JP2004134515A - Electromagnetic wave shield component - Google Patents

Electromagnetic wave shield component Download PDF

Info

Publication number
JP2004134515A
JP2004134515A JP2002296358A JP2002296358A JP2004134515A JP 2004134515 A JP2004134515 A JP 2004134515A JP 2002296358 A JP2002296358 A JP 2002296358A JP 2002296358 A JP2002296358 A JP 2002296358A JP 2004134515 A JP2004134515 A JP 2004134515A
Authority
JP
Japan
Prior art keywords
electromagnetic wave
fine carbon
wave shielding
thermoplastic resin
volume resistivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002296358A
Other languages
Japanese (ja)
Inventor
Koichi Sagisaka
鷺坂 功一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yuka Denshi Co Ltd
Original Assignee
Yuka Denshi Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yuka Denshi Co Ltd filed Critical Yuka Denshi Co Ltd
Priority to JP2002296358A priority Critical patent/JP2004134515A/en
Publication of JP2004134515A publication Critical patent/JP2004134515A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electromagnetic wave shield component holding good molding external appearance and fluidity during molding by expressing excellent electromagnetic wave shield performance, in the electromagnetic wave shield component composed of a molding of a conductive thermal plastic resin composition. <P>SOLUTION: The electromagnetic wave shield component includes (A) a thermal plastic resin, and (B) a minute carbon fiber of which the average fiber diameter is 200 nm or less, and of which the curvature is 5° or more, and molds the thermal plastic resin composition in which a rate of (B) the minute carbon fiber to the sum of (A) the thermal plastic resin and (B) the minute carbon fiber is 0.05-20 wt%. The volume resistivity (ρ<SB>VC</SB>) of the inside of the molding is 1×10<SP>3</SP>Ωcm or less, and a ratio (ρ<SB>VS</SB>)/(ρ<SB>VC</SB>) of volume resistivity (ρ<SB>VS</SB>) measured through the surface of the molding and the volume resistivity (ρ<SB>VC</SB>) of the inside of the molding is 100 or more. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、パソコン、携帯電話、その他の高周波通信機器や医療電子機器等の電子機器分野における、電磁波シールド性能を有する筐体等として有効な電磁波シールド部品に関する。特に、成形品の表面を介して測定した体積抵抗値が1×10Ω以上1×1012Ω未満にコントロールされた本発明の電磁波シールド部品は、ハードディスク、磁気ヘッド、IC、LCDなどの電子デバイス周辺の電磁波シールド性を有するESD破損防止性のケースやトレイ、製造用治具等として有用である。
【0002】
【従来の技術】
従来、パソコン、携帯電話、その他の高周波通信機器や医療電子機器等の電子機器分野における電磁波シールド対策としては、樹脂で成形された筐体の内側に、電磁波シールド層として、銅やニッケルなどの金属層をメッキにて設けることが行われている。しかし、この方法では、メッキ処理のための製造工数が増加し、その結果、コストアップに繋がる問題がある。
【0003】
これに対して、熱可塑性樹脂に金属繊維や炭素繊維等の導電性の繊維を充填した導電性熱可塑性樹脂組成物を成形して得られる導電性成形品も電磁波シールド部品として使用されている。しかしながら、このような導電性熱可塑性樹脂組成物により十分な電磁波シールド性を得るためには、導電性繊維を大量に添加する必要があり、導電性繊維の大量添加のために、得られる成形品の表面に繊維が浮き出し易くなり、その結果外観を損なう;導電性熱可塑性樹脂組成物の流動性が低下するために、成形性を損なうなどの問題を生じる。特に、ポリカーボネート樹脂やABS樹脂などの非結晶性樹脂材料をベース樹脂に選定すると、得られる成形品は、そりや寸法精度に優れる反面、導電性繊維による外観の低下が大きい。このような外観や流動性の低下は、特に、最近のコンピュータや携帯電子機器などの薄肉の筐体においては、大きな問題となる。外観及び流動性を保持するためには、導電性繊維の添加量が少ない方が望ましいが、この場合には、電磁波シールド性能を発現し得ない。
【0004】
一方、カーボンナノチューブなどの微細炭素繊維を熱可塑性樹脂に添加して電磁波シールド性を付与することも提案されている(特表平8−508534号公報など)が、この場合にもやはり、十分な電磁波シールド特性を得るためには、微細炭素繊維を大量に添加する必要があり、結果的にコストアップを招くと共に、流動性や外観の低下、機械的強度の低下といった問題がある。
【0005】
また、ICや磁気ヘッドなどの高密度電子デバイスの製造プロセス等においては、静電気放電(ESD)により、デバイスに流れ込む過大な過渡電流による破壊だけでなく、放電により発生する過渡電磁波によってもデバイスが損傷すると言われている。
【0006】
一方、航空機、自動車、医療などの精密な制御計器においては、上記の放電による過渡電磁波による誤動作も問題となっている。
【0007】
かかる分野における電磁波シールド部品には、電磁波シールド性能だけでなく、帯電防止、過渡電流防止などのESD防止性も必要である。
【0008】
金属材料などの高導電性材料は、電磁波シールド性は良好であるものの、表面の導電性が高すぎるために、電位差を有する電子デバイスが接触した場合、放電による過渡電流が過度に生じ、デバイスの発生を引き起こす。更には、放電により過渡電流波が発生し、近傍の電子デバイス内に不要な電流を誘起させてデバイスを破壊したり、機器の誤動作を引き起こす。
【0009】
【特許文献1】
特表平8−508534号公報
【0010】
【発明が解決しようとする課題】
本発明は、導電性熱可塑性樹脂組成物の成形品よりなる電磁波シールド部品であって、優れた電磁波シールド性能を発現し、かつ良好な成形品外観と成形時流動性を保持した電磁波シールド部品を提供することを目的とする。
【0011】
【課題を解決するための手段】
本発明の電磁波シールド部品は、(A)熱可塑性樹脂と(B)平均繊維直径が200nm以下で、屈曲度が5°以上の微細炭素繊維とを含み、(A)熱可塑性樹脂と(B)微細炭素繊維との合計に対する(B)微細炭素繊維の割合が0.05〜20重量%である熱可塑性樹脂組成物を成形して得られる成形品よりなる電磁波シールド部品であって、該成形品内部の体積抵抗率(ρVC)が1×10Ω・cm以下で、かつ該成形品の表面を介して測定した体積抵抗率(ρVS)と、該成形品内部の体積抵抗率(ρVC)との比(ρVS)/(ρVC)が、100以上であることを特徴とする。
【0012】
本発明者らは、成形品外観及び成形時流動性に優れ、しかも良好な電磁波シールド性を得るべく検討した結果、次のような知見を得た。
【0013】
即ち、微細炭素繊維を添加した熱可塑性樹脂組成物は、低剪断速度領域における溶融粘度の増大が著しく、流動性の低下でフローマークなどの外観不良に繋がりやすい。一方、高剪断速度領域においては、微細炭素繊維が配向するために、溶融粘度が低下し、流動性及び外観の点で良好となる反面、微細炭素繊維の接触が不十分となり、導電性が低下し、その結果、電磁波シールド性を損なう。
【0014】
一方、微細炭素繊維を大量に添加すれば、高剪断速度下でも導電性を向上させることはできるが、コストアップに繋がるだけでなく、外観や流動性を損なう。
【0015】
そして、上記知見を踏まえて更に検討した結果、以下の▲1▼,▲2▼を実現することにより、表面層の外観、流動性を損なうことなく、内部層の導電性で電磁波シールド特性を得ることができ、良好な電磁波シールド部品が得られることを見出した。
【0016】
▲1▼ 図1に示す如く、成形品10の表面付近の微細炭素繊維2は流動方向に沿って配向させ、導電性を犠牲にする代わりに、流動性を損なわずに、かつ表面平滑で良好な外観を維持する。この場合、成形品10の表面付近は導電性の低い高抵抗層10Aとなり、電磁波シールド性は付与されない。
▲2▼ 一方、成形品10の内部においては、微細炭素繊維2を十分に絡み合わせて導電性ネットワークを形成し、導電性を付与する。従って、成形品の内部は低抵抗層10Bとなり、電磁波シールド性を発揮する。
【0017】
上記▲1▼,▲2▼を実現するためには、成形品の表面と内部とで、微細炭素繊維の分散状態を極端に変化させ、これにより、成形品の表面と内部とで抵抗値が大きく異なるものとなることが必要である。
【0018】
ところで、本発明で用いる微細炭素繊維は、互いに絡み合う性質を有するが、本発明の電磁波シールド部品では、微細炭素繊維を含む熱可塑性樹脂組成物の射出成形などの成形加工により、溶融、流動、冷却固化のプロセスを経て成形される際、流動時に生じる剪断力によって、図2(a)に示す如く、マトリックス樹脂1中で微細炭素繊維2が配向する結果、微細炭素繊維2同士の絡み合いや接触が不十分となり、導電性は低いものとなる。
【0019】
マトリックス樹脂1中で配向した微細炭素繊維2は、冷却固化プロセスの初期においてマトリックス樹脂1の温度が高い(溶融粘度が低い)間に、図2(b)、更には図2(c)に示す如く、その配向が緩和して、導電性ネットワークが形成され、その結果導電性は向上する。この現象は、微細炭素繊維2を極端に配向させた条件で成形した低い導電性(高い抵抗値)を有する成形品を、再度加熱することによって、加熱した部分の導電性が向上することで検証される。かかる現象は射出成形、押し出し成形のように、完全に樹脂を溶融させ、これを流動させる成形プロセスのみならず、真空成形のように、半溶融状態のシートを延伸して成形する成形法においても同様に起こり、延伸過程における微細炭素繊維の配向と、冷却過程での配向の緩和により導電性(抵抗値)が変動する。
【0020】
このようなメカニズムを利用して、成形品の表面付近の微細炭素繊維を十分に配向させて、外観、流動性を維持し、一方、成形品内部の微細炭素繊維は、高度な絡み合いを形成させることにより、本発明の電磁波シールド部品を得ることができる。
【0021】
しかしながら、成形品の表面における微細炭素繊維の配向を促進しようとして、樹脂の流動速度を大きくし過ぎると、内部の絡み合いが不足して、電磁波シールド性が極端に低下する。また、コンピュータや携帯電話などの筐体部品の肉厚は、一般的に0.5〜2.5mmであり、かかる薄肉の成形品では、成形品内部が急冷されるために、電磁波シールド特性を損ないやすい。従って、本発明においては、成形品表面における微細炭素繊維の配向と成形品内部の微細炭素繊維の絡み合いの差が極端に変化するように、樹脂の溶融粘度、樹脂の流動速度、冷却速度等を十分に適正化する必要がある。
【0022】
本発明では、成形品内部の微細炭素繊維の絡み合いで、成形品内部の体積抵抗率(ρVC)が1×10Ω・cm以下と導電性に優れるため、優れた電磁波シールド性を得ることができる。
【0023】
また、成形品の表面を介して測定した体積抵抗率(ρVS)と成形品内部の体積抵抗率(ρVC)との比(ρVS)/(ρVC)が、100以上で、成形品内部の体積抵抗率に対して成形品表面の体積抵抗率が著しく大きい。これは、成形品表面において微細炭素繊維が配向した高抵抗層を形成しているためであり、このような配向層であれば、流動性、表面外観に優れる。
【0024】
なお、成形品内部の体積抵抗率(ρVC)とは、後述のように、成形品の表面を介さずに成形品内部に電極を設けて測定された体積抵抗率である。即ち、例えば、図3(a)に示すような成形品10の平板状部10aから図3(b)に示すような破断試料(幅W,長さL,厚さt)20を切り出し、図4(a)に示す如く、破断試料20の破断面20A,20Bに電極21A,21Bを形成して電極21A,21B間の抵抗値を測定する。破断試料20は、表面層が微細炭素繊維の配向により抵抗値Rの高抵抗層となり、内部は抵抗値Rの低抵抗層となっているため、表面の抵抗値Rが内部の抵抗値Rに対して十分に大きい場合、図4(b)に示す並列等価回路において測定される抵抗値RVCは内部の低抵抗層の抵抗値Rとほぼ同等である。実際には、抵抗値は成形品の表面から内部へ徐々に傾斜しているものと考えられるが、いずれにせよ抵抗値RVCは内部の低抵抗層に支配される。
【0025】
また、図5(a)に示す如く、破断試料20の両表面に電極22A,22Bを形成して電極22A,22B間の抵抗値を測定した場合、この表面を介して測定される抵抗値RVSは、図5(b)に示す如く、一方の表面の高抵抗層の抵抗値Rと内部の低抵抗層の抵抗値Rと他方の表面の高抵抗層の抵抗値Rとで構成される直列等価回路の抵抗値であり、即ち、これらの抵抗値の和に相当する。従って抵抗値RVSは、表面付近の高抵抗値Rとほぼ同等となる。
【0026】
体積抵抗率は、測定された抵抗値から、
体積抵抗率=(抵抗値の測定値)×電極面積÷電極間距離
で求められるため、成形品内部の体積抵抗率(ρVC)及び成形品の表面を介して測定された体積抵抗率(ρVS)は以下のようにして求めることができる。
【0027】
成形品内部の体積抵抗率(ρVC)=(W×t)/L ×(RVC)  成形品の表面を介して測定された体積抵抗率(ρVS)=A/t ×(RVS
(ただし、Aは電極22A,22Bの面積)
【0028】
成形品内部の体積抵抗率(ρVC)に対する、成形品の表面を介して測定した体積抵抗率(ρVS)の比(ρVS)/(ρVC)が100以上ということは、成形品表面の高抵抗層の抵抗値Rが内部の低抵抗層のRに対して十分に大きいこと、即ち、内部では微細炭素繊維が絡み合って導電性ネットワークを形成して導電性が高く、良好な電磁波シールド性が得られ、一方で、成形品表面では微細炭素繊維が配向し、導電性は低いが流動性が良好で表面平滑性に優れることを表している。
【0029】
本発明においては、(A)熱可塑性樹脂と(B)微細炭素繊維との合計100重量部に対して、平均繊維径が0.5〜20μmの導電性繊維を30重量部以下配合することにより、外観や流動性を大幅に損なうことなく電磁波シールド性を更に向上させることができる。また、(A)熱可塑性樹脂と(B)微細炭素繊維との合計100重量部に対して、平均粒子径が0.5〜100μmの鱗片状導電性フィラーを30重量部以下配合することにより、外観を損なうことなく電磁波シールド性を向上させることができる。
【0030】
本発明の電磁波シールド部品を構成する熱可塑性樹脂組成物は、剪断速度が50(sec−1)のときの溶融粘度(η50)と、剪断速度が5000(sec−1)のときの溶融粘度(η5000)との比(η50)/(η5000)が3以上20以下であると、剪断速度の大きい表面層の流動性及び外観が良好となり、剪断速度の比較的小さい内部層の電磁波シールド性のバランスが良好な電磁波シールド部品を容易に得ることができ、好ましい。
【0031】
即ち、前述の本発明の範囲内の体積抵抗率比(ρVS)/(ρVC)を実現するには、前述の如く、成形品の表面付近と内部とで微細炭素繊維の分散構造を極端に変化させる必要があるが、そのためには、熱可塑性樹脂組成物の溶融粘度の剪断速度依存性が大きいことが望ましい。
【0032】
一般に、例えば射出成形品を成形する場合、表面近傍ほど剪断速度が大きくなる。一方、本発明に係る熱可塑性樹脂組成物では、樹脂組成物は、絡み合った微細炭素繊維が配向することによって、溶融粘度が低下する。これは、剪断速度が大きくなるほど微細炭素繊維が配向して、絡み合いが少なくなるためである。従って、溶融粘度の剪断速度依存性が大きいことは、表面近傍と内部とで、微細炭素繊維の配向の度合いが大きく異なるようになることにつながる。
【0033】
従って、上記溶融粘度比(η50)/(η5000)は3以上であることが好ましい。しかし、この溶融粘度比(η50)/(η5000)が過度に大きいと、流動速度の小さい部分の金型形状の転写不良や、ひけやフローマーク等を生じるため、溶融粘度比(η50)/(η5000)は20以下であることが好ましい。
【0034】
【発明の実施の形態】
以下に本発明の電磁波シールド部品の実施の形態を詳細に説明する。
【0035】
まず、本発明の電磁波シールド部品の成形材料である熱可塑性樹脂組成物の構成成分について説明する。
【0036】
<構成成分>
(A)熱可塑性樹脂
(A)成分の熱可塑性樹脂としては、例えば、ABS樹脂、AS樹脂、ポリカーボネート、ポリアリレート、ポリフェニルスルホン、ポリエーテルスルフホン、ポリエーテルイミド、ポリオキシメチレン、ポリスチレン、脂環式ポリオレフィン、ポリエチレン、ポリプロピレン、ポリメチルペンテン、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリフェニレンスルフィド、ポリアミド、ポリエーテルエーテルケトンなどの熱可塑性樹脂が挙げられる。これらは、電磁波シールド部品の用途に応じて機械的強度、成形性等の特性から1種又は2種以上を適宜選択使用することができる。
【0037】
上述の熱可塑性樹脂の中でも、非結晶性熱可塑性樹脂としては、ABS樹脂、AS樹脂、ポリカーボネート、ポリアリレート、ポリフェニルスルホン、ポリエーテルスルフホン、ポリエーテルイミド、変性ポリオキシメチレン、ポリスチレン、脂環式ポリオレフィンなどが挙げられ、一方、結晶性熱可塑性樹脂としては、ポリエチレン、ポリプロピレン、ポリメチルペンテン、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリフェニレンスルフィド、ポリアミドなどが挙げられる。
【0038】
このような熱可塑性樹脂の中でも、寸法精度、そり等の点で非結晶性熱可塑性樹脂が望ましく、例えば、ABS樹脂、AS樹脂、ポリスチレン、ポリカーボネート、ポリアリレート、ポリフェニルスルホン、ポリエーテルイミド、脂環式ポリオレフィンなどが望ましい。中でも、ABS樹脂、ポリカーボネート樹脂がコスト、性能のバランスが優れる点で好ましい。
【0039】
(B)微細炭素繊維
本発明で使用される(B)成分の微細炭素繊維は、平均繊維径が200nm以下のものであり、一般的には気相成長法により製造される。微細炭素繊維としては、例えば特表平8−508534号公報に記載されている炭素フィブリルが使用される。
【0040】
即ち、炭素フィブリルは、当該フィブリルの円柱状軸に実質的に同心的に沿って沈着されているグラファイト外層を有し、その繊維中心軸は直線状でなく、うねうねと曲がりくねった管状の形態を有する。
【0041】
炭素フィブリルの平均繊維径は200nm以下、望ましくは100nm以下、更に望ましくは20nm以下である。炭素フィブリルの繊維径は炭素フィブリルの製法に依存し、若干の分布があるが、ここで言う平均繊維径とは顕微鏡観察して10点測定した平均値である。
【0042】
炭素フィブリルの平均繊維径が200nmより大きいと、マトリックス樹脂中でのフィブリル同士の接触が不十分となり、導電性を発現させるために多量の添加が必要となったり、表面層と内部層とで微細炭素繊維の分散状態の制御が困難となる。
【0043】
炭素フィブリルの平均繊維径は0.1nm、特に0.5nm以上が望ましい。平均繊維径がこれより小さいと、製造が著しく困難である。
【0044】
炭素フィブリルは、長さと径の比(長さ/径比、即ちアスペクト比)が5以上のものが好ましく、特に20以上の長さ/径比を有するものは、導電性ネットワークを形成しやすいため、少量の添加で優れた導電性が得られる点で望ましい。より好ましい炭素フィブリルの長さ/径比は1000以上である。なお、この炭素フィブリルの繊維径、繊維長(及びアスペクト比)は、透過型電子顕微鏡での観察において、10点の実測値の平均値である。
【0045】
微細な管状の形態を有する炭素フィブリルの壁の厚み(管状体の壁厚)は、通常3.5〜75nm程度である。これは、通常フィブリルの外径の約0.1から0.4倍に相当する。
【0046】
炭素フィブリルはその少なくとも一部分が凝集体の形態である場合、原料となる樹脂組成物中に、面積ベースで測定して約50μm、特に10μmよりも大きい径を有するフィブリル凝集体を含有していないことが、所定の導電性を得るための添加量が少なくてすみ、得られる成形品の機械物性を低下させない点で望ましい。
【0047】
更に、本発明において、炭素フィブリル等の微細炭素繊維は、曲がりくねった繊維形状であることが、繊維同士の絡み合いが多くなり、微量の添加量で導電性が得られると同時に、本発明の効果が大きい点で望ましい。
【0048】
このような絡み合いを得るために、本発明では、屈曲度が5°以上、望ましくは20°以上、更に望ましくは40°以上の微細炭素繊維を用いる。
【0049】
微細炭素繊維の屈曲度は、例えば、本発明の電磁波シールド部品の樹脂成分を溶媒やイオンスパッタリング等で除去して、微細炭素繊維を露出させるか、又は成形品より切り出した超薄切片を電子顕微鏡観察することによって測定することができる。この場合、成形品の表面から50μm以内の表面層における微細炭素繊維について測定することとする。
【0050】
屈曲度は図6に示すように炭素フィブリル等の微細炭素繊維2を顕微鏡で観察し、同一繊維上において、繊維径の5倍(繊維径(図6のdの部分)を測定し、デバイダ等で繊維に沿って計る等の方法による)離れた任意の2点A,Bを選び、それぞれの点に接線L,Lを引いて、接線L,Lの交差する点Qの外角(図6においてαで示す角)を測定する。10点の平均値をとり、これを屈曲度とする。
【0051】
繊維が直線的であればこの角度は0゜となり、半円であれば180゜、円を描くものであれば360゜となる。
【0052】
このような測定を行って求めた屈曲度αが、5゜以上、望ましくは20゜以上、更に望ましくは40゜以上の微細炭素繊維であれば、微細炭素繊維同士の絡み合いによるネットワークを形成し易く、導電性、電磁波シールド性付与の面で好ましい。
【0053】
本発明において、微細炭素繊維の平均繊維直径が200nm以上で、屈曲度が5°以上であることは重要であり、これらの条件を満たす微細炭素繊維でないと、本発明の効果が得られない。即ち、微細炭素繊維の平均繊維直径が200nmを超えると、たとえ屈曲度が5°以上であっても、繊維が剛直であるために、剪断により微細炭素繊維が配向し難く、その結果、表面層の導電性が低下せず、流動性の低下や、外観不良を引き起こす。また、平均繊維直径が200nm以下であっても、屈曲度が5°未満の場合には、微細炭素繊維の絡み合いが起こり難く、その結果、内部層の導電性が向上せず、電磁波シールド性能を損なう。
【0054】
特に、平均繊維直径が50nm以下で、かつ屈曲度が20°以上の微細炭素繊維であると、本発明の効果が大きい。
【0055】
なお、通常の炭素繊維(ピッチ系、PAN系)は、繊維直径が7〜13μm程度の、剛直かつ直線的な繊維であり、屈曲度は5°未満となる。かかる直線的な繊維では、お互いの絡み合いが生じることはなく、ネットワーク構造を形成し難い。
【0056】
本発明において、微細炭素繊維としては、市販品、例えば、ハイペリオンカタリシスインターナショナル社のカーボンナノチューブ等を用いることができる。
【0057】
なお、本発明で用いる微細炭素繊維には、(A)成分の熱可塑性樹脂、或いは各種の表面処理や分散剤による処理を施しても良い。この場合の処理剤としては例えば、シラン系カップリング剤、チタネート系カップリング剤、アルミニウム系カップリング剤などのカップリング剤や、非極性セグメントと極性セグメントのブロック又はグラフト共重合体などが使用できる。
【0058】
本発明において、熱可塑性樹脂組成物中の微細炭素繊維の含有量は、(A)成分の熱可塑性樹脂と(B)成分の微細炭素繊維との合計に対して0.05〜20重量%、望ましくは1〜15重量%、更に望ましくは2〜10重量%である。微細炭素繊維の含有量がこの範囲よりも少ないと得られる電磁波シールド部品に十分な導電性、電磁波シールド性を得ることができず、微細炭素繊維の含有量がこの範囲よりも多いと、流動性の低下、得られる成形品の外観不良を引き起こす恐れがある。
【0059】
(C)導電性繊維
導電性繊維としては、アルミニウム、銀、銅、亜鉛、ニッケル、ステンレス、真鍮、チタンなどの金属繊維、ピッチ系炭素繊維、PAN系炭素繊維、グラファイトウィスカー等の炭素系繊維、酸化亜鉛、酸化スズ、酸化インジウム等の金属酸化物系繊維などが挙げられる。なお、金属酸化物系繊維のなかでも格子欠陥の存在により余剰電子が生成して導電性を示すものの場合には、ドーパントを添加して導電性を増加させたものを用いても良い。例えば、酸化亜鉛にはアルミニウム、酸化スズにはアンチモン、酸化インジウムにはスズ等がそれぞれドーパントとして用いられる。また、炭素繊維などに金属をコーティングしたり、チタン酸カリウムウィスカの表面にカーボンや金属、導電性酸化スズのコーティング層を形成した複合系導電性繊維を使用することもできる。これらの導電性繊維は1種を単独で用いても良く、2種以上を併用しても良い。
【0060】
これらの導電性繊維の中でも、炭素繊維(ピッチ系又はPAN系)が成形品の導電性向上効果に優れる点で好ましい。とりわけ、炭素繊維の表面にニッケル等の金属をコーティングしたものが望ましい。
【0061】
導電性繊維の平均繊維直径は、顕微鏡観察において10点測定した平均値が0.5〜20μm、望ましくは5〜15μmであることが、導電性の向上効果が大きい点で望ましい。
【0062】
また成形品中に分散させた状態における導電性繊維のアスペクト比(繊維長/繊維径)が、顕微鏡観察において10点測定した平均値で3以上、望ましくは5以上、更に望ましくは10〜1000であると、導電性が向上するので好適である。
【0063】
成形品内部においては、導電性繊維と微細炭素繊維との絡み合いが密であるほど、導電性が向上する。そのためには、微細炭素繊維の絡み合いによる導電性ネットワークにより、導電性繊維を絡め取りながら、導電性繊維を繋ぐと電気的な接触が良好となるが、微細炭素繊維の絡み合いによるネットワークに対して、導電性繊維が充分に大きくないと、このネットワークが導電性繊維を絡め取る効果が少ない。従って、この効果を十分に得るために、導電性繊維の平均繊維直径(Dc)と、微細炭素繊維の平均繊維直径(Db)の比(Dc/Db)が100〜5000、望ましくは600〜5000であることが望ましい。
【0064】
本発明で用いる熱可塑性樹脂組成物に、このような平均繊維直径0.5〜20μmの導電性繊維を添加すると、外観や流動性を損なわずに得られる電磁波シールド部品の電磁波シールド特性を更に向上させることができる。
【0065】
即ち、表面層においては導電性繊維及び微細炭素繊維を配向させて、導電性を低下させる代わりに、流動性及び外観を改善し、一方、内部層においては、微細炭素繊維の配向を十分に緩和させることによって、導電性繊維間を微細炭素繊維で電気的に繋ぎ、高度の導電性ネットワークを形成させる。その結果、内部の導電性が向上して優れた電磁波シールド性が発現される。
【0066】
このような導電性繊維の配合量は、(A)熱可塑性樹脂と(B)微細炭素繊維との合計100重量部に対して、好ましくは30重量部以下、特に好ましくは3〜20重量部である。導電性繊維の配合量が少ないと導電性繊維を配合したことによる導電性の向上効果を十分に得ることができないが、上記範囲よりも多いと流動性や外観を損なう結果となる。
【0067】
(D)鱗片状導電性フィラー
鱗片状導電性フィラーとしては、黒鉛や、Niフレーク、ステンレスフレークなどの鱗片状金属フィラーの1種又は2種以上を用いることができる。中でも黒鉛が外観、コスト、導電性のバランスに優れる点で好ましい。黒鉛としては、天然鱗片状黒鉛、又は、石油コークスやピッチコークスを主原料として鱗片状に製造された人造黒鉛などを使用することができる。
【0068】
鱗片状導電性フィラーの平均粒子径は0.5〜200μm、望ましくは、1〜100μm、更に望ましくは5〜70μmである。なお、鱗片状導電性フィラーの平均粒子径とは、電子顕微鏡で、鱗片状導電性フィラーの平面方向に、少なくとも20点測定した平均値である。鱗片状導電性フィラーの平均粒子径が上記範囲よりも小さいと、導電性の向上効果が少なく、大きいと流動性を損なったり、ウェルド強度が低下する。
【0069】
また、鱗片状導電性フィラーのアスペクト比(平面方向の粒子径/厚み)は、顕微鏡観察において少なくとも20点以上測定した平均値が5以上、望ましくは10〜1000であると、導電性が向上するので好適である。
【0070】
成形品内部においては、上述の導電性繊維と同様に、鱗片状導電性フィラーと微細炭素繊維との絡み合いが密であるほど、導電性が向上する。この絡み合いの点から、鱗片状導電性フィラーの平均粒子径(Dd)と微細炭素繊維の平均繊維直径(Db)との比(Dd/Db)が100〜5000、望ましくは600〜5000であると、微細炭素繊維のネットワークが鱗片状導電性フィラーを絡め取る効果が大きく、導電性に優れるため好ましい。
【0071】
本発明で用いる熱可塑性樹脂組成物に、このような平均粒子径0.5〜100μmの鱗片状導電性フィラーを添加すると、外観を損なわずに電磁波シールド部品の電磁波シールド特性を向上させることができる。
【0072】
即ち、鱗片状導電性フィラーは、導電性繊維と同様の効果で導電性を高め、電磁波シールド性を向上させることができ、そして、成形品の表面層において、鱗片状導電性フィラーの平面が成形品表面に平行に配向するために、鱗片状導電性フィラーによる凹凸が少なくなり、外観の低下が少ない。
【0073】
このような鱗片状導電性フィラーの配合量は、(A)熱可塑性樹脂と(B)微細炭素繊維との合計100重量部に対して、好ましくは30重量部以下、特に好ましくは3〜20重量部である。鱗片状導電性フィラーの配合量が少ないと鱗片状導電性フィラーを配合したことによる導電性の向上効果を十分に得ることができないが、上記範囲よりも多いと流動性や外観を損なう結果となる。
【0074】
なお、本発明に係る熱可塑性樹脂組成物が上記(D)鱗片状導電性フィラーと前述の(C)導電性繊維とを共に含む場合、これらの合計の配合量が、(A)熱可塑性樹脂と(B)微細炭素繊維との合計100重量部に対して30重量部以下、特に3〜20重量部であることが好ましい。
【0075】
(E)添加成分
本発明に係る熱可塑性樹脂組成物には、上記(A)〜(D)成分の他、必要に応じて、上記の性能を損なわない範囲で付加成分を配合することができる。
【0076】
このような付加成分としては、例えば、ガラス繊維、シリカ繊維、シリカ・アルミナ繊維、チタン酸カリウム繊維、ホウ酸アルミニウム繊維等の無機繊維状強化材、アラミド繊維、ポリイミド繊維、フッ素樹脂繊維等の有機繊維状強化材、タルク、炭酸カルシウム、マイカ、ガラスビーズ、ガラスパウダー、ガラスバルーン等の無機充填剤、フッ素樹脂パウダー、二硫化モリブデン等の固体潤滑剤、パラフィンオイル等の可塑剤、酸化防止剤、熱安定剤、光安定剤、紫外線吸収剤、中和剤、滑剤、相溶化剤、防曇剤、アンチブロッキング剤、スリップ剤、分散剤、着色剤、防菌剤、蛍光増白剤等といった各種添加剤を挙げることができる。
【0077】
更に本発明に係る熱可塑性樹脂組成物には、上記(C)導電性繊維及び(D)鱗片状導電性フィラー以外の、粒子状などの導電性充填材を添加しても良い。このような導電性充填材としては、例えば、アルミニウム、銅、ニッケル、ステンレスなどの粒子や、カーボンブラック(ファーネスブラック、アセチレンブラックなど)、メソフェーズピッチより製造される球状カーボンなどのカーボン系フィラーなどが挙げられる。
【0078】
以下に、このような熱可塑性樹脂組成物を成形して本発明の電磁波シールド部品を製造する方法について説明する。
【0079】
<製造方法>
本発明に係る熱可塑性樹脂組成物は、通常の熱可塑性樹脂の加工方法で製造することができる。例えば、(A)熱可塑性樹脂及び(B)微細炭素繊維と、必要に応じて(C)導電性繊維及び/又は(D)鱗片状導電性フィラーと、更に必要に応じて配合される(E)添加成分の全てを予め混合した後、バンバリーミキサー、ロール、ブラベンダー、単軸混練押し出し機、二軸混練押し出し機、ニーダーなどで溶融混練することによって製造することができる。
【0080】
また、本発明の電磁波シールド部品は、このような熱可塑性樹脂組成物を各種の溶融成形法を用いて成形することにより製造することができる。成形法としては、具体的には圧縮成形、押し出し成形、真空成形、ブロー成形、射出成形などを挙げることができる。これらの成形法の中でも、特に射出成形法、真空成形法において、顕著な効果を得ることができる。
【0081】
なお、本発明に係る熱可塑性樹脂組成物を製造する際には、予め(A)成分の一部に高濃度の(B)成分を添加したマスターバッチを製造し、その後このマスターバッチを(A)成分で希釈しても良い。
【0082】
以下に、本発明に係る熱可塑性樹脂組成物の溶融粘度と、本発明の電磁波シールド部品の体積抵抗率について説明する。
【0083】
<熱可塑性樹脂組成物の溶融粘度>
前述の如く、本発明の範囲内の体積抵抗率比(ρVS)/(ρVC)を実現するには、成形品の表面付近と内部とで微細炭素繊維の分散構造を極端に変化させる必要がある。そのためには、熱可塑性樹脂組成物の溶融粘度の剪断速度依存性が大きいことが望ましく、流動速度の小さい部分の金型形状の転写不良や、ひけやフローマーク等を生じることなく、成形品の表面近傍と内部とで、微細炭素繊維の配向の度合いが大きく異なるようにするために、本発明の電磁波シールド部品を構成する熱可塑性樹脂組成物は、剪断速度が50(sec−1)のときの溶融粘度(η50)と、剪断速度が5000(sec−1)のときの溶融粘度(η5000)との比(η50)/(η5000)が3以上20以下であることが好ましい。
【0084】
特に、(A)成分としてポリカーボネート樹脂を使用した場合、本発明に係る熱可塑性樹脂組成物は、特に、300℃において、剪断速度5000(sec−1)での溶融粘度が300(Pa・s)以下で、かつ上記溶融粘度比(η50)/(η5000)が3.5以上18以下であるものが望ましい。
【0085】
<成形品の体積抵抗率>
成形品の表面の外観、流動性を損なうことなく、内部層に電磁波シールド特性を付与して良好な電磁波シールド部品を得るために、本発明の電磁波シールド部品では、成形品内部の体積抵抗率(ρVC)が1×10Ω・cm以下で、かつ成形品の表面を介して測定した体積抵抗率(ρVS)と、成形品内部の体積抵抗率(ρVC)との比(ρVS)/(ρVC)が、100以上となるようにする。
【0086】
本発明の電磁波シールド部品は、成形品内部の微細炭素繊維の絡み合いで、成形品内部の体積抵抗率(ρVC)が1×10Ω・cm以下と導電性に優れるため、優れた電磁波シールド性を得ることができる。この成形品内部の体積抵抗率(ρVC)は好ましくは1×10−3〜1×10Ω・cmである。
【0087】
また、成形品の表面を介して測定した体積抵抗率(ρVS)と成形品内部の体積抵抗率(ρVC)との比(ρVS)/(ρVC)が、100以上で、成形品内部の体積抵抗率に対して成形品表面の体積抵抗率が著しく大きい。これは、成形品表面において微細炭素繊維が配向した高抵抗層を形成しているためであり、このような配向層であれば、流動性、表面外観に優れる。この体積抵抗率比(ρVS)/(ρVC)は好ましくは500以上、より好ましくは1000以上である。特に、成形品の表面を介して測定した体積抵抗率(ρVS)が1×10Ω・cm以上であると、外観が良好であり、好ましい。好ましい体積抵抗率(ρVS)は1×10〜1×1010Ω・cmである。
【0088】
特に、本発明の範囲の中でも、成形品の表面を介して測定した体積抵抗率(ρVS)が1×10以上1×1012Ω未満であると、ESD防止特性が良好となり、その結果、成形品内部の高導電層による電磁波シールド特性と、成形品表面の帯電防止性及び過電流防止性を兼ね備えるものとなる。成形品の表面を介して測定した体積抵抗率(ρVS)は、特に、1×10以上1×1011Ω未満、望ましくは1×10以上1×1010Ω未満、さらに望ましくは1×10以上1×1010Ω未満であると、帯電防止特性と過渡電流防止性が良好となる点で望ましい。
【0089】
また、炭素繊維、黒鉛などの比較的サイズの大きな導電性フィラーを添加しないものが、過渡電流防止性に優れる点で望ましい。
【0090】
なお、本発明に係る体積抵抗率の測定方法の一例は次の通りである。
【0091】
成形品内部の体積抵抗率(ρVC)を測定するためには、電極を成形品内部に形成して測定する必要がある。このために、例えば、以下の手順で測定すれば良い。
【0092】
(i) 図3に示す如く、成形品10を、2つの破断面が対向するように破断する。このとき、成形品サンプルを低温(望ましくは、液体窒素(−147℃)中で冷却する)に冷却して破断すると、微細炭素繊維や導電性繊維の分散状態が維持され、抵抗値を正確に測定できるので望ましい。
【0093】
(ii) 破断試料20の破断面20A,20Bに、図4(a)に示す如く、導電性ペーストの塗布や金属の蒸着によって電極21A,21Bを形成する。電極は、試料20の導電性よりも十分に高い(抵抗値が低い、好ましくは抵抗値が少なくとも1オーダー以上低い)材料よりなることが必要である。そのために、銀などの金属を蒸着して電極を形成することが望ましい。
【0094】
(iii) 破断試料20の破断面間(電極21A,21B間)の抵抗値を測定し、下記計算式より体積抵抗値を算出する。
(ρVC)=A/L×(RVC
ここで、A   ;電極面積(=サンプル厚みt×幅W)
L   ;電極間距離(=サンプル長さL)
VC;測定値
【0095】
また、成形品の表面を介して測定した体積抵抗率(ρVS)の測定には、図5(a)に示す如く、破断試料20の裏面及び表面に対向して電極22A,22Bを設ける。体積抵抗率(ρVS)は、比較的高い値となるので、導電性ペーストで電極を施したり、導電性ゴム又は金属製のプローブにより直接測定しても良い。しかしながら、サンプル表面と電極との接触面積が十分に確保できる点で、銀等を蒸着して電極を形成することが望ましい。体積抵抗率(ρVS)は、上記計算式より同様に算出されるが、この場合、電極間距離は、成形品厚みtに相当する。
【0096】
<他部品との締結方法>
本発明の電磁波シールド部品を他の金属製品と締結する場合、例えば、成形品の下穴にビンやねじ、ローネット等を挿入して固定する際に、ピンやねじなどを加熱することによって、接触部の樹脂を軟化させて行う、加熱挿入を用いることが望ましい。
【0097】
これは、接触部の樹脂が軟化することによって、成形品内部の微細炭素繊維の凝集が生じ、その結果、ピンやねじとの電気的接触が良好となるためである。これによって、本発明の電磁波シールド部品と、ピンやねじを介して締結された他の金属部品との導電性が向上し、電気的に等電位にすることが可能となり、その結果、電磁波シールド性やESD防止性の向上に繋がる。
【0098】
なお、この場合の加熱方法としては、ヒーター加熱、超音波加熱等を用いることができる。
【0099】
【実施例】
以下に実施例及び比較例を挙げて本発明をより具体的に説明する。
【0100】
なお、実施例及び比較例で用いた配合原料は次の通りである。
ポリカーボネート樹脂:三菱エンジニアリングプラスチック社製 商品名「ノバレックス7022」
ポリブチレンテレフタレート樹脂:三菱エンジニアリングプラスチック社製商品名「ノバドゥール5010」
炭素繊維1:東邦レーヨン社製 商品名「HTA−C6−SRS」(カット繊維長6mm)
炭素繊維2:東邦レーヨン社製 商品名「HTA−MC−C6−U」(ニッケルコート炭素繊維,カット繊維長6mm)
微細炭素繊維:ハイペリオンカタリシスインターナショナル社製 カーボンナノチューブ
黒鉛: 日本黒鉛社製 商品名「CP・B」(鱗片状黒鉛)
【0101】
実施例1〜9,比較例1〜12
表1に示す成分配合で各材料を混合し、2軸押出機(池貝鉄鋼社製「PCM45」、L/D=32(L;スクリュー長、D;スクリュー径))を用いて、バレル温度300℃、スクリュー回転数160rpmにて溶融混練して、導電性ポリカーボネート樹脂組成物のペレットを得た。
【0102】
なお、微細炭素繊維の配合混練は、予めポリカーボネート樹脂に微細炭素繊維を15重量%添加したマスターバッチを製造し、これを残る成分で希釈して所定の配合量とした。
【0103】
【表1】

Figure 2004134515
【0104】
得られた各組成物のペレットを用いて、75TON射出成型機にて図7に示す形状の150mm×150mmのシートサンプル(厚みは各々表2〜4に示す通り。)30を成形した。このときの射出圧力は、1800kg/cm(176.5MPa)以下に設定し、組成物の流動性に応じて、所定の充填時間となるように圧力と速度を適正化しながら成形した。金型キャビティ末端から10mm手前の位置で、射出圧力から保持圧力へ切り変えて成形した。保持圧力は800kg/cm(78.4MPa)以下で3秒間加えた。但し、射出圧力1800kg/cm、保持圧力800kg/cmでも充填できない場合は、“充填不良”として成形を中断した。成形条件(シリンダ温度、金型温度、射出率)は表2〜4に示す通りである。
【0105】
得られたシートサンプルについて、以下の評価を行った。
【0106】
(1)微細炭素繊維の繊維直径、長さ/径比、及び屈曲度
実施例1のシートサンプルから、樹脂の流動方向に沿って、かつサンプル表面に垂直に超薄切片を切り出し、透過型電子顕微鏡にて観察し、成形品内部の微細炭素繊維の繊維直径、長さ/径比、屈曲度をそれぞれ10点測定し、平均値を算出した。結果を以下に示す。
【0107】
繊維直径=10.5nm
長さ/径比=22以上
屈曲度=67°
【0108】
なお、ここで、長さ/径比については、超薄切片を作製する際に、繊維の一部が切断されるために、正確な繊維長を測定することができないが、少なくとも本発明の望ましい範囲内であることを確認した。
【0109】
(2) 炭素繊維の繊維直径、及びアスペクト比
実施例3(組成物4)及び4(組成物5)のシートサンプルを、流れ方向に沿って破断した破断面を、光学顕微鏡にて観察して、炭素繊維の繊維直径及び長さを、それぞれ10点ずつ測定して平均値を算出した。
【0110】
Figure 2004134515
【0111】
なお、ここでアスペクト比については、破断面に露出した炭素繊維の一部が樹脂に隠れてしまうため、正確な繊維長を測定することができないが、少なくとも本発明の望ましい範囲内であることを確認した。
【0112】
(3) 黒鉛の粒子径、及びアスペクト比
予め混練前の黒鉛の粒子径を、光学顕微鏡にて150点測定して平均値を算出した結果、16.3μmであり、微細炭素繊維に対する径比は1552であった。
【0113】
実施例7のシートサンプルを、流れ方向に沿って、かつサンプル表面に垂直に破断した破断面を、電子顕微鏡にて観察して、黒鉛の厚さを20点測定して平均値を算出し、上記の粒子径との比を求めてアスペクト比を算出した結果、38であった。
【0114】
(4) 体積抵抗値及び表面抵抗値
▲1▼ 図7のシートサンプル30のA,B,Cの位置から幅15mmの短冊状に切り出したテストピースを、液体窒素中で冷却した後、約30mm長さに破断して、図3(b)に示すような幅W=15mm、長さL=約30mmの破断試料20を作製した(厚さは表2〜4に示す通り。)。
【0115】
▲2▼ 破断試料20の破断面20A,20Bに、1500Åの厚みで銀を蒸着して、図4(a)に示す如く、電極21A,21Bを形成した。
【0116】
▲3▼ 電極21A,21B間の抵抗値を測定し、サンプルの幅W,長さL,厚さを実測して体積抵抗率(ρVC)を算出した。
【0117】
▲4▼ 次に、図5(a)に示す如く、破断試料20の表裏の板面の同位置に、10mm×10mmの大きさで1500Åの厚みで銀を蒸着して電極22A,22Bを形成した。
【0118】
▲5▼ 電極22A,22B間の抵抗値を測定し、サンプルの厚さを実測して体積抵抗率(ρVS)を算出した。
【0119】
なお、抵抗値の測定には、以下の測定器を用いた。
【0120】
Figure 2004134515
【0121】
図7のA,B,Cから切り出した試料のそれぞれの値の平均値を求め、結果を表2〜4に示した。
【0122】
(5) 電磁波シールド性
テクノサイエンスジャパン社製 KEC法シールド測定装置を用いて、電界シールド効果を測定した(出力110dBuV)。800MHzでのシールド効果を代表値とし、結果を表2〜4に示した。数値は小さいほど(マイナスの数値が大きいほど)電磁波シールド効果が高いことを表す。
【0123】
(6) 10点平均粗さ(Rz)
表面外観の指標として、上記抵抗値測定部分のRz(10点平均粗さ)を下記表面粗さ計を用いて、下記条件にて測定し、結果を表2〜4に示した。
【0124】
東京精密社製 表面粗さ計「サーフコム480A」
カットオフ波長:2.5mm
測定長:3mm
測定スピード:0.3mm/sec
【0125】
なお、10点平均表面粗さ(Rz)とは、粗さ曲線の平均線から縦倍率の方向にカットオフ波長2.5mmで測定した、最も高い山頂から5番目までの山頂の標高の絶対値の平均値と、最も低い谷底から5番目までの谷底の標高の絶対値の平均値との和より算出して求める。従って、Rzの数値は、小さいほど平滑な表面で、外観に優れることを示す。ただし、極めて平滑な表面の場合、山及び谷が測定範囲内に5個以上存在しないと算出が不可能である。そのような場合には、最大山と最大谷の和、すなわちRmaxで置き換えることができる。
【0126】
なお、用いた成型機の金型表面は、Rmax0.2μm以下であることを確認した。従って、Rz(又はRmax)がこれより大きいものは、表面の金型転写性が不良であり、外観が損なわれていることを意味する。
【0127】
(7) 光沢度
表面外観の指標として、光沢度を測定し、結果を表2〜4に示した。光沢度は、表面に光を当てた際の反射の程度を表す量で、屈折率1.567のガラス板表面の光沢度を100としたときの相対値である。測定には、堀場製作所社製「グロスチェッカー IG−330」を用い、反射角度60°にて測定した。この数値が大きいほど、成形品表面の金型の転写性が良好となり、その結果、光沢に優れることを表す。
【0128】
(8) 成形性
上述の成形条件の範囲内で得られたシートサンプルについて、充填度合いを目視で観察し、流動性の指標として下記評価基準で評価し、結果を表2〜4に示した。
○…樹脂がキャビティに完全に充填した。
△…末端部に10mm未満の未充填部分が生じた。
×…末端部に10mm以上の未充填部分が生じた。
【0129】
(9) ESD防止性評価
これらの成形品のESD防止特性として接触電流及び帯電電極を次の機器を用いて測定し、結果を表2〜4に示した。
【0130】
チャージプレートモニター;ヒューグエレクトロニクス社製
表面電位計;モンローエレクトロニクス社製 244A
オシロスコープ;レクロイ社製 LC584A
電流プローブ;テクトロニクス社製 CT1
【0131】
1.接触電流
過電流防止特性の評価として帯電したシートサンプル(図7)に、接地された電子部品が接触した場合に生じる接触電流について、電子部品を接地プローブで代用して以下の通り測定した。
▲1▼ チャージプレートモニター上に、シートサンプルを置いた。
▲2▼ チャージプレートモニターを使用して、プレート及びサンプルに1000Vを3秒間充電させた後、接地から切り離して絶縁した。
▲3▼ 3秒後に接地プローブをA〜Cに接触させて、プローブを流れる接触電流を測定した。この場合、接触電流はナノ秒オーダーの交流電流が流れ、次第に減衰するので、最も高い電流値を接触電流とした。
▲4▼ A〜D部位を各3回繰り返して測定し、さらにA〜Cの全ての測定値(12点)を平均した。
【0132】
2.帯電電位
帯電電位は次の通り測定した。
▲1▼ チャージプレートモニター上に、シートサンプル(図7)を置いた。
▲2▼ サンプル及びプレートが帯電ゼロで、かつ接地から絶縁された状態で、サンプルの上方よりコロナチャージによって、プレートモニターが1000Vになるまで、帯電させた。
▲3▼ サンプルを載せているプレートを接地して、接地後3秒後のA〜C部の表面電位を測定した。
【0133】
【表2】
Figure 2004134515
【0134】
【表3】
Figure 2004134515
【0135】
【表4】
Figure 2004134515
【0136】
実施例10,比較例13
ポリカーボネート樹脂組成物1を使用して、押し出しシートサンプルを成形した。成形機はφ65mm(L/D28)の押し出し機に、750mm巾のTダイを取り付けて、2.0mm厚みのシートを得た。成形条件は表5に示す通りとした。
【0137】
得られた成形品を120mm×120mmに切り出して、実施例1と同様に評価を行い、結果を表5に示した。
【0138】
【表5】
Figure 2004134515
【0139】
以上の結果から次のことがわかる。
【0140】
実施例1及び比較例1〜2に示すように、同一の材料組成であっても、抵抗値が本発明の範囲外の比較例1及び2は、電磁波シールド性や流動性に劣っており、一方、成形条件を適正化して抵抗値が本発明の範囲内にコントロールされた実施例1であれば、電磁波シールド性と成形性及び外観(光沢)を高度のレベルで兼ね備えた成形品が得られた。
【0141】
実施例2及び比較例3においても、同様の結果となった。比較例3は、実施例1に較べて、微細炭素繊維の添加量が多いにも関わらず、電磁波シールド性が劣った。言い換えれば、導電性を本発明の範囲にコントロールすることによって、微細炭素繊維の少ない添加量で優れた電磁波シールド性を得ることができることが分かる。
【0142】
また、比較例4においては、電磁波シールド性は優れるものの、体積抵抗率の比ρVS/ρVCが本発明の範囲よりも小さく(即ち、表面付近の微細炭素繊維の絡み合いが十分に減少していない)、成形性や外観が著しく劣る。
【0143】
微細炭素繊維に炭素繊維を併用した実施例4〜7、比較例5〜6においても同様である。
【0144】
また、炭素繊維のみを添加した比較例7〜9は、表面と内部の炭素繊維の絡み合いを極端に変化させることができないために、抵抗値を本発明の範囲内にコントロールすることができず、その結果、電磁波シールド性と、外観を両立した成形品は得られなかった。なお、微細炭素繊維と鱗片状黒鉛を併用した組成物を用いた実施例7は、光沢は低いものの、Rzが炭素繊維を添加した成形品に比べて、良好で、ムラのない均一な成形品が得られた。
【0145】
また、成分Aの熱可塑性樹脂をポリカーボネート樹脂からポリブチレンテレフタレートに変えた実施例9及び比較例12、成形方法を射出成形から押し出し成形に変えた実施例10及び比較例13についても、電磁波シールド性に明確な差がある。
【0146】
また、実施例の中でも、成形品の表面を介して測定した体積抵抗率(ρVS)が1×10Ω以上1×1012Ω未満であるものは、接触電流が少なく、かつ帯電量も少ない、優れたESD防止性を兼ね備える。
【0147】
【発明の効果】
以上詳述した通り、本発明によれば、導電性熱可塑性樹脂組成物の成形品よりなる電磁波シールド部品であって、少ない微細炭素繊維の添加量で優れた電磁波シールド性能を発現し、かつ良好な成形品外観と成形時流動性を保持した電磁波シールド部品が提供される。
【図面の簡単な説明】
【図1】成形品の表面及び内部の微細炭素繊維の分散状態を示す模式図である。
【図2】微細炭素繊維による導電性ネットワークを説明する模式図である。
【図3】図3(a)は抵抗値測定用サンプルの切り出し位置を示す成形品の斜視図であり、図3(b)は切り出した破断試料を示す斜視図である。
【図4】図4(a)は成形品の内部の体積抵抗率(ρVC)の測定方法を示す破断試料の断面図であり、図4(b)はこのときの抵抗値の等価回路図である。
【図5】図5(a)は成形品の表面を介して測定した体積抵抗率(ρVS)の測定方法を示す破断試料の断面図であり、図5(b)はこのときの抵抗値の等価回路図である。
【図6】本発明に係る微細炭素繊維の屈曲度の測定方法の説明図である。
【図7】実施例及び比較例で作製したシートサンプルの平面図である。
【符号の説明】
1 マトリックス樹脂
2 微細炭素繊維
10 成形品
10A 高抵抗層
10B 低抵抗層
20 破断試料
21A,21B,22A,22B 電極
30 シートサンプル[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an electromagnetic wave shielding component that is effective as a casing having electromagnetic wave shielding performance in the field of electronic devices such as personal computers, mobile phones, other high-frequency communication devices and medical electronic devices. In particular, the volume resistivity measured through the surface of the molded article is 1 × 10 4 Ω or more 1 × 10 12 The electromagnetic wave shielding component of the present invention controlled to less than Ω is useful as an ESD damage prevention case or tray having an electromagnetic wave shielding property around an electronic device such as a hard disk, a magnetic head, an IC, and an LCD, and a jig for manufacturing. is there.
[0002]
[Prior art]
Conventionally, as a measure against electromagnetic wave shielding in the field of electronic devices such as personal computers, mobile phones, other high-frequency communication devices and medical electronic devices, a metal such as copper or nickel is used as an electromagnetic wave shielding layer inside a resin molded housing. It has been practiced to provide layers by plating. However, this method has a problem that the number of manufacturing steps for the plating process is increased, and as a result, the cost is increased.
[0003]
On the other hand, a conductive molded product obtained by molding a conductive thermoplastic resin composition in which a conductive resin such as a metal fiber or a carbon fiber is filled in a thermoplastic resin is also used as an electromagnetic wave shielding component. However, in order to obtain a sufficient electromagnetic wave shielding property by such a conductive thermoplastic resin composition, it is necessary to add a large amount of conductive fiber, and for a large amount of conductive fiber to be added, the obtained molded article is required. The fibers are more likely to emerge on the surface of the resin, thereby impairing the appearance; and the fluidity of the conductive thermoplastic resin composition is reduced, thus causing problems such as impairing the moldability. In particular, when a non-crystalline resin material such as a polycarbonate resin or an ABS resin is selected as the base resin, the resulting molded product is excellent in warpage and dimensional accuracy, but greatly deteriorates in appearance due to conductive fibers. Such a decrease in appearance and fluidity is a serious problem, especially in thin housings such as recent computers and portable electronic devices. In order to maintain the appearance and the fluidity, it is desirable that the amount of the conductive fiber added is small, but in this case, the electromagnetic wave shielding performance cannot be exhibited.
[0004]
On the other hand, it has also been proposed to add electromagnetic wave shielding properties by adding fine carbon fibers such as carbon nanotubes to a thermoplastic resin (Japanese Patent Application Laid-Open No. Hei 8-508534). In order to obtain electromagnetic wave shielding properties, it is necessary to add a large amount of fine carbon fibers, which results in an increase in cost, and also has problems such as a decrease in fluidity, appearance, and mechanical strength.
[0005]
In a process of manufacturing a high-density electronic device such as an IC or a magnetic head, the device is damaged not only by an excessive transient current flowing into the device due to electrostatic discharge (ESD) but also by a transient electromagnetic wave generated by the discharge. It is said that.
[0006]
On the other hand, in precision control instruments such as aircraft, automobiles, and medical equipment, malfunctions due to transient electromagnetic waves due to the above-mentioned discharge also become a problem.
[0007]
Electromagnetic wave shielding components in such a field need not only electromagnetic wave shielding performance but also ESD prevention properties such as antistatic and transient current prevention.
[0008]
Highly conductive materials such as metal materials have good electromagnetic wave shielding properties, but the surface conductivity is too high. Cause outbreak. Further, a transient current wave is generated by the discharge, which induces an unnecessary current in a nearby electronic device, thereby destroying the device or causing a malfunction of the device.
[0009]
[Patent Document 1]
Japanese Patent Publication No. Hei 8-508534
[0010]
[Problems to be solved by the invention]
The present invention is directed to an electromagnetic wave shielding part comprising a molded article of a conductive thermoplastic resin composition, the electromagnetic wave shielding part exhibiting excellent electromagnetic wave shielding performance, and maintaining a good appearance of the molded article and fluidity during molding. The purpose is to provide.
[0011]
[Means for Solving the Problems]
The electromagnetic wave shielding component of the present invention comprises (A) a thermoplastic resin and (B) fine carbon fibers having an average fiber diameter of 200 nm or less and a degree of bending of 5 ° or more, wherein (A) the thermoplastic resin and (B) An electromagnetic wave shielding component comprising a molded product obtained by molding a thermoplastic resin composition in which the proportion of (B) the fine carbon fiber to the total of the fine carbon fiber is 0.05 to 20% by weight, wherein the molded product Internal volume resistivity (ρ VC ) Is 1 × 10 3 Ω · cm or less and the volume resistivity (ρ) measured through the surface of the molded article. VS ) And the volume resistivity inside the molded article (ρ VC ) And the ratio (ρ VS ) / (Ρ VC ) Is 100 or more.
[0012]
The present inventors have studied to obtain a molded article having excellent appearance and fluidity during molding and good electromagnetic wave shielding properties, and have obtained the following findings.
[0013]
That is, the thermoplastic resin composition to which fine carbon fibers are added has a remarkable increase in melt viscosity in a low shear rate region, and tends to lead to poor appearance such as a flow mark due to a decrease in fluidity. On the other hand, in the high shear rate region, since the fine carbon fibers are oriented, the melt viscosity is lowered, and the fluidity and appearance are improved, but the contact of the fine carbon fibers becomes insufficient, and the conductivity is reduced. As a result, the electromagnetic wave shielding property is impaired.
[0014]
On the other hand, if a large amount of fine carbon fiber is added, the conductivity can be improved even under a high shear rate, but this not only leads to an increase in cost but also impairs the appearance and fluidity.
[0015]
Further, as a result of further study based on the above findings, the following (1) and (2) are realized, and the electromagnetic wave shielding characteristics can be obtained by the conductivity of the inner layer without impairing the appearance and fluidity of the surface layer. It was found that good electromagnetic wave shielding parts could be obtained.
[0016]
{Circle around (1)} As shown in FIG. 1, the fine carbon fibers 2 near the surface of the molded article 10 are oriented along the flow direction, and instead of sacrificing conductivity, the flowability is not impaired and the surface is smooth and good. Maintain a good appearance. In this case, the vicinity of the surface of the molded product 10 becomes the high resistance layer 10A having low conductivity, and the electromagnetic wave shielding property is not provided.
{Circle around (2)} On the other hand, inside the molded article 10, the fine carbon fibers 2 are sufficiently entangled to form a conductive network and impart conductivity. Therefore, the inside of the molded product becomes the low resistance layer 10B, and exhibits the electromagnetic wave shielding property.
[0017]
In order to realize the above (1) and (2), the dispersion state of the fine carbon fibers is extremely changed between the surface and the inside of the molded article, whereby the resistance value between the surface and the inside of the molded article is changed. It needs to be very different.
[0018]
By the way, the fine carbon fibers used in the present invention have the property of being entangled with each other. When molded through a solidification process, the fine carbon fibers 2 are oriented in the matrix resin 1 due to the shearing force generated at the time of flow, as shown in FIG. It becomes insufficient and the conductivity becomes low.
[0019]
The fine carbon fibers 2 oriented in the matrix resin 1 are shown in FIGS. 2B and 2C while the temperature of the matrix resin 1 is high (the melt viscosity is low) at the beginning of the cooling and solidifying process. As described above, the orientation is relaxed, and a conductive network is formed. As a result, the conductivity is improved. This phenomenon is verified by reheating a molded article having low conductivity (high resistance value) formed under the condition that the fine carbon fibers 2 are extremely oriented, thereby improving the conductivity of the heated portion. Is done. This phenomenon occurs not only in a molding process in which a resin is completely melted and flows therethrough, as in injection molding and extrusion molding, but also in a molding method in which a semi-molten sheet is stretched and molded, as in vacuum molding. Similarly, the conductivity (resistance value) fluctuates due to the orientation of the fine carbon fibers in the drawing process and the relaxation of the orientation in the cooling process.
[0020]
Utilizing such a mechanism, the fine carbon fibers near the surface of the molded article are sufficiently oriented to maintain the appearance and fluidity, while the fine carbon fibers inside the molded article form a high degree of entanglement. Thereby, the electromagnetic wave shielding component of the present invention can be obtained.
[0021]
However, if the flow velocity of the resin is excessively increased in order to promote the orientation of the fine carbon fibers on the surface of the molded article, the internal entanglement is insufficient, and the electromagnetic wave shielding property is extremely reduced. The thickness of housing parts such as computers and mobile phones is generally 0.5 to 2.5 mm. In such thin molded products, the inside of the molded product is rapidly cooled, so that the electromagnetic wave shielding characteristics are not improved. Easy to lose. Therefore, in the present invention, the melt viscosity of the resin, the flow rate of the resin, the cooling rate, etc., so that the difference between the orientation of the fine carbon fibers on the surface of the molded article and the entanglement of the fine carbon fibers inside the molded article changes extremely. It needs to be adequately optimized.
[0022]
In the present invention, the volume resistivity (ρ) inside the molded article is determined by the entanglement of the fine carbon fibers inside the molded article. VC ) Is 1 × 10 3 Since the conductivity is as excellent as Ω · cm or less, excellent electromagnetic wave shielding properties can be obtained.
[0023]
Also, the volume resistivity measured through the surface of the molded article (ρ VS ) And the volume resistivity inside the molded product (ρ VC ) And the ratio (ρ VS ) / (Ρ VC ) Is 100 or more, the volume resistivity on the surface of the molded article is significantly larger than the volume resistivity inside the molded article. This is because a high-resistance layer in which fine carbon fibers are oriented is formed on the surface of the molded article. Such an oriented layer is excellent in fluidity and surface appearance.
[0024]
In addition, the volume resistivity (ρ VC ) Is a volume resistivity measured by providing an electrode inside the molded article without passing through the surface of the molded article, as described later. That is, for example, a fractured sample (width W, length L, thickness t) 20 as shown in FIG. 3B is cut out from the flat plate portion 10a of the molded product 10 as shown in FIG. As shown in FIG. 4A, the electrodes 21A and 21B are formed on the fractured surfaces 20A and 20B of the fractured sample 20, and the resistance between the electrodes 21A and 21B is measured. In the fractured sample 20, the surface layer has a resistance value R due to the orientation of the fine carbon fibers. S , And the inside has a resistance value R C , The surface resistance R S Is the internal resistance R C , The resistance R measured in the parallel equivalent circuit shown in FIG. VC Is the resistance value R of the internal low resistance layer C Is almost equivalent to Actually, it is considered that the resistance value is gradually inclined from the surface of the molded article to the inside, but in any case, the resistance value R VC Is dominated by the internal low resistance layer.
[0025]
Further, as shown in FIG. 5A, when electrodes 22A and 22B are formed on both surfaces of the fractured sample 20 and the resistance between the electrodes 22A and 22B is measured, the resistance R measured through the surfaces is measured. VS Is the resistance R of the high-resistance layer on one surface, as shown in FIG. S And the resistance value R of the internal low resistance layer C And the resistance value R of the high resistance layer on the other surface S And the resistance value of the series equivalent circuit composed of the above, that is, it corresponds to the sum of these resistance values. Therefore, the resistance value R VS Is the high resistance value R near the surface S Is almost equivalent to
[0026]
From the measured resistance value, the volume resistivity is
Volume resistivity = (measured value of resistance value) x electrode area / distance between electrodes
Therefore, the volume resistivity inside the molded product (ρ VC ) And the volume resistivity measured through the surface of the part (ρ VS ) Can be obtained as follows.
[0027]
Volume resistivity inside the molded product (ρ VC ) = (W × t) / L × (R VC ) Volume resistivity measured through the surface of the molded article (ρ VS ) = A / t × (R VS )
(However, A is the area of the electrodes 22A and 22B)
[0028]
Volume resistivity inside the molded product (ρ VC ), The volume resistivity measured through the surface of the molded article (ρ VS ) Ratio (ρ VS ) / (Ρ VC ) Is 100 or more, which means that the resistance R of the high resistance layer on the surface of the molded product is S Is the R of the internal low resistance layer C In other words, fine carbon fibers are entangled inside to form a conductive network, and high conductivity is obtained, and good electromagnetic wave shielding properties are obtained. It is oriented and shows low conductivity but good fluidity and excellent surface smoothness.
[0029]
In the present invention, 30 parts by weight or less of conductive fibers having an average fiber diameter of 0.5 to 20 μm is blended with respect to 100 parts by weight of the total of (A) the thermoplastic resin and (B) the fine carbon fibers. In addition, the electromagnetic wave shielding property can be further improved without significantly impairing the appearance and fluidity. Further, by blending 30 parts by weight or less of a flaky conductive filler having an average particle diameter of 0.5 to 100 μm with respect to a total of 100 parts by weight of the thermoplastic resin (A) and the fine carbon fiber (B), Electromagnetic wave shielding properties can be improved without impairing the appearance.
[0030]
The thermoplastic resin composition constituting the electromagnetic wave shielding component of the present invention has a shear rate of 50 (sec). -1 ) Melt viscosity (η 50 ) And a shear rate of 5000 (sec) -1 ) Melt viscosity (η 5000 ) And the ratio (η 50 ) / (Η 5000 ) Is from 3 to 20 to improve the fluidity and appearance of the surface layer having a high shear rate, and to easily obtain an electromagnetic wave shielding component having a good balance of the electromagnetic wave shielding properties of the inner layer having a relatively low shear rate. Is preferred.
[0031]
That is, the volume resistivity ratio (ρ) within the range of the present invention described above. VS ) / (Ρ VC As described above, it is necessary to extremely change the dispersion structure of the fine carbon fibers near and inside the molded product as described above. To achieve this, shearing of the melt viscosity of the thermoplastic resin composition is required. It is desirable that the speed dependency is large.
[0032]
Generally, for example, when molding an injection-molded article, the shear rate becomes higher near the surface. On the other hand, in the thermoplastic resin composition according to the present invention, the melt viscosity of the resin composition decreases due to the orientation of the entangled fine carbon fibers. This is because as the shear rate increases, the fine carbon fibers are oriented and entanglement is reduced. Therefore, the large dependence of the melt viscosity on the shear rate leads to a large difference in the degree of orientation of the fine carbon fibers between the vicinity of the surface and the inside.
[0033]
Therefore, the melt viscosity ratio (η 50 ) / (Η 5000 ) Is preferably 3 or more. However, this melt viscosity ratio (η 50 ) / (Η 5000 ) Is excessively large, poor transfer of the mold shape in a portion where the flow velocity is low, sink marks, flow marks, and the like are generated. 50 ) / (Η 5000 ) Is preferably 20 or less.
[0034]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the electromagnetic wave shielding component of the present invention will be described in detail.
[0035]
First, the components of the thermoplastic resin composition which is the molding material of the electromagnetic wave shielding component of the present invention will be described.
[0036]
<Components>
(A) Thermoplastic resin
Examples of the thermoplastic resin (A) include ABS resin, AS resin, polycarbonate, polyarylate, polyphenylsulfone, polyethersulfone, polyetherimide, polyoxymethylene, polystyrene, alicyclic polyolefin, and polyethylene. And thermoplastic resins such as polypropylene, polymethylpentene, polyethylene terephthalate, polybutylene terephthalate, polyphenylene sulfide, polyamide, and polyetheretherketone. One or more of these can be appropriately selected and used from the characteristics such as mechanical strength and moldability according to the use of the electromagnetic wave shielding component.
[0037]
Among the thermoplastic resins described above, examples of the non-crystalline thermoplastic resin include ABS resin, AS resin, polycarbonate, polyarylate, polyphenylsulfone, polyethersulfone, polyetherimide, modified polyoxymethylene, polystyrene, and fat. Cyclic polyolefins and the like can be mentioned, while crystalline thermoplastic resins include polyethylene, polypropylene, polymethylpentene, polyethylene terephthalate, polybutylene terephthalate, polyphenylene sulfide, polyamide and the like.
[0038]
Among such thermoplastic resins, non-crystalline thermoplastic resins are desirable in terms of dimensional accuracy, warpage, and the like. For example, ABS resins, AS resins, polystyrene, polycarbonate, polyarylate, polyphenylsulfone, polyetherimide, and fats Desirable are cyclic polyolefins and the like. Above all, an ABS resin and a polycarbonate resin are preferable because they have a good balance between cost and performance.
[0039]
(B) Fine carbon fiber
The fine carbon fiber of the component (B) used in the present invention has an average fiber diameter of 200 nm or less, and is generally produced by a vapor growth method. As the fine carbon fibers, for example, carbon fibrils described in JP-T-8-508534 are used.
[0040]
That is, the carbon fibrils have a graphite outer layer that is deposited substantially concentrically with the cylindrical axis of the fibrils, and the fiber central axis is not linear, but has a undulating and serpentine tubular configuration. .
[0041]
The average fiber diameter of the carbon fibrils is 200 nm or less, preferably 100 nm or less, more preferably 20 nm or less. The fiber diameter of carbon fibrils depends on the method of producing carbon fibrils and has a slight distribution. The average fiber diameter referred to here is an average value measured at 10 points by microscopic observation.
[0042]
If the average fiber diameter of the carbon fibrils is larger than 200 nm, the contact between the fibrils in the matrix resin becomes insufficient, so that a large amount of addition is required to develop conductivity, or the fineness between the surface layer and the inner layer is reduced. It becomes difficult to control the dispersion state of the carbon fibers.
[0043]
The average fiber diameter of the carbon fibrils is preferably 0.1 nm, particularly preferably 0.5 nm or more. If the average fiber diameter is smaller than this, production is extremely difficult.
[0044]
The carbon fibrils preferably have a length-to-diameter ratio (length / diameter ratio, ie, aspect ratio) of 5 or more, and particularly those having a length / diameter ratio of 20 or more, because a conductive network is easily formed. It is desirable because excellent conductivity can be obtained with a small amount of addition. A more preferred length / diameter ratio of carbon fibrils is 1000 or more. In addition, the fiber diameter and fiber length (and aspect ratio) of the carbon fibrils are average values of ten actually measured values when observed with a transmission electron microscope.
[0045]
The wall thickness (wall thickness of the tubular body) of the carbon fibrils having a fine tubular shape is usually about 3.5 to 75 nm. This usually corresponds to about 0.1 to 0.4 times the outer diameter of the fibril.
[0046]
When at least a portion of the carbon fibrils is in the form of aggregates, the resin composition as a raw material does not contain fibril aggregates having a diameter of about 50 μm, particularly 10 μm or more as measured on an area basis. However, it is desirable in that the amount of addition for obtaining the predetermined conductivity is small, and the mechanical properties of the obtained molded product are not reduced.
[0047]
Furthermore, in the present invention, the fine carbon fibers such as carbon fibrils, having a meandering fiber shape, increase the entanglement between the fibers, and can obtain conductivity with a small amount of addition, and at the same time, the effect of the present invention can be obtained. Desirable in terms of large.
[0048]
In order to obtain such entanglement, the present invention uses fine carbon fibers having a degree of bending of 5 ° or more, preferably 20 ° or more, and more preferably 40 ° or more.
[0049]
The degree of bending of the fine carbon fiber is determined by, for example, removing the resin component of the electromagnetic wave shielding component of the present invention by a solvent or ion sputtering to expose the fine carbon fiber, or an ultra-thin section cut out from a molded product by an electron microscope. It can be measured by observation. In this case, the measurement is performed on the fine carbon fibers in the surface layer within 50 μm from the surface of the molded article.
[0050]
As shown in FIG. 6, the degree of flexure is determined by observing a fine carbon fiber 2 such as carbon fibril with a microscope, measuring 5 times the fiber diameter (fiber diameter (d portion in FIG. 6)) on the same fiber, 2) A random point A and B are selected apart from each other by a method such as measuring along the fiber with A , L B And draw the tangent L A , L B The outer angle (the angle indicated by α in FIG. 6) of the point Q where X intersects is measured. The average value of 10 points is taken, and this is defined as the degree of bending.
[0051]
This angle is 0 ° if the fiber is straight, 180 ° if it is a semicircle, and 360 ° if it draws a circle.
[0052]
If the degree of bending α obtained by performing such a measurement is 5 ° or more, preferably 20 ° or more, and more preferably 40 ° or more, it is easy to form a network by entanglement of the fine carbon fibers. It is preferable in terms of imparting conductivity and electromagnetic wave shielding properties.
[0053]
In the present invention, it is important that the average fiber diameter of the fine carbon fiber is 200 nm or more and the degree of bending is 5 ° or more. If the fine carbon fiber does not satisfy these conditions, the effects of the present invention cannot be obtained. That is, if the average fiber diameter of the fine carbon fibers exceeds 200 nm, even if the degree of bending is 5 ° or more, the fine carbon fibers are hard to be oriented due to shearing due to the rigidity of the fibers. Does not decrease, causing a decrease in fluidity and poor appearance. In addition, even if the average fiber diameter is 200 nm or less, if the degree of bending is less than 5 °, the entanglement of the fine carbon fibers is less likely to occur, and as a result, the conductivity of the inner layer is not improved, and the electromagnetic wave shielding performance is reduced. Spoil.
[0054]
In particular, when the carbon fibers are fine carbon fibers having an average fiber diameter of 50 nm or less and a degree of bending of 20 ° or more, the effect of the present invention is large.
[0055]
Note that ordinary carbon fibers (pitch-based, PAN-based) are rigid and linear fibers having a fiber diameter of about 7 to 13 μm, and have a degree of bending of less than 5 °. With such straight fibers, no entanglement occurs, and it is difficult to form a network structure.
[0056]
In the present invention, as the fine carbon fiber, a commercially available product, for example, a carbon nanotube of Hyperion Catalysis International Inc. can be used.
[0057]
The fine carbon fiber used in the present invention may be subjected to a thermoplastic resin as the component (A) or various surface treatments or treatments with a dispersant. As the treating agent in this case, for example, a coupling agent such as a silane coupling agent, a titanate coupling agent, an aluminum coupling agent, or a block or graft copolymer of a nonpolar segment and a polar segment can be used. .
[0058]
In the present invention, the content of the fine carbon fibers in the thermoplastic resin composition is 0.05 to 20% by weight based on the total of the thermoplastic resin (A) and the fine carbon fibers (B). Preferably it is 1 to 15% by weight, more preferably 2 to 10% by weight. If the content of the fine carbon fiber is less than this range, it is not possible to obtain sufficient conductivity and electromagnetic wave shielding properties for the obtained electromagnetic wave shielding component, and if the content of the fine carbon fiber is more than this range, the fluidity is reduced. And the resulting molded article may have poor appearance.
[0059]
(C) Conductive fiber
Examples of the conductive fiber include metal fibers such as aluminum, silver, copper, zinc, nickel, stainless steel, brass, and titanium, pitch-based carbon fibers, PAN-based carbon fibers, carbon-based fibers such as graphite whiskers, zinc oxide, and tin oxide. Metal oxide fibers such as indium oxide may be used. In the case where the metal oxide fiber has conductivity due to the generation of surplus electrons due to the presence of lattice defects, a metal oxide having a conductivity increased by adding a dopant may be used. For example, aluminum is used for zinc oxide, antimony is used for tin oxide, tin is used for indium oxide, and the like. Further, a composite conductive fiber in which a carbon fiber or the like is coated with a metal or a coating layer of carbon, metal, or conductive tin oxide is formed on the surface of a potassium titanate whisker can also be used. One of these conductive fibers may be used alone, or two or more thereof may be used in combination.
[0060]
Among these conductive fibers, carbon fibers (pitch-based or PAN-based) are preferable in that they are excellent in the effect of improving the conductivity of the molded article. In particular, a carbon fiber whose surface is coated with a metal such as nickel is desirable.
[0061]
The average fiber diameter of the conductive fibers is preferably from 0.5 to 20 μm, and more preferably from 5 to 15 μm, at an average value measured at 10 points by microscopic observation, in that the effect of improving the conductivity is great.
[0062]
The aspect ratio (fiber length / fiber diameter) of the conductive fibers in the state of being dispersed in the molded product is 3 or more, preferably 5 or more, more preferably 10 to 1000 as an average value measured at 10 points by microscopic observation. This is preferable because the conductivity is improved.
[0063]
Inside the molded article, the conductivity is improved as the entanglement between the conductive fiber and the fine carbon fiber is denser. For that purpose, by the conductive network by the entanglement of the fine carbon fiber, while the conductive fiber is entangled, the electrical contact becomes good when the conductive fiber is connected, but for the network by the entanglement of the fine carbon fiber, If the conductive fibers are not large enough, this network has little effect of entanglement of the conductive fibers. Therefore, in order to sufficiently obtain this effect, the ratio (Dc / Db) of the average fiber diameter (Dc) of the conductive fibers to the average fiber diameter (Db) of the fine carbon fibers is 100 to 5000, preferably 600 to 5000. It is desirable that
[0064]
By adding such conductive fibers having an average fiber diameter of 0.5 to 20 μm to the thermoplastic resin composition used in the present invention, the electromagnetic wave shielding properties of the electromagnetic wave shielding component obtained without impairing the appearance and fluidity are further improved. Can be done.
[0065]
That is, in the surface layer, the conductive fibers and the fine carbon fibers are oriented, and instead of lowering the conductivity, the fluidity and appearance are improved, while in the inner layer, the orientation of the fine carbon fibers is sufficiently relaxed. By doing so, the conductive fibers are electrically connected with the fine carbon fibers to form a highly conductive network. As a result, the internal conductivity is improved, and excellent electromagnetic wave shielding properties are exhibited.
[0066]
The amount of such conductive fibers is preferably 30 parts by weight or less, particularly preferably 3 to 20 parts by weight, based on 100 parts by weight of the total of (A) the thermoplastic resin and (B) the fine carbon fibers. is there. If the amount of the conductive fiber is small, the effect of improving the conductivity due to the compounding of the conductive fiber cannot be sufficiently obtained, but if the amount is more than the above range, the fluidity and appearance are impaired.
[0067]
(D) Scale-like conductive filler
As the flaky conductive filler, one or two or more flaky metal fillers such as graphite, Ni flake, and stainless flake can be used. Among them, graphite is preferred because of its excellent balance of appearance, cost and conductivity. As the graphite, natural flaky graphite or artificial graphite manufactured in a flaky shape using petroleum coke or pitch coke as a main raw material can be used.
[0068]
The average particle size of the flaky conductive filler is 0.5 to 200 μm, preferably 1 to 100 μm, and more preferably 5 to 70 μm. The average particle size of the flaky conductive filler is an average value measured at least 20 points in a plane direction of the flaky conductive filler with an electron microscope. If the average particle diameter of the flaky conductive filler is smaller than the above range, the effect of improving the conductivity is small, and if it is large, the fluidity is impaired or the weld strength is reduced.
[0069]
In addition, the aspect ratio (particle diameter / thickness in the plane direction) of the flaky conductive filler has an average value of 5 or more, preferably 10 to 1000, as measured by microscopic observation, whereby the conductivity is improved. This is preferred.
[0070]
As in the case of the above-described conductive fibers, the tighter the entanglement between the flaky conductive filler and the fine carbon fibers, the higher the conductivity inside the molded article. In view of this entanglement, the ratio (Dd / Db) between the average particle diameter (Dd) of the flaky conductive filler and the average fiber diameter (Db) of the fine carbon fibers is 100 to 5000, preferably 600 to 5000. This is preferable because the network of fine carbon fibers has a large effect of entangling the flaky conductive filler and is excellent in conductivity.
[0071]
When the flaky conductive filler having an average particle diameter of 0.5 to 100 μm is added to the thermoplastic resin composition used in the present invention, the electromagnetic wave shielding properties of the electromagnetic wave shielding component can be improved without impairing the appearance. .
[0072]
That is, the flaky conductive filler enhances the conductivity by the same effect as the conductive fiber, and can improve the electromagnetic wave shielding property, and in the surface layer of the molded product, the plane of the flaky conductive filler is formed. Since it is oriented parallel to the surface of the product, unevenness due to the flaky conductive filler is reduced, and the appearance is hardly deteriorated.
[0073]
The amount of such a flaky conductive filler is preferably 30 parts by weight or less, particularly preferably 3 to 20 parts by weight, based on 100 parts by weight of the total of (A) the thermoplastic resin and (B) the fine carbon fibers. Department. When the blending amount of the flaky conductive filler is small, the effect of improving the conductivity due to the blending of the flaky conductive filler cannot be sufficiently obtained, but when the amount is larger than the above range, the fluidity and appearance are impaired. .
[0074]
When the thermoplastic resin composition according to the present invention contains both the above (D) scaly conductive filler and the above (C) conductive fiber, the total amount of these is (A) the thermoplastic resin. It is preferably 30 parts by weight or less, and particularly preferably 3 to 20 parts by weight, based on 100 parts by weight in total of (B) and the fine carbon fiber.
[0075]
(E) Additional components
In the thermoplastic resin composition according to the present invention, in addition to the above components (A) to (D), if necessary, additional components can be blended within a range not to impair the above performance.
[0076]
Such additional components include, for example, inorganic fibrous reinforcing materials such as glass fiber, silica fiber, silica / alumina fiber, potassium titanate fiber, and aluminum borate fiber; and organic materials such as aramid fiber, polyimide fiber, and fluororesin fiber. Inorganic fillers such as fibrous reinforcement, talc, calcium carbonate, mica, glass beads, glass powder, glass balloons, solid lubricants such as fluororesin powder, molybdenum disulfide, plasticizers such as paraffin oil, antioxidants, Various types such as heat stabilizers, light stabilizers, ultraviolet absorbers, neutralizers, lubricants, compatibilizers, antifogging agents, antiblocking agents, slip agents, dispersants, coloring agents, antibacterial agents, fluorescent brighteners, etc. Additives can be mentioned.
[0077]
Further, the thermoplastic resin composition according to the present invention may contain a particulate or other conductive filler other than the above (C) conductive fibers and (D) flaky conductive filler. Examples of such a conductive filler include particles such as aluminum, copper, nickel and stainless steel, carbon black (such as furnace black and acetylene black), and carbon-based fillers such as spherical carbon produced from mesophase pitch. No.
[0078]
Hereinafter, a method for producing the electromagnetic wave shielding component of the present invention by molding such a thermoplastic resin composition will be described.
[0079]
<Production method>
The thermoplastic resin composition according to the present invention can be produced by a usual thermoplastic resin processing method. For example, (A) a thermoplastic resin and (B) fine carbon fibers, and if necessary, (C) conductive fibers and / or (D) flaky conductive fillers, and if necessary, (E) ) After all of the added components are previously mixed, the mixture can be produced by melt-kneading with a Banbury mixer, a roll, a Brabender, a single-screw kneading extruder, a twin-screw kneading extruder, a kneader, or the like.
[0080]
Further, the electromagnetic wave shielding component of the present invention can be manufactured by molding such a thermoplastic resin composition using various melt molding methods. Specific examples of the molding method include compression molding, extrusion molding, vacuum molding, blow molding, and injection molding. Among these molding methods, remarkable effects can be obtained particularly in the injection molding method and the vacuum molding method.
[0081]
When the thermoplastic resin composition according to the present invention is manufactured, a masterbatch in which a high concentration of the component (B) is added to a part of the component (A) is manufactured in advance, and the masterbatch is then referred to as (A). )) It may be diluted with the component.
[0082]
Hereinafter, the melt viscosity of the thermoplastic resin composition according to the present invention and the volume resistivity of the electromagnetic wave shielding component of the present invention will be described.
[0083]
<Melt viscosity of thermoplastic resin composition>
As mentioned above, the volume resistivity ratio (ρ VS ) / (Ρ VC In order to realize (3), it is necessary to extremely change the dispersion structure of the fine carbon fibers near and inside the surface of the molded article. For that purpose, it is desirable that the shear viscosity dependence of the melt viscosity of the thermoplastic resin composition is large, and poor transfer of the mold shape at a portion where the flow velocity is small, without sink marks or flow marks, etc. In order to make the degree of orientation of the fine carbon fibers largely different between the vicinity of the surface and the inside, the thermoplastic resin composition constituting the electromagnetic wave shielding component of the present invention has a shear rate of 50 (sec). -1 ) Melt viscosity (η 50 ) And a shear rate of 5000 (sec) -1 ) Melt viscosity (η 5000 ) And the ratio (η 50 ) / (Η 5000 ) Is preferably 3 or more and 20 or less.
[0084]
In particular, when a polycarbonate resin is used as the component (A), the thermoplastic resin composition according to the present invention has a shear rate of 5000 (sec.) At 300 ° C. -1 ) Is not more than 300 (Pa · s) and the melt viscosity ratio (η 50 ) / (Η 5000 ) Is desirably 3.5 or more and 18 or less.
[0085]
<Volume resistivity of molded product>
In order to obtain a good electromagnetic wave shielding component by imparting electromagnetic wave shielding properties to the inner layer without impairing the appearance and fluidity of the surface of the molded product, the electromagnetic wave shielding component of the present invention employs the volume resistivity inside the molded product ( ρ VC ) Is 1 × 10 3 Ω · cm or less and the volume resistivity (ρ) measured through the surface of the molded article VS ) And the volume resistivity (ρ VC ) And the ratio (ρ VS ) / (Ρ VC ) Is 100 or more.
[0086]
The electromagnetic wave shielding component of the present invention has a volume resistivity (ρ) inside the molded product due to the entanglement of the fine carbon fibers inside the molded product. VC ) Is 1 × 10 3 Since the conductivity is as excellent as Ω · cm or less, excellent electromagnetic wave shielding properties can be obtained. The volume resistivity inside this molded product (ρ VC ) Is preferably 1 × 10 -3 ~ 1 × 10 2 Ω · cm.
[0087]
Also, the volume resistivity measured through the surface of the molded article (ρ VS ) And the volume resistivity inside the molded product (ρ VC ) And the ratio (ρ VS ) / (Ρ VC ) Is 100 or more, the volume resistivity on the surface of the molded article is significantly larger than the volume resistivity inside the molded article. This is because a high-resistance layer in which fine carbon fibers are oriented is formed on the surface of the molded article. Such an oriented layer is excellent in fluidity and surface appearance. This volume resistivity ratio (ρ VS ) / (Ρ VC ) Is preferably 500 or more, more preferably 1000 or more. In particular, the volume resistivity measured through the surface of the molded article (ρ VS ) Is 1 × 10 5 When it is Ω · cm or more, the appearance is good, and it is preferable. Preferred volume resistivity (ρ VS ) Is 1 × 10 5 ~ 1 × 10 10 Ω · cm.
[0088]
In particular, within the scope of the present invention, the volume resistivity (ρ) measured through the surface of the molded article VS ) Is 1 × 10 4 More than 1 × 10 12 When the resistance is less than Ω, the ESD protection property is good, and as a result, the electromagnetic wave shielding property by the high conductive layer inside the molded article and the antistatic property and the overcurrent preventing property on the molded article surface are obtained. Volume resistivity measured through the surface of the molded article (ρ VS ) Is, in particular, 1 × 10 4 More than 1 × 10 11 Less than Ω, preferably 1 × 10 4 More than 1 × 10 10 Less than Ω, more preferably 1 × 10 5 More than 1 × 10 10 Less than Ω is desirable in that the antistatic property and the transient current preventing property are improved.
[0089]
Further, it is preferable that a relatively large-sized conductive filler such as carbon fiber or graphite is not added because of excellent transient current prevention.
[0090]
An example of the method for measuring the volume resistivity according to the present invention is as follows.
[0091]
Volume resistivity inside the molded product (ρ VC In order to measure (1), it is necessary to form an electrode inside the molded article and perform the measurement. For this purpose, for example, the measurement may be performed in the following procedure.
[0092]
(I) As shown in FIG. 3, the molded product 10 is broken such that two fractured surfaces are opposed to each other. At this time, when the molded article sample is cooled to a low temperature (preferably cooled in liquid nitrogen (-147 ° C.)) and fractured, the dispersion state of the fine carbon fibers and the conductive fibers is maintained, and the resistance value is accurately adjusted. It is desirable because it can be measured.
[0093]
(Ii) As shown in FIG. 4A, electrodes 21A and 21B are formed on the fractured surfaces 20A and 20B of the fractured sample 20 by applying a conductive paste or depositing a metal. The electrodes need to be made of a material that is sufficiently higher (lower in resistance, preferably lower by at least one order of magnitude) than the conductivity of the sample 20. Therefore, it is preferable to form an electrode by depositing a metal such as silver.
[0094]
(Iii) A resistance value between the fractured surfaces (between the electrodes 21A and 21B) of the fractured sample 20 is measured, and a volume resistance value is calculated by the following formula.
VC ) = A / L × (R VC )
Here, A: electrode area (= sample thickness t × width W)
L: distance between electrodes (= sample length L)
R VC ;measured value
[0095]
Also, the volume resistivity measured through the surface of the molded article (ρ VS 5), electrodes 22A and 22B are provided facing the back and front surfaces of the fractured sample 20, as shown in FIG. Volume resistivity (ρ VS ) Has a relatively high value, so that the electrode may be provided with a conductive paste or may be directly measured with a conductive rubber or metal probe. However, from the viewpoint that a contact area between the sample surface and the electrode can be sufficiently secured, it is desirable to form the electrode by depositing silver or the like. Volume resistivity (ρ VS ) Is similarly calculated from the above formula, but in this case, the distance between the electrodes corresponds to the molded product thickness t.
[0096]
<How to fasten with other parts>
When fastening the electromagnetic wave shielding component of the present invention to another metal product, for example, when inserting and fixing a bottle or screw, a lownet or the like in a prepared hole of a molded product, by heating pins and screws, etc., It is desirable to use heating insertion, which is performed by softening the resin at the contact portion.
[0097]
This is because the softening of the resin in the contact portion causes the aggregation of the fine carbon fibers inside the molded product, and as a result, the electrical contact with the pins and the screws is improved. As a result, the conductivity between the electromagnetic wave shielding component of the present invention and other metal components fastened via pins or screws is improved, and it is possible to make the electric potential equipotential. And improvement of ESD protection.
[0098]
In this case, as a heating method, heater heating, ultrasonic heating, or the like can be used.
[0099]
【Example】
Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples.
[0100]
In addition, the compounding raw materials used in the examples and comparative examples are as follows.
Polycarbonate resin: manufactured by Mitsubishi Engineering-Plastics Corporation "Novalex 7022"
Polybutylene terephthalate resin: "Novadur 5010" manufactured by Mitsubishi Engineering-Plastics Corporation
Carbon fiber 1: trade name "HTA-C6-SRS" manufactured by Toho Rayon Co., Ltd. (cut fiber length 6 mm)
Carbon fiber 2: Toho Rayon Co., Ltd. product name "HTA-MC-C6-U" (nickel-coated carbon fiber, cut fiber length 6 mm)
Fine carbon fiber: Carbon nanotube manufactured by Hyperion Catalysis International
Graphite: Product name “CP / B” (scale graphite) manufactured by Nippon Graphite Co., Ltd.
[0101]
Examples 1 to 9 and Comparative Examples 1 to 12
Each material was mixed with the components shown in Table 1, and the barrel temperature was set to 300 using a twin-screw extruder (“PCM45” manufactured by Ikegai Iron & Steel Co., Ltd., L / D = 32 (L: screw length, D: screw diameter)). The mixture was melt-kneaded at 160 ° C. and a screw rotation speed of 160 rpm to obtain pellets of the conductive polycarbonate resin composition.
[0102]
The compounding and kneading of the fine carbon fibers was carried out by preparing a masterbatch in which 15% by weight of the fine carbon fibers were added to the polycarbonate resin in advance, and diluting this with the remaining components to a predetermined compounding amount.
[0103]
[Table 1]
Figure 2004134515
[0104]
Using the obtained pellets of each composition, a 150 mm × 150 mm sheet sample (thickness is as shown in Tables 2 to 4) 30 having the shape shown in FIG. 7 was formed by a 75TON injection molding machine. The injection pressure at this time is 1800 kg / cm 2 (176.5 MPa) or less, and molding was performed while optimizing the pressure and speed so as to obtain a predetermined filling time according to the fluidity of the composition. At a position 10 mm before the end of the mold cavity, the injection pressure was changed to the holding pressure to perform molding. Holding pressure is 800kg / cm 2 (78.4 MPa) or less for 3 seconds. However, injection pressure 1800kg / cm 2 , Holding pressure 800 kg / cm 2 However, when filling was not possible, molding was interrupted as "poor filling". The molding conditions (cylinder temperature, mold temperature, injection rate) are as shown in Tables 2 to 4.
[0105]
The following evaluation was performed about the obtained sheet sample.
[0106]
(1) Fiber diameter, length / diameter ratio, and degree of bending of fine carbon fiber
From the sheet sample of Example 1, an ultra-thin section was cut out along the resin flow direction and perpendicular to the sample surface, observed with a transmission electron microscope, and the fiber diameter and length of the fine carbon fiber inside the molded product / Diameter ratio and bending degree were measured at 10 points each, and the average value was calculated. The results are shown below.
[0107]
Fiber diameter = 10.5nm
Length / diameter ratio = 22 or more
Flexion degree = 67 °
[0108]
Here, regarding the length / diameter ratio, when fabricating an ultra-thin section, since a part of the fiber is cut, an accurate fiber length cannot be measured. It was confirmed that it was within the range.
[0109]
(2) Fiber diameter and aspect ratio of carbon fiber
The cross-sections of the sheet samples of Examples 3 (composition 4) and 4 (composition 5) broken along the flow direction were observed with an optical microscope to determine the fiber diameter and length of the carbon fibers, respectively. The average value was calculated by measuring 10 points at a time.
[0110]
Figure 2004134515
[0111]
In addition, as for the aspect ratio, since a part of the carbon fiber exposed on the fracture surface is hidden by the resin, it is not possible to accurately measure the fiber length, but it is at least within a desirable range of the present invention. confirmed.
[0112]
(3) Graphite particle size and aspect ratio
As a result of previously measuring the particle diameter of graphite before kneading at 150 points using an optical microscope and calculating the average value, it was 16.3 μm, and the diameter ratio to fine carbon fibers was 1552.
[0113]
The sheet sample of Example 7, along the flow direction, and the fracture surface that was broken perpendicular to the sample surface was observed with an electron microscope, the thickness of graphite was measured at 20 points, and the average value was calculated. As a result of calculating the aspect ratio by calculating the ratio to the above particle diameter, it was 38.
[0114]
(4) Volume resistance and surface resistance
{Circle around (1)} A test piece cut into a strip having a width of 15 mm from the positions A, B, and C of the sheet sample 30 in FIG. 7 was cooled in liquid nitrogen, and then broken into a length of about 30 mm. A fractured sample 20 having a width W = 15 mm and a length L = about 30 mm as shown in b) was prepared (the thickness is as shown in Tables 2 to 4).
[0115]
{Circle over (2)} Silver was deposited on the fractured surfaces 20A and 20B of the fractured sample 20 to a thickness of 1500 ° to form electrodes 21A and 21B as shown in FIG.
[0116]
{Circle around (3)} The resistance value between the electrodes 21A and 21B is measured, and the width W, length L, and thickness of the sample are measured to measure the volume resistivity (ρ VC ) Was calculated.
[0117]
{Circle over (4)} Next, as shown in FIG. 5 (a), silver is deposited to a size of 10 mm × 10 mm and a thickness of 1500 ° to form electrodes 22A and 22B at the same position on the front and back plate surfaces of the fractured sample 20. did.
[0118]
(5) The resistance between the electrodes 22A and 22B is measured, the thickness of the sample is measured, and the volume resistivity (ρ VS ) Was calculated.
[0119]
The following measuring instruments were used for measuring the resistance value.
[0120]
Figure 2004134515
[0121]
The average value of each value of the sample cut out from A, B, and C in FIG. 7 was obtained, and the results are shown in Tables 2 to 4.
[0122]
(5) Electromagnetic shielding
The electric field shielding effect was measured using a KEC method shield measuring device manufactured by Techno Science Japan (output: 110 dBuV). Tables 2 to 4 show the results with the shielding effect at 800 MHz as a representative value. The smaller the numerical value (the larger the negative value), the higher the electromagnetic wave shielding effect.
[0123]
(6) 10-point average roughness (Rz)
As an index of the surface appearance, Rz (10-point average roughness) of the above-mentioned resistance value measurement portion was measured using the following surface roughness meter under the following conditions, and the results are shown in Tables 2 to 4.
[0124]
SURFCOM 480A, a surface roughness meter manufactured by Tokyo Seimitsu Co., Ltd.
Cutoff wavelength: 2.5mm
Measurement length: 3mm
Measurement speed: 0.3mm / sec
[0125]
The 10-point average surface roughness (Rz) is the absolute value of the altitude of the highest peak to the fifth peak measured at a cutoff wavelength of 2.5 mm in the direction of the longitudinal magnification from the average line of the roughness curve. And the average of the absolute values of the altitudes of the valley floors from the lowest valley to the fifth valley bottom. Therefore, the smaller the value of Rz, the smoother the surface and the better the appearance. However, in the case of an extremely smooth surface, calculation is impossible unless there are five or more peaks and valleys within the measurement range. In such a case, the sum of the maximum peak and the maximum valley, ie, R max Can be replaced by
[0126]
The mold surface of the molding machine used was R max It was confirmed that the thickness was 0.2 μm or less. Therefore, Rz (or R max ) Is larger than this means that the surface mold transferability is poor and the appearance is impaired.
[0127]
(7) Glossiness
Gloss was measured as an index of surface appearance, and the results are shown in Tables 2 to 4. The gloss is an amount representing the degree of reflection when light is applied to the surface, and is a relative value when the gloss of the surface of the glass plate having a refractive index of 1.567 is set to 100. The measurement was performed at a reflection angle of 60 ° using “Gloss Checker IG-330” manufactured by Horiba, Ltd. The larger the value, the better the transferability of the mold on the surface of the molded product, and as a result, the better the gloss.
[0128]
(8) Formability
With respect to the sheet samples obtained within the above-mentioned molding conditions, the degree of filling was visually observed, and evaluated based on the following evaluation criteria as a fluidity index. The results are shown in Tables 2 to 4.
…: The resin was completely filled in the cavity.
Δ: An unfilled portion of less than 10 mm was formed at the end.
X: An unfilled portion of 10 mm or more was formed at the end.
[0129]
(9) ESD protection evaluation
The contact current and the charging electrode were measured as the ESD protection characteristics of these molded products using the following equipment, and the results are shown in Tables 2 to 4.
[0130]
Charge plate monitor; manufactured by Hugh Electronics
Surface electrometer; 244A manufactured by Monroe Electronics
Oscilloscope; LC584A manufactured by LeCroy
Current probe; CT1 manufactured by Tektronix
[0131]
1. Contact current
As an evaluation of the overcurrent prevention characteristics, a contact current generated when a grounded electronic component was brought into contact with a charged sheet sample (FIG. 7) was measured as follows, using the electronic component instead of a grounding probe.
(1) The sheet sample was placed on the charge plate monitor.
{Circle around (2)} Using a charge plate monitor, the plate and the sample were charged at 1000 V for 3 seconds, then separated from the ground and insulated.
{Circle around (3)} Three seconds later, the ground probes were brought into contact with AC to measure the contact current flowing through the probes. In this case, the contact current is such that an alternating current of the order of nanoseconds flows and gradually attenuates.
{Circle around (4)} The A to D sites were measured three times each, and all the measured values (A to C) (12 points) were averaged.
[0132]
2. Charge potential
The charging potential was measured as follows.
(1) The sheet sample (FIG. 7) was placed on the charge plate monitor.
{Circle around (2)} In a state where the sample and the plate were zero-charged and insulated from the ground, the plate monitor was charged from above the sample by corona charging until the plate monitor became 1000V.
{Circle around (3)} The plate on which the sample was placed was grounded, and the surface potentials of portions A to C three seconds after the grounding were measured.
[0133]
[Table 2]
Figure 2004134515
[0134]
[Table 3]
Figure 2004134515
[0135]
[Table 4]
Figure 2004134515
[0136]
Example 10 and Comparative Example 13
Using the polycarbonate resin composition 1, an extruded sheet sample was formed. As a molding machine, a T die having a width of 750 mm was attached to an extruder having a diameter of 65 mm (L / D28) to obtain a sheet having a thickness of 2.0 mm. The molding conditions were as shown in Table 5.
[0137]
The obtained molded product was cut out into a size of 120 mm × 120 mm, and evaluated in the same manner as in Example 1. The results are shown in Table 5.
[0138]
[Table 5]
Figure 2004134515
[0139]
The following can be understood from the above results.
[0140]
As shown in Example 1 and Comparative Examples 1 and 2, even in the same material composition, Comparative Examples 1 and 2 having resistance values outside the range of the present invention are inferior in electromagnetic wave shielding properties and fluidity, On the other hand, in Example 1 in which the molding conditions were optimized and the resistance value was controlled within the range of the present invention, a molded product having both the electromagnetic wave shielding property, moldability and appearance (gloss) at a high level was obtained. Was.
[0141]
Similar results were obtained in Example 2 and Comparative Example 3. Comparative Example 3 was inferior to Example 1 in spite of the large amount of fine carbon fiber added, but was inferior in electromagnetic wave shielding properties. In other words, it can be seen that by controlling the conductivity within the range of the present invention, excellent electromagnetic wave shielding properties can be obtained with a small amount of fine carbon fiber added.
[0142]
Further, in Comparative Example 4, although the electromagnetic wave shielding property was excellent, the ratio ρ of the volume resistivity was ρ. VS / Ρ VC However, it is smaller than the range of the present invention (that is, the entanglement of the fine carbon fibers near the surface is not sufficiently reduced), and the moldability and appearance are remarkably inferior.
[0143]
The same applies to Examples 4 to 7 and Comparative Examples 5 to 6 in which carbon fibers are used in combination with fine carbon fibers.
[0144]
In Comparative Examples 7 to 9 in which only carbon fibers were added, the entanglement between the surface and the inner carbon fibers could not be extremely changed, so that the resistance could not be controlled within the range of the present invention, As a result, a molded article having both electromagnetic wave shielding properties and appearance was not obtained. In addition, in Example 7 using the composition using the fine carbon fiber and the flaky graphite in combination, the gloss was low, but the Rz was better than the molded product to which the carbon fiber was added, and the molded product was uniform without unevenness. was gotten.
[0145]
Further, Examples 9 and Comparative Example 12 in which the thermoplastic resin of the component A was changed from polycarbonate resin to polybutylene terephthalate, and Examples 10 and Comparative Example 13 in which the molding method was changed from injection molding to extrusion molding also showed electromagnetic wave shielding properties. There is a clear difference.
[0146]
Also, among the examples, the volume resistivity (ρ) measured through the surface of the molded product VS ) Is 1 × 10 4 Ω or more 1 × 10 12 Those having a resistance of less than Ω have a small contact current and a small charge amount, and also have excellent ESD protection.
[0147]
【The invention's effect】
As described in detail above, according to the present invention, it is an electromagnetic wave shielding component formed of a molded article of the conductive thermoplastic resin composition, and exhibits excellent electromagnetic wave shielding performance with a small amount of added fine carbon fiber, and is excellent. The present invention provides an electromagnetic wave shielding component which maintains a good molded product appearance and fluidity during molding.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing a dispersion state of fine carbon fibers on the surface and inside of a molded product.
FIG. 2 is a schematic diagram illustrating a conductive network made of fine carbon fibers.
FIG. 3 (a) is a perspective view of a molded product showing a cutout position of a resistance value measurement sample, and FIG. 3 (b) is a perspective view showing a cutout cut sample.
FIG. 4 (a) shows the volume resistivity (ρ) inside a molded product. VC FIG. 4B is a cross-sectional view of the fractured sample showing the measurement method of FIG. 4, and FIG. 4B is an equivalent circuit diagram of the resistance value at this time.
FIG. 5 (a) shows a volume resistivity (ρ) measured through the surface of a molded article. VS FIG. 5B is a cross-sectional view of the fractured sample showing the measurement method of FIG. 5, and FIG. 5B is an equivalent circuit diagram of the resistance value at this time.
FIG. 6 is an explanatory diagram of a method for measuring the degree of bending of fine carbon fibers according to the present invention.
FIG. 7 is a plan view of sheet samples produced in Examples and Comparative Examples.
[Explanation of symbols]
1 Matrix resin
2 Fine carbon fiber
10 Molded products
10A High resistance layer
10B Low resistance layer
20 broken sample
21A, 21B, 22A, 22B electrodes
30 sheet samples

Claims (6)

(A)熱可塑性樹脂と
(B)平均繊維直径が200nm以下で、屈曲度が5°以上の微細炭素繊維とを含み、
(A)熱可塑性樹脂と(B)微細炭素繊維との合計に対する(B)微細炭素繊維の割合が0.05〜20重量%である熱可塑性樹脂組成物を成形して得られる成形品よりなる電磁波シールド部品であって、
該成形品内部の体積抵抗率(ρVC)が1×10Ω・cm以下で、
かつ該成形品の表面を介して測定した体積抵抗率(ρVS)と、該成形品内部の体積抵抗率(ρVC)との比(ρVS)/(ρVC)が、100以上であることを特徴とする電磁波シールド部品。
(A) a thermoplastic resin and (B) a fine carbon fiber having an average fiber diameter of 200 nm or less and a degree of bending of 5 ° or more,
It comprises a molded product obtained by molding a thermoplastic resin composition in which the ratio of (B) the fine carbon fiber to the total of (A) the thermoplastic resin and (B) the fine carbon fiber is 0.05 to 20% by weight. An electromagnetic wave shielding component,
When the volume resistivity (ρ VC ) inside the molded article is 1 × 10 3 Ω · cm or less,
The ratio (ρ VS ) / (ρ VC ) of the volume resistivity (ρ VS ) measured through the surface of the molded article to the volume resistivity (ρ VC ) inside the molded article is 100 or more. An electromagnetic wave shielding part characterized by the above-mentioned.
請求項1において、該熱可塑性樹脂組成物が、(A)熱可塑性樹脂と(B)微細炭素繊維との合計100重量部に対して、平均繊維直径が0.5〜20μmの導電性繊維を30重量部以下含むことを特徴とする電磁波シールド部品。In claim 1, the thermoplastic resin composition comprises conductive fibers having an average fiber diameter of 0.5 to 20 µm based on a total of 100 parts by weight of (A) the thermoplastic resin and (B) the fine carbon fibers. An electromagnetic wave shielding component comprising 30 parts by weight or less. 請求項1において、該熱可塑性樹脂組成物が、(A)熱可塑性樹脂と(B)微細炭素繊維との合計100重量部に対して、平均粒子径が0.5〜200μmの鱗片状導電性フィラーを30重量部以下含むことを特徴とする電磁波シールド部品。The flaky conductive powder according to claim 1, wherein the thermoplastic resin composition has an average particle diameter of 0.5 to 200 µm with respect to a total of 100 parts by weight of the thermoplastic resin (A) and the fine carbon fiber (B). An electromagnetic wave shielding component comprising 30 parts by weight or less of a filler. 請求項1ないし3のいずれか1項において、該熱可塑性樹脂組成物の剪断速度が50(sec−1)のときの溶融粘度(η50)と、剪断速度が5000(sec−1)のときの溶融粘度(η5000)との比(η50)/(η5000)が3以上20以下であることを特徴とする電磁波シールド部品。The melt viscosity (η 50 ) when the shear rate of the thermoplastic resin composition is 50 (sec −1 ) and the shear rate is 5000 (sec −1 ) according to any one of claims 1 to 3. Wherein the ratio (η 50 ) / (η 5000 ) to the melt viscosity (η 5000 ) is 3 or more and 20 or less. 請求項1ないし4のいずれか1項において、該成形品の表面を介して測定した体積抵抗率(ρVS)が1×10Ω以上1×1012Ω未満であることを特徴とする電磁波シールド部品。The electromagnetic wave according to any one of claims 1 to 4, wherein a volume resistivity (ρ VS ) measured through a surface of the molded product is 1 × 10 4 Ω or more and less than 1 × 10 12 Ω. Shield parts. 請求項1ないし5のいずれか1項において、射出成形により成形されたことを特徴とする電磁波シールド部品。The electromagnetic wave shielding component according to any one of claims 1 to 5, wherein the component is formed by injection molding.
JP2002296358A 2002-10-09 2002-10-09 Electromagnetic wave shield component Pending JP2004134515A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002296358A JP2004134515A (en) 2002-10-09 2002-10-09 Electromagnetic wave shield component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002296358A JP2004134515A (en) 2002-10-09 2002-10-09 Electromagnetic wave shield component

Publications (1)

Publication Number Publication Date
JP2004134515A true JP2004134515A (en) 2004-04-30

Family

ID=32286373

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002296358A Pending JP2004134515A (en) 2002-10-09 2002-10-09 Electromagnetic wave shield component

Country Status (1)

Country Link
JP (1) JP2004134515A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007332271A (en) * 2006-06-15 2007-12-27 Miraial Kk Polymeric molded product
EP1912487A1 (en) * 2005-07-29 2008-04-16 Bussan Nanotech Research Institute Inc. Electromagnetic wave absorber
JP2010513653A (en) * 2006-12-22 2010-04-30 チェイル インダストリーズ インコーポレイテッド Electromagnetic wave shielding thermoplastic resin composition and plastic molded article
JP2010138401A (en) * 2010-01-19 2010-06-24 Mitsubishi Engineering Plastics Corp Electromagnetic wave-inhibiting resin composition and molded article
JP2010144182A (en) * 2010-01-25 2010-07-01 Mitsubishi Engineering Plastics Corp Resin composition and resin molded article for inhibiting electromagnetic wave
JP2012216591A (en) * 2011-03-31 2012-11-08 Uchihama Kasei Kk Conduction method between conductive resin and metal component
JP2013510013A (en) * 2009-11-06 2013-03-21 ザ・ボーイング・カンパニー Compression molding method and reinforced thermoplastic parts molded by the same molding method
US20130123415A1 (en) * 2010-06-07 2013-05-16 Kabushiki Kaisha Toyota Chuo Kenkyusho Fine graphite particles, graphite particle-dispersed liquid containing the same, and method for producing fine graphite particles
JP2013119576A (en) * 2011-12-06 2013-06-17 Toyota Central R&D Labs Inc Resin composite material
US9728294B2 (en) 2010-06-07 2017-08-08 Kabushiki Kaisha Toyota Chuo Kenkyusho Resin composite material
JP2017155172A (en) * 2016-03-03 2017-09-07 国立大学法人信州大学 Carbon fiber-reinforced plastic, method for producing the same, and carbon fiber
JP2019053336A (en) * 2019-01-11 2019-04-04 キヤノン電子株式会社 Rotary member and holding member for light volume adjustment device, light volume adjustment device, and optical device
EP3890465A1 (en) * 2020-03-31 2021-10-06 NIPPON STEEL Chemical & Material Co., Ltd. Electrically conductive resin composition and electromagnetic shielding material therewith
JP2022509638A (en) * 2019-10-31 2022-01-21 エルジー・ケム・リミテッド A thermoplastic resin composition and a method for producing a molded product using the same.
JP7382460B1 (en) 2022-07-14 2023-11-16 ニッタ株式会社 Injection molded product and method for manufacturing the same, method for manufacturing composite fiber, CNT-adhered carbon fiber and method for manufacturing the same, and method for manufacturing carbon fiber composite material

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1912487A1 (en) * 2005-07-29 2008-04-16 Bussan Nanotech Research Institute Inc. Electromagnetic wave absorber
EP1912487A4 (en) * 2005-07-29 2009-06-10 Mitsui Bussan Electromagnetic wave absorber
JP2007332271A (en) * 2006-06-15 2007-12-27 Miraial Kk Polymeric molded product
JP2010513653A (en) * 2006-12-22 2010-04-30 チェイル インダストリーズ インコーポレイテッド Electromagnetic wave shielding thermoplastic resin composition and plastic molded article
US8785538B2 (en) 2006-12-22 2014-07-22 Cheil Industries Inc. Electromagnetic wave shielding thermoplastic resin composition and plastic article including the same
JP2013510013A (en) * 2009-11-06 2013-03-21 ザ・ボーイング・カンパニー Compression molding method and reinforced thermoplastic parts molded by the same molding method
JP2010138401A (en) * 2010-01-19 2010-06-24 Mitsubishi Engineering Plastics Corp Electromagnetic wave-inhibiting resin composition and molded article
JP2010144182A (en) * 2010-01-25 2010-07-01 Mitsubishi Engineering Plastics Corp Resin composition and resin molded article for inhibiting electromagnetic wave
US9096736B2 (en) 2010-06-07 2015-08-04 Kabushiki Kaisha Toyota Chuo Kenkyusho Fine graphite particles, graphite particle-dispersed liquid containing the same, and method for producing fine graphite particles
US20130123415A1 (en) * 2010-06-07 2013-05-16 Kabushiki Kaisha Toyota Chuo Kenkyusho Fine graphite particles, graphite particle-dispersed liquid containing the same, and method for producing fine graphite particles
US9728294B2 (en) 2010-06-07 2017-08-08 Kabushiki Kaisha Toyota Chuo Kenkyusho Resin composite material
JP2012216591A (en) * 2011-03-31 2012-11-08 Uchihama Kasei Kk Conduction method between conductive resin and metal component
US8735489B2 (en) 2011-12-06 2014-05-27 Kabushiki Kaisha Toyota Chuo Kenkyusho Resin composite material
JP2013119576A (en) * 2011-12-06 2013-06-17 Toyota Central R&D Labs Inc Resin composite material
JP2017155172A (en) * 2016-03-03 2017-09-07 国立大学法人信州大学 Carbon fiber-reinforced plastic, method for producing the same, and carbon fiber
JP2019053336A (en) * 2019-01-11 2019-04-04 キヤノン電子株式会社 Rotary member and holding member for light volume adjustment device, light volume adjustment device, and optical device
JP2022509638A (en) * 2019-10-31 2022-01-21 エルジー・ケム・リミテッド A thermoplastic resin composition and a method for producing a molded product using the same.
JP7174155B2 (en) 2019-10-31 2022-11-17 エルジー・ケム・リミテッド Thermoplastic resin composition and method for producing molded article using the same
EP3890465A1 (en) * 2020-03-31 2021-10-06 NIPPON STEEL Chemical & Material Co., Ltd. Electrically conductive resin composition and electromagnetic shielding material therewith
JP7382460B1 (en) 2022-07-14 2023-11-16 ニッタ株式会社 Injection molded product and method for manufacturing the same, method for manufacturing composite fiber, CNT-adhered carbon fiber and method for manufacturing the same, and method for manufacturing carbon fiber composite material
WO2024014101A1 (en) * 2022-07-14 2024-01-18 ニッタ株式会社 Injection molded body and method for producing same, method for producing composite fiber, cnt-attached carbon fiber and method for producing same, and method for producing carbon fiber composite

Similar Documents

Publication Publication Date Title
JP5205947B2 (en) Resin carbon composite material
JP2004134515A (en) Electromagnetic wave shield component
US6545081B1 (en) Synthetic resin composition
JP5671822B2 (en) Resin composition and method for producing the same
KR101940567B1 (en) Thermally conductive resin molded article
JP2017179371A (en) Electroconductive resin composition and molded article thereof
KR20090067820A (en) Electric insulating high thermally conductive polymer composition
Xu et al. Enhanced thermal conductivity and electrically insulating of polymer composites
dos Anjos et al. Synergistic effect of adding graphene nanoplates and carbon nanotubes in polycarbonate/acrylonitrile‐styrene‐butadiene copolymer blend
JP3826852B2 (en) Highly conductive resin molded product
JP2004168897A (en) Highly electroconductive resin molded product
JP3705241B2 (en) Conductive sliding resin molded product
JP2021091220A (en) Resin molded body and electrostatic protection component
JP2005150461A (en) Wave absorber
JPH05247351A (en) Resin composition for slidable member having static electricity diffusing property
JPH0987528A (en) Resin composition containing metal fiber
JP4214654B2 (en) Magnetic head transport tray
JP3722065B2 (en) Antistatic resin molded product
JP3925304B2 (en) Lamp for magnetic disk drive
JPH05226092A (en) Electrostatic diffusion resin complex
JP4039886B2 (en) Conductive molding
WO2018143224A1 (en) Resin compound and molded product of resin compound
JPH10237313A (en) Resin composition containing conductive fiber
JP2002275276A (en) Electro conductive molded article
JP2003082115A (en) Antistatic part

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050517

A977 Report on retrieval

Effective date: 20080724

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20080729

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081209