JP2004132457A - Sliding member - Google Patents

Sliding member Download PDF

Info

Publication number
JP2004132457A
JP2004132457A JP2002297330A JP2002297330A JP2004132457A JP 2004132457 A JP2004132457 A JP 2004132457A JP 2002297330 A JP2002297330 A JP 2002297330A JP 2002297330 A JP2002297330 A JP 2002297330A JP 2004132457 A JP2004132457 A JP 2004132457A
Authority
JP
Japan
Prior art keywords
sliding member
belt
pulley
surface roughness
continuously variable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002297330A
Other languages
Japanese (ja)
Inventor
Koji Saito
斉藤 浩二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2002297330A priority Critical patent/JP2004132457A/en
Publication of JP2004132457A publication Critical patent/JP2004132457A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a sliding member superior in friction coefficient and low noise performance. <P>SOLUTION: This sliding member 1 is composed of a base material surface 3 having surface roughness of 5 to 20 μmRz and a covering layer 4 formed on the surface and having the layer thickness of 2 to 10 μm, and is characterized by having a surface 2 having a surface roughness of 1 to 15 μmRz. The sliding member 1 is suitable for a pulley or a belt for a belt type continuously variable transmission. The belt type continuously variable transmission uses the sliding member 1, and can cope with high torque, and is improved in the low noise performance. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明が属する技術分野】
本発明は、摺動時に生じるノイズレベルを悪化させること無しに摩擦係数を向上させた摺動部材に関する。
【0002】
【従来の技術】
ベルト式無段階変速機は、入力側および出力側の二つのプーリー、並びに該プーリーに掛け渡すベルトを主要な部品としてなる。そして各プーリーは軸方向の溝幅の変化に伴いベルト掛け半径が変化するように構成され、ベルト掛け半径の変化により変速比の変更が可能となる。該ベルト式無段階変速機ではプーリーとスチールベルトとが摺動するが、高トルクに対応するために、摩擦係数に優れた表面が要求されている。
【0003】
該要求に対する回答として、表面粗さをある範囲内とし、また表面硬さを高くしたベルト式無段階変速機用プーリーが知られている。該プーリーでは、例えば空気式ショットピーニング機を用いて大きさ0.03〜0.2mmかつ硬さ750Hv以上の投射材を0.2MPa以上の投射圧で衝突させることにより、中心線平均粗さRaが0.1〜0.5μmである表面をプーリー上に形成する。また浸炭焼入れ・焼戻しの熱処理により、表面のビッカース硬さを850Hv以上とする(例えば、特許文献1参照。)。
【0004】
【特許文献1】特開2000−130527号公報(第2頁)
【0005】
【発明が解決しようとする課題】
本発明は、ベルト式無段階変速機のプーリーおよびベルトでの使用に適した高い摩擦係数を有する摺動部材を簡単な構成により提供することを課題とする。
【0006】
【課題を解決するための手段】
上記の課題を解決するために、本発明の請求項1に係る摺動部材は、表面粗さが5〜20μmRzである基材表面と、その上に形成された2〜10μmの層厚の被覆層からなり、表面粗さが1〜15μmRzである表面を有することを特徴とする。
本発明では、表面粗さが5〜20μmRzの範囲内となるように処理した基材表面上に層厚が2〜10μmで樹脂材料またはゴム材料からなる被覆層を形成し、その結果、表面粗さを1〜15μmRzの範囲内とすることにより、摺動時の高い摩擦係数と良好なノイズレベルとを両立させることができる。
【0007】
本発明の請求項2に係る摺動部材は、請求項1記載の摺動部材において、ベルト式無段階変速機用のプーリーまたはベルトであることを特徴とする。
本発明では、ベルト式無段階変速機用のプーリーまたはスチールベルトを前記摺動部材から構成することにより、摩擦係数が高く、しかもノイズレベルが良好なものとすることができる。
【0008】
本発明の請求項3に係るベルト式無段階変速機は、プーリーおよび/またはベルトに請求項1記載の摺動部材を用いることを特徴とする。
本発明では、前記摺動部材をプーリーおよび/またはベルトとして用いることにより、高いトルクに対応し、しかも低ノイズ性に優れたベルト式無段階変速機を提供することができる。
【0009】
【発明の実施の形態】
以下、本発明の実施の形態を添付図面に基づいて説明する。図1は本発明の摺動部材表面の断面図であり、(a)は製造直後、そして(b)は初期磨耗後を図示する。
【0010】
図1に図示するように、本発明の摺動部材1が有する表面2は、基材表面3と、その上に形成された被覆層4からなる。そして本発明は、基材表面3の表面粗さと被覆層4の厚さを制限して、表面2の表面粗さを一定範囲内とすることを特徴とする。
【0011】
基材表面3は、摺動部材1を構成する例えば金属製の基材の表面であり、その表面粗さは十点平均粗さRzで5〜20μmである。基材表面3の表面粗さが20μmRzを超えると、摺動部材1が摺動する際に表面2の磨耗が大きくなり好ましくない。また表面粗さが大きい場合には、初期の以上磨耗および焼付発生の可能性もあり、ノイズレベルも悪化する。一方、基材表面3の表面粗さが5μmRz未満となると、被覆層4の形成により基材表面3上の凹部が埋まり表面2に十分な表面粗さを与えることができない。その結果、摺動部材1の摩擦係数が低下しするので、同様に好ましくない。
【0012】
基材表面3に適当な表面粗さを与える方法としては、例えばショットピーニング法およびショットブラスト法が挙げられる。該方法では、基材表面3に無数の微細な硬質材(ショット)を高速で衝突させることにより、表面に梨地模様の凹凸を形成させる。これらの方法以外に、化成処理やレーザー加工により表面粗さを与えることも可能である。
【0013】
被覆層4は、基材表面2上に形成され、その層厚は2〜10μmの範囲内である。層厚が該範囲未満であると、摺動時に生じるノイズを十分に減衰させることができず、また該範囲より厚い場合には、基材表面3の凹部が埋まって、表面2に十分な表面粗さを与えることができないので好ましくない。
【0014】
被覆層4は樹脂材料またはゴム材料から形成することができる。樹脂材料の例としてはポリイミド系樹脂およびフェノール系樹脂を、そしてゴム材料としてはニトリルゴム、アクリルゴムおよびフッ素ゴムを例示することができる。また被覆層4の形成は、例えば材料をスプレーコーティングし、その後焼成することにより行うことができる。被覆層4は所望により固体潤滑剤を含有してもよい。
【0015】
表面2は、基材表面3上に被覆層4を形成してなり、その表面粗さは十点平均粗さRzで1〜15μmである。この程度の表面粗さを表面2に与えることにより、表面2の局部面圧が増加し、また表面2の凸部同士が引っ掛って十分な摩擦係数を確保することができる。表面2上に潤滑油が存在する場合であっても、該潤滑油は表面2の凹部に流れ込み(油を切り)、潤滑油の摩擦係数に対する悪影響を防ぐことができる。
【0016】
被覆層4を形成した直後の表面2では、全ての基材表面3が被覆層4により覆われている(図1(a)参照)。しかし摺動部材1が摺動して初期磨耗した後には、表面2の凸部において、基材表面3および被覆層4の双方共にある程度磨耗し、基材表面3が露出した部分が生じる。しかしながら、被覆層4は表面2の凹部において残存しているため、表面凸部で発生するノイズは被覆層4のダンパー効果により被覆層4で減衰され、摺動時の低ノイズ化が達成される。
【0017】
【実施例】
実施例1
ベルト式無段階変速機のプーリーの表面に、球状および角状の硬質材をエア噴射機で噴射して表面粗さを15μmRzとした。その後、プーリー表面にポリアミドイミド樹脂をスプレーコーティングし、200℃で30分間焼成することにより、10μmの被覆層を形成した。得られたプーリー表面の表面粗さは10μmRzであった。
【0018】
試験例1
実施例1で製造したプーリーをベルト式無段階変速機に取付け、摩擦係数およびノイズレベルを以下の試験を行った。
摩擦係数は、入力プーリー回転数2000rpmおよび試料油温80℃の条件でベルト式無段階変速機を作動させ、入力トルクを徐々に増加させてプーリー−ベルト間で滑りが発生したトルクの値から算出した。該測定を、ベルト式無段階変速機の変速比を変化させて数回行った。
ノイズレベルは、プーリー−ベルト間で滑りが発生する直前(摩擦係数計測時)のノイズを計測して評価した。
また比較のために、表面粗さが1μmRzで被覆層を有さないプーリー(比較例1)および表面粗さが15μmRzで被覆層を有さないプーリー(比較例2)についても同様に評価した。実験結果を図2および図3に図示する。
【0019】
図2は摩擦係数についての結果を図示する折れ線グラフであり、縦軸は比較例1を1とした摩擦係数の比率を、そして横軸は変速比を表す。また図3はノイズレベルについての結果を図示する棒グラフであり、比較例1を1としたのいずレベルの比率を実施例1、比較例1および比較例2について表す。図2および図3から明らかなように、本発明の摺動部材よりなる実施例1のプーリーは、ノイズレベルを表面粗さが1μmRzである比較例1のものと同程度またはそれより良好に維持しつつ、全ての変速比領域においてより高い摩擦係数を達成できる。また同じ表面粗さであって被覆層を有さない比較例2のものと比較すると、ノイズレベルは格段に改良される。
【0020】
【発明の効果】
本発明の摺動部材は、表面粗さが5〜20μmRzである基材表面上に2〜10μmの層厚の被覆層を設け、表面粗さを1〜15μmRzとすることにより、高い摩擦係数と、優秀な低ノイズ性とを兼備した摺動部材を提供することができる。本発明の摺動部材では、従来品と同じ摩擦係数とする場合にはノイズレベルがより良好となり、また同じノイズレベルとする場合には従来品よりも高い摩擦係数の摺動部材を提供することができる。
【0021】
本発明の摺動部材は、ベルト式無段階変速機のプーリーまたはベルトのために特に適している。本発明の摺動部材を用いたベルト式無段階変速機は高いトルクに対応可能であると共に、低ノイズ性にも優れたものとなる。
【図面の簡単な説明】
【図1】図1は、本発明の摺動部材の表面付近の断面を(a)製造直後および(b)初期磨耗後で図示する断面図である。
【図2】図2は、試験例1の摩擦係数についての結果を図示するグラフである。
【図3】図3は、試験例1のノイズレベルについての結果を図示するグラフである。
【符号の説明】
1  摺動部材
2  表面
3  基材表面
4  被覆層
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a sliding member having an improved friction coefficient without deteriorating a noise level generated during sliding.
[0002]
[Prior art]
The belt-type continuously variable transmission mainly includes two pulleys on an input side and an output side, and a belt wound around the pulleys. Each pulley is configured such that the belt hanging radius changes with a change in the axial groove width, and the gear ratio can be changed by changing the belt hanging radius. In the belt type continuously variable transmission, the pulley and the steel belt slide, but a surface having an excellent friction coefficient is required to cope with high torque.
[0003]
As a response to the demand, there is known a pulley for a belt-type continuously variable transmission having a surface roughness within a certain range and a high surface hardness. In the pulley, for example, a pneumatic shot peening machine is used to impinge a projection material having a size of 0.03 to 0.2 mm and a hardness of 750 Hv or more at a projection pressure of 0.2 MPa or more, thereby obtaining a center line average roughness Ra. Is formed on the pulley having a thickness of 0.1 to 0.5 μm. In addition, Vickers hardness of the surface is made 850 Hv or more by heat treatment of carburizing quenching and tempering (for example, see Patent Document 1).
[0004]
[Patent Document 1] JP-A-2000-130527 (page 2)
[0005]
[Problems to be solved by the invention]
SUMMARY OF THE INVENTION An object of the present invention is to provide a sliding member having a high friction coefficient suitable for use in a pulley and a belt of a belt-type continuously variable transmission with a simple configuration.
[0006]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, a sliding member according to claim 1 of the present invention has a base material surface having a surface roughness of 5 to 20 μmRz and a coating having a layer thickness of 2 to 10 μm formed thereon. It is characterized by having a surface composed of a layer and having a surface roughness of 1 to 15 μmRz.
In the present invention, a coating layer made of a resin material or a rubber material having a layer thickness of 2 to 10 μm is formed on the surface of the substrate treated so that the surface roughness is in the range of 5 to 20 μm Rz. By setting the height within the range of 1 to 15 μmRz, it is possible to achieve both a high coefficient of friction during sliding and a good noise level.
[0007]
A sliding member according to a second aspect of the present invention is the sliding member according to the first aspect, which is a pulley or a belt for a belt-type continuously variable transmission.
In the present invention, by forming a pulley or a steel belt for a belt-type continuously variable transmission from the sliding member, it is possible to achieve a high friction coefficient and a good noise level.
[0008]
A belt-type continuously variable transmission according to a third aspect of the present invention uses the sliding member according to the first aspect as a pulley and / or a belt.
In the present invention, by using the sliding member as a pulley and / or a belt, it is possible to provide a belt-type continuously variable transmission that can cope with high torque and is excellent in low noise.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. FIG. 1 is a cross-sectional view of the surface of a sliding member of the present invention. FIG. 1A shows a state immediately after manufacturing, and FIG.
[0010]
As shown in FIG. 1, the surface 2 of the sliding member 1 of the present invention includes a substrate surface 3 and a coating layer 4 formed thereon. The present invention is characterized in that the surface roughness of the substrate surface 3 and the thickness of the coating layer 4 are limited to keep the surface roughness of the surface 2 within a certain range.
[0011]
The base material surface 3 is a surface of a metal base material constituting the sliding member 1, for example, and has a surface roughness of 5 to 20 μm as a ten-point average roughness Rz. If the surface roughness of the base material surface 3 exceeds 20 μmRz, the sliding of the sliding member 1 undesirably increases the wear of the surface 2. Also, when the surface roughness is large, there is a possibility that abrasion and seizure may occur more than in the initial stage, and the noise level also deteriorates. On the other hand, when the surface roughness of the substrate surface 3 is less than 5 μmRz, the concave portions on the substrate surface 3 are buried by the formation of the coating layer 4, and the surface 2 cannot be given a sufficient surface roughness. As a result, the coefficient of friction of the sliding member 1 is reduced, which is similarly unfavorable.
[0012]
Examples of a method for giving the substrate surface 3 an appropriate surface roughness include a shot peening method and a shot blast method. In this method, countless fine hard materials (shots) are made to collide with the base material surface 3 at high speed to form a matte-pattern unevenness on the surface. In addition to these methods, surface roughness can be given by chemical conversion treatment or laser processing.
[0013]
The coating layer 4 is formed on the substrate surface 2 and has a layer thickness in the range of 2 to 10 μm. If the layer thickness is less than the above range, noise generated at the time of sliding cannot be sufficiently attenuated. If the layer thickness is larger than the above range, the concave portion of the substrate surface 3 is buried and the surface 2 has a sufficient surface. It is not preferable because roughness cannot be provided.
[0014]
The coating layer 4 can be formed from a resin material or a rubber material. Examples of the resin material include a polyimide resin and a phenolic resin, and examples of the rubber material include nitrile rubber, acrylic rubber, and fluorine rubber. The coating layer 4 can be formed, for example, by spray-coating the material and then firing. The coating layer 4 may contain a solid lubricant if desired.
[0015]
The surface 2 is formed by forming a coating layer 4 on a substrate surface 3 and has a surface roughness of 1 to 15 μm as a ten-point average roughness Rz. By giving such a surface roughness to the surface 2, the local surface pressure of the surface 2 is increased, and the projections of the surface 2 are caught by each other, so that a sufficient friction coefficient can be secured. Even when the lubricating oil is present on the surface 2, the lubricating oil flows into the concave portion of the surface 2 (cuts off the oil), and can prevent the lubricating oil from adversely affecting the coefficient of friction.
[0016]
On the surface 2 immediately after the formation of the coating layer 4, all the substrate surfaces 3 are covered with the coating layer 4 (see FIG. 1A). However, after the sliding member 1 slides and is initially worn, both the base material surface 3 and the coating layer 4 are worn to some extent in the convex portions of the surface 2, and a portion where the base material surface 3 is exposed occurs. However, since the coating layer 4 remains in the concave portion of the surface 2, noise generated at the surface convex portion is attenuated by the coating layer 4 due to the damper effect of the coating layer 4, and noise reduction during sliding is achieved. .
[0017]
【Example】
Example 1
Spherical and angular hard materials were sprayed on the surface of the pulley of the belt-type continuously variable transmission with an air sprayer to reduce the surface roughness to 15 μmRz. Thereafter, the surface of the pulley was spray-coated with a polyamideimide resin, and baked at 200 ° C. for 30 minutes to form a 10 μm coating layer. The surface roughness of the obtained pulley surface was 10 μmRz.
[0018]
Test example 1
The pulley manufactured in Example 1 was mounted on a belt-type continuously variable transmission, and the following tests were performed on the coefficient of friction and the noise level.
The friction coefficient is calculated from the torque value at which the belt-type continuously variable transmission is operated under the conditions of the input pulley rotation speed of 2000 rpm and the sample oil temperature of 80 ° C., and the input torque is gradually increased to cause slippage between the pulley and the belt. did. The measurement was performed several times while changing the speed ratio of the belt-type continuously variable transmission.
The noise level was evaluated by measuring the noise immediately before slippage occurred between the pulley and the belt (when measuring the friction coefficient).
For comparison, a pulley having a surface roughness of 1 μmRz and having no coating layer (Comparative Example 1) and a pulley having a surface roughness of 15 μmRz and having no coating layer (Comparative Example 2) were similarly evaluated. The experimental results are shown in FIGS. 2 and 3.
[0019]
FIG. 2 is a line graph illustrating the results of the coefficient of friction, in which the ordinate represents the ratio of the coefficient of friction with Comparative Example 1 being 1, and the abscissa represents the gear ratio. FIG. 3 is a bar graph illustrating the result of the noise level. The ratio of the level is shown for the first embodiment, the first comparative example, and the second comparative example, except that the comparative example 1 is set to 1. As is clear from FIGS. 2 and 3, the pulley of the embodiment 1 made of the sliding member of the present invention maintains the noise level at the same level as or better than that of the comparative example 1 having a surface roughness of 1 μmRz. In addition, a higher friction coefficient can be achieved in all speed ratio ranges. Also, the noise level is remarkably improved as compared with that of Comparative Example 2 having the same surface roughness and no covering layer.
[0020]
【The invention's effect】
The sliding member of the present invention has a high friction coefficient by providing a coating layer having a layer thickness of 2 to 10 μm on the surface of a substrate having a surface roughness of 5 to 20 μm Rz and a surface roughness of 1 to 15 μm Rz. It is possible to provide a sliding member having excellent low noise characteristics. In the sliding member of the present invention, when the friction coefficient is the same as that of the conventional product, the noise level is better, and when the noise level is the same, a sliding member having a higher friction coefficient than the conventional product is provided. Can be.
[0021]
The sliding member of the present invention is particularly suitable for pulleys or belts of a belt-type continuously variable transmission. The belt-type continuously variable transmission using the sliding member of the present invention can cope with high torque and also has excellent low noise characteristics.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing a cross section near the surface of a sliding member of the present invention (a) immediately after manufacturing and (b) after initial wear.
FIG. 2 is a graph illustrating the results of a friction coefficient of Test Example 1.
FIG. 3 is a graph illustrating a result of a noise level of Test Example 1;
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Sliding member 2 Surface 3 Base material surface 4 Coating layer

Claims (3)

表面粗さが5〜20μmRzである基材表面と、その上に形成された2〜10μmの層厚の被覆層からなり、表面粗さが1〜15μmRzである表面を有することを特徴とする摺動部材。A sliding surface comprising a substrate surface having a surface roughness of 5 to 20 μm Rz and a coating layer formed thereon having a layer thickness of 2 to 10 μm and having a surface roughness of 1 to 15 μm Rz. Moving member. ベルト式無段階変速機用のプーリーまたはベルトであることを特徴とする、請求項2記載の摺動部材。The sliding member according to claim 2, which is a pulley or a belt for a belt-type continuously variable transmission. プーリーおよび/またはベルトに請求項1記載の摺動部材を用いることを特徴とするベルト式無段階変速機。A belt-type continuously variable transmission using the sliding member according to claim 1 for a pulley and / or a belt.
JP2002297330A 2002-10-10 2002-10-10 Sliding member Pending JP2004132457A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002297330A JP2004132457A (en) 2002-10-10 2002-10-10 Sliding member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002297330A JP2004132457A (en) 2002-10-10 2002-10-10 Sliding member

Publications (1)

Publication Number Publication Date
JP2004132457A true JP2004132457A (en) 2004-04-30

Family

ID=32287058

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002297330A Pending JP2004132457A (en) 2002-10-10 2002-10-10 Sliding member

Country Status (1)

Country Link
JP (1) JP2004132457A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006069706A (en) * 2004-08-31 2006-03-16 Hitachi Ltd Elevator
EP1847503A1 (en) * 2006-04-20 2007-10-24 Hitachi, Ltd. Elevator and elevator sheave
JP2009299883A (en) * 2008-05-13 2009-12-24 Unimatec Co Ltd Toothed belt and method of manufacturing toothed belt
NL1039278C2 (en) * 2011-12-30 2013-07-03 Bosch Gmbh Robert BELT-AND-PULLEY CONTINUOUSLY VARIABLE TRANSMISSION.
WO2023008331A1 (en) * 2021-07-26 2023-02-02 Nok株式会社 Torsional damper and coating used to obtain same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006069706A (en) * 2004-08-31 2006-03-16 Hitachi Ltd Elevator
JP4523364B2 (en) * 2004-08-31 2010-08-11 株式会社日立製作所 elevator
EP1847503A1 (en) * 2006-04-20 2007-10-24 Hitachi, Ltd. Elevator and elevator sheave
JP2009299883A (en) * 2008-05-13 2009-12-24 Unimatec Co Ltd Toothed belt and method of manufacturing toothed belt
NL1039278C2 (en) * 2011-12-30 2013-07-03 Bosch Gmbh Robert BELT-AND-PULLEY CONTINUOUSLY VARIABLE TRANSMISSION.
WO2013098400A1 (en) * 2011-12-30 2013-07-04 Robert Bosch Gmbh Belt-and-pulley continuously variable transmission
WO2023008331A1 (en) * 2021-07-26 2023-02-02 Nok株式会社 Torsional damper and coating used to obtain same

Similar Documents

Publication Publication Date Title
WO2013047800A1 (en) Sliding member and sliding material composition
JP2000104801A (en) Bearing structure
JP2000130527A (en) Pulley for v-belt type continuously variable transmission and continuously variable transmission
EP1184591A1 (en) Endless metal belt
JP2017501349A (en) Bearing element and manufacturing method thereof
JP4732701B2 (en) Pulley and wet belt type continuously variable transmission
JP4448154B2 (en) Car engine chain
JPH05157146A (en) Belt type continuously variable transmission for vehicle
JP2002188702A (en) Rolling element for continuously variable transmission and its manufacturing method
KR20100092026A (en) Sliding member for thrust bearing
JP2007205564A (en) Sliding member and clutch
JP2004132457A (en) Sliding member
JP2010249313A (en) Belt type transmission
EP1707831B1 (en) Thrust needle roller bearing, support structure receiving thrust load of compressor for car air-conditioner, support structure receiving thrust load of automatic transmission, support structure for nonstep variable speed gear, and support structure receiving thrust load of manual transmission
JP2000257697A (en) High surface pressure resisting gear and manufacture therefor
Doan et al. Improvement of wear resistance for C45 steel using plasma nitriding, nitrocarburizing and nitriding/manganese phosphating duplex treatment
JP2009068537A (en) Clutch release bearing device
CN112824693A (en) Thrust roller bearing
US20210199158A1 (en) Sliding spline shaft device
JP2002243011A (en) Rolling body for traction drive
JP2004190829A (en) Chain for power transmission and power transmission equipment
JP2006250158A (en) Toroidal continuously variable transmission
JPH08233070A (en) Roller for cam follower
JP2008038973A (en) Wear resistant v pulley
JP2000199546A (en) Metal belt for continuously variable transmission and manufacture thereof