JP2004130768A - Method for improving structural strength of acicular crystal (whisker) - Google Patents

Method for improving structural strength of acicular crystal (whisker) Download PDF

Info

Publication number
JP2004130768A
JP2004130768A JP2002334390A JP2002334390A JP2004130768A JP 2004130768 A JP2004130768 A JP 2004130768A JP 2002334390 A JP2002334390 A JP 2002334390A JP 2002334390 A JP2002334390 A JP 2002334390A JP 2004130768 A JP2004130768 A JP 2004130768A
Authority
JP
Japan
Prior art keywords
whisker
resin
structural strength
improving
needle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002334390A
Other languages
Japanese (ja)
Inventor
Hiroshi Tsugita
次田 浩
Masafumi Okuno
奥野 雅史
Akira Watabe
渡部 明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Optoquest Co Ltd
Original Assignee
Optoquest Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Optoquest Co Ltd filed Critical Optoquest Co Ltd
Priority to JP2002334390A priority Critical patent/JP2004130768A/en
Publication of JP2004130768A publication Critical patent/JP2004130768A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for maintaining strength enough to keep a three dimensional positioning of a crystal material having an acicular form without damaging its function by reinforcing adhered parts by any means. <P>SOLUTION: For the purpose that an uncured resin has to be well impregnated into spaces among aggregated whisker, the resin is preferably low viscous and well compatible with ZnO, which is a material of the whisker, and further the resin is necessary to be a non-solvent type in order to suppress volume shrinkage upon curing. Further, the volume shrinkage upon curing can be prevented by selecting/designing a resin generating no releasing group upon curing (e.g. an epoxy resin). Still further, a resin having a high hydrophilicity such as one having a large amount of an OH group is selected for impregnation because the surface of ZnO is generally hydrophilic due to influence by moisture in air. A linear expansion coefficient of the resin used is adjusted to one similar to that of the whisker by mixing the resin with particulates having a low thermal expansion coefficient. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は針状の形態(以下ウィスカー)を有する結晶材料を、その形態ゆえに発現する固有の機能を電子デバイスあるいは光デバイスなど情報処理装置に応用するための機能性デバイスとして利用する際に、その針状形態が長期間に渡り安定して維持できるようにするための、デバイス製造上の基盤技術に関するものである。
【0002】
【従来の技術】
【特許文献1】特願平10−231141
【特許文献2】特願平10−254691
【非特許文献1】佐藤実,田中教雄,大塩茂夫,斎藤秀俊(長岡技科大)、日本セラミックス協会秋季シンポジウム講演予稿集VOL.11th PAGE.360 1998
【0003】
ZnO(酸化亜鉛)は簡便な製造方法で容易にウィスカーを形成する材料として知られ(特許文献1)、(特許文献2)、(非特許文献1)、一般的にウィスカーサイズは直径が約1〜5μm、アスペクト比(長さ/直径)が5〜20μm程度である。
【0004】
ウィスカーとは結晶化の一形態であり、その特徴として、転移・欠陥の数が非常に少なくなっていることがあげられ、光学的特性も完全な結晶に近いものが得られ、さらに、ウィスカー結晶の強度も、その結晶状態における理論値近くに達することが知られている。
【0005】
しかし、ウィスカー結晶単体としての強度は強くても、ウィスカーが垂直に林立した集合体として扱う場合には、ウィスカーとウィスカーを成長させるために用いた基板との接触部分の強度にウィスカーの集合体としての強度が支配されることになる。
【0006】
ウィスカーと基板との接触部分、即ち根元部分は、基本的に点接触であるために立体構造としての強度は期待できず、例えば平面上に林立させたウィスカー基板を機能性デバイスとして利用する場合には何らかの手段で根元部分を補強することが必要である。
【0007】
前記根元部分の接触強度を補強する一つの方法として、樹脂を流し込む手法が考えられ、一般的にはその樹脂の粘度を出来るだけ下げておくことが必要であると予想される。
【0008】
例えば、アルコール等で希釈して粘度を下げた樹脂溶液をウィスカーの集合体に包埋させることは可能であった。ところが、溶剤蒸発時に、樹脂溶液の粘度が上昇しながら、体積が減少することでウィスカーが横方向になぎ倒されてしまい、ウィスカーの直立を維持できなかった。
【0009】
したがって、このような手法では、ウィスカーが流し込んだ樹脂に引きずられてしまい、ウィスカーの直立状態を保持するという本来の目的が達成できなかった。
【0010】
そこで、「溶剤系では、溶剤蒸発時の体積収縮を回避できない。」という課題を克服するために、溶剤を使用しないで、流し込む樹脂の粘度のパラメータよりも、その樹脂とウィスカーとの接触角(界面張力)のパラメータを優先させた新しい包埋手法を考案した。
【0011】
【発明が解決しようとする課題】
例えばZnO(酸化亜鉛)は大気蒸散CVDなどの簡便な方法で容易に平面上に広がるウィスカー形態を形成する材料であり、ウィスカーサイズはおおよそ直径が1〜5ミクロン、アスペクト比(長さ/直径)が5〜20程度である。
【0012】
しかし、ウィスカーと基板との接触部分は、基本的に点接触であるために立体構造としての強度は期待できず、ウィスカー基板を電子デバイス、あるいは、光情報処理デバイスとして利用する場合には、その針状形態が長期間に渡り安定して維持できるように、何らかの手段で安定的に根元部分を補強することが望まれていた。
【0013】
課題を解決するための条件として、(1)密集したウィスカーの間隙に未硬化樹脂が十分に浸透していくこと。および、(2)樹脂が硬化する際にその体積収縮が非常に小さいこと。さらに、(3)硬化した樹脂の線膨張係数がウィスカー構成材料の線膨張係数に近いことがあげられる。
【0014】
【課題を解決するための手段】
(1)密集したウィスカーの間隙に未硬化の樹脂が十分浸透するためには、ウィスカーの構成材料である、たとえばZnOと馴染みがよく、さらに樹脂の粘度が低いことが望ましい。通常のZnOの表面は大気中の水分の影響もあり親水性のため、浸透させる樹脂もOH基を多く持った親水特性の高いものを設計することで解決できる。
【0015】
(2)樹脂が硬化する際の体積収縮を抑制するためには、無溶剤タイプの樹脂であることが、まず基本である。さらに、樹脂が硬化する際に脱離基を放出しない樹脂(例えばエポキシ系樹脂)を選択・設計することで、硬化時の体積収縮を抑制することができる。
【0016】
(3)樹脂の線膨張係数をウィスカーのそれに近づけるためには、樹脂中に熱膨張係数の小さい微粒子を混入することで達成できる。本件の場合はウィスカー間の空隙が非常に狭いので、サブミクロンオーダーの粒子径を持つ熱膨張係数の小さい微粒子を混ぜることで、樹脂の線膨張係数を抑制しつつウィスカー間の空隙に樹脂を充填し、ウィスカー根元を強固に固定することが可能となる。
【0017】
この微粒子には、具体的には、シリカフィラー等があげられる
【0018】
【発明の実施の形態】
以下、図面を参照して本発明の実施の形態について説明する。なお、説明に用いる各図は本発明を理解できる程度に各構成成分の寸法、形状、配置関係などを概略的に示してある。
【0019】
そして本発明の説明の都合上、部分的に拡大率を変えて図示する場合もあり、本発明の説明に用いる図は、必ずしも実施の形態などの実物や記述と相似形でない場合もある。
【0020】
また、各図において、同様な構成成分については同一の番号を付けて示し、重複する説明を省略することもある。
【0021】
【実施例1】
図1に包埋させる樹脂の量を、ウィスカーの平均的な長さに近いところまで充填した例を示す。
【0022】
このような包埋状態を作りだすと、指でふれるなどの扱い方をしてもウィスカー先端は倒れにくい。
【0023】
このように、ウィスカー先端だけを残すような包埋処理は、ミクロンサイズのヤスリとしての応用も期待できる。
【0024】
【実施例2】
図2に包埋させる樹脂の量を、ウィスカーの平均的な長さの半分程度まで充填した例を示す。この場合には、未発達のウィスカーが樹脂の上に出る。
【0025】
【実施例3】
別の基板に、あらかじめ未硬化の樹脂を所定厚みに塗布しておき、ウィスカー先端をその樹脂に浸入させてから、樹脂を硬化することでウィスカー先端側を固定することができ、その後、ウィスカーを成長させた基板を取り去ることで、長さの揃ったウィスカーのみを選択的に固定した例である。
【0026】
【実施例4】
まず、実施例2に示すようにウィスカーの中程まで樹脂を充填しウィスカーを十分固定する。その後、第2の樹脂を流し込み、第1の実施の形態に示す位置まで包埋することで、2層の樹脂により包埋されたウィスカー基板を得ることができる。
【0027】
本実施の形態には、樹脂が2種2層の場合についてのみ例示したが、2種2層に限定するものではなく、1種以上の樹脂で1層以上の積層構造の全てを包含する。
【0028】
また、第3の実施の形態の後に適用することもできる。
【0029】
【実施例5】
実施例4において最上層の樹脂を流し込む際に、ウィスカーの先端より高くなるよう過剰に流し込み、樹脂に対する接着性の低い板を密着させ過剰な樹脂を基板の横方向に押し出してから、第2の樹脂を硬化させることで、ウィスカー先端平面と均一な樹脂表面を形成できることを示した例である。
【0030】
この平面度の良い表面には、第3の薄膜を形成し、はく離を良くするなどの機能を実現することも可能である。
【0031】
本実施の形態には、樹脂が2種類で2層構造の場合についてのみ例示したが、2種類2層に限定するものではなく、1種類以上の樹脂で2層以上の積層構造の全てを包含する。
【0032】
また、実施例3の後に適用することもできる。
【0033】
以上、本発明の針状結晶(ウィスカー)の構造強度改善方法に関する実施の形態について、その製造方法も含めて説明したが、本発明はこれらの説明に狭く限定されるものではなく、その基本となる技術思想に基づいて、材料の種々の変更、製造方法の変更を可能とするものであることは、上記説明から明らかなことである。
【0034】
【発明の効果】
以上、本発明の針状結晶(ウィスカー)の構造強度改善方法について説明したが、本発明は、たとえば、針状に成長する半導体結晶ZnOの先端のナノサイズ効果による電界の集中現象を、電気デバイスや、光応用デバイスに適用する際に、実用的なデバイスとして必要となる構造的強度を確保するための製造上の技術を提供するものである。
【図面の簡単な説明】
【図1】ウィスカーの平均的長さの近くまで包埋した例
【図2】ウィスカーの平均的長さの半分程度に包埋した例
【図3】ウィスカーの先端を包埋した例
【図4】ウィスカーの半分程度まで包埋し、さらに第2の樹脂を充填した例
【図5】ウィスカーの先端が平坦になるように包埋した例
【符号の説明】
1 ウィスカー(針状結晶)
2 樹脂 A
3 ウィスカー成長基板
4 樹脂 B
5 別基板
6 はく離板
7 未発達ウィスカー
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method of using a crystalline material having a needle-like form (hereinafter, whisker) as a functional device for applying an inherent function developed due to the form to an information processing device such as an electronic device or an optical device. The present invention relates to a basic technology for manufacturing a device so that a needle-like configuration can be stably maintained for a long period of time.
[0002]
[Prior art]
[Patent Document 1] Japanese Patent Application No. 10-231141
[Patent Document 2] Japanese Patent Application No. 10-254691
[Non-Patent Document 1] Minoru Sato, Norio Tanaka, Shigeo Oshio, Hidetoshi Saito (Nagaoka Univ. Of Tech.), Japan Ceramic Society Autumn Symposium Proceedings VOL. 11th PAGE. 360 1998
[0003]
ZnO (zinc oxide) is known as a material that easily forms whiskers by a simple manufacturing method (Patent Literature 1), (Patent Literature 2), and (Non-Patent Literature 1). 55 μm, and the aspect ratio (length / diameter) is about 5-20 μm.
[0004]
Whiskers are a form of crystallization, characterized by a very small number of dislocations / defects, optical properties close to perfect crystals, and whisker crystals. Is also known to reach near the theoretical value in its crystalline state.
[0005]
However, even though the strength of the whisker crystal alone is strong, when the whisker is treated as an aggregate that stands vertically, the strength of the contact portion between the whisker and the substrate used to grow the whisker is Will be governed.
[0006]
The contact portion between the whisker and the substrate, that is, the root portion, is basically a point contact and therefore cannot be expected to have a strength as a three-dimensional structure.For example, when a whisker substrate formed on a plane is used as a functional device It is necessary to reinforce the root part by some means.
[0007]
As a method of reinforcing the contact strength at the root portion, a method of pouring a resin is considered, and it is generally expected that it is necessary to reduce the viscosity of the resin as much as possible.
[0008]
For example, it was possible to embed a resin solution whose viscosity was reduced by dilution with alcohol or the like in an aggregate of whiskers. However, at the time of solvent evaporation, the volume of the resin solution decreases while the viscosity of the resin solution increases, so that the whiskers are knocked down in the horizontal direction, and the whiskers cannot be kept upright.
[0009]
Therefore, in such a method, the whisker is dragged by the poured resin, and the original purpose of maintaining the whisker in an upright state cannot be achieved.
[0010]
Therefore, in order to overcome the problem that "in a solvent system, volume shrinkage during evaporation of the solvent cannot be avoided." In order to overcome the problem, without using a solvent, the contact angle between the resin and the whisker (rather than the viscosity parameter of the resin to be poured) is used. A new embedding method that gives priority to the parameter of interfacial tension) was devised.
[0011]
[Problems to be solved by the invention]
For example, ZnO (zinc oxide) is a material that forms a whisker shape that spreads easily on a plane by a simple method such as atmospheric evaporation CVD, and the whisker size is approximately 1 to 5 microns in diameter, and the aspect ratio (length / diameter). Is about 5 to 20.
[0012]
However, since the contact portion between the whisker and the substrate is basically a point contact, the strength as a three-dimensional structure cannot be expected, and when the whisker substrate is used as an electronic device or an optical information processing device, the whisker substrate cannot be used. It has been desired to stably reinforce the root portion by some means so that the needle shape can be stably maintained over a long period of time.
[0013]
Conditions for solving the problems are as follows: (1) Uncured resin sufficiently penetrates into the gaps of dense whiskers. And (2) the volume shrinkage of the resin when cured is very small. Further, (3) the linear expansion coefficient of the cured resin is close to the linear expansion coefficient of the whisker constituent material.
[0014]
[Means for Solving the Problems]
(1) In order for the uncured resin to sufficiently penetrate into the gaps between the dense whiskers, it is desirable that the whisker is well compatible with the constituent material, for example, ZnO, and that the viscosity of the resin is low. Since the surface of ordinary ZnO is hydrophilic due to the influence of moisture in the atmosphere, it can be solved by designing a resin to be penetrated with a material having many OH groups and a high hydrophilic property.
[0015]
(2) In order to suppress volumetric shrinkage when the resin is cured, it is first essential that the resin is a solventless type resin. Furthermore, by selecting and designing a resin (for example, an epoxy-based resin) that does not release a leaving group when the resin is cured, it is possible to suppress volume shrinkage during curing.
[0016]
(3) The linear expansion coefficient of the resin can be made closer to that of the whisker by mixing fine particles having a small thermal expansion coefficient into the resin. In this case, the gap between the whiskers is very narrow, so the resin is filled into the gap between the whiskers while suppressing the coefficient of linear expansion of the resin by mixing fine particles with a small thermal expansion coefficient having a particle size on the order of submicrons. Then, the whisker base can be firmly fixed.
[0017]
Specific examples of the fine particles include silica filler and the like.
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings. Each drawing used in the description schematically shows dimensions, shapes, arrangement relations, and the like of each component so that the present invention can be understood.
[0019]
For convenience of description of the present invention, the magnification may be partially changed in the drawings, and the drawings used in the description of the present invention may not necessarily be similar to the actual product or the description of the embodiment.
[0020]
Also, in each of the drawings, the same components are denoted by the same reference numerals, and redundant description may be omitted.
[0021]
Embodiment 1
FIG. 1 shows an example in which the amount of the resin to be embedded is filled to a position close to the average length of the whiskers.
[0022]
When such an embedding state is created, the tip of the whisker is unlikely to fall even when handled by touching with a finger or the like.
[0023]
In this manner, the embedding process that leaves only the whisker tip can be expected to be applied as a micron-sized file.
[0024]
Embodiment 2
FIG. 2 shows an example in which the amount of the resin to be embedded is filled to about half the average length of the whiskers. In this case, undeveloped whiskers emerge on the resin.
[0025]
Embodiment 3
On another substrate, uncured resin is applied to a predetermined thickness in advance, and the tip of the whisker can be fixed by infiltrating the tip of the whisker into the resin, and then curing the resin. In this example, only the whiskers having a uniform length are selectively fixed by removing the grown substrate.
[0026]
Embodiment 4
First, as shown in Example 2, the resin is filled to the middle of the whisker and the whisker is sufficiently fixed. After that, the second resin is poured and embedded to the position shown in the first embodiment, whereby a whisker substrate embedded with two layers of resin can be obtained.
[0027]
In the present embodiment, only the case where the resin has two kinds and two layers has been exemplified, but the present invention is not limited to the two kinds and two layers, but includes all the laminated structures of one or more kinds of one or more kinds of resins.
[0028]
Further, it can be applied after the third embodiment.
[0029]
Embodiment 5
In the fourth embodiment, when the uppermost layer of the resin is poured, the resin is excessively poured so as to be higher than the tip of the whisker, a plate having low adhesiveness to the resin is brought into close contact, and the excess resin is extruded in the lateral direction of the substrate. This is an example showing that by curing the resin, a whisker tip plane and a uniform resin surface can be formed.
[0030]
It is also possible to form a third thin film on the surface with good flatness to realize functions such as good peeling.
[0031]
In the present embodiment, only two types of resin and a two-layer structure are exemplified. However, the present invention is not limited to two types and two layers, but includes all of two or more layers of one or more types of resins. I do.
[0032]
Further, it can be applied after the third embodiment.
[0033]
As described above, the embodiments of the method for improving the structural strength of needle-like crystals (whiskers) of the present invention have been described, including the manufacturing method. However, the present invention is not limited to these descriptions narrowly, and the basics are not limited thereto. It is clear from the above description that various changes in materials and changes in manufacturing methods can be made based on the technical idea.
[0034]
【The invention's effect】
The method for improving the structural strength of needle-like crystals (whiskers) according to the present invention has been described above. The present invention, for example, describes a phenomenon in which an electric field is concentrated by the nano-size effect at the tip of a semiconductor crystal ZnO that grows in a needle shape. Another object of the present invention is to provide a manufacturing technique for securing structural strength required as a practical device when applied to an optical device.
[Brief description of the drawings]
FIG. 1 shows an example in which the whisker is buried to near the average length. FIG. 2 shows an example in which the whisker is buried to about half the average length. FIG. 3 shows an example in which the tip of the whisker is buried. An example in which the whisker is embedded to about half of the whisker and further filled with the second resin. [FIG. 5] An example in which the whisker is embedded so that the tip is flat.
1 Whisker (needle-shaped crystal)
2 Resin A
3 Whisker growth substrate 4 Resin B
5 Separate substrate 6 Peeling plate 7 Undeveloped whisker

Claims (8)

本発明は、固体化するときの体積減少率が非常に小さな樹脂を用いてウィスカーの根元を包埋することにより固定する方法であり、前記ウィスカーの直立状態を保持することにより、前記ウィスカーが有する少なくとも先端に電界が集中するという特性を損なわずに、その機能をデバイスとして利用することが可能となることを特徴とする針状結晶の構造強度改善方法。The present invention is a method of fixing by embedding the base of a whisker using a resin having a very small volume reduction rate when solidifying, and maintaining the whisker in an upright state, so that the whisker has A method for improving the structural strength of a needle-like crystal, wherein the function can be used as a device without impairing the characteristic that an electric field is concentrated at least at the tip. 請求項1に記載の針状結晶の構造強度改善方法において、前記ウィスカー構成材料と含浸性の良い樹脂とをあわせて用い、未硬化樹脂と前記ウィスカー構成材料との界面張力を利用して、前記ウィスカー構成材料におけるウィスカー間隙に未硬化樹脂を吸収させ、包埋させることを特徴とする針状結晶の構造強度改善方法。The method for improving the structural strength of an acicular crystal according to claim 1, wherein the whisker constituent material and a resin having good impregnating properties are used together, and the uncured resin and the whisker constituent material are used to make use of the interfacial tension. A method for improving the structural strength of a needle-shaped crystal, comprising absorbing and embedding an uncured resin in a whisker gap in a whisker constituent material. 請求項2に記載の前記ウィスカーのそれぞれの隙間に、機能性フィラーをまき散らし、そこへ前記機能性フィラーの表面および前記ウィスカーの表面の両方に濡れ性のよい液状樹脂を流し込み固めることにより、よりいっそう、構造強度を強化することを特徴とする針状結晶の構造強度改善方法。In each gap of the whisker according to claim 2, a functional filler is sprinkled, and a liquid resin having good wettability is poured into both the surface of the functional filler and the surface of the whisker to solidify, thereby further improving the whisker. A method for improving the structural strength of needle-like crystals, characterized by enhancing the structural strength. 請求項3において、流し込む樹脂にあらかじめ機能性フィラーを混入し、分散さておき、その樹脂を流し込む方法を特徴とする針状結晶の構造強度改善方法。4. The method for improving the structural strength of an acicular crystal according to claim 3, wherein a functional filler is mixed in the resin to be poured in advance, dispersed therein, and then the resin is poured. 請求項3および請求項4に用いる機能性フィラーを中空のものを用いることを特徴とする針状結晶の構造強度改善方法。A method for improving the structural strength of a needle-like crystal, wherein a hollow filler is used as the functional filler used in claims 3 and 4. 請求項3および請求項4に記載のフィラーの機能が樹脂の線膨張係数を補償することにある請求項2に記載の方法を特徴とする針状結晶の構造強度改善方法。A method for improving the structural strength of needle-like crystals, characterized in that the function of the filler according to claims 3 and 4 is to compensate for the linear expansion coefficient of the resin. 請求項3および請求項4および請求項5に用いる機能性フィラーとして、マイクロビーンズを用いることで、構造強度を強化することを特徴とする針状結晶の構造強度改善方法。A method for improving the structural strength of a needle-like crystal, wherein the structural strength is strengthened by using micro-beans as the functional filler used in claim 3, claim 4, or claim 5. 前記ウィスカー基板に互いに異なる液状樹脂を複数回繰り返して流し込み、層状の包埋形態となることを特徴とする、請求項1から請求項5に記載の方法。The method according to any one of claims 1 to 5, wherein a liquid resin different from each other is repeatedly poured into the whisker substrate a plurality of times to form a layered embedding form.
JP2002334390A 2002-10-11 2002-10-11 Method for improving structural strength of acicular crystal (whisker) Withdrawn JP2004130768A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002334390A JP2004130768A (en) 2002-10-11 2002-10-11 Method for improving structural strength of acicular crystal (whisker)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002334390A JP2004130768A (en) 2002-10-11 2002-10-11 Method for improving structural strength of acicular crystal (whisker)

Publications (1)

Publication Number Publication Date
JP2004130768A true JP2004130768A (en) 2004-04-30

Family

ID=32290298

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002334390A Withdrawn JP2004130768A (en) 2002-10-11 2002-10-11 Method for improving structural strength of acicular crystal (whisker)

Country Status (1)

Country Link
JP (1) JP2004130768A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011509510A (en) * 2008-01-11 2011-03-24 ライトラブ・スウェーデン・エービー Field emission display

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011509510A (en) * 2008-01-11 2011-03-24 ライトラブ・スウェーデン・エービー Field emission display

Similar Documents

Publication Publication Date Title
US7678614B2 (en) Thermal interface material and method for making the same
JP5255025B2 (en) Heat dissipation structure and heat dissipation system
DE102006001792B4 (en) Semiconductor module with semiconductor chip stack and method for producing the same
US20160354896A1 (en) 3d-printed polishing pad for chemical-mechanical planarization (cmp)
EP1139703A1 (en) Substrate of circuit board
CN112218823A (en) Laminated graphene-based thermally conductive film and method for manufacturing the same
US20080019097A1 (en) Thermal transport structure
US20040191497A1 (en) Wiring member and method of manufacturing the same
Biswas et al. Thermal conductivity of bismuth telluride nanowire array-epoxy composite
EP0332561A2 (en) Low Dielectric composite substrate
TW200900443A (en) Process for preparing conductive films and articles prepared using the process
EP2248166A1 (en) Heat sink and method for producing a heat sink
TW201306273A (en) Schottky diode and method for making the same
CN106883828B (en) Preparation method of composite interface heat dissipation material based on graphical carbon nanotube array
DE102019117534B4 (en) Inorganic encapsulant for an electronic component with adhesion promoter
JP4974609B2 (en) Film-like electronic equipment
JP2004130768A (en) Method for improving structural strength of acicular crystal (whisker)
DE102016101887B4 (en) A method of manufacturing a package with attachment of a die attach medium to an already encapsulated electronic die
JP2010260990A (en) Prepreg, method for producing the same and printed wiring board using the same
JP3260762B2 (en) Preform for producing composite material and method for producing the same
CN109155359B (en) Method for manufacturing piezoelectric element
JP2005281467A (en) Resin and member having high thermal conductivity, and electrical equipment and semiconductor device produced by using the same
JP7328941B2 (en) Graphite laminates, graphite plates, and methods of making graphite laminates
JP6026927B2 (en) Manufacturing method of semiconductor substrate
KR20220041243A (en) Bonding material, manufacturing method of bonding material, and bonding body

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050309

A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060110