JP2004130350A - Method for forming aluminum alloy automobile panel - Google Patents

Method for forming aluminum alloy automobile panel Download PDF

Info

Publication number
JP2004130350A
JP2004130350A JP2002297684A JP2002297684A JP2004130350A JP 2004130350 A JP2004130350 A JP 2004130350A JP 2002297684 A JP2002297684 A JP 2002297684A JP 2002297684 A JP2002297684 A JP 2002297684A JP 2004130350 A JP2004130350 A JP 2004130350A
Authority
JP
Japan
Prior art keywords
panel
forming
aluminum alloy
flange
molding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002297684A
Other languages
Japanese (ja)
Other versions
JP4199983B2 (en
Inventor
Shigenobu Yasunaga
安永 繁信
Yoshihaya Imamura
今村 美速
Haruyuki Konishi
小西 晴之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2002297684A priority Critical patent/JP4199983B2/en
Publication of JP2004130350A publication Critical patent/JP2004130350A/en
Application granted granted Critical
Publication of JP4199983B2 publication Critical patent/JP4199983B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Shaping Metal By Deep-Drawing, Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a forming method of an aluminum alloy automobile panel by which the forming of a shape part where becomes stretch flanging or shrinkage flanging when the aluminum alloy automobile panel is formed with a press is enabled. <P>SOLUTION: This method is a method for forming the aluminum alloy automobile panel 1 by press forming and, by performing the forming of the shape part 3a, 3b where stretch flanging or shrinkage flangingis perfomed when the panel is formed by pressing is performed by the electromagnetic forming, the forming of the part of the stretch flanging or the shrinkage flanging is enabled. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、アルミニウム合金自動車パネルの成形方法(以下、アルミニウムをAlとも言う)に関するものである。
【0002】
【従来の技術】
従来から、自動車のフード、フェンダー、ドア、ルーフ、トランクリッドなどのパネル構造体の、アウタパネル (外板) やインナパネル( 内板) 等のパネルには、薄肉でかつ高強度Al合金パネル材として、成形性に優れたAl−Mg 系の5000系や、成形性や焼付硬化性に優れたAl−Mg−Si系の 6000 系アルミニウム合金板材(圧延板材)が使用され始めている。
【0003】
自動車などのアウタパネルやインナパネルなどのパネルは、周知の通り、アルミニウム合金板のプレス成形によって最終パネル形状とされる。また、自動車などのアウタパネルにおいてこの自動車のアウタパネルは、周知の通り、同一アルミニウム合金板に対し、プレス成形における張出成形時や曲げ成形などの成形加工が複合して行われて製作される。例えば、フードやドアなどのアウタパネルでは、張出などのプレス成形によって、アウタパネルとしての成形品形状となされ、次いで、このアウタパネル周縁部のフラットヘムなどのヘム (ヘミング) 加工によって、インナパネルとの接合が行われ、パネル構造体とされる。
【0004】
近年、これら自動車などの車体の設計やデザイン上から、パネル成形品形状も大型化および形状が複雑化し、設計形状として、曲面形状部分を多く有するパネル成形品が求められる。
【0005】
例えば、図1(a)に、自動車アウタパネルなど、大きく湾曲した側壁部やフランジ部を有するパネル成形品の一例を斜視図で示す。図1(a)において、パネル成形品1 は比較的大きな高さh の製品部2 と、パネル成形品の一部となるか、後に選択的に切り捨てられる幅w のフランジ部 (余肉部)4からなる。そして、特徴的には、製品側壁部3 に大きく円弧状に湾曲した湾曲側壁部3a、3bや湾曲フランジ部4a、4bなどの湾曲部分を有している。
【0006】
アルミニウム合金板は鋼板に比して、これら湾曲部分など、成形が難しい部分の成形性が劣る。このため、このような湾曲部分を有するパネル成形品をアルミニウム合金板から張出などのプレス成形を成形して製作する場合、前記湾曲部分に割れX が生じやすくなる。この湾曲部分の割れの傾向は、湾曲部分の湾曲度が大きくなった場合に特に強くなる。これは、前記湾曲部分のアルミニウム合金材料に部分的に伸びフランジ変形が生じるためである。
【0007】
即ち、前記フランジ湾曲部4a、4bから製品湾曲部3a、3bまでの変形は、他の部位の2 次元的な変形と異なり、扇状部分 (斜線で示す) の3 次元的な変形である伸びフランジ変形となる。この伸びフランジ変形の場合、フランジ湾曲部4a、4bが製品湾曲部3a、3b側へ矢印a 方向に移動するに従い、フランジ湾曲部の端部4cが矢印a と直角方向である矢印b の方向へと伸びることとなる。パネル成形品の側壁部やフランジ部の湾曲度や規模が大きいほど、フランジ湾曲端部4cの移動量も大きくなるため、伸びフランジ変形も大きくなる。この結果、この部分の材料にかかる歪み量が増し、伸びフランジ破断である割れX が生じ易くなる。前記した、アルミニウム合金パネル成形品形状がより大型化および複雑化し、側壁部やフランジ部の湾曲度や規模が大きくなった場合に、フランジ端部割れ発生の傾向が特に強まるのはこのためである。
【0008】
このような割れに対し、アルミニウム合金材料側での伸びフランジ性の改良によって割れを防止するのは限界がある。また、この割れを防止するために、ドロービード9 を用いたり、ブランクホルダーによるしわ押さえ力を増やし、材料の金型への流入を抑制するような一般的な成形条件側での改良にも限界がある。
【0009】
それゆえ、現状では、特にアルミニウム合金からなるパネル材料では、成形できるパネル成形品の前記湾曲部分の湾曲度や規模に大きな制約がある。このため強度を犠牲にした (強度の低い) 成形性の良い材料とするか、パネル部材の方を設計変更するしかないのが実情であった。
【0010】
また、アルミニウム合金自動車パネルのプレス成形では、これ以外にも、このような伸びフランジ変形や縮みフランジ変形となる成形部分が多数生じる。例えば、プレス成形されたパネルに貫通穴を設けた上で、図3(a)、(b) に断面図を示すように、この貫通穴22を更に穴拡げ加工により押し広げ、アルミニウム合金パネル21に、一定の高さh を持つフランジ( 張出部、ボス部)23 を形成する場合がある。このフランジ23を含めた貫通穴22があれば、ワッシャなどを介して、ボルトなどの他の部品乃至締結治具の取り付けが容易となる。また、一定の高さh を持つフランジ23は、ボルトなどの締結治具を取り付ける際に、これらの軸のずれを防止するガイドの役割を果たす。また、フランジ23による接合面積や接合長さの増加によって、アルミニウム合金パネル21が薄板であっても、前記ボルトなどの軸 (部材) の固定に必要な長さが確保され、他の部品乃至締結治具の固定や接合強度も確保しうる。これらの効果はフランジ23の高さh が高いほど大きい。更に、上記利点以外に、他の部品乃至締結治具の取り付け如何に関わらず、このフランジ23を所定数設けることによって、平板状のアルミニウム合金パネルに比して、アルミニウム合金パネル21の剛性を高めることが可能である。
【0011】
このような一定の高さを持つフランジ23を、アルミニウム合金パネルの貫通穴22に形成するためには、先ず、図4(a)に示す打抜き加工などによって貫通穴22を設けた後に、貫通穴22を穴拡げ加工する。しかし、この穴拡げ加工は、前記伸びフランジ変形を伴うプレス加工であり、このようなプレス加工においては、伸びフランジ変形により、この変形部分の材料にかかる歪み量が増す。このため、フランジ23の縁 (端面) を起点に板厚を貫通するような割れが生じやすくなる。この割れはフランジ23の高さh が高くなるほど生じ易い。また、アルミニウム合金パネルが高強度で、かつ板厚が5mm 以下の薄板ほど著しい。この割れが生じた場合、加工されたアルミニウム合金板パネルが構造用などとして使用できなくなる致命的な問題を生じる。
【0012】
一方、パネルなどの新しい成形技術として、電磁成形技術の適用が提案されている。電磁成形自体は、高電圧で蓄荷電されている電気エネルギー (電荷) を、通電コイルに瞬時に投入し (放電させ) 、極めて短時間の強力な磁場を形成することにより、この磁場内におかれたワーク (被加工物、金属部材) が磁場の反発力 (フレミングの左手の法則に従ったLorentz 力) によって強い拡張力や収縮力を受けて、高速で塑性変形することを利用して、ワークを所定形状に、塑性加工乃至成形する技術である。
【0013】
この電磁成形は、導電性が高く、かつ渦電流が発生しやすい金属の板、管などの金属部材を成形対象とし、板の成形、管の拡管、管の縮管、管の端部などの成形に有望とされて来た。特にアルミニウム合金は、電気の良導体であり、この電磁成形に適した材料とされる。
【0014】
アルミニウム合金板の成形適用の具体例として、アルミニウム合金缶胴 (板) の成形への使用が提案されている(例えば、特許文献1参照) 。また、アルミニウム合金コアプレート (板) へのリブ( 突起) 成形への使用も提案されている(例えば、特許文献2参照) 。また、より具体的な板の電磁成形方法として、成形する板部分に対応した形状を有するコイルを板の表面側に近接させて設ける一方、金型成形面を板の反対表面側に近接させて設け、前記コイルに電気エネルギーを投入して、成形する板部分を変形させるとともに、変形した板表面の一方側のみを前記金型成形面に押圧して、所定の曲面形状に成形するアルミニウム合金板の電磁成形技術が提案されている (非特許文献1参照) 。
【0015】
【特許文献1】
特開平9−29370 号公報(1〜2 頁、第1 図)
【特許文献2】
特開1998−156461 号公報(1〜2 頁、第1 図)
【非特許文献1】
佐野利男他4 名、” 電磁力を利用する塑性加工の研究” 、「機械技術研究所報告第150 号」、1990年3 月、機械技術研究所発行 (第3 章
板の成形、第7 〜28頁)
【0016】
この電磁成形方法が、アルミニウム合金パネルの前記湾曲部分の張出成形など、伸びフランジ変形や縮みフランジ変形となる成形部分に適用できれば、前記割れや形状不良などの成形不良発生の諸問題が解決できる。
【0017】
【発明が解決しようとする課題】
しかし、自動車アルミニウム合金パネルの電磁成形は今だ実用化されていない。これは、アルミニウム合金板の電磁成形においては、管の拡管や縮管など他の形状の成形に比して、成形が難しいことによる。また、自動車アルミニウム合金パネルの電磁成形においては、アルミニウム合金板の成形される部分の面積が大きい (広い) ことによる。アルミニウム合金板の成形される部分の面積が大きいほど、この成形される部分に対応する大きさが必要なコイルの大きさも増して、コイルの製作自体が困難かつ高価となる問題もある。このため、これまで、自動車アルミニウム合金パネルの成形に対して、電磁成形は適用されていなかった。
【0018】
本発明はこの様な事情に着目してなされたものであって、その目的は、アルミニウム合金自動車パネルの、プレス成形される際に伸びフランジ変形または縮みフランジ変形となる形状部分の成形が可能な、アルミニウム合金自動車パネルの成形方法を提供しようとするものである。
【0019】
【課題を解決するための手段】
上記目的達成のための本発明アルミニウム合金自動車パネルの成形方法の要旨は、プレス成形によってアルミニウム合金自動車パネルを成形する方法であって、プレス成形される際に伸びフランジ変形または縮みフランジ変形となる形状部分の成形を電磁成形により行うことである。
【0020】
本発明では、通常のプレス成形の際に伸びフランジ変形または縮みフランジ変形となる曲面形状などの形状部分を選択し、この限られた形状部分の仕上げ成形または予備成形を電磁成形により行う。他のプレス成形が容易なパネル部分は、基本的に、通常のプレス成形によって成形する。このように、電磁成形と通常のプレス成形とを組み合わせて行うことによって、電磁成形されるパネル部分の面積や大きさを限定し、また、成形されるアウタパネル部分に対応するコイルの大きさも限定して、電磁成形やコイルの製作を容易とする。これによって、アルミニウム合金自動車パネルへの電磁成形の適用と、前記形状部分の成形を可能とする。
【0021】
【発明の実施の形態】
以下に、図面を用いて、本発明アルミニウム合金自動車パネルの成形方法の実施態様を説明する。
【0022】
前記図1(a)のアウタパネル成形品を、プレス成形後に電磁成形して成形する方法を図2(a)、(b) 、(c) に順に示す。先ず、図2(a)は電磁成形に先立つ通常のプレス成形方法を示し、金型を含むプレス成形装置の断面図である。図2(a)のプレス成形では、図1(a)におけるパネル成形品1 の大きく円弧状に湾曲した湾曲側壁部3a、3bや湾曲フランジ部4a、4bなどの湾曲部分を除き、図1(b)に斜視図で示す、略HAT 型の形状のプレ成形品にプレス成形する。図1(b)において、円で囲った部分が、後述する電磁成形によって成形する、円弧状に湾曲した側壁部3a、3bに相当する部分である。
【0023】
図2(a)において、金型 (ダイス)6は、前記パネル成形品1 の製品部2 の形成部6aと、製品部周囲のフランジ部4 を形成するダイフェース6bを有し、ダイフェース6bの面にドロービード部9a、9bを設けている。
【0024】
そして、アルミニウム合金板からなるパネル材料 (ブランク)5は、成形の際にブランクホルダー8 によりしわ押さえ力を付与され、また、ドロービード部9a、9bにより材料の通過抵抗を付与されながら、製品形成部6a内に流入し、図1(b)に示す略HAT 型のプレ成形品がプレス成形される。
【0025】
次に、図2(b)、(c) に、図1(a)のアウタパネル成形品の円弧状湾曲側壁部3a、3bを電磁成形により部分的に成形する場合を示す。先ず、図2(b)に部分的に拡大して示すように、パネル材料5 の前記円弧状湾曲側壁部に相当する部分3aに対して、円弧状湾曲形状を有する成形面7aを持つパンチ7 を内方から近接させて設ける。
【0026】
次いで、図2(c)に示すように、前記円弧状湾曲側壁部に相当する部分3aに対応した形状を有する電磁成形用コイル10a を、前記円弧状湾曲側壁部に相当する部分3aの外方に近接させて設ける。そして、電磁成形用コイル10a に電気エネルギーを投入して、矢印の方向にパネル材料5 の成形部分を変形させるとともに、この変形したパネル成形部分をパンチ7 の成形面7aに押圧して、アウタパネル成形品の円弧状湾曲側壁部3a、3bの成形を行う。なお、もう一方の円弧状湾曲側壁部に相当する部分3bも同様に電磁成形する。
【0027】
このようなプレス成形と組み合わせた電磁成形によれば、前記円弧状湾曲側壁部に、従来のプレス成形のような低速の変形ではなく、極めて高速の伸びフランジ変形が生じるため、前記円弧状湾曲側壁部に割れX が生じることがない。また、パンチ7 の成形面7aなどの金型を用いて成形するため、形状精度も高い。しかも、プレス成形品全体を電磁成形する訳ではなく、部分的な電磁成形で済むので、この成形される部分に対応する大きさが必要なコイルの大きさも比較的小さくて済み、コイルの製作自体が容易で、高い寿命かつ安価となる。
【0028】
ここにおいて、図2(c)に示すコイル10a は、成形するパネル部分に対応した面積 (大きさ) と略矩形の形状を有している。コイル10a の面積が成形するパネル部分に対して小さい場合には、成形品設計形状に対するアウタパネル成形品の形状精度がでない。また、逆に大きすぎる場合にも、同じく、成形品設計形状に対するアウタパネル成形品の形状精度がでず、コイルの製作も困難となりコイル寿命も低下する。
【0029】
コイル10a は図2(c)に示すように、パネル5 の表面側に近接させて設ける。コイル10a とパネル5 の表面との距離 (間隔) が遠過ぎる (大きい) と、コイル10a に投入される電気エネルギーが、効率よくパネル部分の成形 (変形) に活用されずに失われ、成形品設計形状に対するパネル成形品の形状精度がでない。
【0030】
一方、金型となるパンチ7 の成形面7aも、パネル5 の反対の表面側に近接させて設ける。この成形面7aとパネル5 の表面との距離 (間隔) が遠過ぎる (大きい) と、コイル10a への電気エネルギーの投入によって、変形したパネル部分が金型の成形面 (パンチ7 の成形面7a) に大きな押圧力で押圧されない。この結果、成形品設計形状に対するパネル成形品の形状精度がでない。
【0031】
また、大きな押圧力で押圧されない結果、押圧された成形パネル部分が加工硬化しない。この結果、成形パネル部分の強度を増して、成形パネル部分の耐デント性を向上させることができない。この加工硬化機能はパネルに対する耐デント性の要求特性が高いほど重要となる。
【0032】
本発明における電磁成形において、一回のみの電磁成形によって、成形品設計形状に対するパネル成形品の形状精度を向上させるとともに、成形部分を加工硬化させるためには、パネル部分の大きさ、発生板厚減少量、材料特性あるいは投入電気エネルギー量などの成形条件によって異なるが、コイルへの投入電気エネルギー量は、7.3kJ 以上とすることが好ましい。7.3 kJ未満では、1 回当たりのコイルへの投入電気エネルギー量が小さいため、寸法精度や形状精度を満足するようなパネル成形品が成形できない。また成形されたパネル成形品部分を加工硬化させ、フランジの板厚減少による強度低下分を補償できない可能性が高くなる。
【0033】
前記した機械技術研究所報告第150 号に記載の板の電磁成形が困難であったのは、この一回当たりの投入電気エネルギー量が、コイルなどの制約もあって、せいぜい7.2kJ 以下程度の低いレベルであったことに大きく起因する。
【0034】
また、本発明における一連の電磁成形は、成形金属部材の軟化を防止し、加工硬化を促進するために、板素材が常温の状態にて (電磁成形を常温下で) 行われることが好ましい。ただ、常温とは、室温を含め、軟化しない程度の温度上昇を許容するものとする。なお、前記形状精度が出た上で、前記加工硬化量が確保できるのであれば、材料や部材形状に応じて、高温や極低温までの低温下で電磁成形することを許容する。
【0035】
本発明で成形に用いるアルミニウム合金は、通常、この種構造材などの用途に汎用される、AA乃至JIS 規格に規定された5000系、6000系等のアルミニウム合金が、高成形性や高強度を兼備している点で好ましい。Al−Mg 系の5000系アルミニウム合金は、電磁成形時の加工硬化量が大きく、高成形性である点で好ましい。また、Al−Mg−Si系の6000系アルミニウム合金は人工時効硬化性 (ベークハード性) を備えており、低耐力状態で成形しやすくし、成形後に人工時効硬化処理で高耐力化できるなどの点で好ましい。勿論、これ以外のアルミニウム合金でも、電磁成形可能であり、用途と要求特性に応じて選択可能である。
【0036】
ここで、電磁成形に使用するコイルは、好ましくは、図2(c)に断面で示すコイル10のように、パネル成形部分形状に対応した平面的な形状を有し、樹脂14などの絶縁物に埋設かつ平面的に巻回された、断面が正方形 (または矩形) をなした導体素線11と、導体素線11自体の外側に巻回された絶縁性物質12、導体素線11の外表面側に配置された絶縁性物質13とからなる。隣接する導体素線11間は隙間がないように密接し、絶縁層の厚みは均一とされている。また、素線表面は平行となるように巻回配置されている。これらの絶縁性物質は、ガラス繊維にエポキシ樹脂などを含浸させた繊維強化樹脂が好適に用いられる。
【0037】
このような繊維強化樹脂の使用と前記各絶縁物や、銅線などの導体素線の配置構成によって、導体素線周囲が補強され、コイルへの通電時における強い膨張力を受けた際にも、導体素線自体の変形や絶縁層の破損が軽減される。更に、導体素線は、隣接する導体素線との表面同士が平行になるように配置されているので、樹脂含浸時に無用な空孔が入り込んで絶縁性を損ねてしまう余地が無い。
【0038】
次に、パネルに対し、前記アルミニウム合金パネルの貫通穴にフランジを形成する方法について図4 を用いて説明する。パネルに貫通穴を設ける方法は、先ず、図4(a)に示す通常の打抜き加工によって行う。即ち、図4(a)にプレス加工金型の断面図を示すように、ダイス25とポンチ24および板押さえ26などの協働により、プレス成形後のアルミニウム合金パネル21にせん断 (剪断) 荷重を加えて孔開け加工し、所定径d(ポンチ24の径d)および所定個数の貫通穴22が設けられる。なお、打抜き加工される貫通穴22の径はポンチ24の径d となるが、他の構造部品の取り付けに必要な穴径によって定まる。また、貫通穴22の個数や間隔も、取り付けられる前記ボルトなどの他の構造部品 (締結治具を含む) の必要個数や間隔との関係で定まる。
【0039】
図4(a)において、c はダイス25の内径とポンチ24外径とのクリアランスである。この場合、クリアランスを、加工されるアルミニウム合金板の板厚の15〜25% の範囲、より厳密には20〜25% の範囲とすることが好ましくい。このクリアランスが小さ過ぎる、あるいは大き過ぎると、打抜き加工時に貫通穴22周囲部分に付与される歪みが増大する。また、クリアランスが大き過ぎる場合、打抜き加工時に貫通穴22の縁にバリのような形状不良部が生じ易い。
【0040】
更に、ダイス25のコーナー部の肩R ( 径) や、ポンチ24のコーナー部の肩R(径) などのプレス加工金型諸条件は、前記ダイスとポンチとのクリアランスの選択や貫通穴22の径d に応じて、打抜き加工可能な条件が適宜選択される。
【0041】
次に、図4(b)、(c) に示すように、貫通穴22を穴拡げ加工して、若干のフランジ23を形成する。この穴拡げ加工は、フランジ23を後述する電磁成形によって必要な高さh とするための予備成形である。したがって、この穴拡げ加工におけるフランジ23の高さは、前記した割れを生じないように低くするとともに、後述する電磁成形によって必要な高さh としやすい高さとする。なお、図4(b)のフランジ23はその上端部に、前記締結構造上必要な縮径部 (フランジ部)23aを有し、図4(c)のフランジ23は単なる直線状の上端部23b を有する。
【0042】
更に、これら穴拡げ加工された図4(b)のフランジと、図4(c)のフランジとを、図5 (a) 、 (b)に各々示すように、所定高さh のフランジ23に電磁成形する。このフランジ23の高さh は、取り付けられる前記ボルトなどの他の構造部品 (締結治具を含む) の必要案内長さや固定乃至接合に必要な長さ、あるいはアルミニウム合金パネルの必要剛性向上量によって定まる。
【0043】
図5 (a) 、 (b)に各々示すように、フランジ23に対応した例えば円形形状を有する電磁成形用コイル10b を、フランジ23内に近接させて設ける。そして、電磁成形用コイル10b に電気エネルギーを投入して、矢印の方向にパネル材料21の成形部分を変形させるとともに、この変形したパネル成形部分をダイス28の成形面28a に各々押圧して、フランジ23の成形を行い、所定高さh と形状とする。
【0044】
この際、電磁成形では、従来のような穴拡げ加工に比べ、フランジ変形部分の材料にかかる歪み速度が極めて大きい。この結果、フランジの縁 (端面) を起点に板厚を貫通するような割れは生じなくなる。しかも、穴拡げ加工全てを電磁成形にて行う訳ではなく、部分的な電磁成形で済むので、電磁成形一回当たりの投入電気エネルギー量が小さくて済み、コイルの製作自体が容易で、高い寿命かつ安価となる。
【0045】
また、本発明では、ヘム加工されるアウタパネルの周縁部 (輪郭部) 形状が、直線的な周縁部形状だけではなく、一定の曲率半径を有するような円弧状 (曲線状) 周縁部形状である場合にも、従来のヘム加工に代えて適用できる。即ち、円弧状周縁部形状部分では、ヘム加工の際に、伸びフランジ、あるいは縮みフランジとなって、予め設計乃至想定しているヘム加工後のヘム部の周縁部の外形輪郭線よりも、実際のヘム加工後のヘム部の周縁部の外形輪郭線の寸法が大きめ、あるいは小さめにズレ込むこととなり、本来の設計形状に対し、必然的に、R 部がシャープにならない、円弧状外形輪郭線の円弧形状がでない、などの形状精度がでないという問題がある。
【0046】
そして、このようなパネルにおけるヘム周縁部の外形輪郭線寸法のズレが生じた場合、パネルにおける他の直線部分の外形輪郭線とのズレが生じたり、自動車のフード、フェンダー、ドア、ルーフ、トランクリッドなどのパネル構造体の外形輪郭線の寸法精度が低下し、パネル構造体として、他のパネルやフレイムなどとの組み立てや接合などに大きな悪影響を及ぼす。
【0047】
これに対し、通常のヘム加工における、特に、伸びフランジ変形、あるいは縮みフランジ変形となるような、プリヘム工程あるいはダウンフランジ工程を、各々あるいは合わせて、電磁成形に置き換える。このようにすれば、プリヘム工程あるいはダウンフランジ工程における、パネル端部の90°あるいは135 °の折り曲げ変形が、伸びフランジ変形あるいは縮みフランジ変形とならず、パネル構造体の外形輪郭線の寸法精度が高くなる。そして、その後、従来乃至通常のフラットヘム工程やロープヘム工程によって更に180 °折り曲げ成形すれば良い。
【0048】
【発明の効果】
以上説明したように、本発明によれば、プレス成形と電磁成形とを組み合わせることにより、プレス成形において伸びフランジ変形や縮みフランジ変形となって、成形不良が生じやすい形状部分を、成形不良が生じずに成形することができる。しかも、前記成形不良が生じやすい形状部分の部分的な電磁成形によって、電磁成形自体を実現可能とする効果も有する。また、通常では成形しにくい形状のパネルへのアルミニウム合金の成形を可能とするため、アルミニウム合金の用途を拡大できる意義も大きい。
【図面の簡単な説明】
【図1】パネルのプレス成形品を示し、(a) はプレス成形品、(b) は(a) のプレ成形品の各態様を示す斜視図である。
【図2】本発明の成形方法の態様を順に示し、(a) はプレス成形、(b) 、(c) は(a) のプレス成形品の電磁成形の各態様を示す断面図である。
【図3】(a) 、(b) はパネルの穴拡げ加工成形品を各々示す断面図である。
【図4】本発明の成形方法の態様を順に示し、(a) は打抜き加工 (プレス成形) 、(b) 、(c) は穴拡げ加工 (プレス成形) の一態様を示す断面図である。
【図5】図4に続く、本発明の電磁成形の態様を示し、(a) は成形フランジの一態様、(b) は成形フランジの別の態様を示す断面図である。
【符号の説明】
1:パネル成形品、2:成形品部、3:縦壁部、4:フランジ部、
5:アルミニウム合金ブランク、6:金型、7:ポンチ、8:板押さえ、9:ビード、
10: 電磁コイル、11: 導体素線、12: 絶縁性物質、13: 絶縁性物質、14: 樹脂
21: アルミニウム合金パネル、22: 穴、23: フランジ、24: ポンチ、
25: ダイス、26: 板押さえ、27: ポンチ、28: フランジ
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for forming an aluminum alloy automobile panel (hereinafter, aluminum is also referred to as Al).
[0002]
[Prior art]
Conventionally, panels such as outer panels (outer panels) and inner panels (inner panels) of panel structures such as automobile hoods, fenders, doors, roofs, and trunk lids have been made of thin and high-strength Al alloy panels. Al-Mg-based 5,000-based aluminum alloy sheets (rolled sheet materials) having excellent formability and Al-Mg-Si-based 6000-based aluminum alloy sheets (rolled sheet materials) having excellent formability and bake hardenability have begun to be used.
[0003]
As is well known, a panel such as an outer panel or an inner panel of an automobile is formed into a final panel shape by pressing an aluminum alloy plate. As is well known, an outer panel of an automobile or the like is manufactured by combining the same aluminum alloy plate with a forming process such as a bulging process in a press forming process or a bending process. For example, an outer panel such as a hood or a door is formed into a molded product as an outer panel by press forming such as overhang, and then is bonded to the inner panel by hemming a flat hem or the like around the outer panel periphery. Is performed to form a panel structure.
[0004]
In recent years, in view of the design and design of the body of an automobile or the like, the size of the panel molded product has become larger and more complicated, and a panel molded product having a large number of curved surface portions has been required as a design shape.
[0005]
For example, FIG. 1A is a perspective view showing an example of a panel molded product having a largely curved side wall portion and a flange portion, such as an automobile outer panel. In FIG. 1 (a), a panel molded product 1 has a product portion 2 having a relatively large height h and a flange portion (excess portion) having a width w which becomes a part of the panel molded product or is selectively cut off later. Consists of four. Characteristically, the product side wall portion 3 has curved portions such as curved side wall portions 3a and 3b and curved flange portions 4a and 4b which are curved in a large arc shape.
[0006]
The aluminum alloy plate is inferior in formability to a portion that is difficult to form, such as a curved portion, as compared with a steel plate. For this reason, when manufacturing a panel molded product having such a curved portion by press molding such as overhanging from an aluminum alloy plate, a crack X 2 is likely to be generated in the curved portion. This tendency of the curved portion to crack becomes particularly strong when the curvature of the curved portion is increased. This is because the aluminum alloy material of the curved portion is partially stretched and flange deformation occurs.
[0007]
That is, the deformation from the flange bending portions 4a, 4b to the product bending portions 3a, 3b is different from the two-dimensional deformation of other parts, and is a three-dimensional deformation of a fan-shaped portion (shown by oblique lines). It becomes a deformation. In the case of this stretched flange deformation, as the flange curved portions 4a and 4b move toward the product curved portions 3a and 3b in the direction of arrow a, the end 4c of the flange curved portion moves in the direction of arrow b that is perpendicular to arrow a. And it will grow. The larger the degree of curvature or the scale of the side wall portion or the flange portion of the panel molded product, the greater the amount of movement of the flange curved end portion 4c, and therefore the greater the stretch flange deformation. As a result, the amount of strain applied to the material in this portion increases, and cracks X, which are breakage of stretch flanges, are likely to occur. For this reason, when the shape of the aluminum alloy panel molded product becomes larger and more complicated, and the degree of curvature and scale of the side wall portion and the flange portion are increased, the tendency of occurrence of flange end portion cracking is particularly increased. .
[0008]
There is a limit to preventing such cracks by improving the stretch flangeability on the aluminum alloy material side. Further, in order to prevent this cracking, there is a limit to improvement on general molding conditions such as using a draw bead 9 or increasing a wrinkle pressing force by a blank holder to suppress the material from flowing into a mold. is there.
[0009]
Therefore, at present, especially in the case of a panel material made of an aluminum alloy, there is a great limitation on the degree of curvature and scale of the curved portion of the panel molded product that can be molded. For this reason, in reality, the only choice was to use a material with good formability at the expense of strength (low strength) or to change the design of the panel members.
[0010]
In addition, in press forming of an aluminum alloy automobile panel, a large number of other formed portions that cause such stretch flange deformation and contraction flange deformation are generated. For example, after a press-formed panel is provided with a through hole, as shown in the sectional views of FIGS. 3 (a) and 3 (b), the through hole 22 is further expanded by a hole expanding process to form an aluminum alloy panel 21. In some cases, a flange (overhang portion, boss portion) 23 having a certain height h is formed. If there is a through hole 22 including the flange 23, it is easy to attach another component such as a bolt or a fastening jig via a washer or the like. Further, the flange 23 having a certain height h 1 serves as a guide for preventing displacement of these shafts when attaching a fastening jig such as a bolt. Also, due to the increase in the joining area and joining length by the flange 23, even if the aluminum alloy panel 21 is a thin plate, the length necessary for fixing the shaft (member) such as the bolt is secured, and other parts and fastenings are made. Fixing of the jig and bonding strength can also be secured. These effects increase as the height h 2 of the flange 23 increases. Further, in addition to the above advantages, the rigidity of the aluminum alloy panel 21 is increased by providing a predetermined number of the flanges 23 irrespective of attachment of other parts or fastening jigs, as compared with a flat aluminum alloy panel. It is possible.
[0011]
In order to form the flange 23 having such a constant height in the through hole 22 of the aluminum alloy panel, first, the through hole 22 is provided by a punching process shown in FIG. 22 is expanded. However, this hole enlarging process is a press process accompanied by the stretch flange deformation, and in such a press process, the amount of strain applied to the material of the deformed portion increases due to the stretch flange deformation. For this reason, cracks that penetrate the plate thickness from the edge (end face) of the flange 23 tend to occur. This crack is more likely to occur as the height h 2 of the flange 23 increases. Also, the higher the strength of the aluminum alloy panel and the thinner the plate thickness is 5 mm or less, the more remarkable. When this crack occurs, a fatal problem arises in that the processed aluminum alloy plate panel cannot be used for a structure or the like.
[0012]
On the other hand, application of electromagnetic molding technology has been proposed as a new molding technology for panels and the like. Electromagnetic forming itself instantaneously applies (discharges) electric energy (charge) stored at a high voltage to a current-carrying coil, and forms an extremely short-time strong magnetic field. Utilizing the fact that the placed work (workpiece, metal member) is subjected to strong expansion and contraction by the repulsive force of the magnetic field (Lorentz force according to Fleming's left hand rule) and plastically deforms at high speed. This is a technique for plastically processing or forming a work into a predetermined shape.
[0013]
This electromagnetic molding is intended for molding metal members such as metal plates and tubes, which are highly conductive and easily generate eddy current, and are used for forming plates, expanding tubes, contracting tubes, and tube ends. Promising for molding. In particular, an aluminum alloy is a good conductor of electricity and is a material suitable for this electromagnetic forming.
[0014]
As a specific example of the application of forming an aluminum alloy plate, use for forming an aluminum alloy can body (plate) has been proposed (for example, see Patent Document 1). Further, use for forming ribs (projections) on an aluminum alloy core plate (plate) has been proposed (for example, see Patent Document 2). Further, as a more specific electromagnetic forming method of a plate, a coil having a shape corresponding to the plate portion to be formed is provided close to the surface side of the plate, while the mold forming surface is close to the opposite surface side of the plate. An aluminum alloy plate formed by applying electric energy to the coil to deform the plate portion to be formed and pressing only one side of the deformed plate surface against the mold forming surface to form a predetermined curved surface shape Has been proposed (see Non-Patent Document 1).
[0015]
[Patent Document 1]
JP-A-9-29370 (pages 1-2, FIG. 1)
[Patent Document 2]
JP-A-1998-156461 (pages 1 and 2, FIG. 1)
[Non-patent document 1]
Toshio Sano and four others, "Study on Plastic Working Using Electromagnetic Force", "Mechanical Engineering Laboratory Report No. 150", published in March 1990, Mechanical Engineering Laboratory (Chapter 3
Forming of board, pp. 7-28)
[0016]
If this electromagnetic forming method can be applied to a formed portion that undergoes stretch flange deformation or shrink flange deformation, such as overhang forming of the curved portion of the aluminum alloy panel, it is possible to solve various problems of forming defects such as cracks and shape defects. .
[0017]
[Problems to be solved by the invention]
However, electromagnetic forming of automotive aluminum alloy panels has not yet been put to practical use. This is due to the fact that it is more difficult to form aluminum alloy plates by electromagnetic forming than to form other shapes such as expanding and contracting tubes. Also, in electromagnetic forming of aluminum alloy panels for automobiles, the area of the formed part of the aluminum alloy plate is large (wide). As the area of the portion to be formed of the aluminum alloy plate is larger, the size of the coil required to have a size corresponding to the portion to be formed is also increased, and there is a problem that the production of the coil itself becomes difficult and expensive. For this reason, electromagnetic forming has not been applied to forming automotive aluminum alloy panels.
[0018]
The present invention has been made in view of such circumstances, and an object of the present invention is to form an aluminum alloy automobile panel in a shape portion that becomes stretched or deformed when pressed and formed. Another object of the present invention is to provide a method for forming an aluminum alloy automobile panel.
[0019]
[Means for Solving the Problems]
The gist of the method for forming an aluminum alloy automobile panel according to the present invention for achieving the above object is a method for molding an aluminum alloy automobile panel by press molding, and the shape that causes stretch flange deformation or contraction flange deformation when pressed. The molding of the portion is performed by electromagnetic molding.
[0020]
In the present invention, a shape portion such as a curved surface shape which is deformed by stretch flange deformation or contraction flange deformation during normal press forming is selected, and finish forming or preliminary forming of the limited shape portion is performed by electromagnetic forming. Other easily press-formed panel parts are basically formed by normal press forming. As described above, by performing the electromagnetic molding in combination with the normal press molding, the area and the size of the panel portion to be electromagnetically formed are limited, and the size of the coil corresponding to the outer panel portion to be formed is also limited. This facilitates electromagnetic forming and coil production. This makes it possible to apply electromagnetic forming to an aluminum alloy automobile panel and to form the shaped portion.
[0021]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the method for forming an aluminum alloy automobile panel of the present invention will be described with reference to the drawings.
[0022]
2 (a), (b) and (c) show a method of forming the outer panel molded product of FIG. 1 (a) by electromagnetic molding after press molding. First, FIG. 2A shows a normal press forming method prior to electromagnetic forming, and is a cross-sectional view of a press forming apparatus including a mold. In the press forming shown in FIG. 2A, the panel molded product 1 shown in FIG. 1A except for curved portions such as the curved side wall portions 3a and 3b and the curved flange portions 4a and 4b which are curved in a large arc shape. Press-forming into a pre-molded product having a substantially HAT shape as shown in a perspective view in b). In FIG. 1 (b), circled portions are portions corresponding to the arc-shaped curved side wall portions 3a, 3b formed by electromagnetic molding described later.
[0023]
In FIG. 2A, a die (die) 6 has a forming part 6a of a product part 2 of the panel molded product 1 and a die face 6b forming a flange part 4 around the product part. Are provided with draw bead portions 9a and 9b.
[0024]
The panel material (blank) 5 made of an aluminum alloy plate is applied with a wrinkle suppressing force by a blank holder 8 at the time of molding, and is provided with a material passage resistance by draw beads 9a and 9b. 6a, and a substantially HAT type pre-molded product shown in FIG. 1 (b) is press-molded.
[0025]
Next, FIGS. 2B and 2C show a case where the arc-shaped curved side wall portions 3a and 3b of the outer panel molded product of FIG. 1A are partially formed by electromagnetic forming. First, as shown in a partially enlarged view in FIG. 2 (b), a punch 7 having a molding surface 7a having an arcuate curved shape is provided on a portion 3a corresponding to the arcuate curved side wall portion of the panel material 5. Are provided close to each other from inside.
[0026]
Then, as shown in FIG. 2C, the electromagnetic forming coil 10a having a shape corresponding to the portion 3a corresponding to the arc-shaped curved side wall portion is moved outward from the portion 3a corresponding to the arc-shaped curved side wall portion. Is provided close to. Then, electric energy is applied to the electromagnetic forming coil 10a to deform the formed portion of the panel material 5 in the direction of the arrow, and the deformed panel formed portion is pressed against the forming surface 7a of the punch 7 to form the outer panel. The arcuate curved side wall portions 3a and 3b of the product are formed. The portion 3b corresponding to the other arcuate curved side wall portion is similarly electromagnetically formed.
[0027]
According to the electromagnetic forming in combination with such press forming, the arc-shaped curved side wall portion is not deformed at a low speed as in the conventional press forming, but an extremely high-speed stretch flange deformation occurs. No crack X 1 occurs in the part. Further, since the molding is performed using a mold such as the molding surface 7a of the punch 7, the shape accuracy is high. In addition, since the entire press-formed product is not electromagnetically formed but only partially electromagnetically formed, the coil required to have a size corresponding to the portion to be formed can be relatively small, and the coil itself can be manufactured. Is easy, has a long life and is inexpensive.
[0028]
Here, the coil 10a shown in FIG. 2 (c) has an area (size) corresponding to the panel portion to be formed and a substantially rectangular shape. When the area of the coil 10a is smaller than the panel portion to be molded, the outer panel molded product is not accurately formed with respect to the designed product shape. Conversely, if the size is too large, the outer panel molded product will not have the same shape accuracy as the molded product design shape, making it difficult to manufacture the coil and shortening the coil life.
[0029]
The coil 10a is provided close to the surface of the panel 5 as shown in FIG. If the distance (spacing) between the coil 10a and the surface of the panel 5 is too long (large), the electric energy applied to the coil 10a is lost without being efficiently used for forming (deforming) the panel portion, and the molded product is lost. The shape accuracy of the panel molded product with respect to the design shape is not high.
[0030]
On the other hand, the molding surface 7a of the punch 7 serving as a mold is also provided close to the opposite surface side of the panel 5. If the distance (spacing) between the molding surface 7a and the surface of the panel 5 is too large (large), the deformed panel portion is deformed by the input of electric energy to the coil 10a (the molding surface 7a of the punch 7). ) Is not pressed with a large pressing force. As a result, the shape accuracy of the panel molded product with respect to the design shape of the molded product is not high.
[0031]
In addition, as a result of not being pressed with a large pressing force, the pressed molded panel portion does not work harden. As a result, the strength of the molded panel portion cannot be increased, and the dent resistance of the molded panel portion cannot be improved. This work hardening function becomes more important as the required characteristics of the dent resistance for the panel become higher.
[0032]
In the electromagnetic forming according to the present invention, the size of the panel portion, the generated plate thickness, and the work accuracy of the formed portion are improved by performing the electromagnetic forming only once to improve the shape accuracy of the panel formed product with respect to the design shape of the formed product. The amount of electric energy input to the coil is preferably 7.3 kJ or more, although it depends on the molding conditions such as the amount of reduction, material properties, and the amount of input electric energy. If it is less than 7.3 kJ, the amount of electric energy applied to the coil per operation is small, so that a panel molded product satisfying dimensional accuracy and shape accuracy cannot be formed. In addition, it is more likely that the formed panel molded product portion is hardened by work, and the strength reduction due to the reduced thickness of the flange cannot be compensated.
[0033]
The reason why the electromagnetic forming of a plate described in the aforementioned Mechanical Engineering Research Institute Report No. 150 was difficult was that the amount of electric energy input per one time was about 7.2 kJ or less at most due to restrictions such as coils. This was largely due to the low level of
[0034]
In addition, in order to prevent softening of the formed metal member and promote work hardening, the series of electromagnetic forming in the present invention is preferably performed in a state where the sheet material is at room temperature (electromagnetic forming is performed at room temperature). However, the normal temperature, including room temperature, allows a temperature rise that does not soften. In addition, if the work hardening amount can be ensured after the shape accuracy is obtained, it is permitted to perform electromagnetic forming at a low temperature, such as a high temperature or a very low temperature, depending on a material or a member shape.
[0035]
Aluminum alloys used for molding in the present invention are generally used in applications such as this kind of structural material, and aluminum alloys such as 5000 series and 6000 series specified in AA to JIS standards have high formability and high strength. It is preferable because it has both functions. Al-Mg-based 5000-based aluminum alloys are preferable in that they have a large amount of work hardening during electromagnetic forming and high formability. Also, the Al-Mg-Si-based 6000 series aluminum alloy has artificial age hardening (baked hard property), which makes it easy to mold in a low proof stress state, and can increase the yield strength by artificial age hardening after molding. It is preferred in that respect. Of course, other aluminum alloys can be electromagnetically formed and can be selected according to the application and required characteristics.
[0036]
Here, the coil used for electromagnetic molding preferably has a planar shape corresponding to the panel molded part shape, such as a coil 10 shown in a cross section in FIG. A conductor element wire 11 having a square (or rectangular) cross section, buried in a plane and wound in a plane, an insulating material 12 wound outside the conductor element element 11 itself, and the outside of the conductor element element 11. And an insulating substance 13 disposed on the front side. Adjacent conductor strands 11 are closely contacted so that there is no gap, and the thickness of the insulating layer is uniform. Further, the wire surfaces are wound and arranged so as to be parallel. As these insulating substances, a fiber reinforced resin obtained by impregnating glass fibers with an epoxy resin or the like is preferably used.
[0037]
By the use of such a fiber reinforced resin and the above-mentioned respective insulators, and the arrangement of the conductor strands such as copper wires, the periphery of the conductor strands is reinforced, and even when subjected to a strong expansion force when energizing the coil. In addition, deformation of the conductor strand itself and damage to the insulating layer are reduced. Furthermore, since the conductor strands are arranged so that the surfaces of adjacent conductor strands are parallel to each other, there is no room for unnecessary voids to enter during resin impregnation and impairing the insulation.
[0038]
Next, a method for forming a flange in a through hole of the aluminum alloy panel will be described with reference to FIG. First, a method of providing a through hole in a panel is performed by a normal punching process shown in FIG. That is, as shown in the cross-sectional view of the pressing die in FIG. 4A, a shear (shear) load is applied to the aluminum alloy panel 21 after the press forming by the cooperation of the die 25, the punch 24, and the plate holder 26. In addition, a perforation process is performed to provide a predetermined diameter d (the diameter d of the punch 24) and a predetermined number of through holes 22. The diameter of the through hole 22 to be stamped is the diameter d of the punch 24, but is determined by the diameter of the hole required for mounting other structural parts. Also, the number and spacing of the through holes 22 are determined by the relationship with the required number and spacing of other structural components (including fastening jigs) such as the bolts to be attached.
[0039]
In FIG. 4A, c is a clearance between the inner diameter of the die 25 and the outer diameter of the punch 24. In this case, it is preferable that the clearance is in the range of 15 to 25% of the plate thickness of the aluminum alloy plate to be processed, more specifically, in the range of 20 to 25%. If the clearance is too small or too large, the distortion applied to the periphery of the through hole 22 during the punching process increases. If the clearance is too large, a defective shape such as a burr is likely to occur at the edge of the through hole 22 during the punching process.
[0040]
Further, various conditions of the press working die, such as the shoulder R (diameter) of the corner of the die 25 and the shoulder R (diameter) of the corner of the punch 24, are determined by selecting the clearance between the die and the punch, and the The conditions under which punching can be performed are appropriately selected according to the diameter d.
[0041]
Next, as shown in FIGS. 4B and 4C, the through hole 22 is expanded to form a small flange 23. This hole enlarging process is a preforming for forming the flange 23 to a required height h 2 by electromagnetic forming described later. Accordingly, the height of the flange 23 in this hole expanding process is set low so as not to cause the above-described cracking, and is set to a height which is easily set to a height h required by electromagnetic molding described later. The flange 23 shown in FIG. 4B has a reduced diameter portion (flange portion) 23a required for the fastening structure at the upper end, and the flange 23 shown in FIG. Having.
[0042]
Further, the flange of FIG. 4 (b) and the flange of FIG. 4 (c), which have been subjected to the hole expansion processing, are connected to the flange 23 having a predetermined height h as shown in FIGS. 5 (a) and 5 (b). Electromagnetic molding. The height h of the flange 23 depends on the required guide length of other structural components (including the fastening jig) such as the bolts to be attached, the length required for fixing or joining, or the required rigidity improvement of the aluminum alloy panel. Is determined.
[0043]
As shown in FIGS. 5A and 5B, an electromagnetic forming coil 10b having, for example, a circular shape corresponding to the flange 23 is provided close to the inside of the flange 23. Then, electric energy is applied to the electromagnetic forming coil 10b to deform the molded portion of the panel material 21 in the direction of the arrow, and the deformed panel molded portion is pressed against the molding surface 28a of the die 28 to form a flange. 23 is formed to have a predetermined height h and a shape.
[0044]
At this time, in the electromagnetic molding, the strain rate applied to the material of the flange deformed portion is extremely high as compared with the conventional hole expanding process. As a result, cracks that penetrate the plate thickness starting from the edge (end face) of the flange do not occur. In addition, not all of the hole expansion processing is performed by electromagnetic molding, but only partial electromagnetic molding, so that the amount of electric energy input per electromagnetic molding can be small, and the coil itself can be easily manufactured, and the life is long. And it becomes cheap.
[0045]
Also, in the present invention, the outer peripheral portion (contour portion) of the outer panel to be hemmed is not only a linear peripheral shape but also an arc-shaped (curved) peripheral shape having a constant radius of curvature. In this case, it can be applied instead of the conventional hemming. In other words, in the arc-shaped peripheral edge portion, at the time of hemming, the flange becomes a stretch flange or a shrinking flange, and the actual outer contour of the peripheral edge portion of the hemmed portion after the hemming is designed or assumed in advance. The outer contour of the periphery of the hem after the hemming will be slightly larger or smaller, and the R part will not be sharper than the original design shape. However, there is a problem that the shape accuracy is not high, such as that the arc shape is not.
[0046]
When the outer contour of the peripheral edge of the hem in such a panel is misaligned, the outer contour of the panel may be misaligned with the outer contour of another straight portion, or a hood, a fender, a door, a roof, and a trunk of an automobile may be displaced. The dimensional accuracy of the outer contour of the panel structure such as the lid is reduced, and the panel structure has a large adverse effect on assembly and joining with other panels and frames.
[0047]
On the other hand, in the normal hemming, in particular, the pre-hem process or the down-flange process, which causes the deformation of the stretch flange or the contraction of the flange, is replaced by electromagnetic forming, respectively or together. In this way, the 90 ° or 135 ° bending deformation of the panel end in the prehem process or the down flange process does not become the extension flange deformation or the contraction flange deformation, and the dimensional accuracy of the outer contour of the panel structure is reduced. Get higher. Then, after that, a conventional or ordinary flat hemming process or a rope hemming process may be performed to further bend and form by 180 °.
[0048]
【The invention's effect】
As described above, according to the present invention, by combining press molding and electromagnetic molding, stretch flange deformation or contraction flange deformation occurs in press molding, and a shape portion where molding failure is likely to occur, molding failure occurs. It can be molded without using. In addition, there is also an effect that the electromagnetic molding itself can be realized by the partial electromagnetic molding of the shape portion where the molding failure easily occurs. Further, since it is possible to form an aluminum alloy into a panel having a shape that is usually difficult to form, it is very significant that the use of the aluminum alloy can be expanded.
[Brief description of the drawings]
FIG. 1 is a perspective view showing a press-formed product of a panel, in which (a) shows a press-formed product, and (b) shows an embodiment of a pre-formed product of (a).
FIGS. 2A and 2B are cross-sectional views showing modes of a molding method according to the present invention, in which (a) shows press forming and (b) and (c) show electromagnetic forming of the press-formed product of (a).
FIGS. 3 (a) and 3 (b) are cross-sectional views each showing a panel-expanded molded product.
FIG. 4 is a sectional view showing one embodiment of a forming method of the present invention, in which (a) shows one embodiment of punching (press forming), and (b) and (c) shows one embodiment of hole expanding (press forming). .
FIG. 5 is a cross-sectional view showing an embodiment of the electromagnetic molding of the present invention, following FIG. 4, in which (a) shows one embodiment of the forming flange, and (b) shows another embodiment of the forming flange.
[Explanation of symbols]
1: Panel molded product, 2: Molded product part, 3: Vertical wall part, 4: Flange part,
5: aluminum alloy blank, 6: mold, 7: punch, 8: plate holder, 9: bead,
10: electromagnetic coil, 11: conductor wire, 12: insulating material, 13: insulating material, 14: resin
21: Aluminum alloy panel, 22: Hole, 23: Flange, 24: Punch,
25: die, 26: plate holder, 27: punch, 28: flange

Claims (5)

プレス成形によってアルミニウム合金自動車パネルを成形する方法であって、プレス成形される際に伸びフランジ変形または縮みフランジ変形となる形状部分の成形を電磁成形により行うことを特徴とするアルミニウム合金自動車パネルの成形方法。A method of forming an aluminum alloy automobile panel by press molding, wherein the forming of a shape portion that undergoes stretch flange deformation or contraction flange deformation during press molding is performed by electromagnetic molding. Method. 前記電磁成形の際に、前記伸びフランジ変形または縮みフランジ変形となる形状部分に対応した形状を有するコイルを、当該成形部分の一方の表面に近接させて設けるとともに、金型成形面を前記パネルの当該成形部分の他方の表面に近接させて設け、前記コイルに電気エネルギーを投入して、前記パネルの当該成形部分を変形させるとともに、この変形したパネル成形部分を前記金型成形面に押圧して、前記形状部分の成形を行う請求項1に記載のアルミニウム合金自動車パネルの成形方法。At the time of the electromagnetic molding, a coil having a shape corresponding to the shape portion that becomes the stretch flange deformation or the contraction flange deformation is provided close to one surface of the formed portion, and a mold forming surface of the panel is formed. Provided close to the other surface of the molded part, applying electric energy to the coil to deform the molded part of the panel, and pressing the deformed panel molded part against the mold molding surface 2. The method for forming an aluminum alloy automobile panel according to claim 1, wherein the shape portion is formed. 前記電磁成形の際の投入電気エネルギーを7.3kJ 以上とする請求項1または2に記載のアルミニウム合金自動車パネルの成形方法。The method for forming an aluminum alloy automobile panel according to claim 1 or 2, wherein the input electric energy at the time of the electromagnetic forming is 7.3 kJk or more. 前記アルミニウム合金がAl−Mg−Si系アルミニウム合金である請求項1乃至3のいずれか1項に記載のアルミニウム合金自動車パネルの成形方法。The method for forming an aluminum alloy automobile panel according to any one of claims 1 to 3, wherein the aluminum alloy is an Al-Mg-Si-based aluminum alloy. 前記成形したパネル部分を加工硬化させてパネルの剛性を高めた請求項1乃至4のいずれか1項に記載のアルミニウム合金自動車パネルの成形方法。The method of forming an aluminum alloy automobile panel according to any one of claims 1 to 4, wherein the formed panel portion is work-hardened to increase the rigidity of the panel.
JP2002297684A 2002-10-10 2002-10-10 Aluminum alloy automotive panel forming method Expired - Fee Related JP4199983B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002297684A JP4199983B2 (en) 2002-10-10 2002-10-10 Aluminum alloy automotive panel forming method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002297684A JP4199983B2 (en) 2002-10-10 2002-10-10 Aluminum alloy automotive panel forming method

Publications (2)

Publication Number Publication Date
JP2004130350A true JP2004130350A (en) 2004-04-30
JP4199983B2 JP4199983B2 (en) 2008-12-24

Family

ID=32287322

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002297684A Expired - Fee Related JP4199983B2 (en) 2002-10-10 2002-10-10 Aluminum alloy automotive panel forming method

Country Status (1)

Country Link
JP (1) JP4199983B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007333132A (en) * 2006-06-16 2007-12-27 Kokusan Buhin Kogyo Kk Metal gasket
US7637137B2 (en) 2007-12-11 2009-12-29 Kobe Steel, Ltd. Press forming method of formed member with flange
CN105127284A (en) * 2015-09-29 2015-12-09 华中科技大学 Hierarchically-controlled electromagnetic incremental forming method
CN105537387A (en) * 2015-12-15 2016-05-04 常熟市强盛冲压件有限公司 Punching forming process for automobile covering part
JP2020514066A (en) * 2017-01-18 2020-05-21 エイディエム28・エスアーエルエル Device and associated method for stamping by magnetic forming
CN113118275A (en) * 2019-12-31 2021-07-16 中国第一汽车股份有限公司 Cylindrical ultra-deep aluminum alloy fender superplastic forming process method
CN114769406A (en) * 2022-04-21 2022-07-22 三峡大学 Multi-workpiece simultaneous forming method and forming device adopting multi-bulge annular magnetic collectors
WO2023245954A1 (en) * 2022-06-21 2023-12-28 四川航天长征装备制造有限公司 Device and method for electromagnetic edge turning of side hole in high-strength aluminum alloy ellipsoidal thin-wall member

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007333132A (en) * 2006-06-16 2007-12-27 Kokusan Buhin Kogyo Kk Metal gasket
US7637137B2 (en) 2007-12-11 2009-12-29 Kobe Steel, Ltd. Press forming method of formed member with flange
CN105127284A (en) * 2015-09-29 2015-12-09 华中科技大学 Hierarchically-controlled electromagnetic incremental forming method
CN105537387A (en) * 2015-12-15 2016-05-04 常熟市强盛冲压件有限公司 Punching forming process for automobile covering part
JP2020514066A (en) * 2017-01-18 2020-05-21 エイディエム28・エスアーエルエル Device and associated method for stamping by magnetic forming
CN113118275A (en) * 2019-12-31 2021-07-16 中国第一汽车股份有限公司 Cylindrical ultra-deep aluminum alloy fender superplastic forming process method
CN114769406A (en) * 2022-04-21 2022-07-22 三峡大学 Multi-workpiece simultaneous forming method and forming device adopting multi-bulge annular magnetic collectors
CN114769406B (en) * 2022-04-21 2024-03-12 三峡大学 Multi-workpiece simultaneous forming method and device adopting multi-bulge annular magnetic collector
WO2023245954A1 (en) * 2022-06-21 2023-12-28 四川航天长征装备制造有限公司 Device and method for electromagnetic edge turning of side hole in high-strength aluminum alloy ellipsoidal thin-wall member

Also Published As

Publication number Publication date
JP4199983B2 (en) 2008-12-24

Similar Documents

Publication Publication Date Title
KR102028068B1 (en) Manufacturing Method of Panel Shaped Product
CA2736556C (en) Closed structure parts, method and press forming apparatus for manufacturing the same
JPWO2014050973A1 (en) Manufacturing method of center pillar reinforcement
CN105188982A (en) Blank, molded plate, method of manufacturing press-molded product and press-molded product
KR101579028B1 (en) Method for manufacturing closed-structure part and apparatus for the same
JP6728077B2 (en) Structural member
EP1503873B1 (en) Method for hemming
JP2004130349A (en) Method for forming aluminum alloy outer panel
JP4199983B2 (en) Aluminum alloy automotive panel forming method
KR101999944B1 (en) Press-formed parts for automobile body and manufacturing method thereof
JP4061189B2 (en) Molding method for automobile panel
RU2671028C1 (en) Stamped product and method of production and line of production equipment for obtaining stamped articles
JP5206805B2 (en) Manufacturing method and apparatus for closed-section structural parts
JP2019005803A (en) Press molded article production method
Papaioanu et al. Further development of the SCS stretch-forming technology with assistance of forming simulation
KR102196701B1 (en) Drawing molded article for automobile structural members, method for manufacturing drawing molded article for automobile structural members, and apparatus for manufacturing drawing molded article for automobile structural members
KR102360563B1 (en) Shaping method for beam of vehicle
Abe et al. Assembly of ultra-high strength steel hollow part by hemming using pre-bent inner sheet
JP2020121336A (en) Method for manufacturing vehicle structure member
JP2002120026A (en) Method for forming decorative hole of disk for car wheel
KR20190126113A (en) Molded article, structural member, and method of manufacturing the molded article
JP2021095013A (en) Component having shrink flange
JP2023075017A (en) Press molding method and manufacturing method of press formed product
JP2022016873A (en) Press-molding method and press-molding die
JPH04178219A (en) Press bending method for composite metallic sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050915

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080307

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080318

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080701

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080901

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080930

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081006

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111010

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4199983

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111010

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121010

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131010

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees