JP2004130726A - Core for molding fiber-reinforced plastics - Google Patents

Core for molding fiber-reinforced plastics Download PDF

Info

Publication number
JP2004130726A
JP2004130726A JP2002299169A JP2002299169A JP2004130726A JP 2004130726 A JP2004130726 A JP 2004130726A JP 2002299169 A JP2002299169 A JP 2002299169A JP 2002299169 A JP2002299169 A JP 2002299169A JP 2004130726 A JP2004130726 A JP 2004130726A
Authority
JP
Japan
Prior art keywords
core
molding
joining member
mold
frp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002299169A
Other languages
Japanese (ja)
Inventor
Hiroyuki Koyama
小山 広幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2002299169A priority Critical patent/JP2004130726A/en
Publication of JP2004130726A publication Critical patent/JP2004130726A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Moulding By Coating Moulds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a core for molding a fiber-reinforced plastics which ensures the molding of a hollow element with a precise inner face shape, made of a fiber-reinforced plastics (FRP) and enables a molded product to be easily unloaded. <P>SOLUTION: A plurality of mold members are joined to each other through water-soluble joining members and each of the joining members has an internal water supply passage. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、繊維強化プラスチックを成形して構造体を作製する際に用いる中子に関する。
【0002】
【従来の技術】
繊維強化プラスチック(FRP:Fiber−Reinforced Plastic)は種々の構造体に用いられている。
【0003】
本出願人は、特願2001−293906号において、特に航空機の胴体や翼、トラックの荷台やバスのボディーのような大型の構造体の成形に適した方法を提案した。
【0004】
上記提案の方法は、中子に熱可塑性樹脂を用いることによって伸縮自在とし、成形圧の付与、易離脱性を与えている。
【0005】
しかし、特に製品の内面形状に精度を求める場合には、中子に用いた樹脂の収縮などのため、形状精度を確保することが困難である。
【0006】
一方、硬質発泡体のような快削材を機械加工した中子は、形状精度は確保できるが、易離脱性を付与することができない。
【0007】
更に、ワックス、岩塩など、熱や水などの溶媒で崩壊してしまう材料を用いて中子を作製することも考えられるが、大型構造体を成形する場合、中子を崩壊させるのに多大な時間と労力を要するため実用的でない。
【0008】
【発明が解決しようとする課題】
そこで本発明は、繊維強化プラスチック(FRP)製の中空体を、内面形状を精度良く成形でき、且つ成形した製品の取り出しを容易に行なうことができる成形用中子を提供することを目的とする。
【0009】
【課題を解決するための手段】
上記の目的を達成するために、本発明による繊維強化プラスチック成形用中子は、複数の型部材同士が水溶性の接合部材を介して相互に接合されて成り、個々の該接合部材の内部に給水路を備えたことを特徴とする。
【0010】
これにより、内面形状を精度良く成形できると同時に製品の易離脱性が達成される。
【0011】
接合部材が変形可能であり、中子が全体として気密構造を有しかつ一部に圧縮空気注入口を備えた構造とすることができる。これにより、内面形状に加えて外面形状も精度良く成形できると同時に製品の易離脱性が達成される。
【0012】
上記変形可能な接合部材が、繊維強化プラスチック成形体の角部を成形する型部材の両側に位置する構造とすることができる。これにより、成形体角部の肉厚均一性を高めることができる。
【0013】
【発明の実施の形態】
図1に示す繊維強化プラスチック製中空構造体1を成形するための本発明による中子Aを図2に示す。
【0014】
中子Aは、複数に分割された型部材としてのHTU(hard tool unit)2と、接合部材3とが交互に接着されて成る。
【0015】
HTU2は、典型的には硬質ウレタンフォーム、石膏、硬質樹脂のバルク等の快削材から成り、最終的な成形体の形状に精度良く機械加工されている。HTU2の他の形態としては、所定形状の凹型にCFプリプレグを積層・硬化させて作製すれば、軽量かつ高強度のHTUとすることができる。
【0016】
接合部材3は、典型的にはポリビニルアルコール等の水溶性の熱可塑性樹脂を、所定形状の成形型に注入して硬化させて作製する。この接合部材3は、図3に示したように、その長手方向に延在する給水路4を備えており、給水路4には長手方向に渡ってスリット5が開口している。これには、接合部材3を成形する際に、例えば図示のように接合部材3が幅30mmであれば、予め幅1mm以上のスリットを長手方向に沿って開けた径10mmのポリビニルクロライド(PVC)等の軟質樹脂製のチューブ4を、接合部材3の長手方向に渡って埋設する。
【0017】
HTU2と接合部材3とは、3の熱溶着または通常の接着剤により相互に接着される。
【0018】
本発明の中子Aを用いた成形操作は下記の手順で行なう。
【0019】
1)中子Aに、未硬化のFRP素材を巻きつけた後に、加熱して硬化させる。
【0020】
2)FRPが硬化した後、接合部材3に埋設したチューブ(給水路)4内に水を注入して循環させる。これには、例えば70〜80℃程度の温水が適している。
【0021】
3)注入された水は、チューブ4に設けたスリット5を介して接合部材3に浸透する。これにより、ポリビニルアルコール等から成る水溶性の接合部材3が容易に温水に溶融・流出して崩壊する。
【0022】
4)中子Aは、接合部材3の崩壊により、もはやその形状を維持することができなくなり、個々のHTU2が分離した状態になる。
【0023】
5)図4に示したように、分離したHTU2を個々に抜き取れば、所定形状のFRP成形体1が得られる。
【0024】
このように本発明による中子は、型部材2に快削材を用いて成形体の形状精度を確保し、型部材2を接合する接合部材3に水溶性の熱可塑性樹脂を用いて易離脱性を確保することができる。
【0025】
本発明による中子は、基本的にはFRPの成形方式および素材を限定しない。ただし、FRPを構成する樹脂については、熱可塑性樹脂の場合には溶融温度が、また熱硬化性樹脂の場合には硬化温度が、それぞれ接合部材3の溶融温度未満である必要がある。例えば接合部材3にポリビニルアルコール等の水溶性の熱可塑性樹脂を用いた場合には、その溶融温度はほぼ150℃程度であるので、これを超えないことが必要である。
【0026】
本発明の一実施形態によれば、内面形状に加えて外面形状も精度良く成形できる。すなわち、FRP構造体の内面形状だけでなく外面形状の寸法精度も求められる場合には、本発明による中子と共に、製品外形形状を成形するために図5に示すように外型Bを併用する必要がある。
【0027】
そのような場合には、図6に示す本発明の中子AXを用いると外面形状も精度良く成形できる。この中子AXは、変形可能な接合部材3Xを備え、中子全体として気密構造とし、一部に圧縮空気注入口6を設けてある。FRP成形時に注入口6から中子AX内に圧縮空気を送り込めば、FRPの樹脂硬化温度により軟化した接合部材3Xが図7(A)〜(B)に示したように伸びて、中子AXは全体として膨張し、外型BにFRP素材を押圧することで成形圧を付与できる。これにより中子AXと外型Bによって内面および外面を同時に精度良く型成形できる。
【0028】
上記のように外型を併用して中子膨張により加圧成形する実施形態において、中子AXの変形可能な接合部材3Xを、FRP成形製品の角部を成形する型部材2の両側に選択的に配置すると、成形圧の届き難い角部のFRP素材を選択的に伸ばすことができるので、FRP全体として均一な肉厚に成形することができる。
【0029】
以下に、本発明の中子と、それを用いたFRP成形方法の具体例を説明する。
【0030】
【実施例】
〔実施例1〕
図2に示した本発明の中子Aを作製し、これを用いて図1のFRP構造体1の成形を行なう手順の具体例を説明する。
【0031】
1)無機粒子を添加した熱硬化性樹脂のバルク(レジンコンクリート)を機械加工して、HTU2用の凹型を作製する。
【0032】
2)得られた凹型にCFクロス/エポキシ・プリプレグを4層重ね、120℃×2hrの熱処理により加熱硬化させ、製品内面形状を4分割した型部材としてのHTU2を4個(中子1個分)作製する。
【0033】
3)無機粒子を添加した熱硬化性樹脂のバルクを機械加工して、接合部材3用の凹型を作製する。
【0034】
4)予め側面に幅約1mmのスリットを開けたPVC製チューブを、3)で作製した接合部材3用の凹型内に接合部材全長に渡るように配置した後、加熱溶融させたポリビニルアルコールを注型し、冷却硬化させて4個の接合部材3を得る。
【0035】
5)上記で各々作製した4個のHTU2と4個の接合部材3とを、エポキシ系接着剤で交互に接着し、図2の中子Aを得る。
【0036】
6)得られた中子Aの外表面にSi系の離型剤を塗布した後、CF平織り/エポキシ・プリプレグを4層積層し、更にその外周をピールプライ、ブリーザー、ナイロンバッグの順で覆い、ナイロンバッグ内を真空ポンプで減圧させながら、120℃×2hrの熱処理により加熱硬化させて図1のFRP構造体1を成形する。
【0037】
7)接合部材3に埋設されているPVCチューブ4に80℃の温水を注入・循環させることにより、水溶性の接合部材3を溶融・崩壊させる。
【0038】
8)接合部材3の溶融・崩壊により個々に分離されたHTU2を1個づつFRP構造体1から抜き取る。
【0039】
このようにして、内面形状を精度良く成形されたFRP構造体1が得られ、且つ成形した製品FRP構造体1の取り出しを容易に行なうことができる。
【0040】
〔実施例2〕
本実施例では、図6に示した中子AXを用いて、内面形状に加えて外面形状も精度良く型成形する手順の具体例を説明する。
【0041】
1)無機粒子を添加した熱硬化性樹脂のバルク(レジンコンクリート)を機械加工して、HTU2用の凹型を作製する。
【0042】
2)得られた凹型にCFクロス/エポキシ・プリプレグを4層重ね、120℃×2hrの熱処理により加熱硬化させ、製品内面形状を4分割した型部材としてのHTU2を4個(中子1個分)作製する。
【0043】
3)無機粒子を添加した熱硬化性樹脂のバルクを機械加工して、接合部材3X用の凹型を作製する。
【0044】
4)予め側面に幅約1mmのスリットを開けたPVC製チューブを、3)で作製した接合部材3X用の凹型内に接合部材全長に渡るように配置した後、加熱溶融させたポリビニルアルコールを注型し、冷却硬化させて4個の接合部材3Xを得る。
【0045】
5)上記で各々作製した4個のHTU2と4個の接合部材3Xとを、エポキシ系接着剤で交互に接着し、図2の中子Aを得る。
【0046】
6)中子Aの一端面中央に径20mmの丸穴を開け、金属製のエアインレットノズル6を挿入後、接着剤で封止し、図6の中子AXを得る。
【0047】
7)外型Bとして、製品外面形状をキャビティ−内面に機械加工した2分割式の金型を作製する。
【0048】
8)上記6)で作製した中子AXに、シリコン系の離型剤を塗布した後、CF平織り/エポキシ・プリプレグを4層積層する。
【0049】
9)キャビティ−内面にSi系離型剤を塗布した外型Bに、上記プリプレグ積層後の中子AXを挿入し、外型Bを閉じる。
【0050】
10)上記9)の状態でオーブン内に装入し、130℃で加熱してプリプレグの樹脂を硬化させる。
【0051】
11)上記10)の操作の際に、中子AXのエアインレットノズル6から2気圧の圧縮空気を注入して中子AXを膨張させ、これにより中子AX外表面に積層されているプリプレグを外型Bのキャビティ−内面に押圧して加圧成形する。
【0052】
12)硬化完了後、接合部材3Xに埋設されているPVCチューブ4に80℃の温水を注入・循環させることにより、水溶性の接合部材3を溶融・崩壊させる。
【0053】
13)接合部材3Xの溶融・崩壊により個々に分離されたHTU2を1個づつFRP構造体1から抜き取る。
【0054】
このようにして、内面形状および外面形状を共に精度良く成形されたFRP構造体1が得られ、且つ成形した製品FRP構造体1の取り出しを容易に行なうことができる。
【0055】
〔実施例3〕
本実施例では、特に断面形状に角部を持つFRPの成形に本発明を適用する具体例を説明する。
【0056】
一般に、図8に示すように角部Cを備えた断面を有し全体が均等に膨張可能な中子aに内圧を負荷すると、角部Cは形状効果により剛性が大きいため、角部C以外の平坦部が矢印のように優先的に膨張し、断面全体としては図中に破線a’で示したように円形に近づくように変形する。その結果、角部Cでは成形圧が平坦部より小さくなり、成形製品の肉厚が角部Cで厚く平坦部で薄い不均等な肉厚分布になり易い。
【0057】
本実施例においては、製品肉厚を均等化すべく、実施例2の中子AXにおいて、FRP成形製品の角部を成形する型部材の両側に変形可能な接合部材3Xを選択的に配置した中子AYを作製し、角部の成形効果を実験的に確認する。
【0058】
図9(A)に示す断面構造を持つ中子AYを作製した。この中子AYは概略矩形断面を持ち、型部材としてのHTU2が4個の角部Cと4個の平坦部Pとで構成され、個々のHTU2間を変形可能な接合部材3Xで接合した構造である。HTU2の角部Cはそれぞれ両側の変形可能な接合部材3Xで挟まれている。
【0059】
この中子AYに圧縮空気を注入して内圧を負荷すると、角部Cの両側にある変形可能な接合部材3Xが伸びることにより角部Cが容易に外方へ変位する。その結果、中子AYは全体として均等に膨張し、角部Cおよび平坦部Pにより同等の成形圧が作用し、成形製品の肉厚分布が均等化される。
【0060】
この肉厚均等化効果を確認するために下記の実験を行なった。
【0061】
先ず、比較例として、図10(A)および(B)に示す中子aと外型Bを作製した。図10(B)は図10(A)の丸囲み部分の拡大図である。比較例の中子aは600mm×600mmの矩形断面を持ち、各角部Cは半径50mmの円弧形状であり、材質は低密度ポリエチレンから成り、内圧の負荷により膨張可能である。外型Bは、中子aの外周との間に3mmのクリアランスをとったキャビティ−内面の形状・寸法を持ち、材質は金属製である。
【0062】
本発明例の中子AYも比較例の中子aと同一の断面形状・寸法であるが、材質構成は図9(A)を参照して上記に説明したようにして作製した。外型Bは比較例と同じものを用いた。
【0063】
先ず、比較例の中子aを用いて、図10(B)に示したように、中子aと外型Bとの間のクリアランス内に粘土球Mを配置した。粘土球Mは直径3mmであり、クリアランスを画定している中子aの外表面と外型Bのキャビティ−面とに接触して配置されている。
【0064】
図10(B)に示した中子a/外型Bのアセンブリを60℃に保温し、中子a内に圧縮空気を注入して700mmHgの内圧を負荷し、30分間保持した。その後、圧縮空気を排出して、中子aを外型Bから取り出した。
【0065】
粘土球Mを観察した結果、平坦部Pに配置した粘土球Mには加圧による潰れが発生していたが、角部Cに配置した粘土球Mには潰れの発生が認められなかった。この結果から、全体を同一材質で構成した比較例の中子aでは、平坦部Pには成形圧が付与されたが、角部Rには成形圧が付与されなかったことが判った。
【0066】
次に、本発明の中子AYを用いて、同じく図10(B)のようにアセンブリをくみ、比較例と同一の保温・内圧条件で試験をした。試験後の粘土球Mを観察した結果、角部Cおよび平坦部Pにおいて粘土球Mに同程度の潰れが発生していた。この結果から、全体を型部材(HTU)2と変形可能な接合部材3Xとの交互接合構造とし、角部Cの型部材2を両側から挟み込む位置に接合部材3Xを配置した本発明例の中子AYを用いたことにより、角部Cと平坦部Pに均等に成形圧が付与されたことが判った。
【0067】
〔実施例4〕
本実施例では、特にRTM成形(Resin Transfer Molding)およびRIM成形(Reaction Injection Molding)によるFRPの成形に本発明を適用する具体例を説明する。
【0068】
RTM成形、RIM成形においては、樹脂の注入・浸透性の悪さが頻繁に問題となる。すなわち、これらの成形法は、非膨張タイプの中子Rと外型B(図12(A))との間の間隙として形成された型内に強化繊維のプリフォームを装入し、樹脂を注入する。注入された樹脂は、図12(A)のように注入口iから強化樹脂間に浸透しつつ、型内全体に広がって行って充填される。このように、型内への樹脂充填の全過程が流動抵抗の大きい強化樹脂間への浸透により行なわれるため、高い注入圧を要する上に浸透に長時間を要し、注入・浸透性が悪い。
【0069】
これに対して、本発明の中子を適用する際に以下の改良を加えることにより、樹脂の注入・浸透性を格段に高めることができる。
【0070】
図11に、本実施例の中子に用いる接合部材3Zを示す。この接合部材3Zには、外周面すなわちFRP構造体の内面を成形する成形作用面に、図示のような溝7を長手方向に沿って設けてある。溝7はFRP成形時の樹脂注入口に連通している。溝7は、接合部材3Zの成形時に初めから設けるか、あるいは成形した接合部材3Zを機械加工して設ける。
【0071】
このように接合部材3Zに溝7を設けると、注入口iから注入された樹脂は、先ず溝7内に進入する。溝7は、数mm程度の幅/深さで形成されており、数10μm以下の強化樹脂間に比べて遥かに流動抵抗が小さい。そのため、溝7内に進入した樹脂流は、低い注入圧でも溝7に沿って型の最奥部まで迅速に到達し、その後図12(B)のように溝7の全長から強化繊維間に供給され浸透する。
【0072】
すなわち、従来法では、注入口という単一の点を起点として強化繊維間に浸透させて型全面に樹脂を行き渡らせるに対して、本発明法では、溝という線を起点として強化繊維間に浸透させて型全面に樹脂を行き渡らせる。しかも、溝は複数個の接合部材にそれぞれ設けられているので、複数の線が複数の起点として作用する。その結果、単一の点からの樹脂供給により繊維間浸透が進行する従来法に比べて、複数の線からの樹脂供給により繊維間浸透が進行するので、樹脂充填時間が大幅に短縮し、注入・浸透性が大幅に向上する。
【0073】
【発明の効果】
本発明によれば、繊維強化プラスチック(FRP)製の中空体を、内面形状を精度良く成形でき、且つ成形した製品の取り出しを容易に行なうことができる成形用中子が提供される。
【図面の簡単な説明】
【図1】図1は、本発明の中子を用いて成形する製品例としてのFRP中空構造体を示す斜視図である。
【図2】図2は、図1のFRP中空構造体の成形に用いる本発明の実施例1による中子を示す斜視図である。
【図3】図3は、本発明の実施例1による中子の構成要素である接合部材の一部を示す斜視図である。
【図4】図4は、本発明の実施例1による中子を用いて成形したFRP中空構造体から中子の構成要素である型部材(HTU)を取り出す操作を示す斜視図である。
【図5】図5は、FRP中空構造体と、その成形に用いる外型とを示す斜視図である。
【図6】図6は、図5の外型と組み合わせて加圧成形を行なうための本発明の実施例2による変形可能な中子を示す斜視図である。
【図7】図7は、図6の中子を用いて加圧成形を行なう際の(A)中子構成要素の配置と(B)内圧負荷時の各構成要素の変位とを示す断面図である。
【図8】図8は、角部を備えた断面形状を有する中子に内圧を負荷した際の中子各部位の変位を示す断面図である。
【図9】図9は、図8の断面形状を有する中子に本発明を適用した実施例3の中子について、(A)中子構成要素の配置と(B)内圧負荷時の各構成要素の変位とを示す断面図である。
【図10】図10は、本発明の実施例3による成形圧均等化効果を調べる実験用の中子/外型アセンブリを示す(A)断面図および(B)拡大部分断面図である。
【図11】図11は、本発明の実施例4による中子の構成要素である溝付き接合部材を部分的に示す斜視図である。
【図12】図12は、RTM成形あるいはRIM成形の際の樹脂充填の進行状況を(A)従来の中子を用いた場合および(B)本発明の実施例4による中子を用いた場合についてそれぞれ示す斜視透視図である。
【符号の説明】
1…繊維強化プラスチック(FRP)製中空構造体
2…型部材(HTU:hard tool unit)
3、3X…接合部材
4…給水路
5…スリット
6…エアインレットノズル
7…溝
A、AX、AY…本発明の中子
a…従来の中子(膨張可能タイプ)
R…従来の中子(非膨張タイプ)
B…外型
C…角部
P…平坦部
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a core used when fabricating a fiber-reinforced plastic to form a structure.
[0002]
[Prior art]
BACKGROUND ART Fiber-reinforced plastic (FRP) is used for various structures.
[0003]
The present applicant has proposed in Japanese Patent Application No. 2001-293906 a method particularly suitable for forming large structures such as an aircraft fuselage and wings, a truck bed and a bus body.
[0004]
In the above-mentioned proposed method, the core is made of a thermoplastic resin to make it expandable and contractable, thereby giving molding pressure and giving it easy release.
[0005]
However, in particular, when accuracy is required for the inner surface shape of the product, it is difficult to secure the shape accuracy due to shrinkage of the resin used for the core.
[0006]
On the other hand, a core obtained by machining a free-cutting material such as a hard foam can secure the shape accuracy, but cannot provide easy detachability.
[0007]
Further, it is conceivable to manufacture the core using a material that can be disintegrated by heat or water, such as wax or rock salt, but when molding a large-sized structure, it is enormous to disintegrate the core. It is not practical because it requires time and effort.
[0008]
[Problems to be solved by the invention]
Therefore, an object of the present invention is to provide a molding core capable of accurately molding an inner surface shape of a hollow body made of fiber reinforced plastic (FRP) and easily removing a molded product. .
[0009]
[Means for Solving the Problems]
In order to achieve the above object, a fiber-reinforced plastic molding core according to the present invention is configured such that a plurality of mold members are joined to each other via a water-soluble joining member, and the inside of each of the joining members is formed. It is characterized by having a water supply channel.
[0010]
As a result, the inner surface shape can be formed with high precision, and at the same time, the product can be easily detached.
[0011]
The joining member can be deformed, and the core can have a hermetic structure as a whole and a structure having a compressed air injection port in a part. Thus, the shape of the outer surface in addition to the shape of the inner surface can be accurately formed, and at the same time, the product is easily detached.
[0012]
The structure may be such that the deformable joining member is located on both sides of a mold member that forms a corner of the fiber-reinforced plastic molded body. Thereby, the thickness uniformity of the corners of the molded body can be improved.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 2 shows a core A according to the present invention for forming the fiber-reinforced plastic hollow structure 1 shown in FIG.
[0014]
The core A is formed by alternately bonding an HTU (hard tool unit) 2 as a plurality of divided mold members and a joining member 3.
[0015]
The HTU 2 is typically made of a free-cutting material such as a hard urethane foam, a gypsum, or a bulk of a hard resin, and is precisely machined into a final molded body shape. As another form of the HTU 2, if the CF prepreg is laminated and cured in a concave shape having a predetermined shape, a lightweight and high-strength HTU can be obtained.
[0016]
The joining member 3 is typically manufactured by injecting a water-soluble thermoplastic resin such as polyvinyl alcohol into a mold having a predetermined shape and curing the resin. As shown in FIG. 3, the joining member 3 includes a water supply channel 4 extending in the longitudinal direction, and the water supply channel 4 has a slit 5 opened in the longitudinal direction. For example, when forming the joining member 3, if the joining member 3 has a width of 30 mm as shown in the figure, for example, polyvinyl chloride (PVC) having a diameter of 10 mm and a slit having a width of 1 mm or more previously opened in the longitudinal direction. A tube 4 made of a soft resin such as the above is buried in the longitudinal direction of the joining member 3.
[0017]
The HTU 2 and the joining member 3 are bonded to each other by thermal welding of 3 or an ordinary adhesive.
[0018]
The molding operation using the core A of the present invention is performed in the following procedure.
[0019]
1) After the uncured FRP material is wound around the core A, it is cured by heating.
[0020]
2) After the FRP is cured, water is injected into a tube (water supply channel) 4 embedded in the joining member 3 and circulated. For this purpose, for example, warm water of about 70 to 80 ° C. is suitable.
[0021]
3) The injected water permeates the bonding member 3 through the slit 5 provided in the tube 4. Thereby, the water-soluble joining member 3 made of polyvinyl alcohol or the like easily melts and flows out into warm water and collapses.
[0022]
4) Due to the collapse of the joining member 3, the core A can no longer maintain its shape, and the individual HTUs 2 are separated.
[0023]
5) As shown in FIG. 4, if the separated HTUs 2 are individually extracted, an FRP molded body 1 having a predetermined shape is obtained.
[0024]
As described above, the core according to the present invention secures the shape accuracy of the molded body by using the free-cutting material for the mold member 2 and easily detaches by using the water-soluble thermoplastic resin for the joining member 3 for joining the mold member 2. Property can be ensured.
[0025]
The core according to the present invention does not basically limit the molding method and material of the FRP. However, regarding the resin constituting the FRP, the melting temperature in the case of a thermoplastic resin, and the curing temperature in the case of a thermosetting resin, need to be lower than the melting temperature of the joining member 3. For example, when a water-soluble thermoplastic resin such as polyvinyl alcohol is used for the joining member 3, its melting temperature is about 150 ° C., and it is necessary that the melting temperature is not exceeded.
[0026]
According to the embodiment of the present invention, the outer surface shape can be accurately formed in addition to the inner surface shape. That is, when not only the inner shape of the FRP structure but also the dimensional accuracy of the outer shape is required, the outer die B is used together with the core according to the present invention as shown in FIG. 5 to form the outer shape of the product. There is a need.
[0027]
In such a case, if the core AX of the present invention shown in FIG. 6 is used, the outer surface shape can be formed with high accuracy. The core AX includes a deformable joining member 3X, has an airtight structure as a whole core, and is provided with a compressed air injection port 6 in a part. If compressed air is fed into the core AX from the injection port 6 during FRP molding, the bonding member 3X softened by the resin curing temperature of the FRP extends as shown in FIGS. The AX expands as a whole and can apply a molding pressure by pressing the FRP material against the outer mold B. Thereby, the inner surface and the outer surface can be simultaneously and accurately molded by the core AX and the outer die B.
[0028]
In the embodiment in which the outer mold is used together with the outer mold to perform pressure molding by core expansion as described above, the deformable joining member 3X of the core AX is selected on both sides of the mold member 2 for molding the corners of the FRP molded product. If the FRP material is arranged in a suitable manner, the FRP material at the corners where the molding pressure is difficult to reach can be selectively stretched, so that the FRP as a whole can be formed with a uniform thickness.
[0029]
Hereinafter, specific examples of the core of the present invention and the FRP molding method using the core will be described.
[0030]
【Example】
[Example 1]
A specific example of a procedure for manufacturing the core A of the present invention shown in FIG. 2 and forming the FRP structure 1 of FIG. 1 using the core A will be described.
[0031]
1) A bulk (resin concrete) of a thermosetting resin to which inorganic particles are added is machined to produce a concave mold for HTU2.
[0032]
2) Four layers of CF cloth / epoxy prepreg are superimposed on the obtained concave mold, heat-cured by heat treatment at 120 ° C. × 2 hr, and 4 HTU2s as mold members obtained by dividing the inner shape of the product into 4 pieces (one core) ) Make.
[0033]
3) The bulk of the thermosetting resin to which the inorganic particles are added is machined to produce a concave shape for the joining member 3.
[0034]
4) A PVC tube having a slit with a width of about 1 mm in the side surface is previously arranged in the concave shape for the joining member 3 prepared in 3) so as to extend over the entire length of the joining member. It is molded and cooled and hardened to obtain four joining members 3.
[0035]
5) The four HTUs 2 and four joining members 3 produced above are alternately bonded with an epoxy-based adhesive to obtain the core A of FIG.
[0036]
6) After applying a Si-based release agent to the outer surface of the obtained core A, four layers of CF plain weave / epoxy prepreg are laminated, and the outer periphery is further covered in the order of a peel ply, a breather, and a nylon bag. While the inside of the nylon bag is depressurized by a vacuum pump, the nylon bag is heated and cured by heat treatment at 120 ° C. × 2 hr to form the FRP structure 1 of FIG.
[0037]
7) The water-soluble joining member 3 is melted and disintegrated by injecting and circulating hot water of 80 ° C. into the PVC tube 4 embedded in the joining member 3.
[0038]
8) The HTUs 2 separated individually by melting and collapsing of the joining members 3 are extracted one by one from the FRP structure 1.
[0039]
In this manner, the FRP structure 1 whose inner surface shape is accurately formed can be obtained, and the formed product FRP structure 1 can be easily taken out.
[0040]
[Example 2]
In the present embodiment, a specific example of a procedure for accurately molding not only the inner surface shape but also the outer surface shape using the core AX shown in FIG. 6 will be described.
[0041]
1) A bulk (resin concrete) of a thermosetting resin to which inorganic particles are added is machined to produce a concave mold for HTU2.
[0042]
2) Four layers of CF cloth / epoxy prepreg are superimposed on the obtained concave mold, heat-cured by heat treatment at 120 ° C. × 2 hr, and 4 HTU2s as mold members obtained by dividing the inner shape of the product into 4 pieces (one core) ) Make.
[0043]
3) The bulk of the thermosetting resin to which the inorganic particles are added is machined to produce a concave shape for the joining member 3X.
[0044]
4) A PVC tube having a slit of about 1 mm in width on the side in advance is placed over the entire length of the joining member in the concave shape for the joining member 3X prepared in 3), and then polyvinyl alcohol melted by heating is poured. It is molded and cooled and cured to obtain four joining members 3X.
[0045]
5) The four HTUs 2 and the four joining members 3X prepared above are alternately bonded with an epoxy-based adhesive to obtain the core A of FIG.
[0046]
6) A round hole having a diameter of 20 mm is made in the center of one end face of the core A, and a metal air inlet nozzle 6 is inserted and sealed with an adhesive to obtain the core AX of FIG.
[0047]
7) As the outer mold B, a two-part mold in which the outer shape of the product is machined into the cavity-inner surface is manufactured.
[0048]
8) A silicone release agent is applied to the core AX prepared in 6), and then four layers of CF plain weave / epoxy prepreg are laminated.
[0049]
9) The core AX after the prepreg lamination is inserted into the outer mold B having the Si-based release agent applied to the inner surface of the cavity, and the outer mold B is closed.
[0050]
10) Into the oven in the state of the above 9), and heated at 130 ° C. to cure the resin of the prepreg.
[0051]
11) In the operation of the above 10), the compressed air of 2 atm is injected from the air inlet nozzle 6 of the core AX to expand the core AX, and thereby the prepreg laminated on the outer surface of the core AX is removed. The mold is pressed against the inner surface of the cavity of the outer die B and pressed.
[0052]
12) After the curing is completed, the water-soluble joining member 3 is melted and disintegrated by injecting and circulating hot water of 80 ° C. into the PVC tube 4 embedded in the joining member 3X.
[0053]
13) The HTUs 2 individually separated by melting / collapse of the joining member 3X are extracted one by one from the FRP structure 1.
[0054]
Thus, the FRP structure 1 in which both the inner surface shape and the outer surface shape are accurately formed is obtained, and the formed product FRP structure 1 can be easily taken out.
[0055]
[Example 3]
In this embodiment, a specific example in which the present invention is applied to the molding of an FRP particularly having a corner portion in a cross-sectional shape will be described.
[0056]
Generally, when an inner pressure is applied to a core a having a cross section having a corner C as shown in FIG. 8 and capable of uniformly expanding as a whole, the corner C has a large rigidity due to a shape effect. Is preferentially expanded as indicated by an arrow, and the entire cross section is deformed so as to approach a circle as indicated by a broken line a ′ in the figure. As a result, the molding pressure is smaller at the corner C than at the flat portion, and the thickness of the molded product tends to be uneven at the corner C, which is thick at the corner C and thin at the flat portion.
[0057]
In the present embodiment, in order to equalize the product thickness, in the core AX of the second embodiment, the deformable joining members 3X are selectively arranged on both sides of the mold member for forming the corners of the FRP molded product. The child AY is manufactured, and the effect of forming the corners is experimentally confirmed.
[0058]
A core AY having a cross-sectional structure shown in FIG. The core AY has a substantially rectangular cross section, and the HTU 2 as a mold member is composed of four corners C and four flat parts P, and each HTU 2 is joined by a deformable joining member 3X. It is. The corners C of the HTU 2 are sandwiched between deformable joining members 3X on both sides.
[0059]
When compressed air is injected into the core AY and an internal pressure is applied, the deformable joining members 3X on both sides of the corner C expand, and the corner C is easily displaced outward. As a result, the core AY expands uniformly as a whole, the same molding pressure acts on the corners C and the flat portions P, and the thickness distribution of the molded product is equalized.
[0060]
The following experiment was performed to confirm the effect of equalizing the wall thickness.
[0061]
First, as a comparative example, a core a and an outer mold B shown in FIGS. 10A and 10B were produced. FIG. 10B is an enlarged view of a portion surrounded by a circle in FIG. The core a of the comparative example has a rectangular cross section of 600 mm × 600 mm, each corner C has an arc shape with a radius of 50 mm, and is made of low-density polyethylene, and can be expanded by a load of internal pressure. The outer mold B has a cavity-inner surface shape and dimensions with a clearance of 3 mm between the outer mold B and the outer periphery of the core a, and is made of metal.
[0062]
The core AY of the example of the present invention also has the same cross-sectional shape and dimensions as the core a of the comparative example, but the material configuration was manufactured as described above with reference to FIG. 9A. The same outer mold B as that of the comparative example was used.
[0063]
First, using the core a of the comparative example, as shown in FIG. 10B, the clay sphere M was arranged in the clearance between the core a and the outer mold B. The clay sphere M has a diameter of 3 mm and is disposed in contact with the outer surface of the core a defining the clearance and the cavity surface of the outer die B.
[0064]
The assembly of the core a / the outer die B shown in FIG. 10B was kept at 60 ° C., compressed air was injected into the core a, an internal pressure of 700 mmHg was applied, and the core was held for 30 minutes. Thereafter, the compressed air was discharged, and the core a was taken out of the outer mold B.
[0065]
As a result of observing the clay sphere M, the clay sphere M disposed on the flat portion P was crushed by pressure, but no crush was observed on the clay sphere M disposed on the corner C. From this result, it was found that in the core a of the comparative example in which the whole was made of the same material, the molding pressure was applied to the flat portion P, but the molding pressure was not applied to the corner portion R.
[0066]
Next, using the core AY of the present invention, an assembly was similarly formed as shown in FIG. 10B, and a test was performed under the same heat retention and internal pressure conditions as in the comparative example. As a result of observing the clay sphere M after the test, the clay sphere M was crushed to the same extent at the corner C and the flat part P. From these results, it can be seen that the joining member 3X is disposed at a position where the whole of the joining member 3X is interposed between the mold member (HTU) 2 and the deformable joining member 3X and the corner member C is sandwiched from both sides. It was found that by using the child AY, the molding pressure was evenly applied to the corner portion C and the flat portion P.
[0067]
[Example 4]
In this embodiment, a specific example in which the present invention is applied to FRP molding by RTM molding (Resin Transfer Molding) and RIM molding (Reaction Injection Molding) will be described.
[0068]
In RTM molding and RIM molding, poor resin injection / permeability frequently poses a problem. That is, in these molding methods, the preform of the reinforcing fiber is charged into a mold formed as a gap between the non-expandable type core R and the outer mold B (FIG. 12A), and the resin is removed. inject. The injected resin penetrates between the reinforced resins from the injection port i as shown in FIG. 12A and spreads throughout the mold to be filled. As described above, since the entire process of filling the resin into the mold is performed by infiltration between the reinforced resins having a large flow resistance, a high injection pressure is required, and a long time is required for the injection, and the injection / permeability is poor. .
[0069]
On the other hand, by applying the following improvements when applying the core of the present invention, the resin injection / permeability can be significantly increased.
[0070]
FIG. 11 shows a joining member 3Z used for the core of this embodiment. The joining member 3Z is provided with a groove 7 as shown in the drawing along the longitudinal direction on the outer peripheral surface, that is, on the forming surface for forming the inner surface of the FRP structure. The groove 7 communicates with a resin injection port during FRP molding. The groove 7 is provided from the beginning when the joining member 3Z is formed, or is provided by machining the formed joining member 3Z.
[0071]
When the groove 7 is provided in the joining member 3Z in this way, the resin injected from the injection port i first enters the groove 7. The groove 7 is formed with a width / depth of about several mm, and has a much lower flow resistance than a reinforced resin of several tens μm or less. Therefore, the resin flow that has entered the groove 7 quickly reaches the innermost part of the mold along the groove 7 even at a low injection pressure, and then from the entire length of the groove 7 to between the reinforcing fibers as shown in FIG. Supplied and penetrated.
[0072]
That is, in the conventional method, the resin penetrates between the reinforcing fibers from the single point of the injection port as a starting point and spreads over the entire surface of the mold, whereas in the method of the present invention, the resin penetrates between the reinforcing fibers from the line of the groove as the starting point. To spread the resin over the entire surface of the mold. Moreover, since the grooves are provided in the plurality of joining members, the plurality of lines act as the plurality of starting points. As a result, compared to the conventional method in which the inter-fiber penetration progresses by supplying the resin from a single point, the inter-fiber penetration progresses by supplying the resin from a plurality of lines.・ Permeability is greatly improved.
[0073]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, the molding core which can shape | mold a hollow body made of fiber reinforced plastic (FRP) with high precision, and can take out the molded product easily is provided.
[Brief description of the drawings]
FIG. 1 is a perspective view showing an FRP hollow structure as an example of a product formed using a core of the present invention.
FIG. 2 is a perspective view showing a core according to a first embodiment of the present invention used for molding the FRP hollow structure of FIG. 1;
FIG. 3 is a perspective view showing a part of a joining member that is a component of the core according to the first embodiment of the present invention.
FIG. 4 is a perspective view showing an operation of removing a mold member (HTU), which is a component of the core, from the FRP hollow structure molded using the core according to the first embodiment of the present invention.
FIG. 5 is a perspective view showing an FRP hollow structure and an outer mold used for molding the FRP hollow structure.
FIG. 6 is a perspective view showing a deformable core according to a second embodiment of the present invention for performing pressure molding in combination with the outer mold of FIG. 5;
7 is a cross-sectional view showing (A) arrangement of core components and (B) displacement of each component when an internal pressure is applied when pressure molding is performed using the core of FIG. 6; It is.
FIG. 8 is a cross-sectional view showing displacement of each part of the core when an internal pressure is applied to a core having a cross-sectional shape having a corner.
9 shows (A) arrangement of core components and (B) each configuration when an internal pressure is applied to a core according to a third embodiment in which the present invention is applied to the core having the cross-sectional shape of FIG. It is sectional drawing which shows the displacement of an element.
FIGS. 10A and 10B are a cross-sectional view and an enlarged partial cross-sectional view illustrating an experimental core / outer die assembly for examining a molding pressure equalizing effect according to the third embodiment of the present invention.
FIG. 11 is a perspective view partially showing a grooved joining member that is a component of a core according to Embodiment 4 of the present invention.
FIG. 12 shows the progress of resin filling during RTM molding or RIM molding in the case of (A) using a conventional core and (B) using the core according to Example 4 of the present invention. FIG.
[Explanation of symbols]
1. Hollow structure made of fiber reinforced plastic (FRP) 2. Mold member (HTU: hard tool unit)
3, 3X joining member 4 water supply channel 5 slit 6 air inlet nozzle 7 groove A, AX, AY core of the present invention a conventional core (expandable type)
R: Conventional core (non-expandable type)
B: outer mold C: corner P: flat

Claims (3)

複数の型部材同士が水溶性の接合部材を介して相互に接合されて成り、個々の該接合部材の内部に給水路を備えたことを特徴とする繊維強化プラスチック成形用中子。A fiber-reinforced plastic molding core, comprising: a plurality of mold members joined to each other via a water-soluble joining member; and a water supply passage provided inside each of the joining members. 接合部材が変形可能であり、中子が全体として気密構造を有しかつ一部に圧縮空気注入口を備えたことを特徴とする請求項1記載の繊維強化プラスチック成形用中子。2. The fiber-reinforced plastic molding core according to claim 1, wherein the joining member is deformable, the core has an air-tight structure as a whole, and a compressed air injection port is partially provided. 上記変形可能な接合部材が、繊維強化プラスチック成形体の角部を成形する型部材の両側に位置することを特徴とする請求項2記載の繊維強化プラスチック成形用中子。3. The fiber-reinforced plastic molding core according to claim 2, wherein the deformable joining member is located on both sides of a mold member for molding a corner of the fiber-reinforced plastic molded body.
JP2002299169A 2002-10-11 2002-10-11 Core for molding fiber-reinforced plastics Pending JP2004130726A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002299169A JP2004130726A (en) 2002-10-11 2002-10-11 Core for molding fiber-reinforced plastics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002299169A JP2004130726A (en) 2002-10-11 2002-10-11 Core for molding fiber-reinforced plastics

Publications (1)

Publication Number Publication Date
JP2004130726A true JP2004130726A (en) 2004-04-30

Family

ID=32288387

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002299169A Pending JP2004130726A (en) 2002-10-11 2002-10-11 Core for molding fiber-reinforced plastics

Country Status (1)

Country Link
JP (1) JP2004130726A (en)

Similar Documents

Publication Publication Date Title
US8932499B2 (en) Method for producing an SMC multi-layer component
US4292101A (en) Method of fabricating composite members
ES2703596T3 (en) Manufacturing of a composite structural component
US20050163965A1 (en) Molding process and apparatus for producing unified composite structures
JP2014504218A5 (en)
JP2013532596A (en) Molded plastic multilayer component with continuous reinforcing fiber layer and method of manufacturing the same
EP3075523B1 (en) Frp molding jig and method for molding frp structure
JPS6271617A (en) Fiber-reinforced hollow structure and manufacture thereof
JP6591769B2 (en) Foldable coil mandrel
JP2014502223A5 (en)
JP7070035B2 (en) Manufacturing method of fiber reinforced plastic molded product
US7638084B2 (en) Methods for forming fiber reinforced composite parts having one or more selectively positioned core, structural insert, or veneer pieces integrally associated therewith
CN116214959A (en) Preparation method of all-carbon interlayer composite material
US20100015265A1 (en) Pressure bladder and method for fabrication
KR101447136B1 (en) Method for Forming Fiber Reinforced Plastic Composite
CN108501406B (en) Method for producing fiber-reinforced composite material
WO2014115668A1 (en) Method for molding hollow molding and method for manufacturing fiber reinforced plastic
JP6601561B2 (en) Manufacturing method and manufacturing apparatus of composite material
CA2836015C (en) Resin transfer molding method and resin transfer molding apparatus
JP6582429B2 (en) Sandwich molded body, molding method thereof and molding apparatus
JP2004130726A (en) Core for molding fiber-reinforced plastics
JP2013233805A (en) Contour caul with expansion region
EP3612366B1 (en) Hollow part manufacture
JP7287526B2 (en) Method for producing fiber-reinforced plastic molded article
JP4508618B2 (en) Bag molding method