JP2004132559A - Geothermal air conditioning system - Google Patents

Geothermal air conditioning system Download PDF

Info

Publication number
JP2004132559A
JP2004132559A JP2002294703A JP2002294703A JP2004132559A JP 2004132559 A JP2004132559 A JP 2004132559A JP 2002294703 A JP2002294703 A JP 2002294703A JP 2002294703 A JP2002294703 A JP 2002294703A JP 2004132559 A JP2004132559 A JP 2004132559A
Authority
JP
Japan
Prior art keywords
water
air
passage
internal passage
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002294703A
Other languages
Japanese (ja)
Other versions
JP3440331B1 (en
Inventor
Goro Shoji
庄司 五郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHOJI KENSETSU KK
Original Assignee
SHOJI KENSETSU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHOJI KENSETSU KK filed Critical SHOJI KENSETSU KK
Priority to JP2002294703A priority Critical patent/JP3440331B1/en
Application granted granted Critical
Publication of JP3440331B1 publication Critical patent/JP3440331B1/en
Publication of JP2004132559A publication Critical patent/JP2004132559A/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/40Geothermal heat-pumps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/10Geothermal energy

Landscapes

  • Other Air-Conditioning Systems (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an efficient geothermal air conditioning system capable of restricting the operation cost low by using a heat characteristic of the air. <P>SOLUTION: A water circulation passage 4, in which a water supplying pump P is interposed, includes a first internal passage 12 formed of a first pipe 1 buried in the ground and a water passage 31 of a steam heat exchanger 3 provided on the ground. The air, which exchanges heat between the water inside the water passage 13 during the passing in the air passage 32 of the steam heat exchanger 3, is used for air conditioning of a building. An air circulation route 7 including a second internal passage 21 formed of a second pipe 2 buried in the ground and the first internal passage 12 is added. A screw 5 provided with a function for forming an air suction area V and a discharge area B by rotating with air action work of the water supplied to the first internal passage 12 and a function for diffusing water is arranged in the first internal passage 12. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、地熱を建物の空調に利用することのできる地熱利用空調システムに関する。
【0002】
【従来の技術】
従来、四季を通じて温度変化の少ない地熱を利用した空調システムとして、地中に埋設した地中パイプの内部空間と建物の床下に設置した気水熱交換器との間で水を循環させ、気水熱交換器により水と空気(外気)との間で熱交換を行わせてその空気を建物の内部に導入するようにしたものがあり、このものでは、地中パイプの内部空間の底部に水を溜め、その溜め水を気水熱交換器に送り込んで空調用の空気と熱交換させるという方法を採用している(特許文献1参照)。
【0003】
【特許文献1】
特開2001−116293号公報
【0004】
【発明が解決しようとする課題】
しかしながら、従来のように、ただ単に水を地中パイプに溜めて地熱と熱交換を行わせるというものでは、水が熱伝導を起こしにくい物質であるために空調システムの運転効率を向上させにくいという問題があった。
本発明は以上の状況の下でなされたものであり、水よりも熱伝導を起こしやすい物質である空気の熱特性を活用することによって、従来の場合よりも効率に優れ、しかも運転コストを安価に抑えることのできる地熱利用空調システムを提供することを目的とする。
【0005】
【課題を解決するための手段】
本発明に係る地熱利用空調システムは、水給送用ポンプが介在された水循環経路に、地中に埋設された第1パイプの内部空間によって形成される第1内部通路と地上に設置された気水熱交換器の水通路とが含まれ、上記気水熱交換器の空気通路を通過中に上記水通路内の水との間で熱交換を行った空気を建物の空調に利用するようになっていて、地中に埋設された第2パイプの内部空間によって形成される第2内部通路と上記第1内部通路とを含む空気循環経路を付加してある。また、上記第1内部通路に、この第1内部通路に給送された上記水循環経路を通過する水の作用により回転して上記第2内部通路に上記空気循環経路を通過する空気の吸込み域と吐出域とを形成する機能と、その水を拡散させてこの第2内部通路内で気液接触を行わせる機能とを備えたスクリューが配備されている。
【0006】
この発明によれば、水給送用ポンプによって第1パイプの第1内部通路に給送された水の作用で回転するスクリューによってその第1内部通路に空気の吸込み域と吐出域とが形成されるため、空気循環経路の空気が他の動力を要することなく第1内部通路の上記吸込み域から吐出域に向けて通過する。しかも、上記スクリューは、第1内部通路内で気液接触を行わせる機能を備えているため、そのスクリューによって拡散された水滴が地中内に存在する第1内部通路内の地熱を吸収すると共に、第1内部通路を通過する空気と効率よく接触し、第1内部通路内で空気と拡散した水滴とが直接接触して熱交換を行う。その上、空気は水に比べて熱伝導性に優れるので、地中に埋設された第2パイプの第2内部通路を通過する空気が短時間で地熱と熱交換を行い、そのような熱交換を行った空気が上記のように第1内部通路に吸い込まれて拡散水と直接接触する。したがって、第1内部通路から気水熱交換器の水通路に導入される水は、その水が、第1内部通路で空気循環経路の空気と接触していない場合に比べて、より地熱に近い温度になっていて、そのような水が気水熱交換器の水通路を流れる間に、その気水熱交換器の空気通路を流れる空気がその水と熱交換を行って建物の空調に利用されるようになる。
【0007】
このように、本発明に係る地熱空調システムは、水よりも熱伝導に優れた空気を地熱回収のための熱媒体として用いているので、従来のように水だけを地熱回収のための熱媒体として用いるものに比べて効率のよい空調が可能になる。その上、地熱回収のための熱媒体として用いられる空気は、水循環経路を流れる水の作用で回転するスクリューの機能により空気循環経路を流通するようになっているので、空気を循環させるための送風機などを別途用いる必要がないという利点を備えている。
【0008】
本発明では、上記水循環経路と上記空気循環経路との両方が、それらの経路の外部から遮断された閉路として形成されていることが望ましい。これによれば、水循環経路や空気循環経路に外部から塵芥が入ることがないので、それらの経路が塵芥の付着や堆積などによって狭められたり詰まったりすることがなくなり、それだけメンテナンスが容易になって運転コストが安く抑えられる。
【0009】
本発明では、上記スクリューの回転軌跡外周部が上記第1パイプの内周面に近接されていて、その回転軌跡外周部が、上記スクリューにより拡散されて上記内周面に付着することにより形成される水膜に接触するようになっていることが望ましい。これによれば、スクリューの回転によって形成される第1内部通路内の吸込み域から吐出域に向かって通過する空気の逆流が上記水膜によって阻止され、しかも、吸込み域から吐出域に向かって通過する空気と拡散した水とがスクリューの回転によって攪拌されるために、空気と水とが効率よく直接接触する。その結果、空気が水に同伴したり水の中に溶け込んで第1パイプの底部に溜まったりするという状況が起こるため、その後に気水熱交換器の水通路に導入される水によって地熱がいっそう効率よく回収され、気水熱交換器では空調用の空気に地熱が効率よく伝達されるようになる。
【0010】
【発明の実施の形態】
図1は本発明に係る地熱利用空調システムの実施形態の要部を示した説明図、図2は図1の一部を詳細に示した説明図、図3は第1パイプ1をスクリュー設置箇所で切断した場合の水平断面図、図4は気水熱交換器3の概略説明図である。
【0011】
図1において、Fは建物の床、Gはグランドラインを示しており、地中には、耐発錆性や熱伝導性に優れた材料、たとえば10m前後の長いステンレス鋼管でなる第1パイプ1と第2パイプ2とが垂直に埋設されており、それらの埋設深さは、四季を通じて地熱温度が約17℃程度という一定温度になる深さ、たとえば5〜13m程度の深さに埋設されている。これに対し、地上の床下には、気水熱交換器3が設置されている。
【0012】
第1パイプ1の内部空間によって形成されている第1内部通路12と気水熱交換器3の水通路31とが水循環経路4に含まれている。すなわち、この水循環経路4は、水給送用ポンプPが介在されて第1パイプ1の底部出口から気水熱交換器3の水通路31の入口に至る往路41と、水通路31と、気水熱交換器3の水通路31の出口から第1パイプの頂部入口に至る帰還路42と、第1パイプ1の第1内部通路12とによって形成されていて、往路41や帰還路42を形成しているパイプには断熱対策が講じられている。
【0013】
第1内部通路12には多段型のスクリュー5が同心配備されている。図1又は図2に示したように、このスクリュー5は、第1パイプ1に取り付けられた軸受52,53によって回転自在に垂直に支持された回転軸51の軸方向複数箇所に多段に羽根54を固定してなる。そして、図3のように、それら各段の羽根54の回転軌跡外周部が第1パイプ1の内周面11に近接されていて、羽根54が回転したときにその羽根54の回転軌跡外周部が第1パイプ1の内周面を伝って流下する水膜に接触するようになっている。なお、図3で類推できるように、各段の羽根54は、回転軸51に固定されて一定の傾斜角が付与されている複数枚の羽根板によって形成されている。
【0014】
図2のように、第1パイプ1の内部空間上部に水溜め容器13が設置されていて、この水溜め容器13に上記帰還路42の終端44が臨んでいる。さらに、この水溜め容器13には、スクリュー5の最上段の羽根54の偏心箇所に下端が臨む給水管15が備わり、水溜め容器13に具備された溢流堰14を溢流した水がその給水管15を流下してスクリュー5の最上段の羽根54の偏心箇所に落下するようになっている。そして、このスクリュー5は、給水管15から最上段の羽根54の偏心箇所に落下した水の衝突エネルギーを受けて回転し、その回転によって給水管15から落下してくる水を弾いて微細な水滴にして拡散するという機能を発揮するだけでなく、その回転によって、第1パイプ1内でスクリュー5の上部に空気の吸込み域Vを形成し、かつ、第1パイプ1内でスクリュー5の下部に空気の吐出域Bを形成する。
【0015】
さらに、図1又は図2のように第1パイプ1内の底部に水溜まり部16が備わり、多段型のスクリュー5により微細な水滴となって拡散された水滴が地熱を吸収して、この水溜まり部16に溜まるようになっている。ここで、水溜まり部16に溜まる水の水深(水面W1から第1パイプ1の底面までの深さ)は約8mに定められており、第1パイプ1の頂部から水面W1までの長さは約2mに定められている。そして、地熱を吸収した水滴による水溜まり部16の水深を約8mという深さに定めておくと、その水溜まり部16に溜まっている水がさらに周囲の地熱を十分に回収するようになる。また、水循環経路4の往路41を形成しているパイプの下端が図2のように水溜まり部16の底部で横向きに開口している。そのため、ポンプPを運転すると、水溜まり部16に溜まって地熱を回収した水が、その開口45から往路41に吸い上げられて気水熱交換器3の水通路31に導入される。
【0016】
このため、図1に示したように、気水熱交換器3の空気通路32に外気導入路61と外気導出路62とを接続し、外気導出路62を建物の壁内や屋根裏、室内などに導くようにしておくと、外気導入路61から空気通路32に導入された外気が空気通路32を通過中に水通路31を流れる水と熱交換を行い、外気導出路62を経て建物の壁内や屋根裏、室内などに導かれて空調が行われる。
【0017】
しかしながら、水は熱伝導を起こしにくい物質であるため、上記したように、多段型のスクリュー5により微細な水滴となって拡散された水滴によって地熱を吸収させたり、約8mという水深を持つ水溜まり部16の水で地熱を回収させたりして、熱交換器3で外気と水とを熱交換させたとしても、外気導出路62を経て建物の壁内や屋根裏、室内などに導かれた外気を満足のいく空調を行える温度に制御することは容易ではない。一方、水溜まり部16に長時間に亘って水を溜めて地熱を十分に回収させることも考えられるが、そのようにすると、水循環経路4での水の循環量が少なくなって気水熱交換器3での外気による地熱回収効率が低下してしまい、満足のいく空調を行うことができなくなる。
【0018】
そこで、この実施形態では、地中に埋設された上記第2パイプ2の内部空間によって形成される第2内部通路21と上記第1内部通路12とを含む空気循環経路7を付加してある。すなわち、この実施形態では、空気が水に比べ熱伝導によって地熱を短時間で回収する熱特性を備えていることに着目し、そのような空気の熱特性を活用することによって、第1パイプ1内の水に短時間で地熱を回収させるようにしてある。
【0019】
図1又は図2のように、空気循環経路7は、第2パイプ2内の底部出口から第1パイプ1の頂部入口に至る往路71と、第1パイプ1の内部空間によって形成されている上記第1内部通路12と、その第1内部通路12の終部出口から第2パイプ2の頂部入口に至る帰還路72と、第2パイプ2の内部空間によって形成されている第2内部通路21とを含んでいる。そして、その空気循環経路7では、上記したスクリュー5によって発揮される吸込み域Vと吐出域Bとを形成する機能によって空気が循環する。
【0020】
このため、水循環経路4に介在されているポンプPを運転するだけで、空気循環経路7を空気が他の動力を必要とせずに循環するようになる。そして、第1内部通路12の吸込み域Vから吐出域Bに向けて空気が通過すると、スクリュー5によって微細な水滴となって拡散する水がその空気と効率よく直接接触して熱交換を行う。この場合、空気は熱伝導しやすい物質であるので、第2パイプ2の第2内部通路21を通過することによって地熱とほゞ同じ温度になっている。そのため、第1内部通路12での空気と拡散した水との直接接触による熱交換により、空気によって回収されている地熱が水に伝達されて水が短時間で地熱を回収するようになる。したがって、気水熱交換器3では、水で回収した地熱が外気に伝達され、その外気が満足のいく空調を行い得る温度になる。
【0021】
特に、この実施形態では、既述したように、スクリュー5の回転軌跡外周部が第1パイプ1の内周面11に近接されていて、その回転軌跡外周部が、スクリュー5により拡散されて上記内周面11に付着することにより形成される水膜に接触するようになっているので、第1内部通路12内の吸込み域Vから吐出域Bに向かって通過する空気の逆流が上記水膜によって阻止され、併せて、吸込み域Vから吐出域Bに向かって通過する空気と拡散した水とがスクリュー5の回転によって攪拌されるために、空気と水とが効率よく直接接触するようになる。そのために、空気が水に同伴したり水の中に溶け込んで第1パイプ1の水溜まり部16に溜まるという状況が起こり、それによって空気によって回収された地熱がいっそう効率よく水に伝達されるようになる。
【0022】
また、この実施形態では、上記した水循環経路4や空気循環経路7との両方を、外部から遮断された閉路として形成されている。そのため、水循環経路4や空気循環経路7に外部から塵芥が入ることがなくなり、それらの経路4,7が塵芥の付着や堆積などによって狭められたり詰まったりすることがなくなってそれだけメンテナンスが容易になって運転コストが安く抑えられる。
【0023】
この実施形態では、気水熱交換器3として、図4に示したように、螺旋管で水通路31を形成し、その外側に外気が通過する空気通路32を形成してあるけれども、気水熱交換器3の具体的構成は図例に限定されない。
【0024】
また、第1パイプ1や第2パイプ2の容量は、空調を行う建物の大きさ、敷地の大きさなどを適宜勘案して選定すべきものである。たとえば、100坪以上もの大きな建物の空調を行うときには、第1パイプ1の容量をそれに見合って増大させる必要があり、また、建物が小さな場合には、第1パイプ1の容量もそれに見合って小さくすることが望まれる。そして、第1パイプ1の容量を増大させる必要がある場合、1本の第1パイプ1の口径を大きくすることは地熱回収効率の面から好ましいことではない。そこで、たとえば図5のように、2本又は所要本数の第1パイプ1を地中に並列に埋設し、それぞれの各第1パイプ1に接続する水循環経路4の往路41及び帰還路42並びに空気循環経路7の往路71及び帰還路72を並列に接続している。このように、それぞれの各第1パイプ1に接続する水循環経路4の往路41及び帰還路42を並列に接続した場合、水の水流の速度が遅くなる。例えば、図5の場合であれば、第1パイプ1を一本増やしていることから、水流速度は2分の1になり、第1パイプ1を4本増やして計5本にすれば水流速度は5分の1になり、それだけ効率のよい地熱回収を行うことができる。また、第1パイプ1を地中に並列に埋設し、それぞれの各第1パイプ1に接続する水循環経路4の往路41及び帰還路42を並列に接続して形成するようにすると、1本の第1パイプ1の口径を小さくしたままでその全体容量を増大させて効率のよい地熱回収が可能になる。
なお、図5では、図1で説明した要素と同一又は相応する要素に同一符号を付して説明の重複を回避した。
【0025】
【発明の効果】
以上のように、本発明に係る地熱利用空調システムによれば、水よりも熱伝導を起こしやすい物質である空気の熱特性を活用することによって、従来の場合よりも効率に優れ、しかも運転コストを安価に抑えることのできる地熱利用空調システムを提供することが可能になる。
【図面の簡単な説明】
【図1】本発明に係る地熱利用空調システムの実施形態の要部を示した説明図である。
【図2】図1の一部を詳細に示した説明図である。
【図3】第1パイプをスクリュー設置箇所で切断した場合の水平断面図である。
【図4】気水熱交換器の概略説明図である。
【図5】変形例による地熱利用空調システムの要部を示した説明図である。
【符号の説明】
P 水給送用ポンプ
1 第1パイプ
2 第2パイプ
3 気水熱交換器
4 水循環経路
5 スクリュー
7 空気循環経路
11 第1パイプの内周面
12 第1内部通路
21 第2内部通路
31 水通路
32 空気通路
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a geothermal utilization air conditioning system that can utilize geothermal heat for building air conditioning.
[0002]
[Prior art]
Conventionally, as an air conditioning system that uses geothermal energy with little temperature change throughout the four seasons, water is circulated between the internal space of an underground pipe buried underground and a steam-water heat exchanger installed under the floor of the building, In some cases, heat is exchanged between water and air (outside air) by a heat exchanger, and the air is introduced into the interior of the building. Is stored, and the stored water is sent to a gas-water heat exchanger to exchange heat with air for air conditioning (see Patent Document 1).
[0003]
[Patent Document 1]
JP 2001-116293 A
[Problems to be solved by the invention]
However, as in the past, simply storing water in an underground pipe to exchange heat with geothermal heat means that it is difficult to improve the operating efficiency of the air conditioning system because water is a substance that does not easily conduct heat. There was a problem.
The present invention has been made under the above circumstances, and by utilizing the thermal characteristics of air, which is a substance that is more likely to conduct heat than water, is more efficient than the conventional case, and the operating cost is lower. It is an object of the present invention to provide a geothermal air-conditioning system capable of suppressing the temperature.
[0005]
[Means for Solving the Problems]
The geothermal air conditioning system according to the present invention provides a water circulation path interposed with a water supply pump, a first internal passage formed by an internal space of a first pipe buried underground, and a gas installed on the ground. A water passage of a water heat exchanger is included, and air that has exchanged heat with water in the water passage while passing through the air passage of the air-water heat exchanger is used for air conditioning of a building. An air circulation path including a second internal passage formed by an internal space of a second pipe buried underground and the first internal passage is added. In addition, the first internal passage is rotated by the action of water passing through the water circulation passage fed to the first internal passage, and is rotated by the action of water to pass through the air circulation passage to the second internal passage. A screw having a function of forming a discharge area and a function of diffusing the water to perform gas-liquid contact in the second internal passage is provided.
[0006]
According to the present invention, an air suction area and an air discharge area are formed in the first internal passage by the screw that is rotated by the action of water supplied to the first internal passage of the first pipe by the water supply pump. Therefore, the air in the air circulation path passes from the suction area to the discharge area of the first internal passage without requiring other power. Moreover, since the screw has a function of performing gas-liquid contact in the first internal passage, water droplets diffused by the screw absorb the geothermal heat in the first internal passage existing in the ground and The air efficiently contacts the air passing through the first internal passage, and the air and the water droplets diffused in the first internal passage come into direct contact to perform heat exchange. In addition, since air has better thermal conductivity than water, the air passing through the second internal passage of the second pipe buried underground exchanges heat with geothermal in a short time, and such heat exchange occurs. The air subjected to the above is sucked into the first internal passage as described above, and comes into direct contact with the diffusion water. Therefore, the water introduced from the first internal passage into the water passage of the air-water heat exchanger is closer to geothermal as compared to the case where the water is not in contact with the air in the air circulation path in the first internal passage. While the water is at a temperature and such water flows through the water passage of the steam-water heat exchanger, the air flowing through the air passage of the steam-water heat exchanger exchanges heat with the water to be used for building air conditioning. Will be done.
[0007]
As described above, the geothermal air-conditioning system according to the present invention uses air having better heat conduction than water as a heat medium for geothermal recovery. Air conditioning that is more efficient than that used for In addition, since the air used as a heat medium for geothermal recovery flows through the air circulation path by the function of a screw rotating by the action of water flowing through the water circulation path, a blower for circulating air is used. There is an advantage that it is not necessary to separately use such as.
[0008]
In the present invention, it is preferable that both the water circulation path and the air circulation path are formed as closed paths that are cut off from the outside of the paths. According to this, dust does not enter the water circulation path or the air circulation path from the outside, so that those paths are not narrowed or clogged due to adhesion or accumulation of dust, and maintenance becomes easier accordingly. Operating costs can be kept low.
[0009]
In the present invention, the outer peripheral portion of the rotation locus of the screw is close to the inner peripheral surface of the first pipe, and the outer peripheral portion of the rotational locus is formed by being diffused by the screw and attaching to the inner peripheral surface. It is desirable to be in contact with the water film. According to this, the backflow of air passing from the suction area to the discharge area in the first internal passage formed by the rotation of the screw is prevented by the water film, and the air flows from the suction area to the discharge area. Since the generated air and the diffused water are stirred by the rotation of the screw, the air and the water come into direct contact with each other efficiently. As a result, a situation occurs in which air is entrained in the water or dissolves in the water and accumulates at the bottom of the first pipe, so that the geothermal heat is further increased by the water introduced into the water passage of the steam-water heat exchanger. Efficiency is recovered, and the geothermal heat is efficiently transmitted to the air for air conditioning in the air-water heat exchanger.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 1 is an explanatory diagram showing a main part of an embodiment of a geothermal air-conditioning system according to the present invention, FIG. 2 is an explanatory diagram showing a part of FIG. 1 in detail, and FIG. FIG. 4 is a schematic explanatory view of the steam-water heat exchanger 3.
[0011]
In FIG. 1, F indicates a floor of a building, G indicates a ground line, and a first pipe 1 made of a material having excellent rust resistance and heat conductivity, for example, a long stainless steel pipe of about 10 m in the ground. And the second pipe 2 are buried vertically, and buried at a depth where the geothermal temperature becomes a constant temperature of about 17 ° C. throughout the four seasons, for example, a depth of about 5 to 13 m. I have. On the other hand, the air-water heat exchanger 3 is installed under the floor above the ground.
[0012]
The first internal passage 12 formed by the internal space of the first pipe 1 and the water passage 31 of the steam / water heat exchanger 3 are included in the water circulation path 4. That is, the water circulation path 4 includes an outward path 41 from the bottom outlet of the first pipe 1 to the inlet of the water passage 31 of the air-water heat exchanger 3 with the water supply pump P interposed therebetween, A return path 42 extending from the outlet of the water passage 31 of the water heat exchanger 3 to the top entrance of the first pipe, and the first internal passage 12 of the first pipe 1 form an outward path 41 and a return path 42. Insulated pipes are insulated.
[0013]
The multistage screw 5 is concentrically provided in the first internal passage 12. As shown in FIG. 1 or FIG. 2, the screw 5 has blades 54 in multiple stages at a plurality of positions in the axial direction of a rotating shaft 51 rotatably supported vertically by bearings 52 and 53 attached to the first pipe 1. Is fixed. As shown in FIG. 3, the outer peripheral portion of the rotation locus of the blade 54 at each stage is close to the inner peripheral surface 11 of the first pipe 1, and the outer peripheral portion of the rotational locus of the blade 54 when the blade 54 rotates. Are in contact with the water film flowing down along the inner peripheral surface of the first pipe 1. As can be inferred from FIG. 3, the blades 54 at each stage are formed by a plurality of blade plates fixed to the rotating shaft 51 and provided with a fixed inclination angle.
[0014]
As shown in FIG. 2, a water reservoir 13 is provided above the internal space of the first pipe 1, and the terminal end 44 of the return path 42 faces the water reservoir 13. Further, the water reservoir 13 is provided with a water supply pipe 15 having a lower end facing the eccentric portion of the uppermost blade 54 of the screw 5, and water overflowing the overflow weir 14 provided in the water reservoir 13 is provided. It flows down the water supply pipe 15 and drops to the eccentric part of the uppermost blade 54 of the screw 5. The screw 5 rotates upon receiving the collision energy of water that has fallen from the water supply pipe 15 to the eccentric portion of the uppermost blade 54, and repels water that falls from the water supply pipe 15 due to the rotation. In addition to exerting the function of diffusing the air, the rotation forms an air suction area V in the upper part of the screw 5 in the first pipe 1 and the lower part of the screw 5 in the first pipe 1 An air discharge area B is formed.
[0015]
Further, as shown in FIG. 1 or FIG. 2, a water reservoir 16 is provided at the bottom in the first pipe 1, and water droplets dispersed as fine water droplets by the multi-stage screw 5 absorb geothermal heat, and this water reservoir is formed. It accumulates at 16. Here, the water depth (depth from the water surface W1 to the bottom surface of the first pipe 1) of the water stored in the water pool 16 is set to about 8 m, and the length from the top of the first pipe 1 to the water surface W1 is about 8 m. It is set to 2 m. When the water depth of the water pool 16 due to the water droplets that have absorbed the geothermal heat is set to a depth of about 8 m, the water stored in the water pool 16 can sufficiently collect the surrounding geothermal energy. In addition, the lower end of the pipe forming the outward path 41 of the water circulation path 4 is opened laterally at the bottom of the water reservoir 16 as shown in FIG. Therefore, when the pump P is operated, the water that has collected in the water pool 16 and has recovered geothermal heat is sucked up from the opening 45 into the outward path 41 and introduced into the water passage 31 of the steam-water heat exchanger 3.
[0016]
For this reason, as shown in FIG. 1, the outside air introduction path 61 and the outside air derivation path 62 are connected to the air passage 32 of the air-water heat exchanger 3, and the outside air derivation path 62 is connected to the inside of a building wall, attic, room, etc. The outside air introduced from the outside air introduction passage 61 into the air passage 32 exchanges heat with the water flowing through the water passage 31 while passing through the air passage 32, and passes through the outside air discharge passage 62 to the wall of the building. Air conditioning is performed inside, in the attic, or inside the room.
[0017]
However, since water is a substance that is unlikely to cause heat conduction, as described above, fine water droplets are diffused into water droplets by the multi-stage screw 5 to absorb geothermal heat, or a water pool portion having a water depth of about 8 m. Even if the geothermal energy is recovered by the water of No. 16 and the outside air and the water are exchanged by the heat exchanger 3, the outside air guided to the inside of the wall of the building, the attic, the room, etc. through the outside air outlet path 62 is removed. It is not easy to control the temperature at which satisfactory air conditioning can be performed. On the other hand, it is conceivable to collect water for a long time by storing water in the water reservoir 16 for a long time. However, in such a case, the amount of water circulated in the water circulation path 4 is reduced, and the steam-water heat exchanger is reduced. The efficiency of geothermal recovery due to the outside air in 3 decreases, and satisfactory air conditioning cannot be performed.
[0018]
Therefore, in this embodiment, the air circulation path 7 including the second internal passage 21 formed by the internal space of the second pipe 2 buried underground and the first internal passage 12 is added. That is, in the present embodiment, attention is paid to the fact that air has a heat characteristic of recovering geothermal heat in a shorter time by heat conduction than water, and the first pipe 1 is formed by utilizing such heat characteristics of air. Geothermal heat is recovered in the water within a short time.
[0019]
As shown in FIG. 1 or FIG. 2, the air circulation path 7 is formed by the outward path 71 from the bottom outlet in the second pipe 2 to the top inlet of the first pipe 1 and the internal space of the first pipe 1. A first internal passage 12, a return path 72 from an end outlet of the first internal passage 12 to a top entrance of the second pipe 2, and a second internal passage 21 formed by an internal space of the second pipe 2. Contains. In the air circulation path 7, air is circulated by the function of forming the suction area V and the discharge area B exerted by the screw 5 described above.
[0020]
Therefore, only by operating the pump P interposed in the water circulation path 4, the air circulates through the air circulation path 7 without requiring another power. Then, when air passes from the suction region V to the discharge region B of the first internal passage 12, the water that is diffused as fine water droplets by the screw 5 efficiently and directly contacts the air to exchange heat. In this case, since air is a substance that easily conducts heat, it passes through the second internal passage 21 of the second pipe 2 to have a temperature substantially equal to that of geothermal heat. Therefore, the heat exchange by direct contact between the air and the diffused water in the first internal passage 12 transfers the geothermal heat recovered by the air to the water, and the water recovers the geothermal heat in a short time. Therefore, in the steam-water heat exchanger 3, the geothermal heat recovered by the water is transmitted to the outside air, and the outside air reaches a temperature at which satisfactory air conditioning can be performed.
[0021]
In particular, in this embodiment, as described above, the outer peripheral portion of the rotation locus of the screw 5 is close to the inner peripheral surface 11 of the first pipe 1, and the outer peripheral portion of the rotational locus is diffused by the screw 5 and Since it comes into contact with the water film formed by adhering to the inner peripheral surface 11, the backflow of air passing from the suction region V to the discharge region B in the first internal passage 12 is caused by the water film. In addition, since the air and the diffused water passing from the suction area V toward the discharge area B are stirred by the rotation of the screw 5, the air and the water come into direct contact with each other efficiently. . As a result, a situation occurs in which the air is entrained in the water or dissolves in the water and accumulates in the water reservoir 16 of the first pipe 1, whereby the geothermal heat recovered by the air is transmitted to the water more efficiently. Become.
[0022]
In this embodiment, both the water circulation path 4 and the air circulation path 7 are formed as closed circuits that are cut off from the outside. Therefore, dust does not enter the water circulation path 4 and the air circulation path 7 from the outside, and the paths 4 and 7 do not become narrowed or clogged due to the adhesion or accumulation of dust, thereby making maintenance easier. The operating cost can be kept low.
[0023]
In this embodiment, as the water / water heat exchanger 3, as shown in FIG. 4, a water passage 31 is formed by a helical tube, and an air passage 32 through which outside air passes is formed outside the water passage 31. The specific configuration of the heat exchanger 3 is not limited to the illustrated example.
[0024]
Further, the capacity of the first pipe 1 and the second pipe 2 should be selected in consideration of the size of the building for air conditioning, the size of the site, and the like as appropriate. For example, when air conditioning a large building of 100 tsubo or more, it is necessary to increase the capacity of the first pipe 1 accordingly, and when the building is small, the capacity of the first pipe 1 is correspondingly small. It is desired to do. When it is necessary to increase the capacity of the first pipe 1, increasing the diameter of one first pipe 1 is not preferable in terms of geothermal recovery efficiency. Therefore, for example, as shown in FIG. 5, two or a required number of the first pipes 1 are buried in parallel in the ground, and the outward path 41 and the return path 42 of the water circulation path 4 connected to each first pipe 1 and the air. The outward path 71 and the return path 72 of the circulation path 7 are connected in parallel. As described above, when the forward path 41 and the return path 42 of the water circulation path 4 connected to each of the first pipes 1 are connected in parallel, the speed of the water flow is reduced. For example, in the case of FIG. 5, since the first pipe 1 is increased by one, the water flow velocity is halved. Is reduced to one fifth, and efficient geothermal recovery can be performed accordingly. When the first pipes 1 are buried in the ground in parallel and the outgoing path 41 and the return path 42 of the water circulation path 4 connected to each first pipe 1 are connected in parallel to each other, one pipe is formed. The overall capacity of the first pipe 1 is increased while keeping the diameter of the first pipe 1 small, thereby enabling efficient geothermal recovery.
In FIG. 5, the same or corresponding elements as those described with reference to FIG.
[0025]
【The invention's effect】
As described above, according to the geothermal air-conditioning system according to the present invention, by utilizing the thermal characteristics of air, which is a substance that is more likely to conduct heat than water, the air-conditioning system is more efficient than the conventional case, and the operating cost is higher. It is possible to provide a geothermal utilization air-conditioning system capable of reducing the cost of air conditioning.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram showing a main part of an embodiment of a geothermal air conditioning system according to the present invention.
FIG. 2 is an explanatory diagram showing a part of FIG. 1 in detail.
FIG. 3 is a horizontal sectional view when a first pipe is cut at a screw installation location.
FIG. 4 is a schematic explanatory view of a steam-water heat exchanger.
FIG. 5 is an explanatory diagram showing a main part of a geothermal air conditioning system according to a modification.
[Explanation of symbols]
P Pump for water supply 1 First pipe 2 Second pipe 3 Air / water heat exchanger 4 Water circulation path 5 Screw 7 Air circulation path 11 Inner peripheral surface of first pipe 12 First internal passage 21 Second internal passage 31 Water passage 32 air passage

Claims (3)

水給送用ポンプが介在された水循環経路に、地中に埋設された第1パイプの内部空間によって形成される第1内部通路と地上に設置された気水熱交換器の水通路とが含まれ、上記気水熱交換器の空気通路を通過中に上記水通路内の水との間で熱交換を行った空気を建物の空調に利用するようになっている地熱利用空調システムにおいて、
地中に埋設された第2パイプの内部空間によって形成される第2内部通路と上記第1内部通路とを含む空気循環経路を付加し、
上記第1内部通路に、この第1内部通路に給送された上記水循環経路を通過する水の作用により回転して上記第2内部通路に上記空気循環経路を通過する空気の吸込み域と吐出域とを形成する機能と、その水を拡散させてこの第2内部通路内で気液接触を行わせる機能とを備えたスクリューが配備されていることを特徴とする地熱利用空調システム。
The water circulation path in which the water feed pump is interposed includes a first internal passage formed by an internal space of a first pipe buried underground and a water passage of an air-water heat exchanger installed on the ground. In the geothermal air conditioning system, the air that has exchanged heat with the water in the water passage while passing through the air passage of the air-water heat exchanger is used for air conditioning of the building.
Adding an air circulation path including a second internal passage formed by an internal space of a second pipe buried underground and the first internal passage;
The first internal passage is rotated by the action of water passing through the water circulation passage fed to the first internal passage, and the suction and discharge regions of the air passing through the air circulation passage to the second internal passage. A geothermal air-conditioning system, comprising a screw having a function of forming a liquid and a function of diffusing the water to make gas-liquid contact in the second internal passage.
上記水循環経路と上記空気循環経路との両方が、それらの経路の外部から遮断された閉路として形成されている請求項1に記載した地熱利用空調システム。2. The geothermal air conditioning system according to claim 1, wherein both the water circulation path and the air circulation path are formed as closed paths cut off from the outside of the paths. 上記スクリューの回転軌跡外周部が上記第1パイプの内周面に近接されていて、その回転軌跡外周部が、上記スクリューにより拡散されて上記内周面に付着することにより形成される水膜に接触するようになっている請求項1又は請求項2に記載した地熱利用空調システム。The outer peripheral portion of the rotation locus of the screw is close to the inner peripheral surface of the first pipe, and the outer peripheral portion of the rotational locus is formed on a water film formed by being diffused by the screw and adhering to the inner peripheral surface. The geothermal air-conditioning system according to claim 1 or 2, wherein the air-conditioning system is adapted to contact.
JP2002294703A 2002-10-08 2002-10-08 Geothermal air conditioning system Expired - Fee Related JP3440331B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002294703A JP3440331B1 (en) 2002-10-08 2002-10-08 Geothermal air conditioning system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002294703A JP3440331B1 (en) 2002-10-08 2002-10-08 Geothermal air conditioning system

Publications (2)

Publication Number Publication Date
JP3440331B1 JP3440331B1 (en) 2003-08-25
JP2004132559A true JP2004132559A (en) 2004-04-30

Family

ID=27785595

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002294703A Expired - Fee Related JP3440331B1 (en) 2002-10-08 2002-10-08 Geothermal air conditioning system

Country Status (1)

Country Link
JP (1) JP3440331B1 (en)

Also Published As

Publication number Publication date
JP3440331B1 (en) 2003-08-25

Similar Documents

Publication Publication Date Title
CN1209591C (en) Air conditioner
KR101526114B1 (en) Air conditioning device
CN103608629A (en) Built-in type air conditioning device
KR101942203B1 (en) Combined hot water and air heating and conditioning system including heat pump
WO2010120791A2 (en) Energy efficient cooling tower system utilizing auxiliary cooling tower
JP6905440B2 (en) Liquid recovery device
JP2004132559A (en) Geothermal air conditioning system
CN219797380U (en) Air conditioning system and cooling tower
JP2016200368A (en) Heat pump device and hot water supply device
CN202561922U (en) Automatic condensate water drainage type water collecting container device
US20090031748A1 (en) Evaporative Cooling System
JP2007170684A (en) Air conditioning device
CN207147278U (en) A kind of steel plate rolling oil intermediate synthesized ester cooling system
JP3416818B1 (en) Geothermal air conditioning system
US4548050A (en) High efficiency fan coil unit
CN213803337U (en) Multilayer plate type low-salt wastewater evaporation concentration device with built-in flue
CN1236238C (en) Indoor machine of air conditioner
CN100567870C (en) A kind of energy-saving environment protection cooling tower and cooling means thereof
CN205714931U (en) A kind of impeller for air conditioning draining pump
CN210980978U (en) Hydrodynamic cooling fan for cooling tower of central air conditioner
KR200222092Y1 (en) a combination atructure of water-cooled movable type air-conditioner
CN2783192Y (en) Air conditioner using ground heat
JP7325110B2 (en) Geothermal heat utilization equipment
KR100849197B1 (en) Air exchanger
JP7325111B2 (en) Geothermal heat utilization equipment

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090620

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090620

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090620

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100620

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110620

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110620

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110620

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120620

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130620

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140620

Year of fee payment: 11

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20151125

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees