を供給したため、単一の飽和非飽和判別回路305で第4の信号切換回路306を切り換えて信号漏れ込み低減補正処理の停止を命令するように構成したが、第1の漏れ込み信号成分算出回路303cの出力に、特定色画素(G)信号が飽和レベルに達した場合に、特定色画素信号に対する信号漏れ込み低減補正処理の停止を命令する第1の処理停止命令手段を設け、第2の漏れ込み信号成分算出回路303eの出力に、特定色以外の画素(R,B)信号が飽和レベルに達した場合に、特定色以外の画素信号に対する隣接画素信号漏れ込み低減補正処理の停止を命令する第2の処理停止命令手段を設けて構成することもできる。
【0060】
(実施の形態3)
図10,図11(a)(b)は、本発明の(実施の形態3)を示す。
本発明の(実施の形態3)の画素信号混色低減装置を図10に示す。
【0061】
この構成図は、駆動クロック周期が1画素レートと同一である場合の図である。
補正処理手段504のそれ自体の構成は、(実施の形態1)の補正処理手段103と同じであって、平均値算出回路504a,第1の信号切換回路504b,漏れ込み信号成分算出回路504c,減算処理回路504dは、それぞれ平均値算出回路103a,第1の信号切換回路103b,漏れ込み信号成分算出回路103c,減算処理回路103dと同じである。
【0062】
501,502,503はDフリップフロップで、補正対象画素信号ライン、補正対象画素信号ラインの上に隣接する画素信号ライン、補正対象画素信号ラインの下に隣接する画素信号ラインをそれぞれ1画素分遅延させた3ラインの画素信号を生成する。
【0063】
ここでは、Dフリップフロップ502,503の出力が平均値算出回路504aの入力に供給され、Dフリップフロップ501の出力が減算処理回路504dの入力に供給されている。
【0064】
平均値算出回路504aは、補正対象画素信号ラインの上に隣接する画素信号ラインを1画素分遅延させて生成した画素信号と補正対象画素信号ラインの下に隣接する画素信号ラインを1画素分遅延させて生成した画素信号を入力させて補正対象画素(この構成図では補正対象画素信号ライン信号を1画素分遅延させて生成した画素信号)の縦方向に隣接する画素信号の平均値を算出する。
【0065】
第1の信号切換回路504bでは、RGライン・BGライン判別信号CO1を切換信号として、BGラインB信号のRGラインG信号側の漏れ込み割合設定値N5とRGラインR信号のBGラインG信号側の漏れ込み割合設定値N6との切り換えを行う。
【0066】
なお、補正対象の画素信号ラインがRGラインの場合の補正対象画素Gを図11(a)に示す。補正対象の画素信号ラインがBGラインの場合の補正対象画素Gを図11(b)に示す。
【0067】
漏れ込み信号成分算出回路504cでは、平均値算出回路504aで算出した補正対象画素の縦方向に隣接する画素信号の平均値と第1の切換回路504bのから出力したG信号側の漏れ込み割合設定値から漏れ込み信号成分を算出する(例えば、漏れ込み割合のレジスタ設定値が8bitデータの場合、補正対象画素の横方向隣接画素信号の平均値と漏れ込み割合のレジスタ設定値を乗算回路で乗算した後ビットシフトダウンで1/256という構成)。
【0068】
減算処理回路504dでは、補正対象画素信号(この構成図では補正対象画素信号ライン信号を1画素分遅延させて生成した画素信号)から漏れ込み信号成分算出回路504cで算出したG信号側の漏れ込み信号成分を減算する。
【0069】
従って、補正処理手段504は、補正対象画素信号ライン信号を1画素分遅延させて生成した画素信号(補正対象画素信号)から、ブロック504の内部で算出した縦方向に隣接する画素信号への漏れ込み信号成分を減算する。
【0070】
処理停止命令手段505は、(実施の形態1)の処理停止命令手段104と同じであって、飽和非飽和判別回路505a,論理和回路505bは、それぞれ飽和非飽和判別回路104a,論理和回路104bと同じである。論理和回路505bの入力には、飽和非飽和判別回路505aの出力と、排他論理和回路506bの出力とが入力されている。排他論理和回路506bの入力には、駆動クロック2分周信号発生回路506aの出力と、ライン判別信号CO1とが入力されている。
【0071】
詳しくは、G信号はRGラインかBGラインかによって奇数番目の画素信号となるか偶数番目の画素信号となるかが変わるので駆動クロック2分周信号とRGライン・BGライン判別信号の排他論理和をとって、排他論理和回路506bは、RGライン・BGラインとも補正対象画素信号ライン信号を1画素分遅延させて生成した画素信号がG信号のときは‘L’を、補正対象画素信号ライン信号を1画素分遅延させて生成した画素信号がRGラインのR信号またはBGラインのB信号のときは‘H’、すなわちG信号判別信号を出力する。
【0072】
飽和非飽和判別回路505aでは、補正対象画素信号ライン信号を1画素分遅延させて生成した画素信号が飽和している場合は‘H’を1画素分遅延した画素信号が飽和していないときは‘L’を出力する。
【0073】
論理和回路505bでは、補正対象画素(補正対象画素信号ライン信号を1画素分遅延させて生成した画素信号)がRGラインのR信号またはBGラインのB信号のとき若しくはRGライン・BGラインともG信号飽和時は‘H’を、それ以外の補正対象画素(補正対象画素信号ライン信号を1画素分遅延させて生成した画素信号)がRGライン・BGラインともG信号(G信号非飽和時)の時は‘L’を出力するようにG信号判別信号と飽和非飽和判別回路505aの出力との論理和をとる。
【0074】
従って、処理停止命令手段505では、第2の切換信号507の発生ブロックで補正対象画素(補正対象画素信号ライン信号を1画素分遅延させて生成した画素信号)がRGラインのR信号またはBGラインのB信号のとき若しくはRGライン・BGラインともG信号が飽和時は‘H’を、それ以外の補正対象画素(補正対象画素信号ライン信号を1画素分遅延させて生成した画素信号)画素信号がRGライン・BGラインともG信号の時は‘L’を出力する。
【0075】
第2の切換信号507は、処理停止命令手段505で発生した切換信号の位相が‘H’の時は補正対象画素(補正対象画素信号ライン信号を1画素分遅延させて生成した画素信号)に、処理停止命令手段505で発生した切換信号の位相が‘L’の時は補正処理手段504の補正対象画素(補正対象画素信号ライン信号を1画素分遅延させて生成した画素信号)から漏れ込み信号成分を減算補正した補正画素信号に切り換えて出力する。
【0076】
これによりR信号・B信号および飽和時のG信号の場合は補正対象画素(補正対象画素信号ライン信号を1画素分遅延させて生成した画素信号)を、非飽和時のG信号の場合は漏れ込み信号成分を減算補正した画素信号を出力する。
【0077】
この構成によると、G信号が飽和していない場合は隣接画素信号の縦方向の漏れ込み信号成分によるRGラインのG信号とBGラインのG信号の段差が低減され、かつG信号飽和部分には漏れ込み信号成分減算処理の弊害は発生しなくなる。
【0078】
(実施の形態4)
図12は本発明の(実施の形態4)を示す。補正対象画素信号ラインがRGラインの場合、BGラインの場合の補正対象画素の説明図は図11(a),図11(b)を参照。
【0079】
本発明の(実施の形態4)の画素信号混色低減装置を図12に示す。
この構成図は、駆動クロック周期が1画素レートと同一である場合の図である。
【0080】
補正処理手段704のそれ自体の構成は、(実施の形態2)の補正処理手段303と同じであって、平均値算出回路704a,第1の信号切換回路704b,第1の漏れ込み信号成分算出回路704c,第2の信号切換回路704d,第2の漏れ込み信号成分算出回路704e,第3の信号切換回路704f,減算処理回路704gは、それぞれ平均値算出回路303a,第1の信号切換回路303b,第1の漏れ込み信号成分算出回路303c,第2の信号切換回路303d,第2の漏れ込み信号成分算出回路303e,第3の信号切換回路703f,減算処理回路703gと同じである。
【0081】
501,502,503はDフリップフロップで、補正対象画素信号ライン、補正対象画素信号ラインの上に隣接する画素信号ライン、補正対象画素信号ラインの下に隣接する画素信号ラインをそれぞれ1画素分遅延させた3ラインの画素信号を生成する。
【0082】
補正処理手段704の平均値算出回路704aでは、補正対象画素信号ラインの上に隣接する画素信号ラインを1画素分遅延させて生成した画素信号と補正対象画素信号ラインの下に隣接する画素信号ラインを1画素分遅延させて生成した画素信号を入力させて補正対象画素(この構成図では補正対象画素信号ライン信号を1画素分遅延させて生成した画素信号)の縦方向に隣接する画素信号の平均値を算出する。
【0083】
第1の信号切換回路704bでは、RGライン・BGライン判別信号CO1を切換信号として、BGラインB信号のRGラインG信号側の漏れ込み割合設定値N5と、RGラインR信号のBGラインG信号側の漏れ込み割合設定値N6との切り換えを行う。
【0084】
第1の漏れ込み信号成分算出回路704cでは、平均値算出回路704aで算出した補正対象画素の縦方向に隣接する画素信号の平均値と第1の信号切換回路704bから出力したG信号側の漏れ込み割合設定値から漏れ込み信号成分を算出する。例えば、漏れ込み割合のレジスタ設定値が8bitデータの場合、補正対象画素の横方向隣接画素信号の平均値と漏れ込み割合のレジスタ設定値を乗算回路で乗算した後ビットシフトダウンで1/256という構成。
【0085】
第2の信号切換回路704dでは、RGライン・BGライン判別信号CO1を切換信号として、BGラインG信号のRGラインR信号側の漏れ込み割合設定値N7と、RGラインG信号のBGラインB信号側の漏れ込み割合設定値N8との切り換えを行う。
【0086】
第2の漏れ込み信号成分算出回路704eでは、平均値算出回路704aで算出した補正対象画素の縦方向に隣接する画素信号の平均値と第2の信号切換回路704dから出力したR信号側またはB信号側の漏れ込み割合設定値から漏れ込み信号成分を算出する。例えば、漏れ込み割合のレジスタ設定値が8bitデータの場合、補正対象画素の縦方向隣接画素信号の平均値と漏れ込み割合のレジスタ設定値を乗算回路で乗算した後ビットシフトダウンで1/256という構成。
【0087】
排他論理和回路705aは、G信号はRGラインかBGラインかによって奇数番目の画素信号となるか偶数番目の画素信号となるかが変わるので駆動クロック2分周信号発生回路705bの出力と、RGライン・BGライン判別信号CO1との排他論理和をとって、RGライン・BGラインとも1画素分遅延した画素信号がG信号のときは‘L’を、1画素分遅延した画素信号がRGラインのR信号またはBGラインのB信号のときは‘H’、すなわちG信号判別信号を出力している。
【0088】
第3の信号切換回路704fでは、排他論理和回路705aの出力信号(G信号判別信号)を切換信号として、RGラインR信号のBGラインG信号側の漏れ込み割合設定値・BGラインB信号のRGラインG信号側の漏れ込み割合設定値(704b出力のR信号成分またはB信号成分のG側の漏れ込み割合設定値)とBGラインG信号のRGラインR信号側の漏れ込み割合設定値・RGラインG信号のBGラインB信号側の漏れ込み割合設定値(704d出力のG信号成分のR信号側またはB信号側の漏れ込み割合設定値)の切り換え(すなわち、G側の漏れ込み割合設定値とR信号側またはB信号側の漏れ込み割合設定値をG信号判別信号で切換える)を行う。
【0089】
減算処理回路704gでは、補正対象画素信号(この構成図では補正対象画素信号ライン信号を1画素分遅延させて生成した画素信号)から第3の信号切換回路704fの出力のG信号の縦方向隣接R信号またはB信号によるG信号側の漏れ込み信号成分またはR信号またはB信号の縦方向隣接G信号によるR信号またはB信号側の漏れ込み信号成分を減算する。
【0090】
従って、補正処理手段704は、補正対象画素信号ライン信号を1画素分遅延させて生成した画素信号(補正対象画素信号)から、補正処理手段704の内部で算出した縦方向に隣接する画素信号への漏れ込み信号成分を減算する。
【0091】
飽和非飽和判別回路706では、補正対象画素信号ライン信号を1画素分遅延させて生成した画素信号が飽和している場合は‘H’を出力し、補正対象画素信号ライン信号を1画素分遅延させて生成した画素信号が飽和していないときは‘L’を出力する。
【0092】
第4の信号切換回路707では、飽和非飽和判別回路706の出力信号を切換信号として、切換信号の位相が‘H’の時は補正対象画素信号ライン信号を1画素分遅延させて生成した画素信号を出力画素信号として出力し、切換信号の位相が‘L’の時には減算処理回路704gの出力信号を出力画素信号として出力する。
【0093】
これにより、飽和時のR信号・G信号・B信号の場合は補正対象画素信号ライン信号を1画素分遅延させて生成した画素信号を(漏れ込み信号成分減算処理をしない)、非飽和時のR信号・B信号G信号の場合は漏れ込み信号成分を減算補正した画素信号を出力する。
【0094】
この構成により、隣接画素信号の縦方向の漏れ込み信号成分によるRGラインのG信号とBGラインのG信号の段差およびR信号・B信号のG信号成分漏れ込みが低減され、かつR信号・G信号・B信号飽和部分には漏れ込み信号成分減算処理の弊害は発生しなくなる。
【0095】
なお、図12では第3の信号切換回路704fによって、第1の漏れ込み信号成分算出回路704cの出力と、第2の漏れ込み信号成分算出回路704eの出力とを切り換えて、減算処理回路704gに選択的に減算する補正信号を供給したため、単一の飽和非飽和判別回路706で第4の信号切換回路707を切り換えて信号漏れ込み低減補正処理の停止を命令するように構成したが、第1の漏れ込み信号成分算出回路704cの出力に、特定色画素の例えば(G)信号が飽和レベルに達した場合に、特定色画素信号に対する信号漏れ込み低減補正処理の停止を命令する第1の処理停止命令手段を設け、第2の漏れ込み信号成分算出回路704eの出力に、特定色以外の画素の例えば(R,B)信号が飽和レベルに達した場合に、特定色以外の画素信号に対する隣接画素信号漏れ込み低減補正処理の停止を命令する第2の処理停止命令手段を設けて構成することもできる。
【0096】
(実施の形態5)
図13は本発明の(実施の形態5)を示す。補正対象画素信号ラインがRGラインの場合、BGラインの場合の補正対象画素の説明図は図11(a),図11(b)を参照。
【0097】
本発明の(実施の形態5)の画素信号混色低減装置を図10に示す。
この構成図は、駆動クロック周期が1画素レートと同一である場合の図である。
【0098】
101,502,503,104はDフリップフロップで、補正対象画素信号ライン、補正対象画素信号ラインの上に隣接する画素信号ライン、補正対象画素信号ラインの下に隣接する画素信号ラインを、それぞれ1画素分遅延した3ラインの画素信号および補正対象画素信号ラインおよび補正対象画素信号ラインの2画素分遅延した信号を生成する。
【0099】
第1の補正処理手段905は、図1の補正処理手段103と同じ構成であり、補正対象ライン信号を1画素分遅延させて生成した画素信号(補正対象画素信号)から、この第1の補正処理手段905の内部で算出した横方向に隣接する画素信号への漏れ込み信号成分を減算する。
【0100】
第2の補正処理手段906は、図10の補正処理手段504と同じ構成であり、第1の補正処理手段905で処理した画素信号(補正対象画素信号)からさらにこのブロック906の内部で算出した縦方向に隣接する画素信号への漏れ込み信号成分を減算する。
【0101】
信号切換回路908は図1の信号切換回路106と同じ構成であり、切換信号を発生する処理停止命令手段907は図1の処理停止命令手段104と同じ構成である。駆動クロック2分周信号発生回路105a,排他論理和回路105bで構成される部分も 図1と同じ構成である。
【0102】
従って、処理停止命令手段907は、補正対象ライン信号を1画素分遅延させて生成した画素信号(補正対象画素信号)がRGラインのR信号またはBGラインのB信号のとき、若しくはRGライン・BGラインともG信号が飽和時は‘H’を、それ以外の補正対象ライン信号を1画素分遅延させて生成した画素信号(補正対象画素信号)がRGライン・BGラインともG信号の時は‘L’を出力する。信号切換回路908は、処理停止命令手段907で発生した切換信号の位相が‘H’の時は補正対象ライン信号を1画素分遅延させて生成した画素信号(補正対象画素信号)を出力し、処理停止命令手段907で発生した切換信号の位相が‘L’の時は、第2の補正処理手段906の出力の補正画素信号に切り換えて出力する。
【0103】
これにより信号切換回路908の出力には、R信号・B信号および飽和時のG信号の場合は補正対象ライン信号を1画素分遅延させて生成した画素信号(補正対象画素信号)が出力され、非飽和時のG信号の場合は漏れ込み信号成分を減算補正した画素信号を出力する。
【0104】
この構成により、隣接画素信号の横方向および縦方向の漏れ込み信号成分によるRGラインのG信号とBGラインのG信号の段差が低減され、かつG信号飽和部分には漏れ込み信号成分減算処理の弊害は発生しなくなる。
【0105】
(実施の形態6)
図14は本発明の(実施の形態6)を示す。補正対象画素信号ラインがRGラインの場合、BGラインの場合の補正対象画素の説明図は図11(a),図11(b)を参照。
【0106】
本発明の(実施の形態6)の画素信号混色低減装置を図14に示す。
この構成図は、駆動クロック周期が1画素レートと同一である場合の図である。
【0107】
101,102,502,503はDフリップフロップで、Dフリップフロップ101,502,503は、補正対象画素信号ライン、補正対象画素信号ラインの上に隣接する画素信号ライン、補正対象画素信号ラインの下に隣接する画素信号ラインを、それぞれ1画素分遅延した3ラインの画素信号を生成する。Dフリップフロップ102は、補正対象画素信号ラインおよび補正対象画素信号ラインの2画素分遅延した信号を生成する。
【0108】
第1の補正処理手段1105は、図9の補正処理手段303と同じ構成であり、補正対象ライン信号を1画素分遅延させて生成した画素信号(補正対象画素信号)から、この第14の補正処理手段1105の内部で算出した横方向に隣接する画素信号への漏れ込み信号成分を減算する。
【0109】
第2の補正処理手段1106は、図12の補正処理手段704と同じ構成であり、第1の補正処理手段1105で横方向隣接画素信号漏れ込み減算処理した画素信号(補正対象画素信号)からさらに、この第2の補正処理手段1106の内部で算出した縦方向に隣接する画素信号への漏れ込み信号成分を減算する。
【0110】
飽和非飽和判別回路1107は、図12の飽和非飽和判別回路706と同じ構成で、補正対象ライン信号を1画素分遅延させて生成した画素信号(補正対象画素信号)が飽和時は‘H’を、補正対象ライン信号を1画素分遅延させて生成した画素信号(補正対象画素信号)が非飽和時は‘L’を出力する。
【0111】
信号切換回路1108は、飽和非飽和判別回路1107の出力信号を切り換え信号として、飽和非飽和判別回路1107で発生した切換信号の位相が‘H’の時はDフリップフロップ101の出力信号を出力し、飽和非飽和判別回路1107で発生した切換信号の位相が‘L’の時は、第1,第2の補正処理手段1105,1106によって漏れ込み信号成分を減算補正した補正画素信号に切り換えて出力する。
【0112】
これにより、R信号・B信号および飽和時のG信号の場合は補正対象ライン信号を1画素分遅延させて生成した画素信号(補正対象画素信号)を、非飽和時のG信号の場合は漏れ込み信号成分を減算補正した画素信号を出力する。
【0113】
この構成により、隣接画素信号の横方向および縦方向の漏れ込み信号成分によるRGラインのG信号とBGラインのG信号の段差が低減され、かつ画素信号飽和部分には漏れ込み信号成分減算処理の弊害は発生しなくなる。
【0114】
なお、図14では飽和非飽和判別回路1107で発生した切換信号の位相が‘H’の時はDフリップフロップ101の出力信号を出力し、第1,第2の補正処理手段1105,1106による補正処理を停止したが、これは図15に示すようにも構成できる。
【0115】
図15では次の2系統に分割されている。つまり、特定色の横方向の補正を実施する第1の補正処理手段1105aと、この第1の補正処理手段1105aの出力信号を入力として特定色の縦方向の補正を実施する第3の補正処理手段1106aと、第3の補正処理手段1106aの出力またはDフリップフロップ101の出力信号を選択して出力する第1の信号切換回路1108aとで1つの系統が構成され、もう一つの系統は、特定色以外の横方向の補正を実施する第2の補正処理手段1105bと、この第2の補正処理手段1105bの出力信号を入力として特定色以外の縦方向の補正を実施する第4の補正処理手段1106bと、第4の補正処理手段1106bの出力またはDフリップフロップ101の出力信号を選択して出力する第2の信号切換回路1108bとで構成されている。
【0116】
第1,第2の信号切換回路1108a,1108bは飽和非飽和判別回路1107の出力で切り換えられ、飽和していない状態では第3の信号切換回路1108cを介して第3の補正処理手段1106aの出力信号または第4の補正処理手段1106bが出力画素信号として出力される。
【0117】
なお、飽和非飽和判別回路1107a,1107bが、特定色画素信号が飽和レベルに達した場合に、特定色画素信号に対する隣接画素信号漏れ込み低減補正処理を停止し、特定色以外の画素信号が飽和レベルに達した場合に、特定色以外の画素信号に対する隣接画素信号漏れ込み低減補正処理を停止する。
【0118】
(実施の形態7)
図16〜図23は本発明の(実施の形態7)を示す。
本発明の(実施の形態7)の画素信号混色低減装置を図16に示す。
【0119】
この構成図は、駆動クロック周期が1画素レートと同一である場合の図である。画素ムラ補正については信号横漏れの場合について説明する。
Dフリップフロップ101,502,503は、補正対象画素信号ライン、補正対象画素信号ラインの上に隣接する画素信号ライン、補正対象画素信号ラインの下に隣接する画素信号ラインをそれぞれ1画素分遅延した3ラインの画素信号ラインを生成する。
【0120】
Dフリップフロップ102,1306,1307は、補正対象画素信号ライン、補正対象画素信号ラインの上に隣接する画素信号ライン、補正対象画素信号ラインの下に隣接する画素信号ラインを、それぞれ2画素分遅延した3ラインの画素信号ラインを生成する。
【0121】
補正処理手段1305は、1画素分遅延した画素信号(補正対象画素信号)から、この補正処理手段1305の内部で算出した横方向に隣接する画素信号への漏れ込み信号成分を減算する。内部の処理は図1の補正処理手段103と同じなので説明は省略する。
【0122】
Dフリップフロップ1306は、補正対象ラインの上に隣接する画素信号ライン信号を1画素分遅延させて補正対象画素の斜め右上の画素信号を、Dフリップフロップ1307は、補正対象ラインの下に隣接する画素信号ライン信号を1画素分遅延させて補正対象画素の斜め右下の画素信号を生成し、そして補正対象画素信号はDフリップフロップ101で1画素分遅延させていることから、補正対象画素信号ラインの上に隣接する画素信号ライン信号は補正対象画素の斜め左上の画素信号、補正対象画素信号ラインの下に隣接する画素信号ライン信号は補正対象画素の斜め左下の画素信号となる。
【0123】
信号切換回路1310を切り換える飽和非飽和判別回路1308は、第1〜第5の飽和非飽和判別回路1308a〜1308eを有している。
第1の飽和非飽和判別回路1308aは、補正対象画素の斜め左上の画素信号が飽和したときに‘H’を、非飽和のとき‘L’を出力する。第2の飽和非飽和判別回路1308bは、補正対象画素の斜め右下の画素信号が飽和したときに‘H’を、非飽和のとき‘L’を出力する。第3の飽和非飽和判別回路1308cは、補正対象画素の斜め左下の画素信号が飽和したときに‘H’を、非飽和のとき‘L’を出力する。第4の飽和非飽和判別回路1308dは、補正対象画素の斜め右上の画素信号が飽和したときに‘H’を、非飽和のとき‘L’を出力する。第5の飽和非飽和判別回路1308eは、補正対象画素が飽和したときに‘H’を、非飽和のとき‘L’を出力する。
【0124】
論理積回路1308fは、第1の飽和非飽和判別回路1308aの出力と第2の飽和非飽和判別回路1308bの出力との論理積を検出する。
論理積回路1308gは、第3の飽和非飽和判別回路1308cの出力と第4の飽和非飽和判別回路1308dの出力との論理積を検出する。
【0125】
論理積回路1308hは、論理積回路1308fの出力と論理積回路1308gの出力との論理積を検出する。
論理積回路1308iは、論理積回路1308hの出力と第5の飽和非飽和判別回路1308eの出力との論理積を検出する。この論理積回路1308iの出力は論理和回路1309を介して信号切換回路1310の切換信号となっている。
【0126】
すなわち、飽和非飽和判別回路1308は、補正対象画素の斜め左上の画素信号・補正対象画素の斜め右下の画素信号・補正対象画素の斜め左下の画素信号・補正対象画素の斜め左下の画素信号そして補正対象画素信号の飽和非飽和判別回路で、補正対象画素の斜め左上の画素信号・補正対象画素の斜め右下の画素信号・補正対象画素の斜め左下の画素信号・補正対象画素の斜め左下の画素信号そして補正対象画素信号が同時に飽和した場合に‘H’を出力、それ以外の場合は‘L’を出力する。
【0127】
304bは駆動クロック2分周信号発生回路、304aは排他論理和回路で、G信号はRGラインかBGラインかによって奇数番目の画素信号となるか偶数番目の画素信号となるかが変わるので駆動クロック2分周信号とRGライン・BGライン判別信号の排他論理和をとってRGライン・BGラインとも補正対象画素信号がG信号のときは‘L’を、補正対象画素信号がRGラインのR信号またはBGラインのB信号のときは‘H’の、すなわちG信号判別信号を出力し、論理和回路1309は補正対象画素信号がRGラインのR信号またはBGラインのB信号のとき若しくは論理積回路1308iの出力が‘H’のときは‘H’を、それ以外の場合、すなわち補正対象画素信号がRGライン・BGラインともG信号でかつ論理積回路1308iの出力が‘H’の時は‘L’を出力するように、G信号判別信号との論理和を検出する。
【0128】
従って、この論理和回路1309の出力には、補正対象画素信号がRGラインのR信号またはBGラインのB信号のとき、若しくはRGライン・BGラインともG信号が飽和時でかつ補正対象G信号(補正対象画素信号)隣接斜め右上、隣接斜め右下、隣接斜め左下、隣接斜め左上のG信号も飽和している場合は‘H’を、補正対象画素信号のG信号が非飽和時若しくはG信号が飽和時かつ隣接斜め右上、隣接斜め右下、隣接斜め左下、隣接斜め左上のG信号すべてが飽和していないときは‘L’を出力する。
【0129】
信号切換回路1310は、論理和回路1309の出力の位相が‘H’の時は1画素分遅延した補正対象ラインの画素信号に、論理和回路1309の出力の位相が‘L’の時は補正処理手段1305で1画素分遅延した画素信号から漏れ込み信号成分を減算補正した補正画素信号に切り換えて出力画素信号を出力する。
【0130】
これにより、R信号・B信号またはG信号飽和時かつG信号隣接斜め右上、隣接斜め右下、隣接斜め左下、隣接斜め左上のG信号の全てが飽和時には1画素分遅延した補正対象ライン画素信号を、G信号非飽和時もしくはG信号飽和時かつG信号隣接斜め右上、隣接斜め右下、隣接斜め左下、隣接斜め左上のG信号の全てが飽和していない場合には漏れ込み信号成分を減算補正した画素信号を出力する。
【0131】
図16のように構成された画素信号混色低減装置の動作について図18〜図23を用いて説明する。
図19のような3原色カラーフィルタ配列(ベイヤー配列)の撮像素子で図18のような被写体を撮像したとき、本来の理想的な撮像素子出力を、図20に示す。
【0132】
図18〜図23では、撮像素子出力を10bitデータを十進数という形式で示し、説明を簡単にするため、例えば、無彩色撮像時は
R信号レベル = G信号レベル = B信号レベル
というように色バランスがとれた理想的な信号としている。
【0133】
例えば、R信号の1/32の信号成分が横方向に隣接するG信号側に、G信号の1/16の信号成分が横方向に隣接するR信号側またはB信号側に、B信号の1/64の信号成分が横方向に隣接するG信号側に漏れ込んだときの信号データを図21に示す。
【0134】
特に問題となるのは、G信号が飽和していないときはRGラインのG信号とBGラインのG信号の段差であるが(G信号飽和時は、隣接画素信号の漏れ込みがあっても飽和レベル以上になることはありえないのRGラインのG信号とBGラインのG信号の段差は発生しない)、この(実施の形態7)の画素信号混色低減装置の漏れ込み信号成分減算処理ブロック(図16の1305)で、例えば、漏れ込み割合のレジスタ設定値が8bitデータの場合、補正対象画素の横方向隣接画素信号の平均値と漏れ込み割合のレジスタ設定値を乗算回路で乗算した後ビットシフトダウンで1/256という構成の場合、RGラインR信号のG信号側の漏れ込み割合レジスタ設定値を8(8/256=1/32)・BGラインB信号のG信号側の漏れ込み割合レジスタ設定値を4(4/256)とした場合、RGラインG信号からRGラインG信号の横方向隣接のR信号の1/32の信号成分をBGラインG信号からBGラインG信号の横方向隣接のB信号の1/64の信号成分を減算していることになり、その処理結果を図22に示す。G信号が飽和していないときは、RGラインのG信号とBGラインのG信号の段差は解消するが、G信号が飽和しているときは、上記G信号側の漏れ込み信号成分減算処理の弊害があらわれ、G信号飽和部分にはなかったRGラインのG信号とBGラインのG信号の段差が発生する。
【0135】
また、図18〜図23のようにRGラインのG信号、BGラインのG信号のうちRGラインのG信号の方だけ飽和した場合(R信号成分の隣接G信号側の漏れ込み量が、B信号成分の隣接G信号側の漏れ込み量より多い場合)、前記の(実施の形態1)〜(実施の形態6)のような構成の画素信号混色低減装置ではG信号飽和時は信号漏れ込み補正を行わないので、RGラインのG信号については補正を行わず、BGラインのG信号についてだけ信号漏れ込み補正を行うことになるので、かえってRGラインのG信号とBGラインのG信号の段差が発生する。
【0136】
そこでさらに、この(実施の形態7)の画素信号混色低減装置では、飽和非飽和判別回路1308によって、補正対象G信号が飽和しているとき、補正対象G信号の斜め右上、斜め右下、斜め左上、斜め左下が飽和しているかどうかを判別して補正対象G信号飽和時に補正対象G信号の斜め右上、斜め右下、斜め左上、斜め左下が飽和している場合(RGラインのG信号もBGラインG信号もともに飽和している場合は、信号切換回路1310を切り換えて、漏れ込み信号成分減算処理をしていない画素信号を選択して出力させ、補正対象G信号が飽和していない場合かもしくは補正対象G信号が飽和の場合でも補正対象G信号の斜め右上、斜め右下、斜め左上、斜め左下が飽和していない場合には漏れ込み信号成分減算処理を行った画素信号を選択して出力させる。
【0137】
その結果、図23に示すようにG信号が飽和していない場合は、隣接画素信号の漏れ込み信号成分によるRGラインのG信号とBGラインのG信号の段差が低減され、かつG信号が飽和した場合(RGラインのG信号、BGラインのG信号もともに飽和)またはRGラインのG信号、BGラインのG信号のうちRGラインのG信号の方だけ飽和した場合に、漏れ込み信号成分減算処理の弊害が発生しなくなる。
【0138】
なお、この(実施の形態7)では飽和非飽和判別回路1308を、(実施の形態1)に実施して、補正対象特定色画素信号レベル飽和かつ補正対象特定色画素信号の斜め右上、斜め右下、斜め左上、斜め左下に隣接する補正対象周辺特定色画素信号レベル飽和時は、補正対象特定色画素信号に対する隣接画素信号漏れ込み補正処理を停止する場合を例に挙げて説明したが、(実施の形態2)〜(実施の形態6)においても同様に飽和非飽和判別回路1308を設けることによって画質ムラの改善を期待できる。
【0139】
(実施の形態8)
図24は本発明の(実施の形態8)を示す。補正対象画素信号ラインがRGラインの場合の補正対象画素の説明図は図17を参照。
【0140】
図24は本発明の(実施の形態8)の画素信号混色低減装置を示し、(実施の形態7)の飽和非飽和判別回路1308の論理積回路1308hを論理和回路1508hに変更して飽和非飽和判別回路1508とした点だけが異なっている。
【0141】
この構成によると、隣接画素信号の漏れ込み信号成分によるRGラインのG信号とBGラインのG信号の段差が低減され、かつG信号が飽和した場合(RGラインのG信号、BGラインのG信号もともに飽和)またはRGラインのG信号、BGラインのG信号のうちRGラインのG信号の方だけ飽和した場合に漏れ込み信号成分減算処理の弊害が発生しなくなる。
【0142】
なお、この(実施の形態8)では飽和非飽和判別回路1508を、(実施の形態1)に実施して、補正対象特定色画素信号レベル飽和かつ補正対象特定色画素信号の斜め右上と斜め左下に隣接する補正対象周辺特定色画素信号レベル飽和時、または補正対象特定色画素信号レベル飽和かつ補正対象特定色画素信号の斜め右下と斜め左上に隣接する補正対象周辺特定色画素信号レベル飽和時、または補正対象特定色画素信号レベル飽和時かつ補正対象特定色画素信号の斜め右上、斜め右下、斜め左上、斜め左下に隣接する補正対象周辺特定色画素信号レベル飽和時は、特定色画素信号に対する隣接画素信号漏れ込み低減補正処理を停止する場合を例に挙げて説明したが、(実施の形態2)〜(実施の形態6)においても同様に飽和非飽和判別回路1508を設けることによって画質ムラの改善を期待できる。
【0143】
(実施の形態9)
図25〜図31は、本発明の(実施の形態9)を示す。補正対象画素信号ラインがRGラインの場合の補正対象画素の説明図は図17を参照。
【0144】
本発明の(実施の形態9)の画素信号混色低減装置を図25に示す。
この構成図は、駆動クロック周期が1画素レートと同一である場合の図である。画素ムラ補正については信号横漏れの場合について説明する。
【0145】
1701,1702,1703,1706,1707,1712,1713はDフリップフロップである。Dフリップフロップ1701,1706,1712は、補正対象画素信号ライン、補正対象画素信号ラインの上に隣接する画素信号ライン、補正対象画素信号ラインの下に隣接する画素信号ラインをそれぞれ1画素分遅延した3ラインの画素信号ラインを生成する。
【0146】
Dフリップフロップ1702,1707,1713は、補正対象画素信号ライン、補正対象画素信号ラインの上に隣接する画素信号ライン、補正対象画素信号ラインの下に隣接する画素信号ラインをそれぞれ2画素分遅延した3ラインの画素信号ラインを生成する。
【0147】
Dフリップフロップ1703は、補正対象画素信号ライン信号を3画素分遅延した画素信号を生成する。
1704,1708,1714は補正処理手段で、内部の処理は図1の補正処理手段103と同じである。
【0148】
補正処理手段1704は、横方向漏れ込み信号成分減算処理ブロックとして、1画素分遅延した画素信号(補正対象ライン画素信号)から、この補正処理手段1704の内部で算出した横方向に隣接する画素信号への漏れ込み信号成分を減算する。
【0149】
補正処理手段1708,1714も1704と同じ構成の横方向漏れ込み信号成分減算処理ブロックで、補正処理手段1708の方は補正対象ライン信号の上に隣接する画素信号ラインの信号に対する横方向漏れ込み信号成分減算処理、補正処理手段1714は補正対象ライン信号の下に隣接する画素信号ラインの信号に対する横方向漏れ込み信号成分減算処理を行う。
【0150】
図25から分かるように補正処理手段1704に入力する画素信号は、補正処理手段1708,1714に入力する画素信号より1画素分遅延量が多いので、補正処理手段1704で補正対象G信号の横方向漏れ込み信号成分減算処理が行われているときは、補正処理手段1708は補正対象G信号の上に隣接する画素信号ラインの補正対象G信号の1画素分あとの画素信号の横方向漏れ込み信号成分減算処理、すなわち、補正対象G信号の斜め左上のG信号の横方向漏れ込み信号成分減算処理、同様に補正処理手段1714は補正対象G信号の斜め左下のG信号の横方向漏れ込み信号成分減算処理を行うことになる。
【0151】
従って、補正処理手段1708の出力にDフリップフロップ1710,1711を通して得られた信号は補正対象G信号の斜め右上のG信号の横方向漏れ込み信号成分減算処理の結果である。補正処理手段1714の出力にDフリップフロップ1715,1716を通して得られた信号は補正対象G信号の斜め右下のG信号の横方向漏れ込み信号成分減算処理の結果である。
【0152】
1705は補正対象画素(補正対象G信号)の飽和非飽和判別回路で、補正対象画素飽和時は‘H’を補正対象画素非飽和時は‘L’を出力する。
1717は平均値算出回路で、補正対象画素信号の斜め右上、斜め右下、斜め左上、斜め左下の画素信号(G信号)の横方向漏れ込み信号成分減算処理結果の平均値を算出する。
【0153】
1718は大小比較回路で、補正対象画素(補正対象G信号)の横方向漏れ込み信号成分減算処理結果と補正対象画素信号の斜め右上、斜め右下、斜め左上、斜め左下の画素信号(補正対象G信号の斜め右上、斜め右下、斜め左上、斜め左下のG信号)の横方向漏れ込み信号成分減算処理の結果の平均値の大小を比較し、補正対象画素の横方向漏れ込み信号成分減算処理結果が補正対象画素信号の斜め右上、斜め右下、斜め左上、斜め左下の画素信号の横方向漏れ込み信号成分減算処理結果平均値よりも小さいときは‘H’を、補正対象画素の横方向漏れ込み信号成分減算処理結果が補正対象画素信号の斜め右上、斜め右下、斜め左上、斜め左下の画素信号の横方向漏れ込み信号成分減算処理結果平均値よりも大きいときは‘L’を出力する。
【0154】
論理積回路1719は飽和非飽和判別回路1705の出力と大小比較回路1718の出力との論理積を出力する。
論理積回路1719の出力を選択信号とした信号切換回路1720は、補正対象画素の横方向漏れ込み信号成分減算処理結果と補正対象画素信号の斜め右上、斜め右下、斜め左上、斜め左下の画素信号の横方向漏れ込み信号成分減算処理結果平均値を切り換えて出力する。
【0155】
すなわち、補正対象画素飽和時かつ補正対象画素の横方向漏れ込み信号成分減算処理結果が補正対象画素信号の斜め右上、斜め右下、斜め左上、斜め左下の画素信号の横方向漏れ込み信号成分減算処理結果平均値よりも小さいときは選択信号は‘H’となり、補正対象画素信号の斜め右上、斜め右下、斜め左上、斜め左下の画素信号の横方向漏れ込み信号成分減算処理結果平均値を選択して出力し、補正対象画素非飽和時もしくは補正対象画素飽和時かつ補正対象画素の横方向漏れ込み信号成分減算処理結果が補正対象画素信号の斜め右上、斜め右下、斜め左上、斜め左下の画素信号の横方向漏れ込み信号成分減算処理結果平均値よりも大きいときは選択信号は‘L’となり、補正対象画素の横方向漏れ込み信号成分減算処理結果を選択出力する。
【0156】
1709は飽和非飽和判別回路で、補正対象ライン(補正対象画素)の上に隣接する画素信号を1画素分遅延した画素信号(補正対象G信号の斜め左上G信号)を判別して、飽和時は‘H’、非飽和時は‘L’という判別結果を出力する。
【0157】
さらに、飽和非飽和判別回路1709の出力を2段のDフリップフロップ1721,1722を通して補正対象G信号の斜め右上G信号についての飽和非飽和判別結果を得る。
【0158】
1723は飽和非飽和判別回路で、補正対象ライン(補正対象画素)の下に隣接する画素信号の1画素分遅延した画素信号(補正対象G信号の斜め左下G信号)を判別して、飽和時は‘H’、非飽和時は‘L’という判別結果を出力する。
【0159】
さらに、飽和非飽和判別回路1723の出力を2段のDフリップフロップ1724,1725を通して補正対象G信号の斜め右下G信号についての飽和非飽和判別結果を得る。
【0160】
論理積回路1726は、飽和非飽和判別回路1709の出力とDフリップフロップ1722の出力との論理積を検出する。
論理積回路1727は、飽和非飽和判別回路1723の出力とDフリップフロップ1725の出力との論理積を検出する。
【0161】
論理積回路1728は、論理積回路1726,1727の出力の論理積を検出する。つまり、補正対象画素(補正対象G信号)の斜め右上、斜め右下、斜め左上、斜め左下の画素信号(補正対象G信号の斜め右上、斜め右下、斜め左上、斜め左下のG信号)が全て飽和したときは、‘H’を、補正対象画素の斜め右上、斜め右下、斜め左上、斜め左下の画素信号非飽和時または補正対象画素の斜め右上、斜め右下、斜め左上、斜め左下が全て飽和していないときは‘L’を出力する。
【0162】
論理積回路1729は、論理積回路1728の出力と飽和非飽和判別回路1705の出力との論理積を検出する。つまり、補正対象画素の斜め右上、斜め右下、斜め左上、斜め左下の画素信号が飽和かつ補正対象画素飽和時のみ出力が‘H’、それ以外の場合は‘L’を出力する。
【0163】
1730はG信号判別信号発生回路で、G信号のときは‘L’、R信号またはB信号のときは‘H’を出力する。なお、内部回路は図1の処理停止命令手段104と駆動クロック2分周信号発生回路105aおよび排他的論理和回路105bとで同様に構成されている。
【0164】
論理和回路1731は、G信号判別信号発生回路1730の出力と論理積回路1729の出力との論理和を検出する。
論理和回路1731の出力を切換信号とした信号切換回路1732は、R信号・B信号またはG信号飽和時かつG信号隣接斜め右上、隣接斜め右下、隣接斜め左下、隣接斜め左上のG信号全てが飽和時には1画素分遅延した補正対象ライン画素信号を出力、G信号飽和時かつG信号漏れ込み信号成分減算補正結果よりG信号隣接斜め右上、隣接斜め右下、隣接斜め左下、隣接斜め左上のG信号の信号成分減算補正結果のほうが大きいときは補正対象G信号漏れ込み信号成分減算補正結果と補正対象G信号隣接斜め右上、隣接斜め右下、隣接斜め左下、隣接斜め左上のG信号の信号成分減算補正結果の信号差が無くなるように補正対象G信号漏れ込み信号成分減算補正結果を補正対象G信号隣接斜め右上、隣接斜め右下、隣接斜め左下、隣接斜め左上のG信号の信号成分減算補正結果にすげかえて出力し、G信号非飽和時もしくはG信号飽和時かつG信号漏れ込み信号成分減算補正結果よりG信号隣接斜め右上、隣接斜め右下、隣接斜め左下、隣接斜め左上のG信号の信号成分減算補正結果のほうが小さいときは、補正対象G信号漏れ込み信号成分減算補正結果を出力する。
【0165】
図25のように構成された画素信号混色低減装置の動作について、図26〜図31を用いて説明する。
図27のような3原色カラーフィルタ配列(ベイヤー配列)の撮像素子で図26のような被写体を撮像したとき、本来の理想的な撮像素子出力を、図28に示す。図26〜図31では、撮像素子出力を10bitデータを十進数という形式で示し、説明を簡単にするため、例えば、無彩色撮像時は
R信号レベル = G信号レベル = B信号レベル
というように色バランスがとれた理想的な信号としている。
【0166】
例えば、R信号の1/32の信号成分が横方向に隣接するG信号側に、G信号の1/16の信号成分が横方向に隣接するR信号側またはB信号側に、B信号の1/64の信号成分が横方向に隣接するG信号側に漏れ込んだときの信号データを図29に示す。
【0167】
特に問題となるのは、G信号が飽和していないときはRGラインのG信号とBGラインのG信号の段差であるが(G信号飽和時は、隣接画素信号の漏れ込みがあっても飽和レベル以上になることはありえないのRGラインのG信号とBGラインのG信号の段差は発生しない)、この(実施の形態9)の画素信号混色低減装置の漏れ込み信号成分減算処理ブロック(図25の1704,1708,1714)で、例えば、漏れ込み割合のレジスタ設定値が8bitデータの場合、補正対象画素の横方向隣接画素信号の平均値と漏れ込み割合のレジスタ設定値を乗算回路で乗算した後ビットシフトダウンで1/256という構成の場合、RGラインR信号のG信号側の漏れ込み割合レジスタ設定値を8(8/256=1/32)・BGラインB信号のG信号側の漏れ込み割合レジスタ設定値を4(4/256)とした場合、RGラインG信号からRGラインG信号の横方向隣接のR信号の1/32の信号成分をBGラインG信号からBGラインG信号の横方向隣接のB信号の1/64の信号成分を減算していることになり、その処理結果を図30に示す。G信号が飽和していないときは、RGラインのG信号とBGラインのG信号の段差は解消するが、G信号が飽和しているときは、上記G信号側の漏れ込み信号成分減算処理の弊害があらわれ、G信号飽和部分にはなかったRGラインのG信号とBGラインのG信号の段差が発生する。
【0168】
また、図26〜図31のようにRGラインのG信号、BGラインのG信号のうちRGラインのG信号の方だけ飽和した場合(R信号成分の隣接G信号側の漏れ込み量が、B信号成分の隣接G信号側の漏れ込み量より多い場合)、本発明の(実施の形態1)〜(実施の形態6)のような構成の画素信号混色低減装置では、G信号飽和時は信号漏れ込み補正を行わないので、RGラインのG信号については補正を行わず、BGラインのG信号についてだけ信号漏れ込み補正を行うことになるので、かえってRGラインのG信号とBGラインのG信号の段差が発生する。
【0169】
そこでさらに、この(実施の形態9)の画素信号混色低減装置では図25の論理積回路1729で、補正対象G信号が飽和しているとき、補正対象G信号の斜め右上、斜め右下、斜め左上、斜め左下が飽和しているかどうかを判別して補正対象G信号飽和時に補正対象G信号の斜め右上、斜め右下、斜め左上、斜め左下が飽和している場合(RGラインのG信号もBGラインG信号もともに飽和している場合は信号切換回路1732で漏れ込み信号成分減算処理をしていない画素信号選択出力し、補正対象G信号が飽和していない場合かもしくは補正対象G信号が飽和の場合でも補正対象G信号の斜め右上、斜め右下、斜め左上、斜め左下が飽和していない場合には1732で漏れ込み信号成分減算処理を行った画素信号を選択出力する。以上の構成は前記の(実施の形態7)の構成と同じである。
【0170】
さらに、RGラインのG信号、BGラインのG信号のうちRGラインのG信号の方だけ飽和した場合(R信号成分の隣接G信号側の漏れ込み量が、B信号成分の隣接G信号側の漏れ込み量より多い場合)のG信号側の漏れ込み信号成分減算処理の弊害を軽減するために、補正対象G信号飽和時かつ補正対象G信号の斜め左上、斜め左下、斜め右上、斜め右下隣接G信号が飽和していないときに、図25の大小比較回路1718で補正対象GのG信号側の漏れ込み信号成分減算処理結果と補正対象G信号の斜め左上、斜め左下、斜め右上、斜め右下隣接G信号のG信号側の漏れ込み信号成分減算の処理結果を大小比較して、補正対象GのG信号側の漏れ込み信号成分減算の処理結果が大きい場合は補正対象GのG信号側の漏れ込み信号成分減算の処理結果を出力、補正対象G信号のG信号側の漏れ込み信号成分減算の処理結果が小さい場合は補正対象GのG信号側の漏れ込み信号成分減算の処理結果と補正対象G信号の斜め左上、斜め左下、斜め右上、斜め右下隣接G信号のG信号側の漏れ込み信号成分減算の処理結果の信号レベル差をなくするために図25の構成図では補正対象G信号の補正結果として、補正対象G信号の斜め左上、斜め左下、斜め右上、斜め右下隣接G信号のG信号側の漏れ込み信号成分減算の処理結果にすげかえて出力する。
【0171】
その結果、図31に示すようにG信号が飽和していない場合は隣接画素信号の漏れ込み信号成分によるRGラインのG信号とBGラインのG信号の段差が低減され、かつG信号が飽和した場合(RGラインのG信号、BGラインのG信号もともに飽和)またはRGラインのG信号、BGラインのG信号のうちRGラインのG信号の方だけ飽和した場合に漏れ込み信号成分減算処理の弊害が発生しなくなる。
【0172】
なお、この(実施の形態9)では、1710,1711,1715,1716,1717,1718,1720などで、補正対象の特定色画素信号レベル飽和時かつ補正対象特定色画素信号の斜め右上、斜め右下、斜め左上、斜め左下に隣接する補正対象周辺特定色画素信号レベルが飽和していない場合であって、補正対象特定色画素信号について隣接画素信号漏れ込み低減補正処理して得られた補正処理後の補正対象特定色の画素信号の信号レベルが、補正対象特定色画素信号の斜め右上、斜め右下、斜め左上、斜め左下に隣接する補正対象周辺特定色画素信号について隣接画素信号漏れ込み低減補正処理して得られた補正処理後の補正対象周辺特定色画素信号の信号レベルよりも小さい場合は、補正対象特定色の画素信号の信号レベルを補正処理後の補正対象周辺特定色画素信号の信号レベルと同じにするレベル調節手段1733が構成されている。
【0173】
また、1705,1709,1721,1722,1723,1724,1725,1726,1727,1728,1729,1730,1731などで、補正対象特定色画素信号レベル飽和時かつ補正対象特定色画素信号の斜め右上、斜め右下、斜め左上、斜め左下に隣接する補正対象周辺の特定色画素信号レベル飽和時は、補正対象特定色画素信号に対する隣接画素信号漏れ込み低減処理を停止を命令する処理停止命令手段1734が構成されている。
【0174】
なお、この(実施の形態9)ではレベル調節手段1733と処理停止命令手段1734などを(実施の形態1)に実施した場合を例に挙げて説明したが、(実施の形態2)〜(実施の形態6)においても同様にレベル調節手段1733と処理停止命令手段1734を設けることによって画質ムラの改善を期待できる。
【0175】
(実施の形態10)
図32は本発明の(実施の形態10)を示す。補正対象画素信号ラインがRGラインの場合、BGラインの場合の補正対象画素の説明図は図17を参照。
【0176】
図32の構成図は、駆動クロック周期が1画素レートと同一である場合の図である。画素ムラ補正については信号横漏れの場合について説明する。図25と同じものには同一の符号を付けて説明する。
【0177】
1918は平均値算出回路で、補正対象画素信号の斜め右下、斜め左上に隣接する補正対象周辺画素信号(G信号)の横方向漏れ込み信号成分減算の処理結果の平均値を算出する。
【0178】
1919は平均値算出回路で、補正対象画素信号の斜め右上、斜め左下に隣接する補正対象周辺画素信号(G信号)の横方向漏れ込み信号成分減算の処理結果の平均値を算出する。
【0179】
1920は大小比較回路で、補正対象画素(補正対象G信号)の横方向漏れ込み信号成分減算の処理結果と補正対象画素信号の斜め右下、斜め左上に隣接する補正対象周辺画素信号(補正対象G信号の斜め右下、斜め左上のG信号)の横方向漏れ込み信号成分減算の処理結果平均値を比較し、補正対象画素の横方向漏れ込み信号成分減算の処理結果が補正対象画素信号の斜め右下、斜め左上に隣接する補正対象周辺画素信号の横方向漏れ込み信号成分減算の処理結果平均値よりも小さいときは‘H’を、補正対象画素の横方向漏れ込み信号成分減算の処理結果が補正対象画素信号の斜め右下、斜め左上に隣接する補正対象周辺画素信号の横方向漏れ込み信号成分減算の処理結果平均値よりも大きいときは‘L’を出力する。
【0180】
1921は大小比較回路で、補正対象画素(補正対象G信号)の横方向漏れ込み信号成分減算の処理結果と補正対象画素信号の斜め右上、斜め左下に隣接する補正対象周辺画素信号(補正対象G信号の斜め右上、斜め左下のG信号)の横方向漏れ込み信号成分減算の処理結果平均値を比較し、補正対象画素の横方向漏れ込み信号成分減算の処理結果が補正対象画素信号の斜め右上、斜め左下に隣接する補正対象周辺画素信号の横方向漏れ込み信号成分減算の処理結果平均値よりも小さいときは‘H’を、補正対象画素の横方向漏れ込み信号成分減算の処理結果が補正対象画素信号の斜め右上、斜め左下に隣接する補正対象周辺画素信号の横方向漏れ込み信号成分減算の処理結果平均値よりも大きいときは‘L’を出力する。
【0181】
この(実施の形態10)では、平均値算出回路1918と大小比較回路1920とで第1のレベル調節手段が構成されており、平均値算出回路1919と大小比較回路1921とで第2のレベル調節手段が構成されている。
【0182】
また、この(実施の形態10)では、(実施の形態9)を示す図25における処理停止命令手段1734に相当する処理停止命令手段が、1934,1935,1936,1938,1730,1731によって構成されている。
【0183】
1922は大小比較回路1920の出力信号を切換信号とした信号切換回路で、大小比較回路1920の出力信号が‘H’のときには平均値算出回路1918の出力信号を選択して出力し、大小比較回路1920の出力信号が‘L’のときには平均値算出回路1919の出力信号を選択して出力する。
【0184】
論理積回路1923は、大小比較回路1920の出力信号と大小比較回路1921の出力信号との論理積を検出する。つまり、大小比較回路1920の出力信号及び大小比較回路1921の出力信号がともに‘H’の場合は‘H’を出力、それ以外の場合は‘L’を出力する。
【0185】
論理積回路1923の出力信号を切換信号とした信号切換回路1924は、論理積回路1923の出力信号が‘H’のときは、平均値算出回路1917の出力信号を選択して出力し、平均値算出回路1923の出力信号が‘L’のときは信号切換回路1922の出力信号を選択して出力する。
【0186】
論理和回路1925は、大小比較回路1920の出力信号と大小比較回路1921の出力信号の論理和検出する。つまり、大小比較回路1920の出力信号及び大小比較回路1921の出力信号がともに‘H’または大小比較回路1920の出力信号と大小比較回路1921の出力信号のうちいずれか一方が‘H’の場合は‘H’を出力、大小比較回路1920の出力信号及び大小比較回路1921の出力信号がともに‘L’の場合は‘L’を出力する。
【0187】
ここで論理積回路1719は、論理和回路1925の出力と飽和非飽和判別回路1705の出力との論理積を検出する(1925の出力信号及び1905の出力信号がともに‘H’の場合は‘H’を出力、それ以外の場合は‘L’を出力)。
【0188】
論理積回路1719の出力信号を切換信号とした大小比較回路1920は、論理積回路1719の出力信号が‘H’のときは、信号切換回路1924の出力信号を選択して出力し、論理積回路1719の出力信号が‘L’のときは、補正処理手段1704の出力信号を選択して出力する。
【0189】
論理積回路1934は、Dフリップフロップ1722の出力信号と飽和非飽和判別回路1723の出力信号の論理積を検出する(1722の出力信号及び1723の出力信号がともに‘H’の場合は‘H’を出力、それ以外の場合は‘L’を出力)。
【0190】
論理積回路1935は、飽和非飽和判別回路1709の出力信号とDフリップフロップ1725の出力信号の論理積を検出する(1709の出力信号及び1725の出力信号がともに‘H’の場合は‘H’を出力、それ以外の場合は‘L’を出力)。
【0191】
論理和回路1936は論理積回路1934,1935の出力信号の論理和を検出する(1934の出力信号及び1935の出力信号がともに‘H’または1934の出力信号と1935の出力信号のうちいずれか一方が‘H’の場合は‘H’を出力、1934の出力信号及び1935の出力信号がともに‘L’の場合は‘L’を出力)。
【0192】
論理積回路1938は、論理和回路1936の出力信号と飽和非飽和判別回路1705の出力信号の論理積を検出する(1936の出力信号及び1705の出力信号がともに‘H’の場合は‘H’を出力、それ以外の場合は‘L’を出力)。
【0193】
ここで論理和回路1731は、論理積回路1938の出力信号とG信号判別信号発生回路1730の出力信号の論理和を検出する(1938の出力信号及び1730の出力信号がともに‘H’または1938の出力信号と1730の出力信号のうちいずれか一方が‘H’の場合は‘H’を出力、1938の出力信号及び1730の出力信号がともに‘L’の場合は‘L’を出力)。
【0194】
ここで信号切換回路1732は、論理和回路1731の出力信号が‘H’のときはDフリップフロップ1902の出力信号を選択して出力し、論理和回路1731の出力信号が‘L’のときは、信号切換回路1720の出力信号を選択出力する。
【0195】
この構成によると、隣接画素信号の漏れ込み信号成分によるRGラインのG信号とBGラインのG信号の段差が低減され、かつG信号が飽和した場合(RGラインのG信号、BGラインのG信号もともに飽和)またはRGラインのG信号、BGラインのG信号のうちRGラインのG信号またはBGラインのG信号の一方のラインのG信号だけ飽和した場合に漏れ込み信号成分減算処理の弊害が発生しなくなる。
【0196】
【発明の効果】
以上のように本発明の請求項1および請求項4,請求項7記載の発明は、特定色画素信号から、特定色画素信号と隣接する特定色以外の画素信号より算出した一定割合の信号成分を減算して、補正対象画画素信号が飽和レベルに達した場合には前記補正処理を停止することで、例えば、補正対象画画素信号をG信号とした場合に、G信号の横方向に隣接するR信号またはB信号からG信号側に漏れ込むことによる信号混色不具合と信号混色によるRGラインのG信号とBGラインのG信号の段差を低減すると同時に、G信号飽和時における隣接画素信号成分漏れ込み補正処理の弊害を抑制できる。
【0197】
本発明の請求項2および請求項3,5,6,8,9に記載の発明は、特定色画素信号から、特定色画素信号と隣接する特定色以外の画素信号より算出した一定割合の信号成分を減算するとともに、特定色画素信号が飽和レベルに達した場合に、特定色画素信号に対する信号漏れ込み低減補正処理の停止を命令して、さらに、特定色以外の画素信号から、特定色以外の画素信号と隣接する特定色画素信号より算出した一定割合の信号成分を減算するとともに、特定色以外の画素信号が飽和レベルに達した場合に、特定色以外の画素信号に対する隣接画素信号漏れ込み低減補正処理を停止する。
【0198】
例えば、補正対象画画素信号をG信号とした場合に、G信号と隣接するR信号またはB信号からG信号側に漏れ込むことによる信号混色不具合と信号混色によるRGラインのG信号とBGラインのG信号の段差、およびR信号またはB信号と隣接すると同時に、G信号からR信号側またはB信号側に漏れ込むことによる信号混色不具合を低減し、R・G・B信号飽和時における隣接画素信号成分漏れ込み補正処理の弊害を抑制できる。
【0199】
本発明の請求項10記載の画素信号混色低減装置は、請求項1〜請求項9のいずれかにおいて、補正対象特定色画素信号レベル飽和かつ補正対象特定色画素信号の斜め右上、斜め右下、斜め左上、斜め左下に隣接する補正対象周辺特定色画素信号レベル飽和時は、補正対象特定色画素信号に対する隣接画素信号漏れ込み補正処理を停止する飽和非飽和判別回路を備えたので、例えば、補正対象画画素信号をG信号とした場合に、補正対象G信号の信号レベルが飽和していない場合、または補正対象G信号レベル飽和時に補正対象G信号に隣接する補正対象周辺G信号の信号レベルが飽和していない場合に、補正対象G信号から補正対象G信号に隣接するR信号またはB信号から算出した一定割合の信号成分を減算する隣接画素信号成分漏れ込み補正処理を行い、補正対象G信号レベル飽和時かつ補正対象G信号に隣接する補正対象周辺G信号レベル飽和時は、補正対象G信号に対する隣接画素信号成分漏れ込み補正処理を停止することにより、隣接する画素信号に漏れ込むことによる信号混色不具合を低減すると同時に、RGラインのG信号またはBGラインのG信号のうち、いずれか片方のG信号が飽和した場合における隣接画素信号成分漏れ込み補正処理の弊害を抑制できる。
【0200】
本発明の請求項12および請求項13記載の画素信号混色低減装置は、請求項1〜請求項9のいずれかにおいて、補正対象特定色画素信号レベル飽和時かつ補正対象特定色画素信号に隣接する補正対象周辺特定色画素信号レベルが飽和していない場合であって、補正対象特定色画素信号について隣接画素信号漏れ込み低減補正処理して得られた補正処理後補正対象特定色画素信号の信号レベルが、補正対象特定色の画素信号に隣接する補正対象周辺特定色画素信号について隣接画素信号漏れ込み低減補正処理して得られた補正処理後の補正対象周辺特定色の画素信号の信号レベルよりも小さい場合は、補正対象特定色画素信号の信号レベルを補正処理後の補正対象周辺特定色の画素信号の信号レベルと同じにするレベル調節手段と、補正対象特定色画素信号レベル飽和時かつ補正対象特定色画素信号に隣接する補正対象周辺特定色画素信号レベル飽和時は、補正対象特定色画素信号に対する隣接画素信号漏れ込み低減処理を停止を命令する処理停止命令手段を備えたので、例えば、補正対象画画素信号をG信号とした場合に、隣接する画素信号に漏れ込むことによる信号混色不具合を低減すると同時に、RGラインのG信号またはBGラインのG信号の片方のG信号が飽和した場合における隣接画素信号成分漏れ込み補正処理の弊害を抑制できる。
【図面の簡単な説明】
【図1】本発明の画素信号混色低減装置の(実施の形態1)の構成図
【図2】同実施の形態の補正対象が装置信号ラインがRGラインの場合の説明図と補正対象が装置信号ラインがBGラインの場合の説明図
【図3】同実施の形態の隣接画素信号成分漏れ込み補正処理動作の説明図
【図4】同実施の形態の隣接画素信号成分漏れ込み補正処理動作の説明図
【図5】同実施の形態の隣接画素信号成分漏れ込み補正処理動作の説明図
【図6】同実施の形態の隣接画素信号成分漏れ込み補正処理動作の説明図
【図7】同実施の形態の隣接画素信号成分漏れ込み補正処理動作の説明図
【図8】同実施の形態の隣接画素信号成分漏れ込み補正処理動作の説明図
【図9】本発明の画素信号混色低減装置の(実施の形態2)の構成図
【図10】本発明の画素信号混色低減装置の(実施の形態3)の構成図
【図11】同実施の形態の補正対象が装置信号ラインがRGラインの場合の説明図と補正対象が装置信号ラインがBGラインの場合の説明図
【図12】本発明の画素信号混色低減装置の(実施の形態4)の構成図
【図13】本発明の画素信号混色低減装置の(実施の形態5)の構成図
【図14】本発明の画素信号混色低減装置の(実施の形態6)の構成図
【図15】同実施の形態の別の実施例の構成図
【図16】本発明の画素信号混色低減装置の(実施の形態7)の構成図
【図17】同実施の形態の補正対象が装置信号ラインがRGラインの場合の説明図
【図18】同実施の形態の隣接画素信号成分漏れ込み補正処理動作の説明図
【図19】同実施の形態の隣接画素信号成分漏れ込み補正処理動作の説明図
【図20】同実施の形態の隣接画素信号成分漏れ込み補正処理動作の説明図
【図21】同実施の形態の隣接画素信号成分漏れ込み補正処理動作の説明図
【図22】同実施の形態の隣接画素信号成分漏れ込み補正処理動作の説明図
【図23】同実施の形態の隣接画素信号成分漏れ込み補正処理動作の説明図
【図24】本発明の画素信号混色低減装置の(実施の形態8)の構成図
【図25】本発明の画素信号混色低減装置の(実施の形態9)の構成図
【図26】同実施の形態の隣接画素信号成分漏れ込み補正処理動作の説明図
【図27】同実施の形態の隣接画素信号成分漏れ込み補正処理動作の説明図
【図28】同実施の形態の隣接画素信号成分漏れ込み補正処理動作の説明図
【図29】同実施の形態の隣接画素信号成分漏れ込み補正処理動作の説明図
【図30】同実施の形態の隣接画素信号成分漏れ込み補正処理動作の説明図
【図31】同実施の形態の隣接画素信号成分漏れ込み補正処理動作の説明図
【図32】本発明の画素信号混色低減装置の(実施の形態10)の構成図
【図33】撮像素子のカラーフィルタ配列説明図
【図34】撮像素子の高画素化にともなう微細化による課題説明図
【図35】撮像素子の高画素化にともなう高速駆動化による課題説明図
【図36】撮像素子の高画素化にともなう高速駆動化による課題説明図
【図37】撮像素子の高画素化にともなう高速駆動化による課題説明図
【符号の説明】
101,102  Dフリップフロップ
103  補正処理手段
104  補正対象G信号/補正対象外R信号B信号判別および補正対象G信号飽和非飽和判別信号発生ブロック
106  信号切換回路
301,302  Dフリップフロップ
303  補正処理手段
304  補正対象画素信号の信号レベルの飽和非飽和判別回路
305  信号切換回路
501,502  Dフリップフロップ
503  Dフリップフロップ
504  縦方向補正処理手段
505  処理停止命令手段
506  信号切換回路
704  補正処理手段
706  信号切換回路
901,902  Dフリップフロップ
903,904  Dフリップフロップ
905  補正処理手段
906  縦方向補正処理手段
907  処理停止命令手段
908  信号切換回路
1105  第1の補正処理手段
1106  第2の補正処理手段
1107  飽和非飽和判別回路
1108  信号切換回路
1305  補正処理手段
1306,1307  Dフリップフロップ
1308  飽和非飽和判別回路判別回路
1309  論理和回路
1310  信号切換回路
1508  飽和非飽和判別回路
1510  信号切換回路
1701,1702,1703  Dフリップフロップ
1704  補正処理手段
1705  補正対象画素信号飽和非飽和判別信号発生ブロック
1706,1707  Dフリップフロップ
1708  補正処理手段
1709  飽和非飽和判別回路
1710,1711  Dフリップフロップ
1712,1713  Dフリップフロップ
1714  補正処理手段
1715,1716  Dフリップフロップ
1717  平均値算出回路
1718  大小比較回路
1719  論理積回路
1720  信号切換回路
1721,1722  Dフリップフロップ
1723  画素信号飽和非飽和判別信号発生ブロック
1724,1725  Dフリップフロップ
1726,1727  論理積回路
1728,1729  論理積回路
1730  G信号判別信号発生回路
1731  論理和回路
1732  信号切換回路
1928  画素信号飽和非飽和判別信号発生ブロック
1918,1919  平均値算出回路
1920,1921  大小比較回路
1922  信号切換回路
1923  論理積回路
1924  信号切換回路
1925  論理和回路
1927  信号切換回路
1934,1935  論理積回路
1936  論理和回路
1938  論理積回路
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a process for suppressing a color mixing problem of an image sensor output pixel signal in a single-color digital camera with primary colors. More specifically, the pixel size of the pixel signal is reduced due to the mixture of colors due to leakage of signals to adjacent pixels due to the miniaturization of the pixel size accompanying the increase in the number of pixels of the image sensor, and the color mixture due to leakage of horizontal transfer especially due to the high-speed drive accompanying the increase of the pixels of the image sensor. The present invention relates to a process for suppressing color mixing defects that reduces unevenness (variation) in signal levels.
[0002]
[Prior art]
The basic structure of a CCD image sensor (image sensor) will be described using an example of an IT-CCD (Interline Transfer Charge-Coupled-Device).
[0003]
In the IT-CCD, photodiodes (hereinafter, referred to as PDs) that photoelectrically convert light information of a subject into charge information (image signals) are arranged in a matrix, and a vertical CCD is provided between PDs in each row. Are arranged. A horizontal CCD is arranged at one end of the vertical CCD, and a charge detection unit and an output circuit (signal output terminal) are provided at an end of the horizontal CCD.
[0004]
The CCD image sensor sequentially performs four basic operations of photoelectric conversion, charge accumulation, charge transfer, and charge detection, and converts a two-dimensional image into an electric signal and outputs the electric signal.
That is, the incident light is converted into charges (electrons) by the PD and stored. The signal charges stored in the PD are simultaneously transferred to the vertical CCD. The signal charges transferred to the vertical CCD are transferred to the horizontal CCD sequentially from the side (line) closer to the horizontal CCD. The signal charges for each line are sent to the charge detection unit one pixel at a time from the side (pixels) closer to the charge detection unit by the horizontal CCD, converted into a voltage, and appear at the signal output terminal. By repeating these basic operations, all lines are output to form an image of one screen.
[0005]
As described above, after the charge detection of all the pixels of one line transferred to the horizontal CCD is performed, the vertical transfer is performed only for one line. Therefore, the horizontal transfer / charge detection processing (charge detection After discarding the completed signal charge, the next signal charge is transferred to the charge detection unit to perform charge detection. Such processing is performed for each pixel.) The cycle is much shorter and the processing is faster. .
[0006]
Further, on the PD that performs photoelectric conversion, color filters that perform color separation of optical information are arranged in a matrix as shown in FIG. FIG. 33 shows an example of an RGB Bayer array color filter.
[0007]
After transmitting the light information through the color filter, the light enters the PD and is converted into signal charges, so that the color information can be identified at the same time as the brightness of the light.
These conventional techniques are described in, for example, (Non-Patent Document 1).
[0008]
[Non-patent document 1]
"Introduction to CCD Camera Technology" by Hiroo Takemura Publisher: Corona
First published December 1997, pages 23-35
[0009]
[Problems to be solved by the invention]
With the recent increase in the number of pixels in the CCD image pickup device, the pixel size has been reduced in order to make the optical system (lens) more compact, and the driving speed has been increased to increase the surface update rate.
[0010]
A problem in miniaturizing the pixel size accompanying the increase in the number of pixels will be described.
34 (a) and 34 (b) are schematic cross-sectional views in the horizontal direction of the pixel portion (composed of a PD and a vertical CCD) of the CCD image sensor. 34 (a) and 34 (b) use the same numbers. Reference numeral 10 denotes a microlens for increasing the light collection rate, 12 denotes a color filter, 13 denotes a light-shielding film for preventing light from entering when signal charges are vertically transferred by a vertical transfer CCD, and 14 denotes a vertical light-shielding film. A transfer electrode / signal charge readout electrode, 15 is a vertical CCD, 16 is a signal charge readout unit, 17 is a PD, and 18 is incident light.
[0011]
FIG. 34B shows a state in which the pixel size is becoming finer with the increase in the number of pixels as compared to FIG. As can be seen from FIG. 34B, the pitch between the pixels is narrowed, and light condensed by the microlens 10 and passing through the color filter 12 is likely to leak to the vertical CCD 15 on both sides horizontally and the PD 17 on both sides vertically.
[0012]
Next, a description will be given of a problem in driving a CCD image pickup device at a high speed with an increase in the number of pixels.
FIG. 35A shows that the RGB signal charges stored in the PD2 are read out to the VCCD 1 at the same time. FIG. 35B shows that the RGB signal charges transferred to the VCCD 1 are vertically transferred line by line and FIG. 36 (a) shows that the signal charge of the nearest line is transferred to the horizontal CCD 3, and FIG. 36 (a) shows that the signal charge of the pixel near the charge detection unit 4 is transferred to the charge detection unit 4 one pixel at a time. FIG. 37 (b) shows that the pixel signals of the line closest to the horizontal CCD 3 are converted into voltages and outputs them. FIG. 37 (a) shows that all the pixel signals of the line closest to the horizontal CCD 3 are converted and output as voltages. Then, the VCCD 1 is vertically transferred one line at a time, and the signal charges of the line closest to the horizontal CCD 3 are transferred to the horizontal CCD. FIG. 37 (b) is similar to FIG. 36 (a). FIG. 37 (c) shows that the signal charge of the pixel closest to the load detection unit is sent to the charge detection unit 4 one pixel at a time. I am doing it.
[0013]
If the RGB signal charges are ideally read, no problem occurs. However, as described above, horizontal transfer and signal charge detection, particularly signal charge detection, perform signal charge detection and voltage conversion one pixel at a time as compared with vertical transfer. After the signal charge detection and voltage conversion, the signal charge is discharged by the reset pulse signal, and then the next signal charge detection and voltage conversion processing is performed. With the driving, the signal charges after the signal charge detection and voltage conversion processing cannot be completely discharged, and the signal charges easily remain. The remaining signal charge remaining and the next signal charge are mixed, and the RGB pixel signal actually read from the CCD image pickup device is in a state where the signal charge has laterally leaked.
[0014]
As described above, under the influence of the leakage of the R signal and the B signal, pixel unevenness occurs due to a signal level difference between the G signal of the RG line and the G signal of the BG line.
Since both the R signal and the B signal are affected by the leakage of the G signal and are not pure R and B signals, there is degradation in spectral characteristics, but no pixel unevenness (line level difference) occurs.
[0015]
Next, the effect of light leakage and signal charge leakage on image quality will be described.
Generally, the signal level of the R component and the signal level of the B component mixed with the G signal are different due to the difference in transmittance between the R and B color filters. Therefore, the G signal and the BG of the RG line are used for a white / yellow / cyan object. Pixel unevenness (line level difference) occurs due to a signal level difference from the G signal of the line.
[0016]
If there is no difference between the transmittances of the R and B color filters, for a white subject, the R signal component and the B signal component leak to the G signal side in the same manner, so that pixel unevenness does not occur. In the subject, there is no leakage of the B signal component on the G signal side and only the R signal component leaks to the G signal side, and in the cyan subject, there is no leakage of the R signal component on the G signal side and only the B signal component is on the G signal side. , And pixel unevenness occurs.
[0017]
To increase the number of pixels in the CCD image sensor or downsize the CCD to make the optical system (lens) more compact, the pixel size has been reduced, and the high-speed driving has been promoted to increase the surface renewal rate as the number of pixels has increased. If this is the case, the above described defect of the image quality of the lattice pattern becomes remarkable. It is difficult to avoid the defect of the pixel-like unevenness image quality only by improving the characteristics of the CCD image pickup device.
[0018]
The present invention has been made in view of the above problems, and has as its object to provide a pixel signal color mixture reduction device capable of reducing pixel-like unevenness in a CCD camera system.
[0019]
[Means for Solving the Problems]
The pixel signal color mixture reduction device of the present invention performs a process of suppressing color mixture failure of a pixel signal having three primary colors of R (red), G (green), and B (blue) and in which a specific color is arranged in a checkered pattern. A pixel signal color mixture reduction device to be executed, comprising: a correction processing means for subtracting, from a specific color pixel signal, a fixed percentage of signal components calculated from pixel signals other than the specific color adjacent to the specific color pixel signal in the horizontal direction; A process stop command unit for commanding to stop the adjacent pixel signal leakage reduction correction processing for the specific color pixel signal when the color pixel signal reaches the saturation level.
[0020]
According to this configuration, for example, when the correction target image pixel signal is a G signal, leakage of the adjacent pixel signal component of the G signal or the R signal / B signal which causes a pixel unevenness (pixel signal level unevenness) is reduced. In addition, when the signal level of the G signal or the R signal / B signal is saturated, or when one of the G signal of the RG line and the G signal of the BG line is saturated, the adjacent pixel signal component The adverse effects of the leakage reduction correction are suppressed.
[0021]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to FIGS.
(Embodiment 1)
FIGS. 1, 2 (a) and 2 (b), and FIGS. 3 to 8 show (Embodiment 1) of the present invention.
[0022]
FIG. 1 shows a pixel signal color mixture reduction apparatus according to the first embodiment of the present invention.
This configuration diagram is a diagram in the case where the driving clock cycle is the same as one pixel rate.
[0023]
Reference numerals 101 and 102 denote D flip-flops, which generate a pixel signal delayed by one pixel and a pixel signal delayed by two pixels from an original pixel signal (pixel signal without delay).
Reference numeral 103 denotes a correction processing means which is a pixel signal having three primary colors of R (red), G (green), and B (blue), of which specific colors are arranged in a checkered pattern. If not saturated, a certain percentage of signal components calculated from pixel signals other than the specific color, which are horizontally adjacent to the specific color pixel signal, are subtracted from the specific color pixel signal.
[0024]
Specifically, the correction processing unit 103 includes an average value calculation circuit 103a, a first signal switching circuit 103b, a leak signal component calculation circuit 103c, and a subtraction processing circuit 103d.
[0025]
The average value calculation circuit 103a receives the original pixel signal S0 and the pixel signal S2 delayed by two pixels by the D flip-flops 101 and 102 as input signals and a pixel to be corrected (a pixel signal delayed by one pixel in this configuration diagram). Of the pixel signals adjacent in the horizontal direction are calculated.
[0026]
The first signal switching circuit 103b uses the RG line / BG line discrimination signal CO1 as a switching signal, and sets the leakage ratio setting value N1 of the RG line R signal on the RG line G signal side and the BG line G signal side of the BG line B signal. Is switched and output.
[0027]
FIG. 2A shows a pixel G to be corrected when the pixel signal line to be corrected is an RG line. FIG. 2B shows a pixel G to be corrected when the pixel signal line to be corrected is a BG line.
[0028]
The leakage signal component calculation circuit 103c calculates the average value of the pixel signals adjacent in the horizontal direction of the correction target pixel calculated by the average value calculation circuit 103a and the leakage of the G signal output from the first signal switching circuit 103b. The leak signal component is calculated from the ratio setting value. Specifically, for example, when the register setting value of the leakage ratio is 8-bit data, the leakage signal component calculation circuit 103c calculates the average value of the pixel signals adjacent in the horizontal direction of the correction target pixel and the register setting value of the leakage ratio. After multiplying by the multiplication circuit, the bit shift down is performed to 1/256.
[0029]
The subtraction processing circuit 103d subtracts the leakage signal component on the G signal side calculated by the leakage signal component calculation circuit 103c from the correction target pixel signal (pixel signal delayed by one pixel in this configuration diagram).
[0030]
In this way, the correction processing unit 103 converts the leaked signal component into the horizontally adjacent pixel signal calculated inside the block of the correction processing unit 103 from the pixel signal (correction target pixel signal) delayed by one pixel. Subtract.
[0031]
Reference numeral 104 denotes processing stop command means for stopping the adjacent pixel signal leakage reduction correction processing for the specific color pixel signal when the specific color pixel signal reaches the saturation level. More specifically, the processing stop instruction means 104 includes a saturation / unsaturation determination circuit 104a and an OR circuit 104b. To the input of the OR circuit 104b, the output of the saturation / unsaturation determination circuit 104a and the output of the exclusive OR circuit 105b are input. The output of the drive clock divided by 2 signal generation circuit 105a and the line discrimination signal CO1 are input to the input of the exclusive OR circuit 105b.
[0032]
More specifically, since whether the G signal is an odd-numbered pixel signal or an even-numbered pixel signal changes depending on whether the G signal is an RG line or a BG line, the exclusive OR circuit 105b outputs the drive clock divided by 2 signal and the RG line signal. The exclusive OR of the BG line discrimination signal is used to obtain an “L” when the pixel signal delayed by one pixel on both the RG line and the BG line is a G signal. The pixel signal delayed by one pixel is an R signal on the RG line or BG. In the case of the B signal of the line, the signal of "H", that is, the G signal discrimination signal is output.
[0033]
When the pixel signal S1 delayed by one pixel is saturated (when the signal level is 1023), the saturation / non-saturation determination circuit 104a outputs 'H', and the pixel signal delayed by one pixel is not saturated. In this case (when the signal level is smaller than 1023), “L” is output.
[0034]
The OR circuit 104b outputs “H” when the pixel signal delayed by one pixel is the R signal of the RG line or the B signal of the BG line, or when both the RG line and the BG line are saturated with the G signal, the other 1 is output. When the pixel signal delayed by the pixel is a G signal (when the G signal is not saturated) on both the RG line and the BG line, the logical sum of the G signal discrimination signal and the output of the saturation / unsaturation discrimination circuit 104a is output so as to output "L". Take.
[0035]
In this way, the processing stop command means 104 acts as a switching signal generation block of the signal switching circuit 106, and when the pixel signal delayed by one pixel is the R signal on the RG line or the B signal on the BG line, or When the G signal is saturated in both the line and the BG line, “H” is output. When the other pixel signals delayed by one pixel are G signals in the non-saturated state, the output is “L”. .
[0036]
The signal switching circuit 106 is switched to output the pixel signal S1 delayed by one pixel when the phase of the switching signal generated by the processing stop instruction means 104 is "H", and the switching generated by the processing stop instruction means 104 is performed. When the phase of the signal is “L”, the correction processing unit 103 switches to the corrected pixel signal SS obtained by subtracting and correcting the leak signal component from the pixel signal S1 delayed by one pixel. As a result, in the case of the R signal / B signal and the G signal at the time of saturation, a pixel signal delayed by one pixel is output, and in the case of the G signal at the time of non-saturation, a pixel signal obtained by subtracting and correcting a leak signal component is output.
[0037]
The operation of the pixel signal color mixture reduction device configured as shown in FIG. 1 will be described with reference to FIGS.
An image sensor having a three-primary color filter array (Bayer array) as shown in FIG. 4 and having a signal level of 50% white, a signal level of 50% yellow, a signal level of 50% cyan, a signal level of 100% white, and a signal as shown in FIG. FIG. 5 shows the original ideal image sensor output when an image of a 100% yellow and 100% cyan signal level image is taken.
[0038]
3 to 8, the output of the image pickup device is shown in the form of a decimal number of 10-bit data.
R signal level = G signal level = B signal level
In this way, it is an ideal signal with color balance.
[0039]
For example, a 1/32 signal component of the RG line R signal is horizontally adjacent to the RG line G signal side, and a 1/16 signal component of the RG line G signal is horizontally adjacent to the RG line R signal side. A 1/16 signal component of the BG line G signal leaks into the BG line B signal side adjacent in the horizontal direction, and a 1/64 signal component of the BG line B signal leaks into the BG line G signal side adjacent in the horizontal direction. The signal data at this time is shown in FIG.
[0040]
Particularly problematic is the level difference between the G signal on the RG line and the G signal on the BG line when the G signal is not saturated (in FIG. 5 to FIG. 8, the R signal component of the RG line is adjacent in the horizontal direction). RG line G signal component, RG line G signal component horizontally adjacent to RG line R signal side, BG line G signal component is horizontally adjacent to BG line B signal side, BG line B signal Is described in the case where the amounts of the signal components leaking to the BG line G signal side adjacent in the horizontal direction are different. However, even if the amounts of leaking are the same, the R signal, the G signal, and the B signal In a white subject where all three primary colors exist, there is no level difference between the G signal of the RG line and the G signal of the BG line. For example, a G signal / B signal for a cyan subject and an R signal for a yellow subject・ Only G signal exists Then, a level difference occurs between the G signal on the RG line and the G signal on the BG line.When the G signal is saturated, even if there is leakage of an adjacent pixel signal, the saturation level cannot exceed the saturation level. No level difference occurs in the G signal of the BG line). In the correction processing unit 103 according to the first embodiment, for example, the register setting value of the leakage ratio is 8-bit data and the horizontal adjacent pixel signal of the correction target pixel is After multiplying the average value and the register setting value of the leakage ratio by the multiplication circuit, if the bit shift down is 1/256, the leak ratio register setting value on the G signal side of the RG line R signal is set to 8 (8/8 / 256 = 1/32). When the leakage ratio register setting value on the G signal side of the BG line B signal is 4 (4/256), the RG line G signal is The 1/32 signal component of the adjacent RG line R signal is obtained by subtracting the 1/64 signal component of the horizontally adjacent BG line B signal of the BG line G signal from the BG line G signal. FIG. 7 shows the results.
[0041]
As can be seen from FIG. 7, when the G signal is not saturated, the level difference between the G signal on the RG line and the G signal on the BG line is eliminated by the above-described leak signal component subtraction processing on the G signal side. When the signal is saturated, the above-mentioned leakage signal component subtraction processing on the G signal side has an adverse effect, and a level difference between the G signal of the RG line and the G signal of the BG line, which is not in the G signal saturated portion, occurs.
[0042]
Therefore, in the pixel signal color mixture reduction apparatus of the first embodiment, the saturation / unsaturation determination circuit 104a in the processing stop command unit 104 shown in FIG. 1 determines whether the G signal is saturated, and determines whether the G signal is saturated. Is to select and output a pixel signal that has not been subjected to the leakage signal component subtraction processing, and the leakage signal component subtraction processing is limited to the case where the G signal is not saturated.
[0043]
As a result, when the G signal is not saturated as shown in FIG. 8, the level difference between the G signal on the RG line and the G signal on the BG line due to the horizontal leakage signal component of the adjacent pixel signal is reduced, and the G signal is reduced. No adverse effect of the leak signal component subtraction process occurs in the saturated portion.
[0044]
(Embodiment 2)
FIG. 9 shows a pixel signal color mixture reduction device according to Embodiment 2 of the present invention.
Reference numerals 101 and 102 denote D flip-flops, which generate pixel signals S1 and S2 delayed by one pixel with respect to the original pixel signal S0 (pixel signal without delay).
[0045]
The correction processing unit 303 receives the original pixel signal S0 and the pixel signal S2 delayed by two pixels by the D flip-flops 101 and 102 as input signals and outputs a pixel to be corrected (a pixel signal delayed by one pixel in this configuration diagram). An average value of pixel signals adjacent in the horizontal direction is calculated. An average value calculation circuit 303a and first correction processing means for subtracting a fixed percentage of signal components calculated from pixel signals other than the specific color and adjacent to the specific color pixel signal in the horizontal direction by using the output of the average value calculation circuit 303a as an input. And secondly subtracting, from the pixel signal other than the specific color, a fixed percentage of the signal component calculated from the pixel signal other than the specific color and the specific color pixel signal horizontally adjacent to the pixel signal other than the specific color by using the output of the average value calculation circuit 303a as an input. Correction processing means.
[0046]
Specifically, the first correction processing means includes a first signal switching circuit 303b, a first leakage signal component calculation circuit 303c, and a subtraction processing circuit 303g.
[0047]
The first signal switching circuit 303b uses the RG line / BG line discrimination signal CO1 as a switching signal and sets the leakage ratio setting value N1 of the RG line R signal on the RG line G signal side and the BG line G signal side of the BG line B signal. Of the leak rate setting value N2 of the first embodiment.
[0048]
The second correction processing means includes a second signal switching circuit 303d, a second leak signal component calculation circuit 303e, and the subtraction processing circuit 303g.
The second signal switching circuit 303d uses the RG line / BG line discrimination signal CO1 as a switching signal, and sets the leakage ratio setting value N3 of the RG line G signal on the RG line R signal side to the BG line B signal side of the BG line G signal. Of the leakage ratio setting value N4 of the first embodiment.
[0049]
The first leak signal component calculation circuit 303c calculates the average value of the pixel signals adjacent to the correction target pixel in the horizontal direction calculated by the average value calculation circuit 303a and the leak ratio setting value on the G signal side output from the switching circuit 303b. Calculate the leak signal component from
[0050]
The second leakage signal component calculation circuit 303e calculates the average value of the pixel signals adjacent in the horizontal direction of the correction target pixel calculated by the average value calculation circuit 303a and the R signal or B signal output from the second signal switching circuit 303d. The leak signal component is calculated from the leak ratio setting value on the signal side. For example, when the register setting value of the leakage ratio is 8-bit data, the average value of the pixel signals adjacent in the horizontal direction of the correction target pixel and the register setting value of the leakage ratio are multiplied by a multiplication circuit, and then the bit shift down is 1/256. Constitution.
[0051]
In the exclusive OR circuit 304a, whether the G signal is an odd-numbered pixel signal or an even-numbered pixel signal changes depending on whether the G signal is an RG line or a BG line. The exclusive OR of the BG line discrimination signal CO1 is taken, and when the pixel signal delayed by one pixel on both the RG line and the BG line is the G signal, the signal is “L”, and the pixel signal delayed by one pixel is the R signal on the RG line or In the case of the B signal of the BG line, it outputs “H”, that is, a G signal discrimination signal.
[0052]
In the third signal switching circuit 303f, the output signal (G signal discrimination signal) of the exclusive OR circuit 304a is used as a switching signal, and the switching signal of the first leaked signal component calculating circuit 303c or the second leaked signal component calculating circuit 303e is used. Switches the output.
[0053]
The subtraction processing circuit 303g outputs the G signal side leakage due to the G signal adjacent R signal or the B signal of the circuit output of the third signal switching circuit 303f from the correction target pixel signal (the pixel signal S1 delayed by one pixel in this configuration diagram). A subtraction process is performed on the R signal or B signal side leakage signal component due to the R signal or the B signal adjacent G signal.
[0054]
Accordingly, the correction processing unit 303 subtracts a leak signal component to a horizontally adjacent pixel signal calculated inside the block of the 303 from the pixel signal (correction target pixel signal) delayed by one pixel.
[0055]
When the pixel signal S1 delayed by one pixel is saturated, the signal "H" is set in the saturation / non-saturation discriminating circuit 305 as a processing stop instruction means for instructing the first and second correction processing means to stop the correction processing. When the pixel signal delayed by one pixel is not saturated, “L” is output.
[0056]
In the fourth signal switching circuit 306, when the phase of the switching signal generated by the saturation / unsaturation determination circuit 305 is “H”, the pixel signal delayed by one pixel is added to the switching signal generated by the saturation / unsaturation determination circuit 305. When the phase is “L”, the leakage signal component subtraction processing block 303 switches the pixel signal delayed by one pixel to a corrected pixel signal obtained by subtracting and correcting the leakage signal component.
[0057]
Accordingly, in the case of the R signal, the G signal, and the B signal at the time of saturation, the pixel signal delayed by one pixel (the leak signal component subtraction processing is not performed), and in the case of the R signal, the G signal, and the B signal at the time of non-saturation, A pixel signal obtained by subtracting and correcting the leak signal component is output.
[0058]
With such a configuration, the level difference between the G signal on the RG line and the G signal on the BG line and the leakage of the G signal component of the R and B signals due to the horizontal leakage signal component of the adjacent pixel signal are reduced, In addition, no adverse effect of the leakage signal component subtraction process occurs in the R signal, G signal, and B signal saturated portions.
[0059]
In FIG. 9, the output of the first leak signal component calculating circuit 303c and the output of the second leak signal component calculating circuit 303e are switched by the third signal switching circuit 303f to the subtraction processing circuit 303g. Since the correction signal to be selectively subtracted is supplied, the fourth signal switching circuit 306 is switched by the single saturation / unsaturation determination circuit 305 to instruct the stop of the signal leakage reduction correction processing. The first processing stop instruction for instructing the stop of the signal leakage reduction correction processing for the specific color pixel signal when the specific color pixel (G) signal reaches the saturation level at the output of the leakage signal component calculation circuit 303c Means is provided, and when the pixel (R, B) signal other than the specific color reaches the saturation level, the pixel signal other than the specific color is output to the output of the second leak signal component calculation circuit 303e. It may be constructed by providing a second processing stop instruction means for instructing the stopping of the adjacent pixel signal leakage included reduction correction process.
[0060]
(Embodiment 3)
FIGS. 10, 11A and 11B show (Embodiment 3) of the present invention.
FIG. 10 shows a pixel signal color mixture reduction device according to Embodiment 3 of the present invention.
[0061]
This configuration diagram is a diagram in the case where the driving clock cycle is the same as one pixel rate.
The configuration of the correction processing unit 504 itself is the same as that of the correction processing unit 103 of the first embodiment, and includes an average value calculation circuit 504a, a first signal switching circuit 504b, a leakage signal component calculation circuit 504c, The subtraction processing circuit 504d is the same as the average value calculation circuit 103a, the first signal switching circuit 103b, the leak signal component calculation circuit 103c, and the subtraction processing circuit 103d, respectively.
[0062]
Reference numerals 501, 502, and 503 denote D flip-flops, each of which delays a pixel signal line to be corrected, a pixel signal line adjacent above the pixel signal line to be corrected, and a pixel signal line adjacent below the pixel signal line to be corrected by one pixel. The three lines of pixel signals thus generated are generated.
[0063]
Here, the outputs of the D flip-flops 502 and 503 are supplied to the input of the average value calculation circuit 504a, and the output of the D flip-flop 501 is supplied to the input of the subtraction processing circuit 504d.
[0064]
The average value calculation circuit 504a delays a pixel signal generated by delaying a pixel signal line adjacent above the correction target pixel signal line by one pixel and a pixel signal line adjacent below the correction target pixel signal line by one pixel. The pixel signal generated by this is input and the average value of the pixel signals adjacent in the vertical direction to the correction target pixel (in this configuration diagram, the pixel signal generated by delaying the correction target pixel signal line signal by one pixel) is calculated. .
[0065]
The first signal switching circuit 504b uses the RG line / BG line discrimination signal CO1 as a switching signal and sets the leakage ratio setting value N5 of the BG line B signal on the RG line G signal side and the BG line G signal side of the RG line R signal. Is switched to the leakage ratio setting value N6.
[0066]
FIG. 11A shows a pixel G to be corrected when the pixel signal line to be corrected is an RG line. FIG. 11B shows a pixel G to be corrected when the pixel signal line to be corrected is a BG line.
[0067]
The leak signal component calculation circuit 504c sets the average value of the pixel signals adjacent to the correction target pixel in the vertical direction calculated by the average value calculation circuit 504a and the leak ratio of the G signal output from the first switching circuit 504b. Calculate the leak signal component from the value (for example, when the register setting value of the leak rate is 8-bit data, multiply the average value of the pixel signal adjacent in the horizontal direction of the correction target pixel and the register setting value of the leak rate by a multiplication circuit) After that, a configuration of 1/256 by bit shift down).
[0068]
In the subtraction processing circuit 504d, the leakage on the G signal side calculated by the leakage signal component calculation circuit 504c from the correction target pixel signal (in this configuration diagram, a pixel signal generated by delaying the correction target pixel signal line signal by one pixel) Subtract signal components.
[0069]
Accordingly, the correction processing unit 504 converts a pixel signal (correction target pixel signal) generated by delaying the correction target pixel signal line signal by one pixel to a vertically adjacent pixel signal calculated inside the block 504. The subtracted signal component is subtracted.
[0070]
The processing stop instruction means 505 is the same as the processing stop instruction means 104 of the first embodiment, and the saturated / unsaturated determination circuit 505a and the OR circuit 505b are respectively a saturated / unsaturated determination circuit 104a and a logical OR circuit 104b. Is the same as The input of the OR circuit 505b receives the output of the saturation / non-saturation determination circuit 505a and the output of the exclusive OR circuit 506b. The output of the drive clock divided-by-2 signal generation circuit 506a and the line discrimination signal CO1 are input to the input of the exclusive OR circuit 506b.
[0071]
More specifically, whether the G signal becomes an odd-numbered pixel signal or an even-numbered pixel signal changes depending on whether it is an RG line or a BG line. Therefore, the exclusive OR of the drive clock divided by 2 signal and the RG line / BG line discrimination signal is obtained. The exclusive-OR circuit 506b calculates “L” when the pixel signal generated by delaying the correction target pixel signal line signal by one pixel for both the RG line and the BG line is a G signal, and sets the correction target pixel signal line to “L”. If the pixel signal generated by delaying the signal by one pixel is the R signal on the RG line or the B signal on the BG line, it outputs 'H', that is, a G signal discrimination signal.
[0072]
In the saturation / unsaturation determination circuit 505a, when the pixel signal generated by delaying the pixel signal line signal to be corrected by one pixel is saturated, the pixel signal delayed by 'H' by one pixel is not saturated. 'L' is output.
[0073]
In the OR circuit 505b, when the correction target pixel (pixel signal generated by delaying the correction target pixel signal line signal by one pixel) is the R signal of the RG line or the B signal of the BG line, or both the RG line and the BG line When the signal is saturated, “H” is set, and for the other correction target pixels (pixel signals generated by delaying the correction target pixel signal line signal by one pixel), both the RG line and the BG line are G signals (when the G signal is not saturated). In the case of, the logical sum of the G signal discrimination signal and the output of the saturation / non-saturation discrimination circuit 505a is calculated so as to output "L".
[0074]
Accordingly, in the processing stop command unit 505, the correction target pixel (a pixel signal generated by delaying the correction target pixel signal line signal by one pixel) in the block where the second switching signal 507 is generated is the R signal of the RG line or the BG line. In the case of the B signal, or when the G signal is saturated in both the RG line and the BG line, “H” is set, and the other correction target pixel (pixel signal generated by delaying the correction target pixel signal line signal by one pixel) pixel signal Outputs “L” when both the RG line and the BG line are G signals.
[0075]
When the phase of the switching signal generated by the processing stop command means 505 is “H”, the second switching signal 507 is transmitted to the pixel to be corrected (a pixel signal generated by delaying the pixel signal line signal to be corrected by one pixel). When the phase of the switching signal generated by the processing stop command means 505 is "L", leakage occurs from the correction target pixel of the correction processing means 504 (a pixel signal generated by delaying the correction target pixel signal line signal by one pixel). The output is switched to a corrected pixel signal obtained by subtracting and correcting the signal component.
[0076]
Accordingly, the correction target pixel (a pixel signal generated by delaying the correction target pixel signal line signal by one pixel) is leaked in the case of the R signal / B signal and the G signal in the saturation state, and leaked in the case of the G signal in the non-saturation state. A pixel signal obtained by subtracting and correcting the embedded signal component is output.
[0077]
According to this configuration, when the G signal is not saturated, the level difference between the G signal of the RG line and the G signal of the BG line due to the vertical leakage signal component of the adjacent pixel signal is reduced, and the G signal is saturated. The adverse effect of the leak signal component subtraction processing does not occur.
[0078]
(Embodiment 4)
FIG. 12 shows (Embodiment 4) of the present invention. FIGS. 11A and 11B are explanatory diagrams of the correction target pixel when the correction target pixel signal line is the RG line and the BG line.
[0079]
FIG. 12 shows a pixel signal color mixture reduction device according to (Embodiment 4) of the present invention.
This configuration diagram is a diagram in the case where the driving clock cycle is the same as one pixel rate.
[0080]
The configuration of the correction processing unit 704 itself is the same as that of the correction processing unit 303 of the second embodiment, and the average value calculation circuit 704a, the first signal switching circuit 704b, and the first leakage signal component calculation The circuit 704c, the second signal switching circuit 704d, the second leakage signal component calculation circuit 704e, the third signal switching circuit 704f, and the subtraction processing circuit 704g are an average value calculation circuit 303a and a first signal switching circuit 303b, respectively. , A first leak signal component calculating circuit 303c, a second signal switching circuit 303d, a second leak signal component calculating circuit 303e, a third signal switching circuit 703f, and a subtraction processing circuit 703g.
[0081]
Reference numerals 501, 502, and 503 denote D flip-flops, each of which delays a pixel signal line to be corrected, a pixel signal line adjacent above the pixel signal line to be corrected, and a pixel signal line adjacent below the pixel signal line to be corrected by one pixel. The three lines of pixel signals thus generated are generated.
[0082]
In the average value calculation circuit 704a of the correction processing means 704, a pixel signal generated by delaying a pixel signal line adjacent above the pixel signal line to be corrected by one pixel and a pixel signal line adjacent below the pixel signal line to be corrected Is input by inputting a pixel signal generated by delaying the pixel signal by one pixel, and a pixel signal vertically adjacent to the pixel to be corrected (a pixel signal generated by delaying the correction target pixel signal line signal by one pixel in this configuration diagram) is input. Calculate the average value.
[0083]
The first signal switching circuit 704b uses the RG line / BG line discrimination signal CO1 as a switching signal, and sets the leakage ratio setting value N5 of the BG line B signal on the RG line G signal side and the BG line G signal of the RG line R signal. Is switched to the leakage ratio setting value N6 on the side.
[0084]
The first leakage signal component calculation circuit 704c calculates the average value of the pixel signals adjacent in the vertical direction of the correction target pixel calculated by the average value calculation circuit 704a and the leakage of the G signal output from the first signal switching circuit 704b. A leak signal component is calculated from the set value of the leak ratio. For example, when the register setting value of the leakage ratio is 8-bit data, the average value of the pixel signals adjacent in the horizontal direction of the correction target pixel and the register setting value of the leakage ratio are multiplied by a multiplication circuit, and then the bit shift down is 1/256. Constitution.
[0085]
The second signal switching circuit 704d uses the RG line / BG line discrimination signal CO1 as a switching signal and sets a leakage ratio setting value N7 on the RG line R signal side of the BG line G signal and a BG line B signal of the RG line G signal. Is switched to the leakage ratio setting value N8 on the side.
[0086]
The second leakage signal component calculation circuit 704e calculates the average value of the pixel signals adjacent to the correction target pixel in the vertical direction calculated by the average value calculation circuit 704a and the R signal side or B signal output from the second signal switching circuit 704d. The leak signal component is calculated from the leak ratio setting value on the signal side. For example, when the register setting value of the leakage ratio is 8-bit data, the average value of the pixel signals adjacent to the correction target pixel in the vertical direction and the register setting value of the leakage ratio are multiplied by a multiplication circuit, and the bit shift down is 1/256. Constitution.
[0087]
The exclusive OR circuit 705a determines whether the G signal is an odd-numbered pixel signal or an even-numbered pixel signal depending on whether the G signal is an RG line or a BG line. The exclusive OR of the line / BG line discrimination signal CO1 is taken, and when the pixel signal delayed by one pixel is a G signal for both the RG line and the BG line, the signal is “L”, and the pixel signal delayed by one pixel is the RG line. In the case of the R signal or the B signal of the BG line, it outputs 'H', that is, a G signal discrimination signal.
[0088]
The third signal switching circuit 704f uses the output signal (G signal discrimination signal) of the exclusive OR circuit 705a as a switching signal and sets the leakage ratio setting value of the RG line R signal on the BG line G signal side / the BG line B signal. RG line G signal side leakage ratio setting value (704b output R signal component or B signal component G side leakage ratio setting value) and BG line G signal RG line R signal side leakage ratio setting value Switching of the leak rate setting value of the RG line G signal on the BG line B signal side (the leak rate setting value of the G signal component of the 704d output on the R signal side or the B signal side) (that is, the leak rate setting on the G side) The value and the set value of the leakage ratio on the R signal side or the B signal side are switched by the G signal discrimination signal).
[0089]
In the subtraction processing circuit 704g, the G signal output from the third signal switching circuit 704f is vertically adjacent to the correction target pixel signal (in this configuration diagram, a pixel signal generated by delaying the correction target pixel signal line signal by one pixel). A leak signal component on the G signal side due to the R signal or the B signal or a leak signal component on the R signal or the B signal side due to a vertically adjacent G signal of the R signal or the B signal is subtracted.
[0090]
Accordingly, the correction processing unit 704 converts the pixel signal line signal to be corrected (pixel signal to be corrected) generated by delaying the pixel signal line signal by one pixel from a pixel signal that is calculated in the correction processing unit 704 to a vertically adjacent pixel signal. Is subtracted.
[0091]
The saturation / non-saturation determination circuit 706 outputs “H” when the pixel signal generated by delaying the correction target pixel signal line signal by one pixel is saturated, and delays the correction target pixel signal line signal by one pixel. When the pixel signal thus generated is not saturated, “L” is output.
[0092]
The fourth signal switching circuit 707 uses the output signal of the saturation / non-saturation determination circuit 706 as a switching signal, and generates a pixel generated by delaying the correction target pixel signal line signal by one pixel when the phase of the switching signal is “H”. A signal is output as an output pixel signal. When the phase of the switching signal is “L”, the output signal of the subtraction processing circuit 704g is output as an output pixel signal.
[0093]
As a result, in the case of the R signal, G signal, and B signal at the time of saturation, the pixel signal generated by delaying the pixel signal line signal to be corrected by one pixel (no subtraction processing of the leakage signal component) is performed. In the case of the R signal / B signal / G signal, a pixel signal obtained by subtracting and correcting the leak signal component is output.
[0094]
With this configuration, the level difference between the G signal on the RG line and the G signal on the BG line and the leakage of the G signal component of the R signal and B signal due to the vertical leakage signal component of the adjacent pixel signal are reduced, and the R signal and G signal are reduced. In the signal / B signal saturated portion, the adverse effect of the leak signal component subtraction processing does not occur.
[0095]
In FIG. 12, the output of the first leakage signal component calculation circuit 704c and the output of the second leakage signal component calculation circuit 704e are switched by the third signal switching circuit 704f to the subtraction processing circuit 704g. Since the correction signal to be selectively subtracted was supplied, the fourth signal switching circuit 707 was switched by the single saturation / unsaturation determination circuit 706 to instruct the stop of the signal leakage reduction correction processing. The first process instructs the output of the leak signal component calculation circuit 704c to stop the signal leak reduction correction process for the specific color pixel signal when, for example, the (G) signal of the specific color pixel reaches the saturation level. A stop command unit is provided, and when the (R, B) signal of a pixel other than the specific color reaches the saturation level, the output of the second leak signal component calculation circuit 704e is provided. It may be constructed by providing a second processing stop instruction means for instructing the stopping of the adjacent pixel signal leakage included reduction correction processing on the pixel signal.
[0096]
(Embodiment 5)
FIG. 13 shows (Embodiment 5) of the present invention. FIGS. 11A and 11B are explanatory diagrams of the correction target pixel when the correction target pixel signal line is the RG line and the BG line.
[0097]
FIG. 10 shows a pixel signal color mixture reduction device according to (Embodiment 5) of the present invention.
This configuration diagram is a diagram in the case where the driving clock cycle is the same as one pixel rate.
[0098]
Reference numerals 101, 502, 503, and 104 denote D flip-flops, each of which is a pixel signal line to be corrected, a pixel signal line adjacent above the pixel signal line to be corrected, and a pixel signal line adjacent below the pixel signal line to be corrected. A pixel signal of three lines delayed by a pixel and a signal delayed by two pixels of the correction target pixel signal line and the correction target pixel signal line are generated.
[0099]
The first correction processing unit 905 has the same configuration as the correction processing unit 103 in FIG. 1, and performs the first correction from a pixel signal (correction target pixel signal) generated by delaying the correction target line signal by one pixel. The leak signal component to the horizontally adjacent pixel signal calculated inside the processing unit 905 is subtracted.
[0100]
The second correction processing unit 906 has the same configuration as the correction processing unit 504 in FIG. 10, and is further calculated inside the block 906 from the pixel signal (correction target pixel signal) processed by the first correction processing unit 905. A leak signal component to a pixel signal adjacent in the vertical direction is subtracted.
[0101]
The signal switching circuit 908 has the same configuration as the signal switching circuit 106 in FIG. 1, and the processing stop instruction means 907 for generating a switching signal has the same configuration as the processing stop instruction means 104 in FIG. The portion composed of the driving clock divided signal generating circuit 105a and the exclusive OR circuit 105b has the same configuration as that of FIG.
[0102]
Accordingly, the processing stop command unit 907 determines whether the pixel signal (correction target pixel signal) generated by delaying the correction target line signal by one pixel is the R signal of the RG line or the B signal of the BG line, or the RG line / BG When the G signal is saturated in both lines, the signal is set to “H”. When the pixel signal (correction target pixel signal) generated by delaying the other correction target line signals by one pixel is the G signal for both the RG line and the BG line, “H” is set. L ′ is output. The signal switching circuit 908 outputs a pixel signal (correction target pixel signal) generated by delaying the correction target line signal by one pixel when the phase of the switching signal generated by the processing stop instruction means 907 is “H”, When the phase of the switching signal generated by the processing stop instruction means 907 is “L”, the signal is switched to the corrected pixel signal output from the second correction processing means 906 and output.
[0103]
As a result, a pixel signal (correction target pixel signal) generated by delaying the correction target line signal by one pixel in the case of the R signal / B signal and the G signal at the time of saturation is output to the output of the signal switching circuit 908. In the case of the G signal at the time of non-saturation, a pixel signal obtained by subtracting and correcting the leak signal component is output.
[0104]
With this configuration, the level difference between the G signal of the RG line and the G signal of the BG line due to the horizontal and vertical leakage signal components of the adjacent pixel signal is reduced, and the leakage signal component subtraction process is performed on the G signal saturated portion. No harm will occur.
[0105]
(Embodiment 6)
FIG. 14 shows (Embodiment 6) of the present invention. FIGS. 11A and 11B are explanatory diagrams of the correction target pixel when the correction target pixel signal line is the RG line and the BG line.
[0106]
FIG. 14 shows a pixel signal color mixture reduction device according to (Embodiment 6) of the present invention.
This configuration diagram is a diagram in the case where the driving clock cycle is the same as one pixel rate.
[0107]
Reference numerals 101, 102, 502, and 503 denote D flip-flops, and the D flip-flops 101, 502, and 503 denote correction target pixel signal lines, pixel signal lines adjacent above the correction target pixel signal line, and below the correction target pixel signal line. Are generated, three pixel signals are generated by delaying the pixel signal lines adjacent to. The D flip-flop 102 generates a correction target pixel signal line and a signal delayed by two pixels of the correction target pixel signal line.
[0108]
The first correction processing unit 1105 has the same configuration as the correction processing unit 303 in FIG. 9, and calculates a fourteenth correction from a pixel signal (correction target pixel signal) generated by delaying the correction target line signal by one pixel. The leakage signal component to the horizontally adjacent pixel signal calculated inside the processing unit 1105 is subtracted.
[0109]
The second correction processing unit 1106 has the same configuration as the correction processing unit 704 in FIG. 12, and further includes a pixel signal (correction target pixel signal) subjected to the horizontal adjacent pixel signal leakage subtraction processing by the first correction processing unit 1105. Then, the leak signal component to the vertically adjacent pixel signal calculated inside the second correction processing unit 1106 is subtracted.
[0110]
The saturation / unsaturation determination circuit 1107 has the same configuration as the saturation / unsaturation determination circuit 706 of FIG. 12, and is “H” when a pixel signal (correction target pixel signal) generated by delaying the correction target line signal by one pixel is saturated. When a pixel signal (correction target pixel signal) generated by delaying the correction target line signal by one pixel (non-saturation) is output, “L” is output.
[0111]
The signal switching circuit 1108 outputs the output signal of the D flip-flop 101 when the phase of the switching signal generated by the saturation / unsaturation determination circuit 1107 is “H”, using the output signal of the saturation / unsaturation determination circuit 1107 as a switching signal. When the phase of the switching signal generated by the saturation / unsaturation determination circuit 1107 is “L”, the first and second correction processing means 1105 and 1106 switch to a corrected pixel signal obtained by subtracting and correcting a leak signal component. I do.
[0112]
Accordingly, a pixel signal (correction target pixel signal) generated by delaying the correction target line signal by one pixel in the case of the R signal / B signal and the G signal at the time of saturation is leaked in the case of the G signal at the time of non-saturation. A pixel signal obtained by subtracting and correcting the embedded signal component is output.
[0113]
With this configuration, the level difference between the G signal of the RG line and the G signal of the BG line due to the horizontal and vertical leakage signal components of the adjacent pixel signal is reduced, and the leakage signal component subtraction process is performed on the pixel signal saturated portion. No harm will occur.
[0114]
In FIG. 14, when the phase of the switching signal generated by the saturation / unsaturation determination circuit 1107 is “H”, the output signal of the D flip-flop 101 is output, and the correction by the first and second correction processing units 1105 and 1106 is performed. Although the processing has been stopped, this can also be configured as shown in FIG.
[0115]
In FIG. 15, it is divided into the following two systems. That is, a first correction processing unit 1105a for performing horizontal correction of a specific color, and a third correction process for performing vertical correction of a specific color using an output signal of the first correction processing unit 1105a as an input. One system is constituted by the unit 1106a and the first signal switching circuit 1108a for selecting and outputting the output of the third correction processing unit 1106a or the output signal of the D flip-flop 101, and the other system is specified. A second correction processing unit 1105b for performing a horizontal correction other than a color, and a fourth correction processing unit for performing a vertical correction other than a specific color by using an output signal of the second correction processing unit 1105b as an input. 1106b and a second signal switching circuit 1108b for selecting and outputting the output of the fourth correction processing means 1106b or the output signal of the D flip-flop 101. To have.
[0116]
The first and second signal switching circuits 1108a and 1108b are switched by the output of the saturation / unsaturation discrimination circuit 1107, and the output of the third correction processing means 1106a via the third signal switching circuit 1108c when the signal is not saturated. The signal or the fourth correction processing means 1106b is output as an output pixel signal.
[0117]
Note that the saturation / unsaturation determination circuits 1107a and 1107b stop the adjacent pixel signal leakage reduction correction processing for the specific color pixel signal when the specific color pixel signal reaches the saturation level, and the pixel signals other than the specific color are saturated. When the level reaches the level, the correction processing of the adjacent pixel signal leakage reduction for the pixel signal other than the specific color is stopped.
[0118]
(Embodiment 7)
16 to 23 show (Embodiment 7) of the present invention.
FIG. 16 shows a pixel signal color mixture reduction apparatus according to (Embodiment 7) of the present invention.
[0119]
This configuration diagram is a diagram in the case where the driving clock cycle is the same as one pixel rate. The pixel unevenness correction will be described for the case of signal lateral leakage.
The D flip-flops 101, 502, and 503 delay the correction target pixel signal line, the pixel signal line adjacent above the correction target pixel signal line, and the pixel signal line adjacent below the correction target pixel signal line by one pixel. Three pixel signal lines are generated.
[0120]
The D flip-flops 102, 1306, and 1307 delay the correction target pixel signal line, the pixel signal line adjacent above the correction target pixel signal line, and the pixel signal line adjacent below the correction target pixel signal line by two pixels, respectively. The three pixel signal lines thus generated are generated.
[0121]
The correction processing unit 1305 subtracts, from the pixel signal (correction target pixel signal) delayed by one pixel, the leakage signal component calculated in the correction processing unit 1305 to a horizontally adjacent pixel signal. The internal processing is the same as that of the correction processing unit 103 in FIG.
[0122]
The D flip-flop 1306 delays the pixel signal line signal adjacent to the correction target line by one pixel, and the diagonally upper right pixel signal of the correction target pixel, and the D flip-flop 1307 is adjacent below the correction target line. Since the pixel signal line signal is delayed by one pixel to generate a pixel signal diagonally lower right of the pixel to be corrected, and the pixel signal to be corrected is delayed by one pixel by the D flip-flop 101, the pixel signal to be corrected is A pixel signal line signal adjacent above the line is an obliquely upper left pixel signal of the correction target pixel, and a pixel signal line signal adjacent below the correction target pixel signal line is an oblique lower left pixel signal of the correction target pixel.
[0123]
The saturation / unsaturation determination circuit 1308 that switches the signal switching circuit 1310 includes first to fifth saturation / unsaturation determination circuits 1308a to 1308e.
The first saturation / unsaturation determination circuit 1308a outputs "H" when the pixel signal at the upper left of the correction target pixel is saturated, and outputs "L" when the pixel signal is unsaturated. The second saturation / unsaturation determination circuit 1308b outputs “H” when the pixel signal at the lower right of the pixel to be corrected is saturated, and outputs “L” when the pixel signal is not saturated. The third saturation / unsaturation determination circuit 1308c outputs “H” when the pixel signal at the lower left of the correction target pixel is saturated, and outputs “L” when the pixel signal is unsaturated. The fourth saturation / unsaturation determination circuit 1308d outputs “H” when the pixel signal at the upper right of the correction target pixel is saturated, and outputs “L” when the pixel signal is not saturated. The fifth saturation / unsaturation determination circuit 1308e outputs “H” when the correction target pixel is saturated, and outputs “L” when the correction target pixel is not saturated.
[0124]
The logical product circuit 1308f detects the logical product of the output of the first saturated / unsaturated determining circuit 1308a and the output of the second saturated / unsaturated determining circuit 1308b.
The logical product circuit 1308g detects the logical product of the output of the third saturation / non-saturation determination circuit 1308c and the output of the fourth saturation / non-saturation determination circuit 1308d.
[0125]
The logical product circuit 1308h detects a logical product of the output of the logical product circuit 1308f and the output of the logical product circuit 1308g.
The logical product circuit 1308i detects a logical product of the output of the logical product circuit 1308h and the output of the fifth saturation / unsaturation determination circuit 1308e. The output of the AND circuit 1308i is a switching signal of the signal switching circuit 1310 via the OR circuit 1309.
[0126]
That is, the saturation / unsaturation determination circuit 1308 calculates the pixel signal at the upper left of the pixel to be corrected, the pixel signal at the lower right of the pixel to be corrected, the pixel signal at the lower left of the pixel to be corrected, and the pixel signal at the lower left of the pixel to be corrected. The saturation / non-saturation determination circuit for the pixel signal to be corrected includes a pixel signal at the upper left of the pixel to be corrected, a pixel signal at the lower right of the pixel to be corrected, a pixel signal at the lower left of the pixel to be corrected, and a lower left pixel of the pixel to be corrected. 'H' is output when the pixel signal and the pixel signal to be corrected are simultaneously saturated, and 'L' is output in other cases.
[0127]
Reference numeral 304b denotes a drive clock divided signal generation circuit 304, and reference numeral 304a denotes an exclusive OR circuit. The drive clock is different because the G signal becomes an odd-numbered pixel signal or an even-numbered pixel signal depending on whether it is an RG line or a BG line. The exclusive OR of the divide-by-2 signal and the RG line / BG line discrimination signal is set to "L" when the correction target pixel signal is a G signal for both the RG line and the BG line, and the correction target pixel signal is set to the R signal of the RG line. Or, when the signal is a B signal on the BG line, it outputs “H”, that is, a G signal discrimination signal, and the OR circuit 1309 outputs a signal when the pixel signal to be corrected is the R signal on the RG line or the B signal on the BG line, or an AND circuit. If the output of 1308i is 'H', the output is 'H'; otherwise, the pixel signal to be corrected is a G signal for both the RG line and the BG line and the output of the AND circuit 1308i. There 'H' when the to output 'L', to detect the logical sum of the G signal discrimination signal.
[0128]
Accordingly, the output of the OR circuit 1309 includes, when the pixel signal to be corrected is the R signal of the RG line or the B signal of the BG line, or when the G signal is saturated in both the RG line and the BG line and the G signal to be corrected ( (Correction target pixel signal) Neighboring upper right, adjacent lower right, lower left, and upper left G signal is also “H” when the G signal is also not saturated or G signal of the correction target pixel signal. Is saturated, and when all of the G signals are not saturated, the output is 'L'.
[0129]
The signal switching circuit 1310 corrects the pixel signal of the correction target line delayed by one pixel when the output phase of the OR circuit 1309 is “H”, and corrects the pixel signal when the output phase of the OR circuit 1309 is “L”. The processing unit 1305 switches the pixel signal delayed by one pixel to a corrected pixel signal obtained by subtracting and correcting the leakage signal component, and outputs an output pixel signal.
[0130]
Thus, when the R signal / B signal or the G signal is saturated and the G signal adjacent diagonally upper right, the adjacent diagonally lower right, the adjacent diagonally lower left, and the adjacent diagonally upper left G signal are saturated, the correction target line pixel signal delayed by one pixel If the G signal is not saturated or the G signal is saturated and the G signal adjacent diagonally upper right, adjacent diagonally lower right, adjacent diagonally lower left, and adjacent diagonally upper left G signal are not saturated, the leakage signal component is subtracted. The corrected pixel signal is output.
[0131]
The operation of the pixel signal color mixture reduction device configured as shown in FIG. 16 will be described with reference to FIGS.
FIG. 20 shows an original ideal image sensor output when an image of a subject as shown in FIG. 18 is picked up by an image sensor having a three primary color filter array (Bayer array) as shown in FIG.
[0132]
18 to 23, the output of the image sensor is shown in the form of 10-bit data in decimal notation.
R signal level = G signal level = B signal level
In this way, it is an ideal signal with color balance.
[0133]
For example, 1/32 signal component of the R signal is on the G signal side adjacent to the horizontal direction, and 1/16 signal component of the G signal is on the R signal side or the B signal side adjacent to the horizontal direction. FIG. 21 shows signal data when the / 64 signal component leaks into the G signal side adjacent in the horizontal direction.
[0134]
Particularly problematic is the level difference between the G signal on the RG line and the G signal on the BG line when the G signal is not saturated (when the G signal is saturated, saturation occurs even if adjacent pixel signals leak. A level difference between the G signal of the RG line and the G signal of the BG line, which is unlikely to be higher than the level, does not occur.) The leak signal component subtraction processing block (FIG. 16) of the pixel signal color mixing reduction apparatus of the seventh embodiment. In 1305), for example, when the register setting value of the leakage ratio is 8-bit data, the multiplication circuit multiplies the average value of the horizontal adjacent pixel signal of the correction target pixel by the register setting value of the leakage ratio, and then performs bit shift down. In the case of the configuration of 1/256, the leakage ratio register value of the G signal side of the RG line R signal is set to 8 (8/256 = 1/32) · the leakage of the G signal side of the BG line B signal. When the ratio register setting value is 4 (4/256), the signal component of 1/32 of the R signal adjacent to the RG line G signal in the horizontal direction from the RG line G signal is converted from the BG line G signal to the horizontal component of the BG line G signal. This means that 1/64 signal component of the B signal adjacent in the direction is subtracted, and the processing result is shown in FIG. When the G signal is not saturated, the level difference between the G signal on the RG line and the G signal on the BG line is eliminated, but when the G signal is saturated, the leakage signal component subtraction processing on the G signal side is performed. An adverse effect appears, and a step occurs between the G signal of the RG line and the G signal of the BG line, which are not in the G signal saturated portion.
[0135]
Also, as shown in FIGS. 18 to 23, when only the G signal of the RG line is saturated out of the G signal of the RG line and the G signal of the BG line (the leakage amount of the R signal component on the adjacent G signal side is B In the case where the signal component is larger than the leakage amount on the adjacent G signal side), in the pixel signal color mixture reduction device having the configuration described in the first to sixth embodiments, signal leakage occurs when the G signal is saturated. Since the correction is not performed, the G signal of the RG line is not corrected, and the signal leakage correction is performed only for the G signal of the BG line. Therefore, the step between the G signal of the RG line and the G signal of the BG line is rather changed. Occurs.
[0136]
Therefore, in the pixel signal color mixture reduction apparatus of the seventh embodiment, when the correction target G signal is saturated, the correction target G signal is diagonally upper right, diagonally lower right, and diagonally lower by the saturation / unsaturation determination circuit 1308. It is determined whether the upper left and the lower left are saturated, and when the G signal to be corrected is saturated, the upper right, lower right, upper left, and lower left of the correction target G signal are saturated (the G signal of the RG line is also saturated). When the BG line G signal is also saturated, the signal switching circuit 1310 is switched to select and output a pixel signal that has not been subjected to the leakage signal component subtraction processing, and the correction target G signal is not saturated. Alternatively, even if the correction target G signal is saturated, if the diagonally upper right, diagonally lower right, diagonally upper left, or diagonally lower left of the correction target G signal is not saturated, the pixel signal subjected to the leakage signal component subtraction processing is used. Select to be output.
[0137]
As a result, when the G signal is not saturated as shown in FIG. 23, the level difference between the G signal on the RG line and the G signal on the BG line due to the leak signal component of the adjacent pixel signal is reduced, and the G signal is saturated. (When both the G signal of the RG line and the G signal of the BG line are saturated) or when only the G signal of the RG line is saturated out of the G signal of the RG line and the G signal of the BG line, the leakage signal component subtraction is performed. No adverse effects of processing occur.
[0138]
In this (Embodiment 7), the saturation / unsaturation discriminating circuit 1308 is implemented in (Embodiment 1), and the level of the specific color pixel signal to be corrected is saturated, and the diagonal right and diagonal right of the specific color pixel signal to be corrected are set. When the level of the specific color pixel signal to be corrected adjacent to the lower, diagonally upper left, and diagonally lower left pixels is saturated, an example in which the adjacent pixel signal leakage correction processing for the specific color pixel signal to be corrected is stopped has been described. Also in the second to sixth embodiments, the provision of the saturation / non-saturation determination circuit 1308 can be expected to improve the image quality unevenness.
[0139]
(Embodiment 8)
FIG. 24 shows (Embodiment 8) of the present invention. See FIG. 17 for an explanatory diagram of the correction target pixel when the correction target pixel signal line is the RG line.
[0140]
FIG. 24 shows a pixel signal color mixture reduction apparatus according to (Embodiment 8) of the present invention. The AND circuit 1308h of the saturation / unsaturation discriminating circuit 1308 of (Embodiment 7) is changed to an OR circuit 1508h to saturate non-saturation. The only difference is that a saturation determination circuit 1508 is used.
[0141]
According to this configuration, the level difference between the G signal on the RG line and the G signal on the BG line due to the leak signal component of the adjacent pixel signal is reduced, and the G signal is saturated (G signal on the RG line, G signal on the BG line). When both the G signal of the RG line and the G signal of the BG line are saturated, only the G signal of the RG line is saturated.
[0142]
In this (Embodiment 8), the saturation / non-saturation discrimination circuit 1508 is implemented in (Embodiment 1), and the level of the specific color pixel signal to be corrected is saturated and the upper right and lower left of the specific color pixel signal to be corrected are diagonally lower right and lower left. When the level of the peripheral specific color pixel signal to be corrected adjacent to the target is saturated, or when the level of the specific color pixel signal to be corrected is saturated and the level of the peripheral specific color pixel signal to be corrected adjacent to the lower right and diagonally upper left of the specific color pixel signal to be corrected is saturated. Or, when the level of the specific color pixel signal to be corrected is saturated and the level of the specific color pixel signal adjacent to the correction target adjacent to the upper right, lower right, lower left, upper left, and lower left of the specific color pixel signal to be corrected is saturated, the specific color pixel signal is output. Has been described as an example in which the adjacent pixel signal leakage reduction correction processing is stopped, but in the second to sixth embodiments, the saturation / non-saturation discrimination processing is performed similarly. 1508 can be expected to improve the image quality non-uniformity by providing a.
[0143]
(Embodiment 9)
25 to 31 show (Embodiment 9) of the present invention. See FIG. 17 for an explanatory diagram of the correction target pixel when the correction target pixel signal line is the RG line.
[0144]
FIG. 25 shows a pixel signal color mixture reduction device according to Embodiment 9 of the present invention.
This configuration diagram is a diagram in the case where the driving clock cycle is the same as one pixel rate. The pixel unevenness correction will be described for the case of signal lateral leakage.
[0145]
1701, 1702, 1703, 1706, 1707, 1712, and 1713 are D flip-flops. The D flip-flops 1701, 1706, and 1712 respectively delay the pixel signal line to be corrected, the pixel signal line adjacent above the pixel signal line to be corrected, and the pixel signal line adjacent below the pixel signal line to be corrected by one pixel. Three pixel signal lines are generated.
[0146]
The D flip-flops 1702, 1707, and 1713 respectively delay the pixel signal line to be corrected, the pixel signal line adjacent above the pixel signal line to be corrected, and the pixel signal line adjacent below the pixel signal line to be corrected by two pixels. Three pixel signal lines are generated.
[0147]
The D flip-flop 1703 generates a pixel signal obtained by delaying the pixel signal line signal to be corrected by three pixels.
Reference numerals 1704, 1708, and 1714 denote correction processing means. The internal processing is the same as that of the correction processing means 103 in FIG.
[0148]
The correction processing unit 1704, as a horizontal leakage signal component subtraction processing block, calculates a horizontally adjacent pixel signal calculated inside the correction processing unit 1704 from a pixel signal (correction target line pixel signal) delayed by one pixel. Of the signal component leaking into the circuit.
[0149]
Correction processing means 1708 and 1714 are also horizontal leakage signal component subtraction processing blocks having the same configuration as 1704, and the correction processing means 1708 performs a horizontal leakage signal on a signal of an adjacent pixel signal line above the line signal to be corrected. The component subtraction / correction processing unit 1714 performs a horizontal leakage signal component subtraction process on a signal of a pixel signal line adjacent below the correction target line signal.
[0150]
As can be seen from FIG. 25, the pixel signal input to the correction processing unit 1704 has a larger delay amount by one pixel than the pixel signals input to the correction processing units 1708 and 1714. When the leakage signal component subtraction processing is being performed, the correction processing unit 1708 outputs the horizontal leakage signal of the pixel signal one pixel after the correction target G signal on the pixel signal line adjacent to the correction target G signal. The component subtraction processing, that is, the horizontal leakage signal component subtraction processing of the G signal obliquely upper left of the G signal to be corrected, and similarly, the correction processing unit 1714 determines the horizontal leakage signal component of the G signal diagonally lower left of the G signal to be corrected. Subtraction processing will be performed.
[0151]
Therefore, the signal obtained through the D flip-flops 1710 and 1711 at the output of the correction processing unit 1708 is the result of the horizontal leakage signal component subtraction processing of the G signal at the upper right of the G signal to be corrected. The signals obtained through the D flip-flops 1715 and 1716 at the output of the correction processing unit 1714 are the results of the horizontal leakage signal component subtraction processing of the G signal at the lower right of the G signal to be corrected.
[0152]
Reference numeral 1705 denotes a saturation / non-saturation determination circuit for the correction target pixel (correction target G signal), which outputs “H” when the correction target pixel is saturated and outputs “L” when the correction target pixel is not saturated.
Reference numeral 1717 denotes an average value calculation circuit that calculates an average value of the result of the horizontal leakage signal component subtraction processing of the pixel signals (G signals) at the upper right, lower right, lower left, and lower left of the pixel signal to be corrected.
[0153]
Reference numeral 1718 denotes a magnitude comparison circuit which is a diagonally upper right, diagonally lower right, diagonally upper left, and diagonally lower left pixel signal of the correction target pixel signal (correction target G signal) in the horizontal direction and the correction target pixel signal. Compare the average value of the result of the horizontal leakage signal component subtraction processing of the diagonally upper right, diagonally lower right, diagonally upper left, and diagonally lower left G signals, and subtract the horizontal leakage signal component of the correction target pixel. If the processing result is smaller than the average value of the horizontal leakage signal component subtraction processing result of the pixel signals at the obliquely upper right, obliquely lower right, obliquely upper left, and obliquely lower left of the pixel signal to be corrected, 'H' is set. When the result of the direction leakage signal component subtraction processing is greater than the average value of the result of the horizontal leakage signal component subtraction processing of the pixel signals at the obliquely upper right, lower right, lower left, and lower left of the pixel signal to be corrected, 'L' is set. Output.
[0154]
The logical product circuit 1719 outputs the logical product of the output of the saturation / unsaturation determination circuit 1705 and the output of the magnitude comparison circuit 1718.
The signal switching circuit 1720 using the output of the AND circuit 1719 as a selection signal is used to calculate the result of the horizontal leakage signal component subtraction processing of the correction target pixel and the diagonally upper right, diagonally lower right, diagonally upper left, and diagonally lower left pixels of the correction target pixel signal. The average value of the result of the subtraction processing of the signal in the horizontal direction is switched and output.
[0155]
That is, when the correction target pixel is saturated and the horizontal leakage signal component subtraction processing result of the correction target pixel is obtained, the horizontal leakage signal component subtraction of the diagonally upper right, diagonally lower right, diagonally upper left, and diagonally lower left pixel signals of the correction target pixel signal is performed. When the processing result is smaller than the average value, the selection signal becomes “H”, and the horizontal leakage signal component subtraction processing result average value of the oblique upper right, oblique lower right, oblique upper left, and oblique lower left pixel signals of the pixel signal to be corrected is calculated as Select and output, and when the correction target pixel is not saturated or the correction target pixel is saturated and the horizontal leakage signal component subtraction processing result of the correction target pixel is obtained, the diagonal upper right, diagonally lower right, diagonally upper left, diagonally lower left of the correction target pixel signal is obtained. When the selected signal is larger than the average value of the result of the horizontal leakage signal component subtraction processing of the pixel signal, the selection signal becomes “L”, and the result of the horizontal leakage signal component subtraction processing of the pixel to be corrected is selectively output.
[0156]
Reference numeral 1709 denotes a saturation / non-saturation determination circuit which determines a pixel signal (a diagonally upper left G signal of a G signal to be corrected) obtained by delaying a pixel signal adjacent to a correction target line (a correction target pixel) by one pixel, and determines a saturation state. Outputs a determination result of "H" and "L" when it is not saturated.
[0157]
Further, the output of the saturation / unsaturation determination circuit 1709 is passed through the two-stage D flip-flops 1721 and 1722 to obtain a saturation / unsaturation determination result for the obliquely upper right G signal of the G signal to be corrected.
[0158]
Reference numeral 1723 denotes a saturation / non-saturation determination circuit which determines a pixel signal (a lower left G signal of the correction target G signal) delayed by one pixel of an adjacent pixel signal below the correction target line (correction target pixel), and determines whether the pixel signal is saturated. Outputs a determination result of "H" and "L" when it is not saturated.
[0159]
Further, the output of the saturation / unsaturation determination circuit 1723 is passed through two stages of D flip-flops 1724 and 1725 to obtain a saturation / unsaturation determination result for the diagonally lower right G signal of the G signal to be corrected.
[0160]
The logical product circuit 1726 detects the logical product of the output of the saturation / unsaturation determination circuit 1709 and the output of the D flip-flop 1722.
The logical product circuit 1727 detects the logical product of the output of the saturation / unsaturation determination circuit 1723 and the output of the D flip-flop 1725.
[0161]
The logical product circuit 1728 detects the logical product of the outputs of the logical product circuits 1726 and 1727. In other words, the pixel signals at the oblique upper right, oblique lower right, oblique upper left, and oblique lower left of the pixel to be corrected (the oblique upper right, oblique lower right, oblique upper left, and oblique lower left G signals of the amendment target G signal) are When all are saturated, 'H' is set to the diagonally upper right, diagonally lower right, diagonally upper left, diagonally lower left of the pixel to be corrected when the pixel signal is not saturated or diagonally upper right, diagonally lower right, diagonally upper left, diagonally lower left of the pixel to be corrected. When all are not saturated, 'L' is output.
[0162]
The logical product circuit 1729 detects the logical product of the output of the logical product circuit 1728 and the output of the saturation / unsaturation determination circuit 1705. That is, the output is “H” only when the pixel signals at the obliquely upper right, obliquely lower right, obliquely upper left, and obliquely lower left of the pixel to be corrected are saturated and the pixel to be corrected is saturated. Otherwise, “L” is output.
[0163]
Reference numeral 1730 denotes a G signal discrimination signal generation circuit which outputs "L" for a G signal and "H" for an R signal or a B signal. The internal circuit is constituted in the same manner by the processing stop command means 104 of FIG. 1, the drive clock divided-by-2 signal generation circuit 105a and the exclusive OR circuit 105b.
[0164]
The logical sum circuit 1731 detects the logical sum of the output of the G signal determination signal generation circuit 1730 and the output of the logical product circuit 1729.
The signal switching circuit 1732 using the output of the OR circuit 1731 as a switching signal is a G signal when the R signal / B signal or the G signal is saturated and the G signal is adjacent diagonally upper right, adjacent diagonally lower right, adjacent diagonally lower left, and adjacent diagonally upper left G signal. When the G signal is saturated, a correction target line pixel signal is output which is delayed by one pixel. When the G signal is saturated and the G signal leakage signal component subtraction correction result is obtained, the G signal adjacent upper right, the adjacent lower right, the adjacent lower left, and the upper left When the signal component subtraction correction result of the G signal is larger, the correction target G signal leakage signal component subtraction correction result and the correction target G signal adjacent diagonally upper right, adjacent diagonally lower right, adjacent diagonally lower left, and adjacent diagonally upper left G signal. To correct the signal difference of the component subtraction correction result, the correction target G signal leakage signal component subtraction correction result is corrected to the correction target G signal adjacent diagonally upper right, adjacent diagonally lower right, adjacent diagonally lower left, adjacent diagonal. The signal is subtracted from the signal component subtraction correction result of the upper left G signal, and is output when the G signal is not saturated or the G signal is saturated and the G signal leakage signal component subtraction correction result is obtained. If the signal component subtraction correction result of the lower left diagonal and the adjacent upper left diagonal G signal is smaller, the correction target G signal leakage signal component subtraction correction result is output.
[0165]
The operation of the pixel signal color mixture reduction device configured as shown in FIG. 25 will be described with reference to FIGS.
FIG. 28 shows an original ideal image sensor output when an image of a subject as shown in FIG. 26 is captured by an image sensor having a three primary color filter array (Bayer array) as shown in FIG. 26 to 31, the output of the image sensor is shown in the form of 10-bit data in decimal notation.
R signal level = G signal level = B signal level
In this way, it is an ideal signal with color balance.
[0166]
For example, 1/32 signal component of the R signal is on the G signal side adjacent to the horizontal direction, and 1/16 signal component of the G signal is on the R signal side or the B signal side adjacent to the horizontal direction. FIG. 29 shows signal data when the / 64 signal component leaks into the G signal side adjacent in the horizontal direction.
[0167]
Particularly problematic is the level difference between the G signal on the RG line and the G signal on the BG line when the G signal is not saturated (when the G signal is saturated, saturation occurs even if adjacent pixel signals leak. A level difference between the G signal of the RG line and the G signal of the BG line, which cannot be equal to or higher than the level, does not occur.) The leak signal component subtraction processing block (FIG. 25) of the pixel signal color mixture reduction apparatus of the ninth embodiment. 1704, 1708, and 1714), for example, when the register setting value of the leakage ratio is 8-bit data, the average value of the horizontal adjacent pixel signal of the correction target pixel and the register setting value of the leakage ratio are multiplied by a multiplication circuit. In the case of a configuration of 1/256 with the subsequent bit shift down, the leakage ratio register set value on the G signal side of the RG line R signal is set to 8 (8/256 = 1/32) · BG line B signal. Is set to 4 (4/256), the 1/32 signal component of the R signal adjacent to the RG line G signal in the horizontal direction is converted from the RG line G signal to the BG line G signal. , A 1/64 signal component of the B signal adjacent to the BG line G signal in the horizontal direction is subtracted, and the processing result is shown in FIG. When the G signal is not saturated, the level difference between the G signal on the RG line and the G signal on the BG line is eliminated, but when the G signal is saturated, the leakage signal component subtraction processing on the G signal side is performed. An adverse effect appears, and a step occurs between the G signal of the RG line and the G signal of the BG line, which are not in the G signal saturated portion.
[0168]
26 to 31, when only the G signal of the RG line is saturated out of the G signal of the RG line and the G signal of the BG line (the leakage amount of the R signal component on the adjacent G signal side is B When the signal component is larger than the leakage amount on the adjacent G signal side), in the pixel signal color mixture reduction device having the configuration according to the first to sixth embodiments of the present invention, the signal is reduced when the G signal is saturated. Since the leak correction is not performed, the G signal of the RG line is not corrected, and the signal leak correction is performed only for the G signal of the BG line. Thus, the G signal of the RG line and the G signal of the BG line are rather changed. Step occurs.
[0169]
Therefore, in the pixel signal color mixing reduction apparatus of the ninth embodiment, when the G signal to be corrected is saturated, the AND circuit 1729 in FIG. It is determined whether the upper left and the lower left are saturated, and when the G signal to be corrected is saturated, the upper right, lower right, upper left, and lower left of the correction target G signal are saturated (the G signal of the RG line is also saturated). If the BG line G signal is also saturated, the signal switching circuit 1732 selects and outputs a pixel signal that has not been subjected to the leak signal component subtraction processing. If the correction target G signal is not saturated or the correction target G signal is Even in the case of saturation, if the diagonally upper right, diagonally lower right, diagonally upper left, and diagonally lower left of the G signal to be corrected are not saturated, the pixel signal subjected to the leakage signal component subtraction processing is selectively output at 1732. The configuration is the same as the configuration of the (Embodiment 7).
[0170]
Furthermore, when only the G signal of the RG line is saturated out of the G signal of the RG line and the G signal of the BG line (the leakage amount of the R signal component on the adjacent G signal side is smaller than that of the B signal component on the adjacent G signal side). In order to reduce the adverse effect of the leakage signal component subtraction processing on the G signal side (when the leakage amount is larger than the leakage amount), when the correction target G signal is saturated and the correction target G signal is at the upper left, lower left, lower right, lower right, and lower right When the adjacent G signal is not saturated, the magnitude comparison circuit 1718 of FIG. 25 subtracts the leakage signal component subtraction processing result on the G signal side of the G to be corrected and the diagonally upper left, diagonally lower left, diagonally upper right, and diagonally of the G signal to be corrected. The processing result of the leakage signal component subtraction on the G signal side of the lower right adjacent G signal is compared in magnitude, and if the processing result of the leakage signal component subtraction on the G signal side of the correction target G is large, the G signal of the correction target G is large. Side signal component subtraction The processing result is output. If the processing result of the leakage signal component subtraction on the G signal side of the G signal to be corrected is small, the processing result of the leakage signal component subtraction on the G signal side of the G to be corrected and the diagonally upper left of the G signal to be corrected In order to eliminate the signal level difference of the processing result of the leakage signal component subtraction on the G signal side of the diagonally lower left, diagonally upper right and diagonally lower right adjacent G signals, in the configuration diagram of FIG. The signal is output instead of the result of subtracting the leakage signal component on the G signal side of the G signal on the upper left, lower left, upper right, and lower right sides of the G signal to be corrected.
[0171]
As a result, when the G signal is not saturated as shown in FIG. 31, the level difference between the G signal on the RG line and the G signal on the BG line due to the leak signal component of the adjacent pixel signal is reduced, and the G signal is saturated. In the case (the G signal on the RG line and the G signal on the BG line are both saturated) or when only the G signal on the RG line out of the G signal on the RG line and the G signal on the BG line are saturated, the leakage signal component subtraction processing is performed. No adverse effects occur.
[0172]
In this (Embodiment 9), at 1710, 1711, 1715, 1716, 1717, 1718, 1720, etc., the level of the specific color pixel signal to be corrected is saturated, and the diagonal right and diagonal right of the specific color pixel signal to be corrected are set. Correction processing obtained when the correction target peripheral specific color pixel signal level adjacent to the lower, diagonally upper left, and diagonally lower left is not saturated, and obtained by performing the adjacent pixel signal leakage reduction correction processing on the correction target specific color pixel signal When the signal level of the pixel signal of the specific color to be corrected later is diagonally upper right, diagonally lower right, diagonally upper left, or diagonally lower left of the specific color pixel signal to be corrected, the adjacent pixel signal leakage reduction is reduced for the peripheral specific color pixel signal to be corrected. If the signal level of the peripheral specific color pixel signal to be corrected after the correction processing obtained by the correction processing is lower, the signal level of the pixel signal of the specific color to be corrected is changed. Level adjustment means 1733 to be the same as the positive processed to be corrected around the specific color pixel signal the signal level is configured.
[0173]
Also, at 1705, 1709, 1721, 1722, 1723, 1724, 1725, 1726, 1727, 1728, 1729, 1730, 1731, etc., when the correction target specific color pixel signal level is saturated, and at the diagonally upper right of the correction target specific color pixel signal, When the specific color pixel signal level around the correction target adjacent to the diagonally lower right, diagonally upper left, and diagonally lower left is saturated, the processing stop command means 1734 for commanding to stop the adjacent pixel signal leakage reduction processing for the correction target specific color pixel signal is performed. It is configured.
[0174]
In this (Embodiment 9), the case where the level adjusting means 1733 and the processing stop instruction means 1734 are implemented in (Embodiment 1) has been described as an example, but (Embodiment 2) to (Embodiment 2) In the embodiment 6) as well, by providing the level adjusting means 1733 and the processing stop command means 1734, improvement in image quality unevenness can be expected.
[0175]
(Embodiment 10)
FIG. 32 shows (Embodiment 10) of the present invention. FIG. 17 is an explanatory diagram of the correction target pixels when the correction target pixel signal line is an RG line and a BG line.
[0176]
The configuration diagram of FIG. 32 is a diagram in the case where the drive clock cycle is the same as one pixel rate. The pixel unevenness correction will be described for the case of signal lateral leakage. The same components as those in FIG. 25 are described with the same reference numerals.
[0177]
Reference numeral 1918 denotes an average value calculation circuit that calculates an average value of processing results of horizontal leakage signal component subtraction of a correction target peripheral pixel signal (G signal) adjacent to the lower right and upper left of the correction target pixel signal.
[0178]
Reference numeral 1919 denotes an average value calculation circuit that calculates the average value of the processing results of the horizontal leakage signal component subtraction of the correction target peripheral pixel signals (G signals) adjacent to the upper right and lower left of the correction target pixel signal.
[0179]
Reference numeral 1920 denotes a magnitude comparison circuit, which is a processing result of the horizontal leakage signal component subtraction of the correction target pixel (correction target G signal) and a correction target peripheral pixel signal (correction target peripheral pixel signal) adjacent to the lower right and upper left of the correction target pixel signal. The average values of the horizontal leakage signal component subtraction processing of the lower right and upper left pixels of the G signal are compared, and the processing result of the horizontal leakage signal component subtraction of the pixel to be corrected is the value of the correction target pixel signal. If the result of the horizontal leakage signal component subtraction of the neighboring pixel signals to be corrected adjacent to the diagonally lower right and upper left corners is smaller than the average value of the processing result of the horizontal leakage signal component subtraction, 'H' is set, and the horizontal leakage signal component subtraction processing of the correction target pixel is performed. If the result is larger than the processing result average value of the horizontal leakage signal component subtraction of the correction target peripheral pixel signals adjacent to the obliquely lower right and upper left of the correction target pixel signal, “L” is output.
[0180]
Reference numeral 1921 denotes a magnitude comparison circuit, which is a processing result of a horizontal leakage signal component subtraction of a correction target pixel (correction target G signal) and a correction target peripheral pixel signal (correction target G signal) adjacent to the diagonally upper right and lower left of the correction target pixel signal. The average value of the horizontal leakage signal component subtraction processing of the upper right and lower left signals of the signal is compared, and the processing result of the horizontal leakage signal component subtraction of the correction target pixel is the upper right diagonal of the correction target pixel signal. When the processing result of the horizontal leakage signal component subtraction of the peripheral pixel signal to be corrected adjacent to the lower left is smaller than the average value of the processing result of the horizontal leakage signal component subtraction, the processing result of the horizontal leakage signal component subtraction of the correction target pixel is corrected. If it is larger than the average value of the result of the horizontal leakage signal component subtraction of the peripheral pixel signals to be corrected adjacent to the oblique upper right and lower left of the target pixel signal, “L” is output.
[0181]
In this (Embodiment 10), the average value calculation circuit 1918 and the size comparison circuit 1920 constitute a first level adjustment unit, and the average value calculation circuit 1919 and the size comparison circuit 1921 perform the second level adjustment. Means are configured.
[0182]
In this (Embodiment 10), processing stop command means corresponding to the processing stop command means 1734 in FIG. 25 showing (Embodiment 9) is constituted by 1934, 1935, 1936, 1938, 1730, 1731. ing.
[0183]
Reference numeral 1922 denotes a signal switching circuit that uses the output signal of the magnitude comparison circuit 1920 as a switching signal. When the output signal of the magnitude comparison circuit 1920 is “H”, the output signal of the average value calculation circuit 1918 is selected and output. When the output signal of 1920 is “L”, the output signal of the average value calculation circuit 1919 is selected and output.
[0184]
The logical product circuit 1923 detects a logical product of the output signal of the size comparison circuit 1920 and the output signal of the size comparison circuit 1921. That is, when both the output signal of the magnitude comparison circuit 1920 and the output signal of the magnitude comparison circuit 1921 are “H”, “H” is output; otherwise, “L” is output.
[0185]
When the output signal of the AND circuit 1923 is “H”, the signal switching circuit 1924 using the output signal of the AND circuit 1923 as a switching signal selects and outputs the output signal of the average value calculating circuit 1917 and outputs the average value. When the output signal of the calculation circuit 1923 is “L”, the output signal of the signal switching circuit 1922 is selected and output.
[0186]
The logical sum circuit 1925 detects the logical sum of the output signal of the magnitude comparison circuit 1920 and the output signal of the magnitude comparison circuit 1921. That is, when both the output signal of the magnitude comparison circuit 1920 and the output signal of the magnitude comparison circuit 1921 are “H”, or when one of the output signal of the magnitude comparison circuit 1920 and the output signal of the magnitude comparison circuit 1921 is “H”, Outputs “H” and outputs “L” when both the output signal of the magnitude comparison circuit 1920 and the output signal of the magnitude comparison circuit 1921 are “L”.
[0187]
Here, the logical product circuit 1719 detects the logical product of the output of the logical sum circuit 1925 and the output of the saturation / non-saturation determination circuit 1705 (when both the output signal of 1925 and the output signal of 1905 are “H”, the logical product becomes “H”). ', Otherwise output' L ').
[0188]
When the output signal of the AND circuit 1719 is "H", the magnitude comparison circuit 1920 using the output signal of the AND circuit 1719 as a switching signal selects and outputs the output signal of the signal switching circuit 1924, and outputs the signal. When the output signal of 1719 is “L”, the output signal of the correction processing unit 1704 is selected and output.
[0189]
The logical product circuit 1934 detects the logical product of the output signal of the D flip-flop 1722 and the output signal of the saturation / non-saturation determination circuit 1723 (“H” when both the output signal of 1722 and the output signal of 1723 are “H”). Is output, otherwise, 'L' is output).
[0190]
The AND circuit 1935 detects the logical product of the output signal of the saturation / unsaturation determination circuit 1709 and the output signal of the D flip-flop 1725 (“H” when both the output signal of 1709 and the output signal of 1725 are “H”). Is output, otherwise, 'L' is output).
[0191]
The OR circuit 1936 detects the logical sum of the output signals of the AND circuits 1934 and 1935 (the output signal of 1934 and the output signal of 1935 are both “H” or one of the output signal of 1934 and the output signal of 1935). Is 'H', 'H' is output, and when both the output signal of 1934 and the output signal of 1935 are 'L', 'L' is output).
[0192]
The logical product circuit 1938 detects the logical product of the output signal of the logical sum circuit 1936 and the output signal of the saturation / non-saturation discriminating circuit 1705 (“H” when both the output signal of 1936 and the output signal of 1705 are “H”). Is output, otherwise, 'L' is output).
[0193]
Here, the logical sum circuit 1731 detects the logical sum of the output signal of the logical product circuit 1938 and the output signal of the G signal discrimination signal generation circuit 1730 (both the output signal of 1938 and the output signal of 1730 are “H” or 1938). If one of the output signal and the output signal of 1730 is “H”, “H” is output, and if the output signal of 1938 and the output signal of 1730 are both “L”, “L” is output).
[0194]
Here, the signal switching circuit 1732 selects and outputs the output signal of the D flip-flop 1902 when the output signal of the OR circuit 1731 is “H”, and outputs the signal when the output signal of the OR circuit 1731 is “L”. , And selectively outputs the output signal of the signal switching circuit 1720.
[0195]
According to this configuration, the level difference between the G signal on the RG line and the G signal on the BG line due to the leak signal component of the adjacent pixel signal is reduced, and the G signal is saturated (G signal on the RG line, G signal on the BG line). If both of the G signal of the RG line and the G signal of the BG line are saturated, only the G signal of the RG line or the G signal of the BG line is saturated. No longer occurs.
[0196]
【The invention's effect】
As described above, according to the first, fourth, and seventh aspects of the present invention, a signal component having a fixed ratio calculated from a specific color pixel signal and a pixel signal other than the specific color adjacent to the specific color pixel signal. Is subtracted, and when the correction target image pixel signal reaches the saturation level, the correction process is stopped. For example, when the correction target image pixel signal is a G signal, the correction target image pixel signal is adjacent to the G signal in the horizontal direction. Signal mixing failure due to leakage from the R signal or B signal to the G signal side, and the level difference between the G signal of the RG line and the G signal of the BG line due to the signal mixing, and at the same time, adjacent pixel signal component leakage when the G signal is saturated The adverse effects of the correction processing can be suppressed.
[0197]
According to the second and third, fifth, sixth, eighth, and ninth aspects of the present invention, a signal of a fixed ratio calculated from a specific color pixel signal and a pixel signal other than the specific color adjacent to the specific color pixel signal is used. In addition to subtracting the components, when the specific color pixel signal reaches the saturation level, a command is issued to stop the signal leakage reduction correction processing for the specific color pixel signal. In addition to subtracting a fixed percentage of signal components calculated from the pixel signal of the specific color and the adjacent specific color pixel signal, when the pixel signal of the non-specific color reaches the saturation level, leakage of the adjacent pixel signal to the pixel signal of the non-specific color occurs Stop the reduction correction processing.
[0198]
For example, when a correction target image pixel signal is a G signal, a signal color mixing problem due to leakage of an R signal or a B signal adjacent to the G signal to the G signal side, and a G signal and a BG line of an RG line due to a signal color mixture. A step of a G signal and an adjacent pixel signal at the time of saturation of an R, G, and B signal at the same time as being adjacent to an R signal or a B signal, reducing a signal color mixing problem caused by leakage from the G signal to the R or B signal side. The adverse effect of the component leakage correction processing can be suppressed.
[0199]
According to a tenth aspect of the present invention, there is provided a pixel signal color mixture reduction apparatus according to any one of the first to ninth aspects, wherein the correction target specific color pixel signal level is saturated and the correction target specific color pixel signal is obliquely upper right, lower oblique lower right, When the level of the target specific color pixel signal adjacent to the obliquely upper left and diagonally lower left is saturated, a saturation / non-saturation determination circuit that stops the adjacent pixel signal leakage correction processing for the specific color pixel signal to be corrected is provided. When the target image pixel signal is a G signal, when the signal level of the correction target G signal is not saturated, or when the correction target G signal level is saturated, the signal level of the correction target peripheral G signal adjacent to the correction target G signal is reduced. Adjacent pixel signal component leakage that subtracts a certain percentage of signal components calculated from R or B signals adjacent to the G signal to be corrected from the G signal to be corrected when the signal is not saturated When the correction target G signal level is saturated and the correction target peripheral G signal level adjacent to the correction target G signal is saturated, the adjacent pixel signal component leakage correction processing for the correction target G signal is stopped, so that the adjacent correction is performed. Of the color mixing problem caused by leaking into the pixel signal to be leaked, and at the same time, the adjacent pixel signal component leak correction processing when either one of the G signal of the RG line or the G signal of the BG line is saturated. The adverse effects can be suppressed.
[0200]
The pixel signal color mixture reduction device according to claim 12 and claim 13 of the present invention is characterized in that, in any one of claims 1 to 9, the correction target specific color pixel signal level is saturated and adjacent to the correction target specific color pixel signal. The signal level of the correction target specific color pixel signal obtained by performing the correction process on the adjacent pixel signal leakage reduction for the correction target specific color pixel signal when the correction target peripheral specific color pixel signal level is not saturated. Is lower than the signal level of the pixel signal of the correction target peripheral specific color after the correction processing obtained by performing the adjacent pixel signal leakage reduction correction processing on the correction target peripheral specific color pixel signal adjacent to the pixel signal of the correction target specific color. If the signal level is smaller, a level adjusting means for making the signal level of the correction target specific color pixel signal equal to the signal level of the correction target peripheral specific color pixel signal after the correction processing; When the level of the fixed color pixel signal is saturated and when the level of the peripheral specific color pixel signal to be corrected adjacent to the specific color pixel signal to be corrected is saturated, the processing stop commanding to stop the adjacent pixel signal leakage reduction processing for the specific color pixel signal to be corrected is stopped. Since the command means is provided, for example, when a G pixel is used as a correction target image pixel signal, it is possible to reduce a signal color mixing problem caused by leaking into an adjacent pixel signal, and at the same time, to reduce a G signal of an RG line or a G signal of a BG line. When one of the G signals is saturated, the adverse effect of the adjacent pixel signal component leakage correction processing can be suppressed.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of a first embodiment of a pixel signal color mixture reduction device according to the present invention;
FIG. 2 is an explanatory diagram when the device signal line is an RG line and the device signal line is a BG line according to the embodiment;
FIG. 3 is an explanatory diagram of an adjacent pixel signal component leakage correction processing operation according to the embodiment;
FIG. 4 is an explanatory diagram of an adjacent pixel signal component leakage correction processing operation according to the embodiment;
FIG. 5 is an explanatory diagram of an adjacent pixel signal component leakage correction processing operation according to the embodiment;
FIG. 6 is an explanatory diagram of an adjacent pixel signal component leakage correction processing operation according to the embodiment;
FIG. 7 is an explanatory diagram of an adjacent pixel signal component leakage correction processing operation according to the embodiment;
FIG. 8 is an explanatory diagram of an adjacent pixel signal component leakage correction processing operation according to the embodiment;
FIG. 9 is a configuration diagram of a pixel signal color mixture reduction device according to a second embodiment of the present invention;
FIG. 10 is a configuration diagram of a pixel signal color mixture reduction device according to a third embodiment of the present invention;
FIG. 11 is an explanatory diagram of a case where a device signal line is an RG line and a device signal line of a correction is a BG line according to the embodiment;
FIG. 12 is a configuration diagram of a pixel signal color mixture reduction device (Embodiment 4) of the present invention.
FIG. 13 is a configuration diagram of a pixel signal color mixture reduction device (Embodiment 5) of the present invention.
FIG. 14 is a configuration diagram of a pixel signal color mixture reduction device (Embodiment 6) of the present invention.
FIG. 15 is a configuration diagram of another example of the embodiment.
FIG. 16 is a configuration diagram of a pixel signal color mixture reduction device according to a seventh embodiment of the present invention;
FIG. 17 is an explanatory diagram of a case where a device signal line is an RG line according to the embodiment;
FIG. 18 is an explanatory diagram of the adjacent pixel signal component leak correction processing operation of the embodiment.
FIG. 19 is an explanatory diagram of the adjacent pixel signal component leakage correction processing operation of the embodiment.
FIG. 20 is an explanatory diagram of an adjacent pixel signal component leakage correction processing operation according to the embodiment;
FIG. 21 is an explanatory diagram of an adjacent pixel signal component leakage correction processing operation according to the embodiment;
FIG. 22 is an explanatory diagram of an adjacent pixel signal component leakage correction processing operation according to the embodiment;
FIG. 23 is an explanatory diagram of an adjacent pixel signal component leakage correction processing operation according to the embodiment;
FIG. 24 is a configuration diagram of a pixel signal color mixture reduction device (Embodiment 8) of the present invention.
FIG. 25 is a configuration diagram of a ninth embodiment of a pixel signal color mixture reduction device of the present invention.
FIG. 26 is an explanatory diagram of the adjacent pixel signal component leak correction processing operation of the embodiment.
FIG. 27 is an explanatory diagram of the adjacent pixel signal component leak correction processing operation of the embodiment.
FIG. 28 is an explanatory diagram of the adjacent pixel signal component leak correction processing operation of the embodiment.
FIG. 29 is an explanatory diagram of the adjacent pixel signal component leakage correction processing operation of the embodiment.
FIG. 30 is an explanatory diagram of an adjacent pixel signal component leakage correction processing operation according to the embodiment;
FIG. 31 is an explanatory diagram of the adjacent pixel signal component leakage correction processing operation of the embodiment.
FIG. 32 is a configuration diagram of a pixel signal color mixture reduction device (Embodiment 10) of the present invention.
FIG. 33 is an explanatory diagram of a color filter array of an image sensor.
FIG. 34 is an explanatory diagram of a problem due to miniaturization accompanying an increase in the number of pixels of an image sensor.
FIG. 35 is an explanatory diagram of a problem caused by a high-speed drive accompanying an increase in the number of pixels of an image sensor.
FIG. 36 is an explanatory diagram of a problem caused by a high-speed drive accompanying an increase in the number of pixels of an image sensor.
FIG. 37 is an explanatory diagram of a problem caused by a high-speed drive accompanying an increase in the number of pixels of an image sensor.
[Explanation of symbols]
101,102 D flip-flop
103 Correction processing means
104 Correction G Signal / Uncorrected R Signal B Signal Discrimination and Correction Target G Signal Saturation / Unsaturation Discrimination Signal Generation Block
106 signal switching circuit
301, 302 D flip-flop
303 Correction processing means
304 Saturation / unsaturation discrimination circuit of signal level of pixel signal to be corrected
305 Signal switching circuit
501,502 D flip-flop
503 D flip-flop
504 vertical direction correction processing means
505 Processing stop instruction means
506 Signal switching circuit
704 Correction processing means
706 Signal switching circuit
901 and 902 D flip-flop
903,904 D flip-flop
905 Correction processing means
906 Vertical direction correction processing means
907 Processing stop instruction means
908 Signal switching circuit
1105 First correction processing means
1106 Second correction processing means
1107 Saturation / unsaturation discrimination circuit
1108 Signal switching circuit
1305 Correction processing means
1306, 1307 D flip-flop
1308 Saturation / unsaturation determination circuit determination circuit
1309 OR circuit
1310 Signal switching circuit
1508 Saturation / unsaturation discrimination circuit
1510 Signal switching circuit
1701, 1702, 1703 D flip-flop
1704 Correction processing means
1705 Correction target pixel signal saturation / unsaturation determination signal generation block
1706, 1707 D flip-flop
1708 Correction processing means
1709 Saturation / unsaturation discrimination circuit
1710, 1711 D flip-flop
1712, 1713 D flip-flop
1714 Correction processing means
1715, 1716 D flip-flop
1717 Average value calculation circuit
1718 comparison circuit
1719 AND circuit
1720 Signal switching circuit
1721, 1722 D flip-flop
1723 Pixel signal saturation / unsaturation discrimination signal generation block
1724, 1725 D flip-flop
1726,1727 AND circuit
1728, 1729 AND circuit
1730 G signal discrimination signal generation circuit
1731 OR circuit
1732 Signal switching circuit
1928 Pixel signal saturation / unsaturation discrimination signal generation block
1918, 1919 Average value calculation circuit
1920, 1921 Size comparison circuit
1922 Signal switching circuit
1923 AND circuit
1924 Signal switching circuit
1925 OR circuit
1927 Signal switching circuit
1934, 1935 AND circuit
1936 OR circuit
1938 AND circuit

Claims (13)

R(赤),G(緑),B(青)の3原色を有しそのうちの特定色を市松状に配列された画素信号の混色不具合の抑制処理を実行する画素信号混色低減装置であって、
特定色画素信号から、特定色画素信号と横方向に隣接する特定色以外の画素信号より算出した一定割合の信号成分を減算する補正処理手段と、
特定色画素信号が飽和レベルに達した場合に特定色画素信号に対する隣接画素信号漏れ込み低減補正処理の停止を命令する処理停止命令手段と
を備えたことを特徴とする画素信号混色低減装置。
What is claimed is: 1. A pixel signal color mixing reduction device which has a primary color of R (red), G (green), and B (blue) and executes a color mixing defect suppressing process for a pixel signal in which specific colors are arranged in a checkered pattern. ,
Correction processing means for subtracting, from the specific color pixel signal, a fixed percentage of signal components calculated from pixel signals other than the specific color adjacent to the specific color pixel signal in the horizontal direction;
A pixel signal color mixture reduction device, comprising: processing stop command means for commanding stop of adjacent pixel signal leakage reduction correction processing for a specific color pixel signal when the specific color pixel signal reaches a saturation level.
R(赤),G(緑),B(青)の3原色を有しそのうちの特定色を市松状に配列された画素信号の混色不具合の抑制処理を実行する画素信号混色低減装置であって、
特定色画素信号から、特定色画素信号と横方向に隣接する特定色以外の画素信号より算出した一定割合の信号成分を減算する第1の補正処理手段と、
特定色画素信号が飽和レベルに達した場合に、特定色画素信号に対する信号漏れ込み低減補正処理の停止を命令する第1の処理停止命令手段と、
特定色以外の画素信号から、特定色以外の画素信号と横方向に隣接する特定色画素信号より算出した一定割合の信号成分を減算する第2の補正処理手段と、
特定色以外の画素信号が飽和レベルに達した場合に、特定色以外の画素信号に対する隣接画素信号漏れ込み低減補正処理を停止する第2の処理停止命令手段とを備えることを特徴とする画素信号混色低減装置。
What is claimed is: 1. A pixel signal color mixing reduction device which has a primary color of R (red), G (green), and B (blue) and executes a color mixing defect suppressing process for a pixel signal in which specific colors are arranged in a checkered pattern. ,
First correction processing means for subtracting, from the specific color pixel signal, a fixed percentage of signal components calculated from pixel signals other than the specific color adjacent to the specific color pixel signal in the horizontal direction;
First processing stop instruction means for instructing stop of the signal leakage reduction correction processing for the specific color pixel signal when the specific color pixel signal reaches the saturation level;
Second correction processing means for subtracting, from the pixel signals other than the specific color, a fixed percentage of signal components calculated from the pixel signals other than the specific color and the specific color pixel signals horizontally adjacent thereto,
And a second processing stop command means for stopping the adjacent pixel signal leakage reduction correction processing for the pixel signal other than the specific color when the pixel signal other than the specific color reaches the saturation level. Color mixing reduction device.
R(赤),G(緑),B(青)の3原色を有しそのうちの特定色を市松状に配列された画素信号の混色不具合の抑制処理を実行する画素信号混色低減装置であって、
特定色画素信号から、特定色画素信号と横方向に隣接する特定色以外の画素信号より算出した一定割合の信号成分を減算する第1の補正処理手段と、
特定色以外の画素信号から、特定色以外の画素信号と横方向に隣接する特定色画素信号より算出した一定割合の信号成分を減算する第2の補正処理手段と、
画素信号が飽和レベルに達した場合に前記第1,第2の補正処理手段による信号漏れ込み低減補正処理の停止を命令する処理停止命令手段と
を備えることを特徴とする画素信号混色低減装置。
What is claimed is: 1. A pixel signal color mixing reduction device which has a primary color of R (red), G (green), and B (blue) and executes a color mixing defect suppressing process for a pixel signal in which specific colors are arranged in a checkered pattern. ,
First correction processing means for subtracting, from the specific color pixel signal, a fixed percentage of signal components calculated from pixel signals other than the specific color adjacent to the specific color pixel signal in the horizontal direction;
Second correction processing means for subtracting, from the pixel signals other than the specific color, a fixed percentage of signal components calculated from the pixel signals other than the specific color and the specific color pixel signals horizontally adjacent thereto,
A pixel signal color reduction device, comprising: a process stop command unit that commands a stop of the signal leakage reduction correction process by the first and second correction processing units when the pixel signal reaches a saturation level.
R(赤),G(緑),B(青)の3原色を有しそのうちの特定色を市松状に配列された画素信号の混色不具合の抑制処理を実行する画素信号混色低減装置であって、
特定色画素信号から、特定色画素信号の縦方向に隣接する特定色以外の画素信号より算出した一定割合の信号成分を減算する補正処理手段と、
特定色画素信号が飽和した場合に、特定色画素信号に対する隣接画素信号漏れ込み低減補正処理を停止する処理停止命令手段と
を備えたことを特徴とする画素信号混色低減装置。
What is claimed is: 1. A pixel signal color mixing reduction device which has a primary color of R (red), G (green), and B (blue) and executes a color mixing defect suppressing process for a pixel signal in which specific colors are arranged in a checkered pattern. ,
Correction processing means for subtracting, from the specific color pixel signal, a fixed percentage of signal components calculated from pixel signals other than the specific color vertically adjacent to the specific color pixel signal;
A pixel signal color mixing reduction device, comprising: a process stop instruction unit for stopping the adjacent pixel signal leakage reduction correction process for the specific color pixel signal when the specific color pixel signal is saturated.
R(赤),G(緑),B(青)の3原色を有しそのうちの特定色を市松状に配列された画素信号の混色不具合の抑制処理を実行する画素信号混色低減装置であって、
特定色画素信号から、特定色画素信号の縦方向に隣接する特定色以外の画素信号より算出した一定割合の信号成分を減算する第1の補正処理手段と、
特定色画素信号が飽和した場合には特定色画素信号に対する隣接画素信号漏れ込み低減補正処理の停止を命令する第1の処理停止命令手段と、
特定色以外の画素信号から、特定色以外の画素信号の縦方向に隣接する特定色画素信号より算出した一定割合の信号成分を減算する第2の補正処理手段と、
特定色以外の画素信号が飽和した場合には特定色以外の画素信号に対する隣接画素信号漏れ込み低減補正処理の停止を命令する第2の処理停止命令手段と
を備えたことを特徴とする画素信号混色低減装置。
What is claimed is: 1. A pixel signal color mixing reduction device which has a primary color of R (red), G (green), and B (blue) and executes a color mixing defect suppressing process for a pixel signal in which specific colors are arranged in a checkered pattern. ,
First correction processing means for subtracting, from the specific color pixel signal, a fixed percentage of signal components calculated from pixel signals other than the specific color that are vertically adjacent to the specific color pixel signal;
First processing stop instruction means for instructing stop of the adjacent pixel signal leakage reduction correction processing for the specific color pixel signal when the specific color pixel signal is saturated;
Second correction processing means for subtracting, from the pixel signals other than the specific color, a fixed percentage of signal components calculated from the specific color pixel signals vertically adjacent to the pixel signals other than the specific color,
And a second process stop command means for commanding stop of the adjacent pixel signal leakage reduction correction process for the pixel signal other than the specific color when the pixel signal other than the specific color is saturated. Color mixing reduction device.
R(赤),G(緑),B(青)の3原色を有しそのうちの特定色を市松状に配列された画素信号の混色不具合の抑制処理を実行する画素信号混色低減装置であって、
特定色画素信号から、特定色画素信号の縦方向に隣接する特定色以外の画素信号より算出した一定割合の信号成分を減算する第1の補正処理手段と、
特定色以外の画素信号から、特定色以外の画素信号の縦方向に隣接する特定色画素信号より算出した一定割合の信号成分を減算する第2の補正処理手段と、
画素信号が飽和した場合に前記第1,第2の補正処理手段による信号漏れ込み低減補正処理の停止を命令する処理停止命令手段と
を備えたことを特徴とする画素信号混色低減装置。
What is claimed is: 1. A pixel signal color mixing reduction device which has a primary color of R (red), G (green), and B (blue) and executes a color mixing defect suppressing process for a pixel signal in which specific colors are arranged in a checkered pattern. ,
First correction processing means for subtracting, from the specific color pixel signal, a fixed percentage of signal components calculated from pixel signals other than the specific color that are vertically adjacent to the specific color pixel signal;
Second correction processing means for subtracting, from the pixel signals other than the specific color, a fixed percentage of signal components calculated from the specific color pixel signals vertically adjacent to the pixel signals other than the specific color,
A pixel signal color mixture reduction device, comprising: processing stop command means for commanding stop of the signal leakage reduction correction processing by the first and second correction processing means when the pixel signal is saturated.
R(赤),G(緑),B(青)の3原色を有しそのうちの特定色を市松状に配列された画素信号の混色不具合の抑制処理を実行する画素信号混色低減装置であって、
特定色画素信号から、特定色画素信号と横方向に隣接する特定色以外の画素信号より算出した一定割合の信号成分を減算する第1の補正処理手段と、
特定色画素信号から特定色画素信号の縦方向に隣接する特定色以外の画素信号より算出した一定割合の信号成分を減算する第2の補正処理手段と、
特定色画素信号が飽和レベルに達した場合に前記第1,第2の補正処理手段による信号漏れ込み低減補正処理の停止を命令する処理停止命令手段と
を備えたことを特徴とする画素信号混色低減装置。
What is claimed is: 1. A pixel signal color mixing reduction device which has a primary color of R (red), G (green), and B (blue) and executes a color mixing defect suppressing process for a pixel signal in which specific colors are arranged in a checkered pattern. ,
First correction processing means for subtracting, from the specific color pixel signal, a fixed percentage of signal components calculated from pixel signals other than the specific color adjacent to the specific color pixel signal in the horizontal direction;
Second correction processing means for subtracting a fixed percentage of signal components calculated from pixel signals other than the specific color vertically adjacent to the specific color pixel signal from the specific color pixel signal,
A process stop command unit for commanding a stop of the signal leakage reduction correction process by the first and second correction process units when the specific color pixel signal reaches a saturation level. Reduction device.
R(赤),G(緑),B(青)の3原色を有しそのうちの特定色を市松状に配列された画素信号の混色不具合の抑制処理を実行する画素信号混色低減装置であって、
特定色画素信号から特定色画素信号と横方向に隣接する特定色以外の画素信号より算出した一定割合の信号成分を減算する第1の補正処理手段と、
特定色以外の画素信号から、特定色以外の画素信号と横方向に隣接する特定色画素信号より算出した一定割合の信号成分を減算す第2の補正処理手段と、
第1の補正処理手段の出力信号を入力信号として特定色画素信号から特定色画素信号の縦方向に隣接する特定色以外の画素信号より算出した一定割合の信号成分を減算する第3の補正処理手段と、
第2の補正処理手段の出力信号を入力信号として特定色以外の画素信号から特定色以外の画素信号の縦方向に隣接する特定色画素信号より算出した一定割合の信号成分を減算する第4の補正処理手段と、
特定色画素信号が飽和レベルに達した場合に、特定色画素信号に対する隣接画素信号漏れ込み低減補正処理を停止する第1の飽和非飽和判別回路と、
特定色以外の画素信号が飽和レベルに達した場合に、特定色以外の画素信号に対する隣接画素信号漏れ込み低減補正処理を停止する第2の飽和非飽和判別回路と
を備えることを特徴とする画素信号混色低減装置。
What is claimed is: 1. A pixel signal color mixing reduction device which has a primary color of R (red), G (green), and B (blue) and executes a color mixing defect suppressing process for a pixel signal in which specific colors are arranged in a checkered pattern. ,
First correction processing means for subtracting from the specific color pixel signal a signal component of a fixed ratio calculated from pixel signals other than the specific color adjacent to the specific color pixel signal in the horizontal direction;
Second correction processing means for subtracting, from the pixel signals other than the specific color, a fixed percentage of signal components calculated from the pixel signals other than the specific color and the specific color pixel signals adjacent in the horizontal direction;
A third correction process of subtracting, from an output signal of the first correction processing means as an input signal, a specific proportion of a signal component calculated from a pixel signal of a specific color pixel signal other than a specific color vertically adjacent to the specific color pixel signal from the specific color pixel signal; Means,
Fourth, a signal component of a fixed ratio calculated from a specific color pixel signal vertically adjacent to a pixel signal other than the specific color is subtracted from a pixel signal other than the specific color from an output signal of the second correction processing unit as an input signal. Correction processing means;
A first saturation / unsaturation determination circuit that stops the adjacent pixel signal leakage reduction correction processing for the specific color pixel signal when the specific color pixel signal reaches the saturation level;
And a second saturation / non-saturation discriminating circuit for stopping the adjacent pixel signal leakage reduction correction processing for the pixel signal other than the specific color when the pixel signal other than the specific color reaches the saturation level. Signal color reduction device.
R(赤),G(緑),B(青)の3原色を有しそのうちの特定色を市松状に配列された画素信号の混色不具合の抑制処理を実行する画素信号混色低減装置であって、
特定色画素信号から特定色画素信号と横方向に隣接する画素信号より算出した一定割合の信号成分を減算する第1の補正処理手段と、
第1の補正処理手段の出力信号を入力信号として特定色画素信号から特定色画素信号の縦方向に隣接する画素信号より算出した一定割合の信号成分を減算する第2の補正処理手段と、
補正対象画素信号が飽和した場合に前記第1,第2の補正処理手段による信号漏れ込み低減補正処理の停止を命令する処理停止命令手段と
を備えることを特徴とする画素信号混色低減装置。
What is claimed is: 1. A pixel signal color mixing reduction device which has a primary color of R (red), G (green), and B (blue) and executes a color mixing defect suppressing process for a pixel signal in which specific colors are arranged in a checkered pattern. ,
First correction processing means for subtracting, from the specific color pixel signal, a fixed percentage of signal components calculated from pixel signals horizontally adjacent to the specific color pixel signal;
Second correction processing means for subtracting a fixed percentage of signal components calculated from pixel signals vertically adjacent to the specific color pixel signal from the specific color pixel signal using the output signal of the first correction processing means as an input signal;
A pixel signal color mixing reduction apparatus, comprising: a processing stop command unit for commanding the first and second correction processing units to stop the signal leakage reduction correction process when the correction target pixel signal is saturated.
補正対象特定色画素信号レベル飽和かつ補正対象特定色画素信号の斜め右上、斜め右下、斜め左上、斜め左下に隣接する補正対象周辺特定色画素信号レベル飽和時は、補正対象特定色画素信号に対する隣接画素信号漏れ込み補正処理を停止する飽和非飽和判別回路を備えた
請求項1〜請求項9のいずれかに記載の画素信号混色低減装置。
The correction target specific color pixel signal level is saturated and the correction target peripheral specific color pixel signal level adjacent to the diagonally upper right, diagonally lower right, diagonally upper left, and diagonally lower left of the correction target specific color pixel signal is saturated. The pixel signal color mixture reduction device according to any one of claims 1 to 9, further comprising a saturation / non-saturation determination circuit that stops the adjacent pixel signal leakage correction processing.
補正対象特定色画素信号レベル飽和かつ補正対象特定色画素信号の斜め右上と斜め左下に隣接する補正対象周辺特定色画素信号レベル飽和時、または補正対象特定色画素信号レベル飽和かつ補正対象特定色画素信号の斜め右下と斜め左上に隣接する補正対象周辺特定色画素信号レベル飽和時、または補正対象特定色画素信号レベル飽和時かつ補正対象特定色画素信号の斜め右上、斜め右下、斜め左上、斜め左下に隣接する補正対象周辺特定色画素信号レベル飽和時は、特定色画素信号に対する隣接画素信号漏れ込み低減補正処理を停止する飽和非飽和判別回路を備えた
請求項1〜請求項9のいずれかに記載の画素信号混色低減装置。
The correction target specific color pixel signal level is saturated and the correction target specific color pixel signal adjacent to the diagonally upper right and lower left of the correction target specific color pixel signal is saturated, or the correction target specific color pixel signal level is saturated and the correction target specific color pixel When the level of the correction target peripheral specific color pixel signal adjacent to the diagonally lower right and diagonally upper left of the signal is saturated, or when the level of the correction target specific color pixel signal is saturated and the level of the specific color pixel signal to be corrected is diagonally upper right, diagonally lower right, diagonally upper left, 10. The circuit according to claim 1, further comprising a saturation / non-saturation determination circuit that stops the adjacent pixel signal leakage reduction correction processing for the specific color pixel signal when the level of the specific color pixel signal adjacent to the correction target neighboring diagonally lower left is saturated. 5. The pixel signal color mixing reduction device according to any one of the above items
補正対象特定色画素信号レベル飽和時かつ補正対象特定色画素信号の斜め右上、斜め右下、斜め左上、斜め左下に隣接する補正対象周辺特定色画素信号レベルが飽和していない場合であって、補正対象特定色画素信号について隣接画素信号漏れ込み低減補正処理して得られた補正処理後補正対象特定色画素信号の信号レベルが、補正対象特定色画素信号の斜め右上、斜め右下、斜め左上、斜め左下に隣接する補正対象周辺特定色画素信号について隣接画素信号漏れ込み低減補正処理して得られた補正処理後補正対象周辺特定色画素信号の信号レベルよりも小さい場合は、補正対象特定色画素信号の信号レベルを補正処理後補正対象周辺特定色画素信号の信号レベルと同じにするレベル調節手段と、
補正対象特定色画素信号レベル飽和時かつ補正対象特定色画素信号の斜め右上、斜め右下、斜め左上、斜め左下に隣接する補正対象周辺特定色画素信号レベル飽和時は、補正対象特定色画素信号に対する隣接画素信号漏れ込み低減処理を停止を命令する処理停止命令手段を備えた
請求項1〜請求項9のいずれかに記載の画素信号混色低減装置。
When the correction target specific color pixel signal level is saturated and the correction target peripheral specific color pixel signal level adjacent to the diagonally upper right, diagonally lower right, diagonally upper left, and diagonally lower left of the correction target specific color pixel signal is not saturated, The signal level of the correction target specific color pixel signal after the correction processing obtained by performing the adjacent pixel signal leakage reduction correction processing on the correction target specific color pixel signal is diagonally upper right, diagonally lower right, and diagonally upper left of the correction target specific color pixel signal. If the signal level of the correction target peripheral specific color pixel signal obtained by performing the adjacent pixel signal leakage reduction correction processing on the correction target peripheral specific color pixel signal adjacent diagonally to the lower left is lower than the correction target specific color pixel signal, Level adjusting means for making the signal level of the pixel signal the same as the signal level of the peripheral specific color pixel signal to be corrected after the correction processing;
When the correction target specific color pixel signal level is saturated and the correction target peripheral specific color pixel signal adjacent to the upper right, lower right, lower left, upper left, and lower left of the correction target specific color pixel signal is saturated, the correction target specific color pixel signal is 10. The pixel signal color mixture reduction device according to claim 1, further comprising a processing stop instruction unit for instructing the adjacent pixel signal leakage reduction processing to stop.
補正対象特定色画素信号レベル飽和時かつ補正対象特定色画素信号の斜め右上と斜め左下と斜め右下と斜め左上に隣接する補正対象周辺特定色画素信号が飽和していない場合であって補正対象特定色画素信号について隣接画素信号漏れ込み低減補正処理して得られた補正処理後補正対象特定色画素信号の信号レベルが、補正対象特定色画素信号の斜め右上と斜め左下に隣接する補正対象周辺特定色画素信号について隣接画素信号漏れ込み低減補正処理して得られた補正処理後補正対象周辺特定色画素信号の信号レベルより大きくかつ補正対象特定色画素信号について隣接画素信号漏れ込み低減補正処理して得られた補正処理後補正対象特定色画素信号の信号レベルが、補正対象特定色画素信号の斜め右下と斜め左上に隣接する補正対象周辺特定色画素信号について隣接画素信号漏れ込み低減補正処理して得られた補正処理後補正対象周辺特定色画素信号の信号レベルより小さい場合には、補正対象特定色画素信号の信号レベルを補正対象特定色画素信号の斜め右下と斜め左上に隣接する特定色画素信号について隣接画素信号漏れ込み低減補正処理して得られた補正処理後補正対象周辺特定色画素信号の信号レベルと同じにする第1のレベル調節手段と、
補正対象特定色画素信号レベル飽和時かつ補正対象特定色画素信号の斜め右上と斜め左下と斜め右下と斜め左上に隣接する補正対象周辺特定色画素信号が飽和していない場合であって補正対象特定色画素信号について隣接画素信号漏れ込み低減補正処理して得られた補正処理後補正対象特定色画素信号の信号レベルが、補正対象特定色画素信号の斜め右上と斜め左下に隣接する補正対象周辺特定色画素信号について隣接画素信号漏れ込み低減補正処理して得られた補正処理後補正対象周辺特定色画素信号の信号レベルより小さくかつ補正対象特定色画素信号について隣接画素信号漏れ込み低減補正処理して得られた補正処理後補正対象特定色画素信号の信号レベルが、補正対象特定色画素信号の斜め右下と斜め左上に隣接する特定色画素信号について隣接画素信号漏れ込み低減補正処理して得られた補正処理後補正対象周辺特定色画素信号の信号レベルより大きい場合には、補正対象特定色画素信号の信号レベルを補正対象特定色画素信号の斜め右上と斜め左下に隣接する補正対象周辺特定色画素信号について信号漏れ込み低減補正処理して得られた補正処理後補正対象周辺特定色画素信号の信号レベルと同じにする第2のレベル調節手段と
を設け、前記処理停止命令手段を、
補正対象特定色画素信号レベル飽和時かつ、補正対象特定色画素信号の斜め右上と斜め左下に隣接する補正対象周辺特定色画素信号レベルが飽和している時または、補正対象特定色画素信号の斜め右下と斜め左上に隣接する補正対象周辺特定色画素信号レベルが飽和している時または、補正対象特定色画素信号の斜め右上、斜め右下、斜め左上、斜め左下に隣接する補正対象周辺特定色画素信号レベルが飽和している時は、補正対象特定色画素信号に対する隣接画素信号漏れ込み補正処理を停止するよう構成した
請求項12記載の画素信号混色低減装置。
The correction target specific color pixel signal level is saturated and the correction target peripheral specific color pixel signal adjacent to the upper right, lower left, lower right and lower left and upper left of the correction target specific color pixel signal is not saturated and the correction target The signal level of the correction target specific color pixel signal after the correction processing obtained by performing the adjacent pixel signal leakage reduction correction processing on the specific color pixel signal is in the vicinity of the correction target adjacent to the oblique upper right and lower left of the specific color pixel signal to be corrected After the correction processing obtained by performing the adjacent pixel signal leakage reduction correction processing on the specific color pixel signal, the adjacent pixel signal leakage reduction correction processing is performed on the correction target specific color pixel signal that is higher than the signal level of the correction target peripheral specific color pixel signal. After the correction process, the signal level of the correction target specific color pixel signal obtained from the correction target peripheral pixel adjacent to the diagonally lower right and diagonally upper left of the correction target specific color pixel signal is obtained. If the signal level of the peripheral specific color pixel signal to be corrected after the correction processing obtained by performing the adjacent pixel signal leakage reduction correction processing on the color pixel signal is smaller than the signal level of the specific color pixel signal to be corrected The first level which is the same as the signal level of the correction target surrounding specific color pixel signal obtained by performing the adjacent pixel signal leakage reduction correction processing on the specific color pixel signal adjacent to the diagonally lower right and diagonally upper left of the pixel signal Level adjusting means,
The correction target specific color pixel signal level is saturated and the correction target peripheral specific color pixel signal adjacent to the upper right, lower left, lower right and lower left and upper left of the correction target specific color pixel signal is not saturated and the correction target The signal level of the correction target specific color pixel signal after the correction processing obtained by performing the adjacent pixel signal leakage reduction correction processing on the specific color pixel signal is in the vicinity of the correction target adjacent to the oblique upper right and lower left of the specific color pixel signal to be corrected After the correction processing obtained by performing the adjacent pixel signal leakage reduction correction processing on the specific color pixel signal, the adjacent pixel signal leakage reduction correction processing is performed on the correction target specific color pixel signal that is smaller than the signal level of the correction target peripheral specific color pixel signal. The signal level of the correction target specific color pixel signal obtained after the correction processing is the specific color pixel signal adjacent to the oblique lower right and upper left of the correction target specific color pixel signal. If the signal level of the correction target peripheral specific color pixel signal after the correction processing obtained by the adjacent pixel signal leakage reduction correction processing is larger than the signal level of the correction target specific color pixel signal, Second level adjusting means for making the same as the signal level of the correction target peripheral specific color pixel signal obtained by performing signal leakage reduction correction processing on the correction target peripheral specific color pixel signal adjacent to the diagonally upper right and diagonally lower left. And the processing stop command means,
When the correction target specific color pixel signal level is saturated and the correction target peripheral specific color pixel signal level adjacent to the upper right and lower left of the correction target specific color pixel signal is saturated, or the diagonal of the correction target specific color pixel signal When the level of a specific color pixel signal adjacent to the correction target adjacent to the lower right and diagonally upper left is saturated or when the target color adjacent to the correction target specific color pixel signal is adjacent to the diagonally upper right, diagonally lower right, diagonally upper left, or lower left diagonally, 13. The pixel signal color mixing reduction device according to claim 12, wherein when the color pixel signal level is saturated, the adjacent pixel signal leakage correction processing for the correction target specific color pixel signal is stopped.
JP2002299738A 2002-10-15 2002-10-15 Pixel signal color mixture reduction apparatus Pending JP2004135206A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002299738A JP2004135206A (en) 2002-10-15 2002-10-15 Pixel signal color mixture reduction apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002299738A JP2004135206A (en) 2002-10-15 2002-10-15 Pixel signal color mixture reduction apparatus

Publications (1)

Publication Number Publication Date
JP2004135206A true JP2004135206A (en) 2004-04-30

Family

ID=32288792

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002299738A Pending JP2004135206A (en) 2002-10-15 2002-10-15 Pixel signal color mixture reduction apparatus

Country Status (1)

Country Link
JP (1) JP2004135206A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010154115A (en) * 2008-12-24 2010-07-08 Canon Inc Imaging apparatus
US7777792B2 (en) 2004-05-27 2010-08-17 Nikon Corporation Image-capturing apparatus and computer-readable computer program product including image processing program
US7864232B2 (en) 2005-11-17 2011-01-04 Sony Corporation Signal processing apparatus for solid-state imaging device, signal processing method, and imaging system
US8115838B2 (en) 2007-10-16 2012-02-14 Sony Corporation Signal processing device for solid-state imaging device, imaging apparatus having the signal processing device, signal processing method, and program which allow inter-pixel color mixing to be properly corrected even when color mixing ratios re two-dimensionally distributed in a pixel array surface
US8269865B2 (en) 2008-11-28 2012-09-18 Canon Kabushiki Kaisha Signal processing apparatus and method, image sensing apparatus and system for correction of pixel signal output based on signal output of adjacent pixels and calculated correction coefficient
US8619163B2 (en) 2009-09-18 2013-12-31 Canon Kabushiki Kaisha Solid state imaging using a correction parameter for correcting a cross talk between adjacent pixels
US10075686B2 (en) 2013-05-13 2018-09-11 Fujifilm Corporation Color-image-data contamination correction device and imaging device, and method for controlling operation thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7777792B2 (en) 2004-05-27 2010-08-17 Nikon Corporation Image-capturing apparatus and computer-readable computer program product including image processing program
US7864232B2 (en) 2005-11-17 2011-01-04 Sony Corporation Signal processing apparatus for solid-state imaging device, signal processing method, and imaging system
US8115838B2 (en) 2007-10-16 2012-02-14 Sony Corporation Signal processing device for solid-state imaging device, imaging apparatus having the signal processing device, signal processing method, and program which allow inter-pixel color mixing to be properly corrected even when color mixing ratios re two-dimensionally distributed in a pixel array surface
US8269865B2 (en) 2008-11-28 2012-09-18 Canon Kabushiki Kaisha Signal processing apparatus and method, image sensing apparatus and system for correction of pixel signal output based on signal output of adjacent pixels and calculated correction coefficient
JP2010154115A (en) * 2008-12-24 2010-07-08 Canon Inc Imaging apparatus
US8619163B2 (en) 2009-09-18 2013-12-31 Canon Kabushiki Kaisha Solid state imaging using a correction parameter for correcting a cross talk between adjacent pixels
US10075686B2 (en) 2013-05-13 2018-09-11 Fujifilm Corporation Color-image-data contamination correction device and imaging device, and method for controlling operation thereof

Similar Documents

Publication Publication Date Title
TWI399086B (en) Solid state photographing device including image sensors of cmos type
US8035709B2 (en) Image pickup apparatus provided with a solid-state image pickup device
US9013611B1 (en) Method and device for generating a digital image based upon a selected set of chrominance groups
US7623163B2 (en) Method and apparatus for color interpolation
US8233067B2 (en) Solid-state imaging device, signal processing method of solid-state imaging device, and image capturing apparatus
US20080218598A1 (en) Imaging method, imaging apparatus, and driving device
JP7099446B2 (en) Solid-state image sensor and electronic equipment
JP4051674B2 (en) Imaging device
US7710483B2 (en) Solid-state imaging apparatus, driving method thereof, and camera
US8736724B2 (en) Imaging apparatus, method of processing captured image, and program for processing captured image
JP5526840B2 (en) Image signal processing apparatus, imaging apparatus, image signal processing method, and program
JPS63227293A (en) Face sequential color image pickup device
JP4501350B2 (en) Solid-state imaging device and imaging device
JP2007174117A (en) Image processing circuit and image processing method
US10171784B2 (en) Solid state imaging device and imaging apparatus having a plurality of addition read modes
JP2009303139A (en) Solid-state imaging apparatus
JP4320657B2 (en) Signal processing device
JP2004135206A (en) Pixel signal color mixture reduction apparatus
US20070285529A1 (en) Image input device, imaging module and solid-state imaging apparatus
JP5335566B2 (en) High-definition video signal processor
KR20070022529A (en) Apparatus for removing coupling noise in CMOS image sensor
US20240107199A1 (en) Photoelectric conversion device, control method, and storage medium
JP2005086630A (en) Imaging apparatus
JP2008034913A (en) Imaging apparatus, and smear false color reduction method thereof
JP2016021657A (en) Solid state imaging device