JP2004129964A - Intra-skull embedded type cerebrum cooling unit and brain wave control system using the same - Google Patents

Intra-skull embedded type cerebrum cooling unit and brain wave control system using the same Download PDF

Info

Publication number
JP2004129964A
JP2004129964A JP2002299679A JP2002299679A JP2004129964A JP 2004129964 A JP2004129964 A JP 2004129964A JP 2002299679 A JP2002299679 A JP 2002299679A JP 2002299679 A JP2002299679 A JP 2002299679A JP 2004129964 A JP2004129964 A JP 2004129964A
Authority
JP
Japan
Prior art keywords
heat
cooling
intracranial
electroencephalogram
generating surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002299679A
Other languages
Japanese (ja)
Other versions
JP3843054B2 (en
Inventor
Michiyasu Suzuki
鈴木 倫保
Masami Fujii
藤井 正美
Takashi Saito
斉藤 俊
Kimihiko Nakano
中野 公彦
Joji Uchiyama
内山 城司
Shuji Sugino
杉野 修二
Mikio Fujino
藤野 幹男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ARUMOURUDO KK
Original Assignee
ARUMOURUDO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ARUMOURUDO KK filed Critical ARUMOURUDO KK
Priority to JP2002299679A priority Critical patent/JP3843054B2/en
Publication of JP2004129964A publication Critical patent/JP2004129964A/en
Application granted granted Critical
Publication of JP3843054B2 publication Critical patent/JP3843054B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an intra-skull embedded type cerebrum cooling unit for efficiently cooling a region having an abnormal brain wave at a pinpoint, which is small-sized and easily handled, and a brain wave control system using the same. <P>SOLUTION: The intra-skull embedded type cerebrum cooling unit includes: one or a plurality of intra-skull electrodes 11 abutting and/or inserting to a bottom ventriculus of dura mater encephali 21 to measure the brain wave; an endotherm surface 13 provided adjacently to each of the intra-skull electrodes 11 and abutted on and/or inserted into the bottom ventriculus of dura mater encephali 21 to perform cooling; and a cooling means formed by a Peltier element 15 having a heat generating surface provided oppositely to the endotherm surface 13, where transferred heat is fed. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明が属する技術分野】
本発明は、脳波の乱れから異常部位を検出し、この異常部位を冷却する頭蓋内埋込み型大脳冷却装置及びこれを使用する脳波制御システムに関する。
【0002】
【従来の技術】
従来、てんかんで苦しむ人に対しては、抗てんかん薬等を投与する薬物治療での対処、又は、発作を起こす大脳の一部を切除したり、てんかん異常波の広がりを防止するために伝播経路を遮断したりする等の手術する外科治療での対処が行われている。
【0003】
これらの薬物治療や外科治療を行うためには、脳波を測定して、てんかんの発症部を同定したりしてその対処方法を検討する必要がある。この脳波の測定には、直接脳硬膜下腔に頭蓋内電極である薄いシート状の硬膜下電極を脳の硬膜下腔の表面に当接したり、細い棒状からなる深部電極を大脳の深部に挿入したりして測定する方法が用いられている。そして、頭蓋内電極は、頭蓋骨内の硬膜下腔の大脳の表面及び/又は深部に複数個が装填され、大脳の表面及び/又は深部からの脳波を直接測定し、異常波の発生源や、異常の分布を正確に捉え、てんかん発作焦点を同定し、記録して薬物治療や外科治療を行うために利用している。
【0004】
また、てんかんが発病した時には、大脳の異常部位の温度を23℃程度以下に冷却することによって、脳から発生するてんかん異常波が抑制でき、発作症状が緩和されることが実験的に確かめられている。
【0005】
なお、心臓外科手術においては、心臓の洞房結節部をペルチェ素子等を用いた冷却装置で冷却して患者の心臓機能を過度に抑制することなく、しかも多量の薬剤を使用しないで、心拍動を任意に抑制し且つその回復を円滑に達成できる洞房結節冷却装置が提案されている(例えば、特許文献1参照)。
また、人体等を冷却するために、熱伝導性の良い液体の入った袋状容器を複雑な曲面をした人体等に当接し、更に、ペルチェ素子の吸熱面を袋状容器に当接し、ペルチェ素子の放熱面(発熱面)及び放熱面に取り付けられた放熱装置で暖められた液体の熱を冷却する電子冷却器が提案されている(例えば、特許文献2参照)。
【0006】
【特許文献1】
特開2001−104362号公報(第1−5頁、第1図)
【特許文献2】
特開平8−166180号公報(第1−3頁、第1図)
【0007】
【発明が解決しようとする課題】
しかしながら、前述したような従来の頭蓋内埋込み型大脳冷却装置及びこれを使用する脳波制御システムには、未だ解決すべき次のような問題がある。
(1)てんかんの中には、薬物効果が小さい難治性てんかんの症例があったり、発作を起こす部位が脳の重要な役割を担う部位に存在して、脳の切除や、遮断手術が不可能な症例があったりして、薬物治療や外科治療に難渋する症例が多く存在している。
(2)大脳の温度を冷却しててんかんの発作を緩和させることにおいては、発作と同時に異常部位を即座に冷却する必要があるが異常部位を即座に冷却することが難しいので大脳全体を冷却することが考えられる。しかしながら、正常部位まで冷却が行われることになるので、正常部位への影響がある。また、発作抑制の効果も小さい。
(3)てんかん発症初期の段階では、大脳の異常部位検出のために脳波測定用の頭蓋内電極を脳硬膜下腔に埋設し脳波の測定をして異常部位を同定し、再度冷却装置を大脳の異常部位に取り付けるという方法が考えられるが、繰り返される手術で患者への苦痛が大きく、また、手術のための時間や、費用が大きく掛かる。
(4)放熱に空冷方式等を用いる場合には、冷却装置自体が大型となり、脳硬膜下腔に埋設させることができない。また、冷却装置が大きいと、正常な時の患者の行動範囲を広げることができない。
(5)吸熱に熱伝導性のよい液体が入った袋状容器を介して行おうとする場合には、人体内に埋設することに、安全性や、衛生的な問題がある。
【0008】
本発明は、かかる事情に鑑みてなされたものであって、脳波の異常部位をピンポイントで効率よく冷却することができる小型で取り扱いが容易な頭蓋内埋込み型大脳冷却装置及びこれを使用する脳波制御システムを提供することを目的とする。
【0009】
【課題を解決するための手段】
前記目的に沿う本発明に係る頭蓋内埋込み型大脳冷却装置は、脳硬膜下腔に当接及び/又は挿入して脳波を測定するための1又は複数の頭蓋内電極を有し、それぞれの頭蓋内電極毎に近接して設けられ、脳硬膜下腔に当接及び/又は挿入して冷却を行うための吸熱面と、吸熱面に対向して設けられ移送される熱が送り込まれるための発熱面を備えるペルチェ素子からなる冷却手段を有する。これにより、てんかん等に対して、薬物治療や、外科治療を行うことなく、頭蓋内電極で脳波の異常部位を同定すると同時に近接して設けられているペルチェ素子に連動させてピンポイントに冷却を行うことができるので、発作を速やかに緩和することができる。また、冷却手段がペルチェ素子を用いているので、小型で効率のよい冷却を行うことができる。更に、装置が頭蓋内電極とこれに近接させたペルチェ素子からなる冷却手段で構成されているので、診断用としても、治療用としても使用することができる。
【0010】
ここで、ペルチェ素子が半導体素子からなるのがよい。これにより、P型半導体とN型半導体を組み合わせて電流を流すことで一方に吸熱面を、他方に発熱面を形成でき、電流の大きさを変えることで吸熱面から発熱面への移送熱量をコントロールできるので、正確且つ容易に冷却温度をコントロールすることができる。また、ペルチェ素子に半導体素子を使用したものは、2種の金属を用いた場合に比較して熱の変換効率が高く、小型で、軽量で、形状の自由度があり、大きい冷却を行うことができる。更に、フロン等の冷媒を使用することなく冷却できるので、安全に取り扱うことができる。
【0011】
また、冷却手段の発熱面に移送された熱を放熱するための放熱手段を有するのがよい。これにより、発熱面に移送されてきた熱を効率よく放熱することができるので、脳硬膜下腔内での熱の滞留を防止することができる。
【0012】
更に、放熱手段が水冷方式からなり発熱面に当接して通過し、体外に延設するパイプ状の冷却水通路を有するのがよい。これにより、放熱手段は、脳硬膜下腔内に水からなる冷媒をパイプ状の冷却水通路に通すのみであるので、安全であり、しかも小型な放熱手段を構成することができる。また、発熱面の熱を容易に体外に放熱することができる。
【0013】
前記目的に沿う本発明に係る頭蓋内埋込み型大脳冷却装置は、脳硬膜下腔に当接及び/又は挿入して冷却を行うための吸熱面と、吸熱面に対向して設けられ移送される熱が送り込まれるための発熱面を備える半導体素子のペルチェ素子からなる冷却手段を有する。また、この頭蓋内埋込み型大脳冷却装置は、発熱面に送り込まれた熱を放熱するための発熱面に当接して通過するパイプ状の冷却水通路を備える水冷方式からなる放熱手段を有するのがよい。これにより、脳の異常部位が検出されている場合に、薬物治療や、外科治療を行うことなく、ペルチェ素子を用いて、小型で、しかも効率のよい冷却を異常部位に集中させてピンポイントにできるので、発作を速やかに緩和できる治療用と用いることができる。また、放熱手段が冷媒に水を用い、パイプ状の冷却水通路に通して発熱面の熱を容易に体外に放熱することができるので、安全であり、しかも小型な放熱手段を構成することができる。
【0014】
前記目的に沿う本発明に係る頭蓋内埋込み型大脳冷却装置は、脳硬膜下腔に当接及び/又は挿入して冷却を行うためのパイプ状の冷却水通路を備える水冷方式からなる放熱手段を有する。これにより、脳の異常部位が検出されている場合に、薬物治療や、外科治療を行うことなく、冷媒に冷却水を用いたパイプ状の冷却水通路に流水して直接異常部位の熱を体外に放熱することができるので、装置自体を小型で、安価にすることができる。また、冷媒に安全な冷却水を用いて、効率のよい冷却を異常部位に集中させてピンポイントにできるので、発作を速やかに緩和できる治療用と用いることができる。
【0015】
前記目的に沿う本発明に係る頭蓋内埋込み型大脳冷却装置を使用する脳波制御システムは、脳硬膜下腔に1又は複数の頭蓋内電極を当接及び/又は挿入すると同時に、それぞれの頭蓋内電極毎に近接して冷却手段を当接及び/又は挿入し、それぞれの頭蓋内電極から導出されるリード線を介して通電して脳波を測定し、脳波の異常部位を同定すると共に、異常部位に相当する冷却手段から導出され電圧調整可能な直流電源装置に接続するリード線に通電して吸熱面から発熱面に熱を移動させて冷却を行う。これにより、頭蓋内電極で正確に脳波の異常部位が同定でき、この異常部位の頭蓋内電極に近接するペルチェ素子からなる冷却手段を作動させることができ、速やかに発作を緩和させることができる。また、ペルチェ素子からなる冷却手段を用いた脳波制御システムであるので、小型で、しかも効率のよい冷却を行うことができる。更に、脳波制御システムが頭蓋内電極とこれに近接させて設置された冷却手段に通電して作動させることができ、診断用、治療用のいずれでも適用できる。
【0016】
前記目的に沿う本発明に係る頭蓋内埋込み型大脳冷却装置を使用する脳波制御システムは、脳硬膜下腔に1又は複数の頭蓋内電極を当接及び/又は挿入すると同時に、それぞれの頭蓋内電極毎に近接して冷却手段を当接及び/又は挿入し、それぞれの頭蓋内電極から導出されるリード線を介して通電して脳波を測定し、脳波の異常部位を同定すると共に、異常部位に相当する冷却手段から導出され電圧調整可能な直流電源装置に接続するリード線に通電して吸熱面から発熱面に熱を移送させ、熱を発熱面から放熱手段で放熱させる。これにより、頭蓋内電極で正確に脳波の異常部位が同定でき、この異常部位の頭蓋内電極に近接するペルチェ素子からなる冷却手段で発熱面に熱を移送し、更に、この熱を放熱手段で放熱して脳硬膜下腔内での熱の滞留を防止することができ、速やかに発作を緩和させることができる。また、ペルチェ素子からなる冷却手段と、熱を発熱面から放熱する放熱手段を用いた脳波制御システムであるので、小型で、しかも効率のよい冷却を行うことができる。更に、脳波制御システムが頭蓋内電極とこれに近接させて設置された冷却手段に通電して作動させることができ、診断用、治療用のいずれでも適用できる。特に、放熱手段がペルチェ素子の発熱面に当接して通過し、体外に延設するパイプ状の冷却水通路に冷却水を流水させる水冷方式からなる脳波制御システムの場合には、冷媒が水であるので、安全であり、しかも小型であって、発熱面の熱を容易に効率よく体外に放熱することができる。
【0017】
前記目的に沿う本発明に係る頭蓋内埋込み型大脳冷却装置を使用する脳波制御システムは、脳波の異常部位が検出された脳硬膜下腔の異常部位に冷却手段を当接及び/又は挿入し、冷却手段から導出され電圧調整可能な直流電源装置に接続するリード線に通電して吸熱面から発熱面に熱を移送させて冷却を行う。これにより、脳の異常部位が既に検出されている場合の脳波制御システムに適しており、薬物治療や、外科治療を行うことなく、ペルチェ素子で異常部位の冷却をピンポイントにできるので、発作を速やかに緩和できる治療用と用いることができる。
【0018】
前記目的に沿う本発明に係る頭蓋内埋込み型大脳冷却装置を使用する脳波制御システムは、脳波の異常部位が検出された脳硬膜下腔の異常部位に冷却手段を当接及び/又は挿入し、冷却手段から導出され電圧調整可能な直流電源装置に接続するリード線に通電して吸熱面から発熱面に熱を移送させ、発熱面に送り込まれた熱を発熱面を通過する冷却水通路に冷却水を流水する水冷方式からなる放熱手段で放熱する。これにより、脳の異常部位が既に検出されている場合の脳波制御システムに適しており、薬物治療や、外科治療を行うことなく、異常部位の冷却をペルチェ素子と放熱手段を用いてピンポイントにでき、しかも放熱手段が冷媒に水を用い、パイプ状の冷却水通路に流水して発熱面の熱を容易に体外に放熱するので、発作を速やかに緩和できる治療用と用いることができる。
【0019】
前記目的に沿う本発明に係る頭蓋内埋込み型大脳冷却装置を使用する脳波制御システムは、脳波の異常部位が検出された脳硬膜下腔の異常部位に、冷却水通路の一部を当接し、冷却水通路に冷却水を通水して放熱する。これにより、脳の異常部位が既に検出されている場合の脳波制御システムに適しており、薬物治療や、外科治療を行うことなく、異常部位の冷却を冷却水通路に冷却水を通水して異常部位を直接ピンポイントにでき、しかも、冷媒が水であるので、安全であり、熱を容易に体外に放熱して発作を速やかに緩和できる治療用と用いることができる。
【0020】
【発明の実施の形態】
続いて、添付した図面を参照しつつ、本発明を具体化した実施の形態について説明し、本発明の理解に供する。
ここに、図1は本発明の一実施の形態に係る頭蓋内埋込み型大脳冷却装置の説明図、図2(A)、(B)はそれぞれ同頭蓋内埋込み型大脳冷却装置の脳内埋設の説明図、部分拡大断面図、図3は同頭蓋内埋込み型大脳冷却装置の挿入型頭蓋内電極の説明図、図4(A)、(B)はそれぞれ同頭蓋内埋込み型大脳冷却装置に放熱手段を付加した頭蓋内埋込み型大脳冷却装置の説明図、図5は本発明の他の実施の形態に係る頭蓋内埋込み型大脳冷却装置の説明図、図6(A)、(B)はそれぞれ本発明の更に他の実施の形態に係る頭蓋内埋込み型大脳冷却装置の説明図、図7は本発明の一実施の形態に係る頭蓋内埋込み型大脳冷却装置を使用する脳波制御システムの説明図、図8は同頭蓋内埋込み型大脳冷却装置に放熱手段を付加した脳波制御システムの説明図、図9は本発明の他の実施の形態に係る頭蓋内埋込み型大脳冷却装置を使用する脳波制御システムの説明図、図10は同頭蓋内埋込み型大脳冷却装置に放熱手段を付加した脳波制御システムの説明図、図11は本発明の更に他の実施の形態に係る頭蓋内埋込み型大脳冷却装置を使用する脳波制御システムの説明図である。
【0021】
図1に示すように、本発明の一実施の形態に係る頭蓋内埋込み型大脳冷却装置10は、脳波を測定するための硬膜下電極からなる頭蓋内電極11を、シリコーン樹脂等からなる可撓性の樹脂シート12に1又は複数個(図1では8個)を接合し固定して有し、脳硬膜21(図2(B)参照)下腔の大脳の表面に平面的に当接、及び/又は、大脳の深部に垂直的に挿入できる深部電極からなる頭蓋内電極11(図示せず)を、シリコーン樹脂等からなる可撓性の棒状体22(図3参照)に1又は複数個を接合し固定して有し、脳硬膜21下腔の大脳の深部に垂直的に挿入して有している。また、この頭蓋内埋込み型大脳冷却装置10は、それぞれの頭蓋内電極11毎に近接する位置の同じ樹脂シート12、又は棒状体22に設けられ、脳硬膜21下腔の大脳の表面に平面的に当接、及び/又は、大脳の深部に垂直的に挿入して冷却を行うための1又は複数個の冷却手段(図1では平面的に当接する冷却手段が8個)を有している。
【0022】
この冷却手段は、セラミック基板の表面に熱伝導性の良い材質を接合し、吸熱面13と、吸熱面13に対向して設けられ吸熱面13と同様に形成された発熱面14を備え、吸熱面13と発熱面14の間に設けられたペルチェ素子15に電流を流すことで吸熱面13から発熱面14に熱を移送することができ、吸熱面13と接する部分を冷却することができる。そして、この頭蓋内埋込み型大脳冷却装置10は、それぞれの頭蓋内電極11及びペルチェ素子15に接続されたリード線16を体外(頭蓋外)に導出しコンピューター17で管理して、それぞれの頭蓋内電極11から送られる脳波を測定し、脳波の異常部位が検出された頭蓋内電極11に近接するペルチェ素子15に電流を流して異常部位を冷却することができるようになっている。
【0023】
ここで、図2(A)、(B)を参照しながら、本発明の一実施の形態に係る頭蓋内埋込み型大脳冷却装置10の頭蓋内電極11と、ペルチェ素子15からなる冷却手段が大脳内に装填される形態を詳細に説明する。図2(A)は樹脂シート12に接合した頭蓋内電極11と、ペルチェ素子15からなる冷却手段を頭蓋内に装填した状態を示す概略図であり、図2(B)はその部分拡大断面図を示している。頭蓋内電極11と、ペルチェ素子15からなる冷却手段は、頭蓋内電極11及びペルチェ素子15を整列させて、例えば、硬度20〜70度程度の可撓性のシリコーン樹脂等で吸熱面13及び頭蓋内電極11の電極面を外部に露出させてシート状の樹脂シート12に固定されている。また、それぞれの頭蓋内電極11及びペルチェ素子15に接続するリード線16には、樹脂被覆が施されている。そして、図2(A)に示すように、リード線16は、頭蓋内電極11と、ペルチェ素子15からなる冷却手段が頭蓋内に装填された後、一部が頭蓋内から頭蓋外に導出し、コンピュータ17(図示せず)に接続されている。なお、コンピューター17は、人が移動する場合には腰に携行できる程度の小型なものでもよい。
【0024】
図2(B)に示すように、頭蓋内に頭蓋内埋込み型大脳冷却装置10の頭蓋内電極11と、ペルチェ素子15からなる冷却手段を装填する方法は、先ず、頭皮18及び筋層19を剥離させた後、頭蓋骨20を脳波の異常部位の広がりの範囲に合わせてドリル等で切除して、開頭する。次に、頭蓋骨20の直下の脳硬膜21を切開し、脳硬膜21下腔である脳(大脳)の表面及び/又は深部(図2(B)では表面のみ)に頭蓋内電極11と、ペルチェ素子15からなる冷却手段を接合した樹脂シート12を当接及び/又は挿入(図2(B)では当接のみ)して載置する。載置後は、脳硬膜21を縫合し、更に、頭蓋骨20を数箇所でチタン製プレート等で固定する。また、リード線16は、頭蓋骨20の欠損部より導出し、更に、筋層19及び頭皮18を通過させて体外に導出している。最後に、筋層19及び頭皮18を縫合している。
【0025】
なお、頭蓋内電極11及びペルチェ素子15からなる冷却手段を脳の深部に挿入して、脳波を測定したり、異常部位を冷却する場合には、例えば、図3に示すように、棒状の先端部に深部電極の頭蓋内電極11と、頭蓋内電極11の上部にペルチェ素子15からなる冷却手段をシリコーン樹脂等からなる可撓性の棒状体22に接合し固定した形態のものがよい。また、頭蓋内電極11とペルチェ素子15からなる冷却手段を交互に複数個接合して形成した棒状体22の場合には、脳の深さ方向の色々な部分での脳波の異常部位の検出及び冷却が可能となる。
【0026】
次いで、上記の頭蓋内埋込み型大脳冷却装置10で用いられる冷却手段のペルチェ素子15は、P型半導体と、N型半導体を交互に整列させ直列に金属で接合し、直流電流を流すと一方の接合部側が低温になり、この接合部側の面である吸熱面13で吸熱を行うことができ、他方の接合部側が高温になり、この接合部側の面である発熱面14で発熱を行うことができる半導体素子からなるペルチェ素子15がよく、高いペルチェ効果を発揮することができる。また、この半導体素子からなるペルチェ素子15は、セラミック基板や半導体素子等で構成されているので、小型で、衛生面に優れ、脳内部での装填を可能にすることができる。更に、半導体素子からなるペルチェ素子15は、電流の大きさを変えることで吸熱面13から発熱面14に移送する熱量の大きさを変えることができ、精密な温度コントロールが可能である。
【0027】
上記の頭蓋内埋込み型大脳冷却装置10で用いられる冷却手段の発熱面14には、例えば、熱伝導性のよい金属を発熱面14に当接したり、水等の冷媒を通すパイプを発熱面14に当接して、発熱面14に移送された熱を放熱するための放熱手段を有するのがよく、この放熱手段によって、熱を脳内に閉じ込めることなく、体外に放出することができる。
【0028】
図4(A)、(B)に示すように、この頭蓋内埋込み型大脳冷却装置10の放熱手段は、冷却手段のペルチェ素子15の発熱面14に、例えば、体外まで延設して設けられるシリコーン樹脂等からなる可撓性のパイプ状の冷却水通路23の一部を蛇行させて当接し接着して有し、冷却水通路23に冷却水を流水することで、発熱面14の熱を体外に放熱させる水冷方式であるのがよい。てんかんの発作を緩和させるには、脳波の異常部位を23℃以下程度に冷却することで実現できるので、冷却水には20℃以下程度の水を用いることでよいが、冷却水通路23の内部を凍らせるものであってはならない。
【0029】
次いで、図5に示すように、本発明の他の実施の形態に係る頭蓋内埋込み型大脳冷却装置10aは、脳の異常部位が検出されている場合において、脳硬膜21下腔の大脳の表面に平面的に当接、及び/又は、大脳の深部に垂直的に挿入して冷却を行うための冷却手段をシリコーン樹脂等からなる可撓性の樹脂シート12や、棒状体22(図示せず)に接合し固定して有している。この冷却手段は、セラミック基板の表面に熱伝導性の良い材質を施して形成する吸熱面13と、吸熱面13に対向して設けられ吸熱面13と同様に形成された発熱面14を備え、吸熱面13と発熱面14の間に設けられたペルチェ素子15に電流を流すことで吸熱面13から発熱面14に熱を移送することができ、吸熱面13と接する部分を冷却することができる。そして、この頭蓋内埋込み型大脳冷却装置10aは、ペルチェ素子15からなる冷却手段に接続されたリード線16を頭蓋外に導出し、ペルチェ素子15に直流電源装置で電流を流して何時でも異常部位を冷却することができるようになっている。この頭蓋内埋込み型大脳冷却装置10aは、ペルチェ素子15を用いて、小型で、しかも効率のよい冷却を異常部位に集中させてピンポイントにできるので、薬物治療や、外科治療を行うことなく、発作を速やかに緩和できる治療用として用いることができる。
【0030】
この頭蓋内埋込み型大脳冷却装置10aの放熱手段は、冷却手段のペルチェ素子15の発熱面14に、例えば、図4(A)、(B)に示した形態と同様に、体外まで延設して設けられるシリコーン樹脂等からなる可撓性のパイプ状の冷却水通路23の一部を蛇行させて当接し接着して有し、冷却水通路23に冷却水を流水することで、発熱面14の熱を体外に放熱させる水冷方式であるのがよい。てんかんの発作を緩和させるには、脳波の異常部位を23℃以下程度に冷却することで実現できるので、冷却水には20℃以下程度の水を用いることでよいが、冷却水通路22の内部を凍らせるものであってはならない。
【0031】
次いで、図6に示すように、本発明の更に他の実施の形態に係る頭蓋内埋込み型大脳冷却装置10bは、脳硬膜21下腔の大脳の表面に平面的に当接、及び/又は、大脳の深部に垂直的に挿入して冷却を行うための、体外まで延設して設けられるシリコン樹脂等からなる可撓性のパイプ状の冷却水通路23を備える水冷方式からなる放熱手段を有している。この放熱手段は、冷却水通路23の一部を蛇行させて、シリコーン樹脂等からなる可撓性の樹脂シート12や、シリコーン樹脂等からなる可撓性の棒状体22(図示せず)に接合し固定して有している。この頭蓋内埋込み型大脳冷却装置10bは、脳の異常部位が検出されている場合の異常部位に直接当接し、冷却水通路23に冷却水を流水することのみで、効率のよい冷却を異常部位に集中させてピンポイントにできると同時に異常部位の熱を直接体外に放熱させることができるので、薬物治療や、外科治療を行うことなく、発作を速やかに緩和できる治療用として用いることができる。
【0032】
次いで、図7に示すように、本発明の一実施の形態に係る頭蓋内埋込み型大脳冷却装置10を使用する脳波制御システム30は、脳硬膜21下腔に、樹脂シート12に接合された1又は複数の頭蓋内電極11を当接、及び/又は、棒状体22に接合された1又は複数の頭蓋内電極11を挿入している(図7では1個の頭蓋内電極11を当接する形態で図示)。また、脳波制御システム30は、1又は複数のそれぞれの頭蓋内電極11毎に近接して、同じ樹脂シート12、又は同じ棒状体22に1又は複数のペルチェ素子15からなる冷却手段を当接、及び/又は、挿入している。そして、脳波制御システム30は、それぞれの頭蓋内電極11から導出されているリード線16を介して通電してコンピューター17で管理しながら脳波を測定している。更に、脳波制御システム30は、測定された脳波の振幅から脳波の異常部位を同定すると共に、異常部位に相当する頭蓋内電極11に近接するペルチェ素子15からなる冷却手段のペルチェ素子15から導出され、電流の大きさが変えられる直流電源装置に接続するリード線16に通電してペルチェ素子15に形成されている吸熱面13から発熱面14に熱を移動させて、吸熱面13と接する部分の異常部位の大脳部を冷却している。なお、この脳波制御システム30には、頭蓋内埋込み型大脳冷却装置10のペルチェ素子15として、高いペルチェ効果を発揮することができる半導体素子から形成されるものを用いるのがよい。
【0033】
また、本発明の一実施の形態に係る頭蓋内埋込み型大脳冷却装置10を使用する脳波制御システム30は、脳硬膜21下腔に、樹脂シート12に接合された1又は複数の頭蓋内電極11を当接、及び/又は、棒状体22に接合された1又は複数の頭蓋内電極11を挿入すると同時に、1又は複数のそれぞれの頭蓋内電極11毎に近接して、同じ樹脂シート12、又は同じ棒状体22に1又は複数のペルチェ素子15からなる冷却手段を当接、及び/又は、挿入している。そして、この脳波制御システム30は、それぞれの頭蓋内電極11から導出されているリード線16を介して通電して脳波を測定し、測定された脳波の振幅から脳波の異常部位を同定すると共に、異常部位に相当する頭蓋内電極11に近接するペルチェ素子15からなる冷却手段のペルチェ素子15から導出され、電流の大きさが変えられる直流電源装置に接続するリード線16に通電してペルチェ素子15に形成されている吸熱面13から発熱面14に熱を移動させて、吸熱面13と接する部分の異常部位の大脳部を冷却し、更に、発熱面14に移動された熱を放熱手段で放熱している。
【0034】
この脳波制御システム30は、特に、図8に示すように、ペルチェ素子15に形成されている吸熱面13から発熱面14に熱を移動させる冷却手段のためのペルチェ素子15から導出されるリード線16に通電するのと同時に、ペルチェ素子15の発熱面14に当接して通過する冷却水通路23に流水して放熱する放熱手段のある脳波制御システム30aであるのがよい。この脳波制御システム30aの放熱手段は、例えば、コンプレッサー31で加圧した保冷耐圧容器32の中に保持されている冷却水33を保冷耐圧容器32に設けられている電磁弁34を開放して流水させ、発熱面14の熱を体外に放熱させる水冷方式からなる放熱手段がよく、冷媒に安全な冷却水33を用いて、冷却水33を流水させるシステムで体外に熱を容易に放出することができる。なお、冷却水33は、コンプレッサー31の加圧が停止している時、保冷耐久容器の蓋を開けて入れるか、あるいは、保冷耐圧容器32内の圧力より大きい圧力を冷却水33にもたせて、保冷耐圧容器32内に入れることができる。
【0035】
次いで、図9に示すように、本発明の他の実施の形態に係る頭蓋内埋込み型大脳冷却装置10aを使用する脳波制御システム30bは、樹脂シート12、又は、棒状体22(図示せず)に接合した1又は複数のペルチェ素子15からなる冷却手段を脳波の異常部位が検出されている脳硬膜21下腔の異常部位に、当接、及び/又は、挿入している。そして、この脳波制御システム30bは、異常部位に当接、及び/又は、挿入するペルチェ素子15からなる冷却手段のペルチェ素子15から導出され、電流調整可能な直流電源装置に接続するリード線16に通電してペルチェ素子15に形成されている吸熱面13から発熱面14に熱を移動させて、吸熱面13と接する部分の大脳の異常部位を冷却している。
【0036】
また、本発明の他の実施の形態に係る頭蓋内埋込み型大脳冷却装置10aを使用する脳波制御システム30bは、図10に示すように、脳波の異常部位が検出されている脳硬膜21下腔の異常部位に、樹脂シート12、又は、棒状体22(図示せず)に接合した1又は複数のペルチェ素子15からなる冷却手段を当接、及び/又は、挿入し、ペルチェ素子15から導出され、電流調整可能な直流電源装置に接続するリード線16に通電してペルチェ素子15に形成されている吸熱面13から発熱面14に熱を移動させると同時に、ペルチェ素子15の発熱面14に当接して通過する冷却水通路23に冷却水を流水して放熱する水冷方式からなる放熱手段のある脳波制御システム30cであるのがよい。この脳波制御システム30cの放熱手段は、例えば、コンプレッサー31で加圧した保冷耐圧容器32の中に保持されている冷却水33を耐圧容器32に設けられている電磁弁34を開放して流水させ、発熱面14の熱を体外に放熱させる水冷方式からなり、冷媒に安全な冷却水33を用いて、冷却水33を流水させるシステムで体外に熱を容易に放出することができる。
【0037】
次いで、図11に示すように、本発明の更に他の実施の形態に係る頭蓋内埋込み型大脳冷却装置10bを使用する脳波制御システム30dは、脳波の異常部位が検出されている脳硬膜21下腔の異常部位に、冷却水通路23の一部を蛇行させて当接し接合した樹脂シート12、又は、棒状体22(図示せず)の部分を当接し、冷却水通路23に冷却水を流水して放熱する水冷方式からなる放熱手段で放熱している。この脳波制御システム30dの放熱手段は、例えば、コンプレッサー31で加圧した耐圧容器32の中に保持されている冷却水33を保冷耐圧容器32に設けられている電磁弁34を開放して流水させ、大脳の異常部位の熱を体外に放熱させる水冷方式からなり、冷媒に安全な冷却水33を用いて、冷却水33を流水させるシステムで体外に大脳の異常部位の熱を容易に直接放出することができる。
【0038】
【発明の効果】
請求項1及びこれに従属する請求項2〜4記載の頭蓋内埋込み型大脳冷却装置は、脳硬膜下腔に頭蓋内電極と、近接してペルチェ素子からなる冷却手段を有するので、てんかん等に対して、薬物治療や、外科治療を行うことなく、頭蓋内電極で脳波の異常部位を同定すると同時にペルチェ素子に連動させてピンポイントに冷却を行うことができ、発作を速やかに緩和することができる。また、ペルチェ素子によって小型で効率のよい冷却を行うことができる。更に、装置が頭蓋内電極とペルチェ素子からなる冷却手段で構成されていて、診断用としても、治療用としても使用することができる。特に、請求項2記載の頭蓋内埋込み型大脳冷却装置は、ペルチェ素子が半導体素子からなるので、正確且つ容易に冷却温度をコントロールでき、ペルチェ効果が高く、小型で、軽量で、形状の自由度がえられ、フロン等の冷媒を使用することなく冷却でき、安全である。
【0039】
また、請求項3記載の頭蓋内埋込み型大脳冷却装置は、冷却手段の発熱面に移送された熱を放熱するための放熱手段を有するので、発熱面に移送されてきた熱を効率よく放熱することができ、脳硬膜下腔内での熱の滞留を防止することができる。更に、請求項4記載の頭蓋内埋込み型大脳冷却装置は、放熱手段が水冷方式で、発熱面に当接して通過し、体外に延設するパイプ状の冷却水通路を有するので、冷媒が安全な水であり、しかも、小型な放熱手段を構成でき、発熱面の熱を容易に体外に放熱できる。
【0040】
請求項5及びこれに従属する請求項6記載の頭蓋内埋込み型大脳冷却装置は、脳硬膜下腔に冷却を行うための吸熱面と、吸熱面に対向して移送される熱が送り込まれるための発熱面を備える半導体素子のペルチェ素子からなる冷却手段を有するので、脳の異常部位が検出されている場合に、薬物治療や、外科治療を行うことなく、小型で、しかも効率のよい冷却を異常部位に集中させてピンポイントにでき、発作を速やかに緩和できる治療用と用いることができる。特に、請求項6記載の頭蓋内埋込み型大脳冷却装置は、発熱面に当接して通過するパイプ状の冷却水通路を備える放熱手段を有するので、冷却水通路に流水して発熱面の熱を容易に体外に放熱することができ、安全で、小型な放熱手段を構成できる。
【0041】
請求項7記載の頭蓋内埋込み型大脳冷却装置は、脳硬膜下腔にパイプ状の冷却水通路を備える水冷方式からなる放熱手段を有するので、脳の異常部位が検出されている場合に、薬物治療や、外科治療を行うことなく、直接異常部位の熱を体外に放熱することができ、装置自体を小型で、安価にすることができる。また、冷媒に安全な水を用いて、冷却を異常部位に集中させることができ、発作を速やかに緩和できる治療用と用いることができる。
【0042】
請求項8記載の脳波制御システムは、請求項1又は2記載の頭蓋内埋込み型大脳冷却装置を使用して、頭蓋内電極から導出されるリード線を介して通電して脳波を測定し、脳波の異常部位を同定すると共に、異常部位に相当する冷却手段から導出され電圧調整可能な直流電源装置に接続するリード線に通電して吸熱面から発熱面に熱を移動させて冷却を行うので、頭蓋内電極で脳波の異常部位が同定でき、これに近接する冷却手段を作動させ、速やかに発作を緩和させることができる。また、ペルチェ素子からなる冷却手段を用いた脳波制御システムであるので、小型で、効率のよい冷却を行うことができる。更に、脳波制御システムが頭蓋内電極とこれに近接させて設置された冷却手段に電流を変化して通電することで移送させる熱量を変化でき、診断用や、治療用に適用できる。
【0043】
請求項9記載の脳波制御システムは、請求項3又は4記載の頭蓋内埋込み型大脳冷却装置を使用して、頭蓋内電極から導出されるリード線を介して通電して脳波を測定し、脳波の異常部位を同定すると共に、異常部位に相当する冷却手段から導出され電圧調整可能な直流電源装置に接続するリード線に通電して吸熱面から発熱面に熱を移送させ、熱を発熱面から放熱手段で放熱させるので、特に、放熱手段がペルチェ素子の発熱面を通過する冷却水通路に冷却水を流水させる水冷方式からなる脳波制御システムの場合には、冷媒が安全な冷却水であり、しかも小型であって、発熱面の熱を容易に効率よく体外に放熱することができる。
【0044】
請求項10記載の脳波制御システムは、請求項5記載の頭蓋内埋込み型大脳冷却装置を使用して、脳波の異常部位が検出された異常部位の冷却手段から導出され、電流調整可能な直流電源装置に接続するリード線に通電して吸熱面から発熱面に熱を移送させて冷却を行うので、脳の異常部位が予め検出されている場合の脳波制御システムに適し、薬物治療や、外科治療を行うことなく、異常部位の冷却をピンポイントにできて発作を速やかに緩和できる治療用と用いることができる。
【0045】
請求項11記載の脳波制御システムは、請求項6記載の頭蓋内埋込み型大脳冷却装置を使用して、脳波の異常部位が検出された異常部位の冷却手段から導出され、電圧調整可能な直流電源装置に接続するリード線に通電して吸熱面から発熱面に熱を移送させ、発熱面に送り込まれた熱を発熱面を通過する冷却水通路に冷却水を流水する水冷方式からなる放熱手段で放熱するので、脳の異常部位が予め検出されている場合の脳波制御システムに適し、薬物治療や、外科治療を行うことなく、異常部位の冷却をピンポイントにでき、しかも放熱手段の冷媒が冷却水で、冷却水通路に流水して発熱面の熱を容易に体外に放熱するので、発作を速やかに緩和できる治療用と用いることができる。
【0046】
請求項12記載の脳波制御システムは、請求項7記載の頭蓋内埋込み型大脳冷却装置を使用して、脳波の異常部位が検出された異常部位に、冷却水通路の一部を当接し、冷却水通路に冷却水を通水して放熱するので、脳の異常部位が予め検出されている場合の脳波制御システムに適し、薬物治療や、外科治療を行うことなく、異常部位の冷却を冷却水通路に冷却水を通水して直接ピンポイントにでき、しかも、冷媒が安全な冷却水であり、熱を容易に体外に放熱して発作を速やかに緩和できる治療用と用いることができる。
【図面の簡単な説明】
【図1】本発明の一実施の形態に係る頭蓋内埋込み型大脳冷却装置の説明図である。
【図2】(A)、(B)はそれぞれ同頭蓋内埋込み型大脳冷却装置の脳内埋設の説明図、部分拡大断面図である。
【図3】同頭蓋内埋込み型大脳冷却装置の挿入型頭蓋内電極の説明図である。
【図4】(A)、(B)はそれぞれ同頭蓋内埋込み型大脳冷却装置に放熱手段を付加した頭蓋内埋込み型大脳冷却装置の説明図である。
【図5】本発明の他の実施の形態に係る頭蓋内埋込み型大脳冷却装置の説明図である。
【図6】(A)、(B)はそれぞれ本発明の更に他の実施の形態に係る頭蓋内埋込み型大脳冷却装置の説明図である。
【図7】本発明の一実施の形態に係る頭蓋内埋込み型大脳冷却装置を使用する脳波制御システムの説明図である。
【図8】同頭蓋内埋込み型大脳冷却装置に放熱手段を付加した脳波制御システムの説明図である。
【図9】本発明の他の実施の形態に係る頭蓋内埋込み型大脳冷却装置を使用する脳波制御システムの説明図である。
【図10】同頭蓋内埋込み型大脳冷却装置に放熱手段を付加した脳波制御システムの説明図である。
【図11】本発明の更に他の実施の形態に係る頭蓋内埋込み型大脳冷却装置を使用する脳波制御システムの説明図である。
【符号の説明】
10、10a、10b:頭蓋内埋込み型大脳冷却装置、11:頭蓋内電極、12:樹脂シート、13:吸熱面、14:発熱面、15:ペルチェ素子、16:リード線、17:コンピューター、18:頭皮、19:筋層、20:頭蓋骨、21:脳硬膜、22:棒状体、23:冷却水通路、30、30a、30b、30c、30d:脳波制御システム、31:コンプレッサー、32:保冷耐圧容器、33:冷却水、34:電磁弁
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an intracranial implantable cerebral cooling device that detects an abnormal site from disturbances in brain waves and cools the abnormal site, and an electroencephalogram control system using the same.
[0002]
[Prior art]
Conventionally, for people suffering from epilepsy, treatment with drug therapy that administers antiepileptic drugs, or removal of part of the cerebrum that causes seizures, and propagation routes to prevent the spread of abnormal epileptic waves Surgical treatments such as shutting off or performing other operations have been taken.
[0003]
In order to perform these drug treatments and surgical treatments, it is necessary to measure brain waves and identify the onset of epilepsy, and to study a coping method. To measure the EEG, a thin sheet-shaped subdural electrode, which is an intracranial electrode, is directly in contact with the surface of the brain's subdural space, or a thin rod-shaped deep electrode is connected to the cerebral space. A method of measuring by inserting into a deep part is used. A plurality of intracranial electrodes are mounted on the surface and / or deep part of the cerebrum in the subdural space in the skull bone, directly measure brain waves from the surface and / or deep part of the cerebrum, It accurately captures the distribution of abnormalities, identifies and records epileptic seizure foci, and uses them to perform drug and surgical treatments.
[0004]
Also, when epilepsy develops, it has been experimentally confirmed that by cooling the temperature of abnormal regions of the cerebrum to about 23 ° C. or less, abnormal epileptic waves generated from the brain can be suppressed and seizure symptoms are alleviated. I have.
[0005]
In cardiac surgery, the sinoatrial node of the heart is cooled by a cooling device using a Peltier device or the like, so that the heartbeat of the patient can be controlled without excessively suppressing the heart function of the patient and without using a large amount of medicine. A sinoatrial node cooling device that can be arbitrarily suppressed and smoothly achieve its recovery has been proposed (for example, see Patent Document 1).
In addition, in order to cool the human body, a bag-like container containing a liquid having good heat conductivity is brought into contact with a human body having a complicated curved surface, and further, the heat absorbing surface of the Peltier element is brought into contact with the bag-like container, and the Peltier element is cooled. There has been proposed an electronic cooler that cools the heat of a liquid heated by a heat radiating surface (heat generating surface) of a device and a heat radiating device attached to the heat radiating surface (for example, see Patent Document 2).
[0006]
[Patent Document 1]
JP 2001-104362 A (Pages 1-5, FIG. 1)
[Patent Document 2]
JP-A-8-166180 (pages 1-3, FIG. 1)
[0007]
[Problems to be solved by the invention]
However, the conventional intracranial implantable cerebral cooling device and the electroencephalogram control system using the same have the following problems to be solved.
(1) In epilepsy, there are cases of intractable epilepsy with little drug effect, or the site where seizures occur is located in a site that plays an important role in the brain, and it is not possible to resect or cut off the brain There are many cases in which drug treatment and surgical treatment are difficult due to some cases.
(2) To reduce epileptic seizures by cooling the temperature of the cerebrum, it is necessary to immediately cool the abnormal part simultaneously with the seizure, but it is difficult to cool the abnormal part immediately, so the whole cerebrum is cooled. It is possible. However, since the cooling is performed to the normal part, there is an effect on the normal part. Also, the effect of suppressing seizures is small.
(3) In the early stage of epilepsy, an intracranial electrode for measuring electroencephalogram is buried in the subdural space to detect an abnormal part of the cerebrum, the electroencephalogram is measured, the abnormal part is identified, and the cooling device is again mounted. A method of attaching to an abnormal part of the cerebrum is conceivable, but repeated operations cause great pain to the patient, and require much time and cost for the operation.
(4) When an air cooling system or the like is used for heat radiation, the cooling device itself becomes large and cannot be implanted in the subdural space. In addition, if the cooling device is large, it is not possible to widen the normal range of the patient's action.
(5) There is a problem of safety and hygiene in burying in a human body when trying to carry out through a bag-like container containing a liquid having good thermal conductivity for heat absorption.
[0008]
The present invention has been made in view of such circumstances, and is a small and easy-to-handle intracranial implantable cerebral cooling device capable of efficiently cooling an abnormal portion of an electroencephalogram efficiently at a pinpoint, and an electroencephalogram using the same. It is intended to provide a control system.
[0009]
[Means for Solving the Problems]
The intracranial implantable cerebral cooling device according to the present invention according to the present invention has one or a plurality of intracranial electrodes for measuring an electroencephalogram by contacting and / or inserting into the subdural space of the brain. A heat-absorbing surface that is provided adjacent to each intracranial electrode and abuts and / or inserts into the subdural space to perform cooling, and heat that is provided and transferred to face the heat-absorbing surface is sent in And a cooling means composed of a Peltier element having a heat generating surface. In this way, for epilepsy, etc., without performing drug treatment or surgical treatment, the abnormal site of the brain wave is identified with the intracranial electrode, and at the same time, cooling is pinpointly linked with the Peltier element provided in close proximity The seizure can be alleviated promptly. Further, since the cooling means uses a Peltier element, small and efficient cooling can be performed. Further, since the device is constituted by a cooling means composed of an intracranial electrode and a Peltier element placed close to the electrode, it can be used for both diagnosis and treatment.
[0010]
Here, the Peltier element is preferably made of a semiconductor element. This makes it possible to form a heat absorbing surface on one side and a heat generating surface on the other side by flowing a current by combining a P-type semiconductor and an N-type semiconductor. By changing the magnitude of the current, the amount of heat transferred from the heat absorbing surface to the heat generating surface can be reduced. Since the cooling temperature can be controlled, the cooling temperature can be accurately and easily controlled. In addition, a device using a semiconductor element for the Peltier element has a higher heat conversion efficiency, a smaller size, a lighter weight, a higher degree of freedom in shape, and greater cooling compared to a case using two kinds of metals. Can be. Furthermore, since it can be cooled without using a refrigerant such as Freon, it can be handled safely.
[0011]
Further, it is preferable to have a heat radiating means for radiating the heat transferred to the heat generating surface of the cooling means. Thereby, the heat transferred to the heat generating surface can be efficiently radiated, so that the retention of heat in the subdural space of the brain can be prevented.
[0012]
Further, it is preferable that the heat dissipating means be of a water-cooled type and have a pipe-shaped cooling water passage extending in contact with the heat generating surface and extending outside the body. Thus, since the heat radiating means only passes the refrigerant made of water into the subdural space through the pipe-shaped cooling water passage, a safe and small heat radiating means can be constituted. Further, the heat of the heat generating surface can be easily radiated outside the body.
[0013]
An intracranial implantable cerebral cooling device according to the present invention that meets the above-mentioned object is provided with a heat-absorbing surface for abutting and / or inserting into the subdural space for cooling and a heat-transfer surface provided opposite to the heat-absorbing surface. And a cooling means composed of a Peltier element of a semiconductor element having a heat-generating surface through which heat is supplied. Further, this intracranial implantable cerebral cooling device has a water-cooling type heat dissipating means having a pipe-shaped cooling water passage which passes through in contact with the heat generating surface for dissipating heat sent to the heat generating surface. Good. In this way, when an abnormal part of the brain is detected, small and efficient cooling can be concentrated on the abnormal part by using a Peltier element without performing drug treatment or surgical treatment. Because it can be used, it can be used as a therapeutic that can alleviate seizures quickly. In addition, since the heat radiating means uses water as a refrigerant, the heat of the heat generating surface can be easily radiated to the outside of the body through a pipe-shaped cooling water passage, so that a safe and small heat radiating means can be configured. it can.
[0014]
The intracranial implantable cerebral cooling device according to the present invention, which meets the above-mentioned object, has a water-cooling type heat dissipating means having a pipe-shaped cooling water passage for abutting and / or inserting into a subdural space for cooling. Having. In this way, when an abnormal part of the brain is detected, the heat of the abnormal part is directly discharged outside the body by flowing water into a pipe-shaped cooling water passage using cooling water as a coolant without performing drug treatment or surgical treatment. Since the heat can be radiated to the device, the device itself can be made small and inexpensive. In addition, since efficient cooling can be concentrated on an abnormal site and pinpointed by using safe cooling water as a refrigerant, the present invention can be used for treatments that can quickly alleviate seizures.
[0015]
An electroencephalogram control system using the intracranial implantable cerebral cooling device according to the present invention, which meets the above-described object, includes a method of contacting and / or inserting one or a plurality of intracranial electrodes into the subdural space of the brain, and at the same time, A cooling means is brought into contact with and / or inserted in close proximity to each electrode, energized through a lead wire derived from each of the intracranial electrodes, measures brain waves, identifies abnormal regions of the brain waves, and identifies abnormal regions. The power is supplied to a lead wire that is connected to a DC power supply device whose voltage is adjustable and is derived from a cooling means corresponding to the above, and heat is transferred from the heat absorbing surface to the heat generating surface to perform cooling. Thus, an abnormal portion of the electroencephalogram can be accurately identified by the intracranial electrode, the cooling means including the Peltier element close to the abnormal portion of the intracranial electrode can be operated, and the seizure can be promptly alleviated. In addition, since the electroencephalogram control system uses a cooling means including a Peltier element, it is possible to perform compact and efficient cooling. Further, the electroencephalogram control system can be operated by energizing the intracranial electrode and the cooling means provided in close proximity to the intracranial electrode, and can be applied for both diagnosis and treatment.
[0016]
An electroencephalogram control system using the intracranial implantable cerebral cooling device according to the present invention, which meets the above-described object, includes a method of contacting and / or inserting one or a plurality of intracranial electrodes into the subdural space of the brain, and at the same time, A cooling means is brought into contact with and / or inserted in close proximity to each electrode, energized through a lead wire derived from each of the intracranial electrodes, measures brain waves, identifies abnormal regions of the brain waves, and identifies abnormal regions. The heat is transferred from the heat-absorbing surface to the heat-generating surface by passing a current through a lead wire derived from the cooling means corresponding to the above and connected to the voltage-adjustable DC power supply device, and the heat is radiated from the heat-generating surface by the heat-radiating means. Thereby, the abnormal part of the electroencephalogram can be accurately identified by the intracranial electrode, the heat is transferred to the heat generating surface by the cooling means including the Peltier element close to the intracranial electrode at the abnormal part, and the heat is further dissipated by the heat dissipating means. Heat can be released to prevent heat from staying in the subdural space, and seizures can be promptly alleviated. In addition, since the electroencephalogram control system uses a cooling means including a Peltier element and a heat radiating means for radiating heat from the heat generating surface, it is possible to perform small and efficient cooling. Further, the electroencephalogram control system can be operated by energizing the intracranial electrode and the cooling means provided in close proximity to the intracranial electrode, and can be applied for both diagnosis and treatment. In particular, in the case of a brain wave control system of a water cooling system in which the heat radiating means abuts and passes through the heat generating surface of the Peltier element and the cooling water flows through a pipe-shaped cooling water passage extending outside the body, the refrigerant is water. Therefore, it is safe, small, and can easily and efficiently radiate heat from the heat generating surface to the outside of the body.
[0017]
An electroencephalogram control system using the intracranial implantable cerebral cooling device according to the present invention, which meets the above-mentioned object, comprises contacting and / or inserting a cooling means into an abnormal part of the subdural space where an abnormal part of the electroencephalogram is detected. In addition, cooling is carried out by transferring electricity from the heat-absorbing surface to the heat-generating surface by supplying electricity to a lead wire connected to a DC power supply device whose voltage is adjustable and is derived from the cooling means. This makes it suitable for an EEG control system when an abnormal part of the brain has already been detected, and without using drug treatment or surgical treatment, cooling of the abnormal part can be pinpointed with a Peltier element, so seizures It can be used as a treatment that can be alleviated quickly.
[0018]
An electroencephalogram control system using the intracranial implantable cerebral cooling device according to the present invention, which meets the above-mentioned object, comprises contacting and / or inserting a cooling means into an abnormal part of the subdural space where an abnormal part of the electroencephalogram is detected. The heat is transferred from the heat-absorbing surface to the heat-generating surface by conducting electricity to the lead wire connected to the voltage-adjustable DC power supply derived from the cooling means, and the heat sent to the heat-generating surface is transferred to the cooling water passage passing through the heat-generating surface. The heat is dissipated by the heat dissipating means of the water cooling system in which the cooling water flows. This makes it suitable for an electroencephalogram control system when an abnormal part of the brain has already been detected, and without using drug treatment or surgical treatment, cooling of the abnormal part can be pinpointed using a Peltier element and heat dissipation means. In addition, since the heat radiating means uses water as the refrigerant and flows through the pipe-shaped cooling water passage to easily radiate the heat of the heat generating surface to the outside of the body, it can be used for therapeutic treatment which can quickly alleviate seizures.
[0019]
An electroencephalogram control system using the intracranial implantable cerebral cooling device according to the present invention that meets the above-mentioned object, abuts a part of the cooling water passage to an abnormal part of the subdural space where an abnormal part of the electroencephalogram is detected. The cooling water is passed through the cooling water passage to radiate heat. Thereby, it is suitable for the EEG control system when the abnormal part of the brain has already been detected, and the cooling of the abnormal part is performed by passing the cooling water through the cooling water passage without performing drug treatment or surgical treatment. Since the abnormal site can be pinpointed directly and the refrigerant is water, it is safe and can be used for treatments that can easily radiate heat to the outside of the body and quickly relieve seizures.
[0020]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, embodiments of the present invention will be described with reference to the accompanying drawings to provide an understanding of the present invention.
Here, FIG. 1 is an explanatory view of an intracranial implantable cerebral cooling device according to an embodiment of the present invention, and FIGS. 2A and 2B are diagrams of an intracranial implantable cerebral cooling device, respectively. FIG. 3 is an explanatory view, a partially enlarged cross-sectional view, and FIG. 3 is an explanatory view of an insertion type intracranial electrode of the intracranial implantable cerebral cooling device, and FIGS. FIG. 5 is an explanatory diagram of an intracranial implantable cerebral cooling device to which means is added, FIG. 5 is an explanatory diagram of an intracranial implantable cerebral cooling device according to another embodiment of the present invention, and FIGS. FIG. 7 is an explanatory diagram of an intracranial implantable cerebral cooling device according to still another embodiment of the present invention. FIG. 7 is an explanatory diagram of an electroencephalogram control system using the intracranial implantable cerebral cooling device according to one embodiment of the present invention. FIG. 8 shows an electroencephalogram control system in which a heat radiation means is added to the intracranial implantable cerebral cooling device. FIG. 9 is an explanatory diagram of an electroencephalogram control system using an intracranial implantable cerebral cooling device according to another embodiment of the present invention, and FIG. FIG. 11 is an explanatory diagram of an added electroencephalogram control system, and FIG. 11 is an explanatory diagram of an electroencephalogram control system using an intracranial implantable cerebral cooling device according to still another embodiment of the present invention.
[0021]
As shown in FIG. 1, in an intracranial implantable cerebral cooling device 10 according to one embodiment of the present invention, an intracranial electrode 11 composed of a subdural electrode for measuring an electroencephalogram is made of a silicone resin or the like. One or a plurality (eight in FIG. 1) is bonded and fixed to the flexible resin sheet 12, and is applied to the surface of the cerebrum below the dura mater 21 (see FIG. 2 (B)) in a planar manner. An intracranial electrode 11 (not shown) composed of a deep electrode which can be inserted and / or inserted vertically into the deep part of the cerebrum is attached to a flexible rod 22 (see FIG. 3) made of silicone resin or the like. A plurality of them are joined and fixed, and are inserted vertically into the deep part of the cerebrum below the dura 21. The intracranial implantable cerebral cooling device 10 is provided on the same resin sheet 12 or rod 22 at a position close to each intracranial electrode 11, and is placed on the surface of the cerebrum below the dura mater 21. One or a plurality of cooling means (in FIG. 1, eight cooling means abutting in a plane) for cooling by abutting and / or vertically inserted into the deep part of the cerebrum I have.
[0022]
The cooling means includes a heat-absorbing surface 13 and a heat-generating surface 14 provided opposite to the heat-absorbing surface 13 and formed in the same manner as the heat-absorbing surface 13. Heat can be transferred from the heat absorbing surface 13 to the heat generating surface 14 by passing a current through the Peltier element 15 provided between the surface 13 and the heat generating surface 14, and the portion in contact with the heat absorbing surface 13 can be cooled. In the intracranial implantable cerebral cooling device 10, the lead 16 connected to each intracranial electrode 11 and the Peltier element 15 is led out of the body (outside of the skull), managed by the computer 17, and controlled by the computer 17. An electroencephalogram sent from the electrode 11 is measured, and a current is applied to the Peltier element 15 close to the intracranial electrode 11 where an abnormal portion of the electroencephalogram is detected, so that the abnormal portion can be cooled.
[0023]
Here, with reference to FIGS. 2A and 2B, the cooling means including the intracranial electrode 11 and the Peltier element 15 of the intracranial implantable cerebral cooling device 10 according to one embodiment of the present invention will be described. The form loaded into the inside will be described in detail. FIG. 2A is a schematic view showing a state in which the intracranial electrode 11 bonded to the resin sheet 12 and a cooling means including a Peltier element 15 are loaded in the skull, and FIG. 2B is a partially enlarged sectional view thereof. Is shown. The cooling means composed of the intracranial electrode 11 and the Peltier element 15 aligns the intracranial electrode 11 and the Peltier element 15 with, for example, a heat absorbing surface 13 and a skull made of a flexible silicone resin having a hardness of about 20 to 70 degrees. The electrode surface of the inner electrode 11 is exposed to the outside and fixed to the sheet-like resin sheet 12. The lead wires 16 connected to the respective intracranial electrodes 11 and Peltier elements 15 are coated with a resin. Then, as shown in FIG. 2 (A), after the cooling means including the intracranial electrode 11 and the Peltier element 15 is loaded in the skull, a part of the lead wire 16 is led out of the skull to the outside of the skull. , A computer 17 (not shown). Note that the computer 17 may be small enough to be carried around the waist when a person moves.
[0024]
As shown in FIG. 2 (B), a method of loading the intracranial electrode 11 of the intracranial implantable cerebral cooling device 10 and the cooling means including the Peltier element 15 in the skull first includes scalp 18 and muscle layer 19. After exfoliation, the skull 20 is excised with a drill or the like in accordance with the range of the spread of the abnormal part of the electroencephalogram, and the head is opened. Next, an incision is made in the dura 21 immediately below the skull 20, and the intracranial electrode 11 is placed on the surface and / or deep portion (only the surface in FIG. 2B) of the brain (cerebrum), which is the space below the dura 21. Then, the resin sheet 12 to which the cooling means composed of the Peltier element 15 is joined is placed in contact with and / or inserted (only the contact is made in FIG. 2B). After placement, the dura mater 21 is sutured, and the skull 20 is fixed at several places with a titanium plate or the like. In addition, the lead wire 16 is led out from a defective portion of the skull 20 and further passed through the muscle layer 19 and the scalp 18 and led out of the body. Finally, the muscular layer 19 and the scalp 18 are sutured.
[0025]
In addition, when a cooling means including the intracranial electrode 11 and the Peltier element 15 is inserted into a deep part of the brain to measure an electroencephalogram or cool an abnormal site, for example, as shown in FIG. It is preferable that the inner part of the intracranial electrode 11 of a deep electrode and the cooling means composed of the Peltier element 15 on the upper part of the intracranial electrode 11 are joined and fixed to a flexible rod 22 made of silicone resin or the like. Further, in the case of the rod-shaped body 22 formed by alternately joining a plurality of cooling means composed of the intracranial electrode 11 and the Peltier element 15, detection of abnormal portions of the brain wave in various parts in the depth direction of the brain and Cooling becomes possible.
[0026]
Next, the Peltier element 15 of the cooling means used in the above-mentioned intracranial implantable cerebral cooling device 10 is configured such that a P-type semiconductor and an N-type semiconductor are alternately aligned and joined in series with a metal, and when a DC current is applied, one of the P-type semiconductors and the N-type semiconductor is joined. The temperature of the joining portion becomes low, heat can be absorbed by the heat absorbing surface 13 which is the surface of the joining portion, and the temperature of the other joining portion becomes high, and heat is generated by the heat generating surface 14 which is the surface of the joining portion. A Peltier device 15 made of a semiconductor device capable of performing the above-described operation is preferable, and a high Peltier effect can be exhibited. Further, since the Peltier device 15 made of the semiconductor device is formed of a ceramic substrate, a semiconductor device, or the like, it is small, has excellent hygiene, and can be loaded inside the brain. Further, the Peltier element 15 made of a semiconductor element can change the magnitude of the amount of heat transferred from the heat absorbing surface 13 to the heat generating surface 14 by changing the magnitude of the current, and can perform precise temperature control.
[0027]
The heat generating surface 14 of the cooling means used in the above-described intracranial implantable cerebral cooling device 10 may be, for example, a metal having good thermal conductivity abutting the heat generating surface 14 or a pipe through which a coolant such as water passes. It is preferable to have a heat radiating means for radiating the heat transferred to the heat generating surface 14 in contact with the heat generating surface 14, and the heat radiating means can radiate the heat out of the body without confining the heat in the brain.
[0028]
As shown in FIGS. 4A and 4B, the heat radiation means of the intracranial implantable cerebral cooling device 10 is provided on the heat generating surface 14 of the Peltier element 15 of the cooling means, for example, extending to the outside of the body. A part of a flexible pipe-shaped cooling water passage 23 made of silicone resin or the like is meandered and abuts and adheres to the cooling water passage 23. By flowing the cooling water through the cooling water passage 23, the heat of the heat generating surface 14 is reduced. A water-cooled system that radiates heat outside the body is preferred. Since epileptic seizures can be alleviated by cooling the abnormal part of the EEG to about 23 ° C or less, it is sufficient to use water of about 20 ° C or less for the cooling water. Must not freeze.
[0029]
Next, as shown in FIG. 5, the intracranial implantable cerebral cooling device 10a according to another embodiment of the present invention, when an abnormal part of the brain is detected, A cooling means for abutting the surface in a plane and / or vertically inserted into the deep part of the cerebrum to perform cooling is a flexible resin sheet 12 made of silicone resin or the like, or a rod-shaped body 22 (shown in FIG. )) And are fixed. The cooling means includes a heat absorbing surface 13 formed by applying a material having good thermal conductivity to the surface of the ceramic substrate, and a heat generating surface 14 provided opposite to the heat absorbing surface 13 and formed similarly to the heat absorbing surface 13. Heat can be transferred from the heat absorbing surface 13 to the heat generating surface 14 by passing a current through the Peltier element 15 provided between the heat absorbing surface 13 and the heat generating surface 14, and the portion in contact with the heat absorbing surface 13 can be cooled. . Then, the intracranial implantable cerebral cooling device 10a draws out the lead 16 connected to the cooling means including the Peltier element 15 out of the skull, and supplies a current to the Peltier element 15 with a DC power supply device, and any time, the abnormal site is detected. Can be cooled. The intracranial implantable cerebral cooling device 10a can use the Peltier device 15 to focus on small, efficient cooling at an abnormal site to be pinpointed, so that drug treatment or surgical treatment is not performed. It can be used as a therapeutic that can quickly relieve seizures.
[0030]
The heat dissipating means of the intracranial implantable cerebral cooling device 10a extends to the outside of the body on the heat generating surface 14 of the Peltier element 15 of the cooling means, for example, in the same manner as shown in FIGS. 4A and 4B. A part of a flexible pipe-shaped cooling water passage 23 made of silicone resin or the like provided in a meandering manner is abutted and adhered to the cooling water passage 23. It is preferable to use a water-cooling system that radiates the heat outside the body. Since epileptic seizures can be alleviated by cooling the abnormal part of the EEG to about 23 ° C or less, it is sufficient to use water of about 20 ° C or less as the cooling water. Must not freeze.
[0031]
Next, as shown in FIG. 6, the intracranial implantable cerebral cooling device 10b according to still another embodiment of the present invention planarly abuts the surface of the cerebrum below the cerebral dura 21 and / or In order to cool the cerebrum by vertically inserting it into the deep part of the cerebrum, a water-cooling type heat dissipating means including a flexible pipe-shaped cooling water passage 23 made of silicon resin or the like extending to the outside of the body is provided. Have. This heat dissipating means makes a part of the cooling water passage 23 meander and joins the flexible resin sheet 12 made of silicone resin or the like or the flexible rod 22 (not shown) made of silicone resin or the like. And have it fixed. The intracranial implantable cerebral cooling device 10b directly abuts on the abnormal part when the abnormal part of the brain is detected, and only allows the cooling water to flow through the cooling water passage 23 to efficiently perform the cooling. Since the heat of the abnormal site can be directly radiated to the outside of the body at the same time as being focused on the patient, it can be used for medical treatment that can quickly alleviate the seizure without performing drug treatment or surgical treatment.
[0032]
Next, as shown in FIG. 7, the electroencephalogram control system 30 using the intracranial implantable cerebral cooling device 10 according to one embodiment of the present invention was joined to the resin sheet 12 in the subdural space of the cerebral dura 21. One or more intracranial electrodes 11 abut and / or one or more intracranial electrodes 11 joined to rod 22 are inserted (in FIG. 7, one intracranial electrode 11 abuts) Illustrated in form). Further, the electroencephalogram control system 30 abuts the cooling means including one or a plurality of Peltier elements 15 on the same resin sheet 12 or the same rod-shaped body 22 in close proximity to each of one or a plurality of the intracranial electrodes 11, And / or inserted. Then, the electroencephalogram control system 30 measures the electroencephalogram while energizing through the lead wires 16 derived from the respective intracranial electrodes 11 and managing the computer 17. Further, the electroencephalogram control system 30 identifies the abnormal part of the electroencephalogram from the measured amplitude of the electroencephalogram, and is derived from the Peltier element 15 of the cooling means including the Peltier element 15 close to the intracranial electrode 11 corresponding to the abnormal part. A current is applied to a lead wire 16 connected to a DC power supply device in which the magnitude of current can be changed, and heat is transferred from the heat absorbing surface 13 formed on the Peltier element 15 to the heat generating surface 14, so that a portion in contact with the heat absorbing surface 13 is formed. Cooling the cerebrum at the abnormal site. In the electroencephalogram control system 30, as the Peltier device 15 of the intracranial implantable cerebral cooling device 10, it is preferable to use a device formed from a semiconductor device capable of exhibiting a high Peltier effect.
[0033]
In addition, the electroencephalogram control system 30 using the intracranial implantable cerebral cooling device 10 according to one embodiment of the present invention includes one or more intracranial electrodes bonded to the resin sheet 12 below the dura 21. 11 and / or insert one or more intracranial electrodes 11 joined to the rod-shaped body 22 and at the same time, close to each of the one or more intracranial electrodes 11, the same resin sheet 12, Alternatively, a cooling means including one or a plurality of Peltier elements 15 is in contact with and / or inserted into the same rod-shaped body 22. Then, the electroencephalogram control system 30 measures the electroencephalogram by energizing through the lead wire 16 derived from each of the intracranial electrodes 11 and identifies an abnormal portion of the electroencephalogram from the measured amplitude of the electroencephalogram, The Peltier element 15 is connected to a DC power supply device, which is derived from the Peltier element 15 of the cooling means and includes a Peltier element 15 that is close to the intracranial electrode 11 corresponding to the abnormal site, and is connected to a DC power supply that can change the magnitude of the current. The heat is transferred from the heat absorbing surface 13 to the heat generating surface 14 to cool the cerebral part of the abnormal part at the portion in contact with the heat absorbing surface 13, and the heat transferred to the heat generating surface 14 is radiated by the heat radiating means. are doing.
[0034]
The electroencephalogram control system 30 is, as shown in FIG. 8, particularly a lead wire derived from the Peltier device 15 for cooling means for transferring heat from the heat absorbing surface 13 formed on the Peltier device 15 to the heat generating surface 14. It is preferable that the electroencephalogram control system 30a be provided with a heat radiating means for flowing water to the cooling water passage 23 passing through the heat generating surface 14 of the Peltier element 15 at the same time as the electricity is supplied to the Peltier element 15. The heat radiation means of the electroencephalogram control system 30a, for example, opens the electromagnetic valve 34 provided in the cool and pressure-resistant container 32 and releases the cooling water 33 held in the cool and pressure-resistant container 32 pressurized by the compressor 31 to flow the water. It is preferable to use a heat-dissipating means of a water-cooling method for dissipating the heat of the heat-generating surface 14 to the outside of the body. It is possible to easily discharge heat to the outside of the body by using a cooling water 33 that is safe as a coolant and flowing the cooling water 33. it can. In addition, when the pressurization of the compressor 31 is stopped, the cooling water 33 is opened with the lid of the cool and durable container, or the cooling water 33 is given a pressure higher than the pressure in the cool and heat resistant container 32. It can be put in the cool and pressure resistant container 32.
[0035]
Next, as shown in FIG. 9, an electroencephalogram control system 30b using an intracranial implantable cerebral cooling device 10a according to another embodiment of the present invention includes a resin sheet 12 or a rod 22 (not shown). The cooling means including one or a plurality of Peltier elements 15 joined to the abnormal part of the brain dura 21 where the abnormal part of the electroencephalogram is detected is abutted and / or inserted. The electroencephalogram control system 30b is connected to a lead 16 connected to a DC power supply capable of adjusting a current, which is derived from a Peltier element 15 of a cooling means including a Peltier element 15 to be brought into contact with and / or inserted into an abnormal site. The heat is transferred from the heat absorbing surface 13 formed on the Peltier element 15 to the heat generating surface 14 by energizing to cool an abnormal portion of the cerebrum in contact with the heat absorbing surface 13.
[0036]
Further, as shown in FIG. 10, the electroencephalogram control system 30 b using the intracranial implantable cerebral cooling device 10 a according to another embodiment of the present invention, as shown in FIG. A cooling means comprising one or a plurality of Peltier elements 15 joined to the resin sheet 12 or the rod-shaped body 22 (not shown) is brought into contact with and / or inserted into the abnormal part of the cavity, and is derived from the Peltier element 15 Then, a current is supplied to a lead wire 16 connected to a DC power supply device capable of adjusting current to transfer heat from a heat absorbing surface 13 formed on the Peltier device 15 to a heat generating surface 14 and, at the same time, to a heat generating surface 14 of the Peltier device 15. It is preferable that the electroencephalogram control system 30c has a water-cooling type heat radiating means for flowing cooling water into the cooling water passage 23 passing therethrough and releasing heat. The heat radiation means of the electroencephalogram control system 30c allows the cooling water 33 held in the cool and pressure resistant container 32 pressurized by the compressor 31 to flow by opening an electromagnetic valve 34 provided in the pressure resistant container 32, for example. In addition, a water cooling system that radiates the heat of the heat generating surface 14 to the outside of the body can be easily released to the outside of the body by a system in which the cooling water 33 flows using the safe cooling water 33 as a refrigerant.
[0037]
Next, as shown in FIG. 11, an electroencephalogram control system 30d using an intracranial implantable cerebral cooling device 10b according to still another embodiment of the present invention includes a dura mater 21 in which an abnormal part of the electroencephalogram is detected. A part of the cooling water passage 23 is meandered and abutted and joined to the abnormal portion of the lower cavity, or a part of the rod-shaped body 22 (not shown) is abutted and joined, and the cooling water is supplied to the cooling water passage 23. The heat is dissipated by the heat dissipating means of the water cooling system that dissipates heat by flowing water. The heat radiation means of the electroencephalogram control system 30 d allows the cooling water 33 held in the pressure-resistant container 32 pressurized by the compressor 31 to flow by opening the electromagnetic valve 34 provided in the cold-holding pressure-resistant container 32, for example. It is a water-cooling system that radiates the heat of the abnormal part of the cerebrum outside the body, and uses the safe cooling water 33 as a refrigerant, and easily discharges the heat of the abnormal part of the cerebrum directly outside the body using a system that allows the cooling water 33 to flow. be able to.
[0038]
【The invention's effect】
The intracranial implantable cerebral cooling device according to claim 1 and dependent claims 2 to 4 has an intracranial electrode in the subdural space and a cooling means composed of a Peltier element in proximity to the device. In contrast to this, it is possible to identify abnormal areas of brain waves with intracranial electrodes and perform pinpoint cooling in conjunction with the Peltier element without drug treatment or surgical treatment, and to quickly alleviate seizures Can be. In addition, the Peltier device enables small and efficient cooling. Further, the device is constituted by a cooling means comprising an intracranial electrode and a Peltier element, and can be used for both diagnosis and treatment. In particular, in the intracranial implantable cerebral cooling device according to the second aspect, since the Peltier element is a semiconductor element, the cooling temperature can be controlled accurately and easily, the Peltier effect is high, the size is small, the weight is small, and the degree of freedom of shape is high. It is safe and can be cooled without using refrigerant such as chlorofluorocarbon.
[0039]
Also, the intracranial implantable cerebral cooling device according to the third aspect has a heat radiating means for radiating heat transferred to the heat generating surface of the cooling means, so that the heat transferred to the heat generating surface is efficiently radiated. And the retention of heat in the subdural space of the brain can be prevented. Furthermore, in the intracranial implantable cerebral cooling device according to the fourth aspect, since the heat radiating means is a water-cooled type and has a pipe-shaped cooling water passage extending in contact with the heat generating surface and extending outside the body, the refrigerant is safe. Water, and a small heat radiating means can be formed, and the heat on the heat generating surface can be easily radiated outside the body.
[0040]
In the intracranial implantable cerebral cooling device according to the fifth and sixth aspects, a heat absorbing surface for cooling the subdural space and heat transferred opposite to the heat absorbing surface are fed. A cooling means composed of a Peltier element of a semiconductor element having a heat generating surface for small and efficient cooling without performing drug treatment or surgical treatment when an abnormal part of the brain is detected. Can be focused on the abnormal site and pinpointed, and can be used for treatments that can quickly alleviate seizures. In particular, the intracranial implantable cerebral cooling device according to claim 6 has a heat dissipating unit having a pipe-shaped cooling water passage that passes in contact with the heat-generating surface. Heat can be easily radiated out of the body, and a safe and small heat radiating means can be configured.
[0041]
Since the intracranial implantable cerebral cooling device according to claim 7 has a heat radiating means of a water cooling system having a pipe-shaped cooling water passage in the subdural space, when an abnormal part of the brain is detected, The heat of the abnormal site can be directly radiated to the outside of the body without performing drug treatment or surgical treatment, and the device itself can be reduced in size and cost. In addition, safe water can be used as the refrigerant to concentrate the cooling on the abnormal site, and the present invention can be used for therapeutic treatment in which seizures can be promptly alleviated.
[0042]
An electroencephalogram control system according to an eighth aspect uses the intracranial implantable cerebral cooling device according to the first or second aspect, conducts electricity through a lead wire derived from an intracranial electrode, and measures an electroencephalogram. In addition to identifying the abnormal part, cooling is performed by transferring the heat from the heat absorbing surface to the heat generating surface by supplying electricity to the lead wire connected to the voltage adjustable DC power supply derived from the cooling means corresponding to the abnormal part and transferring heat. An abnormal portion of the electroencephalogram can be identified by the intracranial electrode, and the cooling means close to this can be operated to quickly alleviate the seizure. Further, since the system is an electroencephalogram control system using a cooling means composed of a Peltier element, small and efficient cooling can be performed. Further, the electroencephalogram control system can change the amount of heat to be transferred by changing the current and applying current to the intracranial electrode and the cooling means installed in close proximity to the electrode, which can be applied to diagnosis and treatment.
[0043]
An electroencephalogram control system according to a ninth aspect uses the intracranial implantable cerebral cooling device according to the third or fourth aspect to measure an electroencephalogram by conducting electricity through a lead wire derived from an intracranial electrode. In addition to identifying the abnormal part, heat is transferred from the heat-absorbing surface to the heat-generating surface by applying electricity to the lead wire that is derived from the cooling means corresponding to the abnormal part and that is connected to the DC power supply capable of adjusting the voltage, thereby transferring the heat from the heat-generating surface. Since heat is dissipated by the heat dissipating means, especially in the case of a brain wave control system comprising a water cooling system in which the heat dissipating means flows cooling water through a cooling water passage passing through the heating surface of the Peltier element, the refrigerant is safe cooling water, Moreover, it is small and can easily and efficiently radiate heat from the heat generating surface to the outside of the body.
[0044]
An electroencephalogram control system according to a tenth aspect uses the implantable intracranial cerebral cooling device according to the fifth aspect, and is a DC power source that is derived from cooling means of an abnormal part where an abnormal part of an electroencephalogram is detected, and is adjustable in current. Since the heat is transferred from the heat-absorbing surface to the heat-generating surface by conducting electricity to the lead wires connected to the device and cooling is performed, it is suitable for an electroencephalogram control system when an abnormal part of the brain is detected in advance, and drug treatment or surgical treatment Without performing the procedure, it is possible to use the treatment for the purpose of cooling the abnormal site to a pinpoint point and to quickly alleviate the seizure.
[0045]
An electroencephalogram control system according to an eleventh aspect uses the intracranial implantable cerebral cooling device according to the sixth aspect, and is derived from a cooling unit of an abnormal part in which an abnormal part of an electroencephalogram is detected, and is a DC power supply capable of voltage adjustment. Heat is transferred from the heat-absorbing surface to the heat-generating surface by energizing the lead wire connected to the device, and the heat sent to the heat-generating surface is radiated by a water-cooling radiator that flows cooling water through a cooling water passage that passes through the heat-generating surface. The heat is dissipated, so it is suitable for EEG control system when the abnormal part of the brain is detected in advance, it can pinpoint the cooling of the abnormal part without performing drug treatment or surgical treatment, and the refrigerant of the heat dissipating means is cooled Since the water flows into the cooling water passage to easily radiate the heat of the heat generating surface to the outside of the body, it can be used for treatments that can quickly alleviate seizures.
[0046]
An electroencephalogram control system according to a twelfth aspect uses the intracranial implantable cerebral cooling device according to the seventh aspect to abut a part of a cooling water passage to an abnormal part where an abnormal part of an electroencephalogram is detected, and perform cooling. Cooling water is passed through the water passage to dissipate heat, so it is suitable for an EEG control system when an abnormal part of the brain is detected in advance, and cools the abnormal part without performing drug treatment or surgical treatment. The cooling water can be directly pinpointed by passing the cooling water through the passage, and the refrigerant is safe cooling water, and can be used for medical treatment that can easily radiate heat to the outside of the body and quickly alleviate seizures.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram of an intracranial implantable cerebral cooling device according to one embodiment of the present invention.
FIGS. 2A and 2B are an explanatory view and a partially enlarged cross-sectional view of an intracranial implantable cerebral cooling device implanted in the brain, respectively.
FIG. 3 is an explanatory view of an insertion type intracranial electrode of the intracranial implantable cerebral cooling device.
FIGS. 4A and 4B are explanatory diagrams of an intracranial implantable cerebral cooling device in which a heat dissipation means is added to the intracranial implantable cerebral cooling device.
FIG. 5 is an explanatory diagram of an intracranial implantable cerebral cooling device according to another embodiment of the present invention.
FIGS. 6A and 6B are explanatory diagrams of an intracranial implantable cerebral cooling device according to still another embodiment of the present invention.
FIG. 7 is an explanatory diagram of an electroencephalogram control system using the intracranial implantable cerebral cooling device according to one embodiment of the present invention.
FIG. 8 is an explanatory diagram of an electroencephalogram control system in which a radiator is added to the intracranial implantable cerebral cooling device.
FIG. 9 is an explanatory diagram of an electroencephalogram control system using an intracranial implantable cerebral cooling device according to another embodiment of the present invention.
FIG. 10 is an explanatory diagram of an electroencephalogram control system in which a radiator is added to the intracranial implantable cerebral cooling device.
FIG. 11 is an explanatory diagram of an electroencephalogram control system using an intracranial implantable cerebral cooling device according to still another embodiment of the present invention.
[Explanation of symbols]
10, 10a, 10b: intracranial implantable cerebral cooling device, 11: intracranial electrode, 12: resin sheet, 13: heat absorbing surface, 14: heat generating surface, 15: Peltier element, 16: lead wire, 17: computer, 18 : Scalp, 19: muscle layer, 20: skull, 21: brain dura, 22: rod, 23: cooling water passage, 30, 30a, 30b, 30c, 30d: electroencephalogram control system, 31: compressor, 32: cold insulation Pressure vessel, 33: cooling water, 34: solenoid valve

Claims (12)

脳硬膜下腔に当接及び/又は挿入して脳波を測定するための1又は複数の頭蓋内電極を有し、それぞれの該頭蓋内電極毎に近接して設けられ、前記脳硬膜下腔に当接及び/又は挿入して冷却を行うための吸熱面と、該吸熱面に対向して設けられ移送される熱が送り込まれるための発熱面を備えるペルチェ素子からなる冷却手段を有することを特徴とする頭蓋内埋込み型大脳冷却装置。The apparatus has one or a plurality of intracranial electrodes for measuring an electroencephalogram by abutting and / or inserting into the subdural space, provided in close proximity to each of the intracranial electrodes, Cooling means comprising a heat absorbing surface for cooling by abutting and / or inserting into the cavity, and a Peltier element having a heat generating surface provided opposite to the heat absorbing surface and through which heat to be transferred is fed. An intracranial implantable cerebral cooling device. 請求項1記載の頭蓋内埋込み型大脳冷却装置であって、前記ペルチェ素子が半導体素子からなることを特徴とする頭蓋内埋込み型大脳冷却装置。2. The intracranial implantable cerebral cooling device according to claim 1, wherein the Peltier device comprises a semiconductor device. 請求項1又は2記載の頭蓋内埋込み型大脳冷却装置であって、前記冷却手段の前記発熱面に移送された熱を放熱するための放熱手段を有することを特徴とする頭蓋内埋込み型大脳冷却装置。3. The implantable intracranial cerebral cooling device according to claim 1, further comprising a heat radiating unit for radiating heat transferred to the heat generating surface of the cooling unit. apparatus. 請求項3記載の頭蓋内埋込み型大脳冷却装置であって、前記放熱手段が水冷方式からなり前記発熱面に当接して通過し、体外に延設するパイプ状の冷却水通路を有することを特徴とする頭蓋内埋込み型大脳冷却装置。4. The intracranial implantable cerebral cooling device according to claim 3, wherein the heat radiating means is of a water-cooling type and has a pipe-shaped cooling water passage extending in contact with the heat generating surface and extending outside the body. Intracranial implantable cerebral cooling device. 脳硬膜下腔に当接及び/又は挿入して冷却を行うための吸熱面と、該吸熱面に対向して設けられ移送される熱が送り込まれるための発熱面を備える半導体素子のペルチェ素子からなる冷却手段を有することを特徴とする頭蓋内埋込み型大脳冷却装置。A Peltier device as a semiconductor device having a heat absorbing surface for contacting and / or inserting into the subdural space for cooling, and a heat generating surface provided opposite to the heat absorbing surface and through which heat to be transferred is fed. An intracranial implantable cerebral cooling device comprising a cooling means comprising: 請求項5記載の頭蓋内埋込み型大脳冷却装置であって、前記発熱面に送り込まれた熱を放熱するための前記発熱面に当接して通過する前記パイプ状の冷却水通路を備える水冷方式からなる放熱手段を有することを特徴とする頭蓋内埋込み型大脳冷却装置。6. The intracranial implantable cerebral cooling device according to claim 5, wherein the water cooling system includes the pipe-shaped cooling water passage which passes through the heat generating surface for radiating heat sent to the heat generating surface. An intracranial implantable cerebral cooling device comprising: 脳硬膜下腔に当接及び/又は挿入して冷却を行うためのパイプ状の冷却水通路を備える水冷方式からなる放熱手段を有することを特徴とする頭蓋内埋込み型大脳冷却装置。An intracranial implantable cerebral cooling device, comprising: a water-cooling type heat dissipating means having a pipe-shaped cooling water passage for abutting and / or inserting into a subdural space for cooling. 請求項1又は2記載の頭蓋内埋込み型大脳冷却装置を使用して、前記脳硬膜下腔に1又は複数の前記頭蓋内電極を当接及び/又は挿入すると同時に、それぞれの該頭蓋内電極毎に近接して前記冷却手段を当接及び/又は挿入し、それぞれの前記頭蓋内電極から導出されるリード線を介して通電して脳波を測定し、該脳波の異常部位を同定すると共に、該異常部位に相当する前記冷却手段から導出され電圧調整可能な直流電源装置に接続するリード線に通電して前記吸熱面から前記発熱面に熱を移動させて冷却を行うことを特徴とする脳波制御システム。3. Using the implantable intracranial cerebral cooling device according to claim 1 or 2 to abut and / or insert one or more of the intracranial electrodes into the subdural space and simultaneously with each of the intracranial electrodes. Abuts and / or inserts the cooling means in close proximity to each other, measures the electroencephalogram by applying current through the lead wire derived from each of the intracranial electrodes, and identifies an abnormal part of the electroencephalogram; A brain wave, wherein current is supplied to a lead wire connected to a voltage-adjustable DC power supply device derived from the cooling means corresponding to the abnormal part and heat is transferred from the heat absorbing surface to the heat generating surface to perform cooling. Control system. 請求項3又は4記載の頭蓋内埋込み型大脳冷却装置を使用して、前記脳硬膜下腔に1又は複数の前記頭蓋内電極を当接及び/又は挿入すると同時に、それぞれの該頭蓋内電極毎に近接して前記冷却手段を当接及び/又は挿入し、それぞれの前記頭蓋内電極から導出されるリード線を介して通電して脳波を測定し、該脳波の異常部位を同定すると共に、該異常部位に相当する前記冷却手段から導出され電圧調整可能な直流電源装置に接続するリード線に通電して前記吸熱面から前記発熱面に熱を移送させ、該熱を前記発熱面から前記放熱手段で放熱させることを特徴とする脳波制御システム。5. Using the implantable intracranial cerebral cooling device according to claim 3 or 4 to abut and / or insert one or more of the intracranial electrodes into the subdural space while simultaneously each of the intracranial electrodes. Abuts and / or inserts the cooling means in close proximity to each other, conducts electricity through the lead wires derived from the respective intracranial electrodes, measures brain waves, identifies abnormal sites of the brain waves, The lead wire connected to the DC power supply device, which is derived from the cooling means and corresponds to the abnormal portion and is connected to the voltage control unit, is energized to transfer heat from the heat absorbing surface to the heat generating surface. An electroencephalogram control system characterized by radiating heat by means. 請求項5記載の頭蓋内埋込み型大脳冷却装置を使用して、脳波の異常部位が検出された前記脳硬膜下腔の前記異常部位に前記冷却手段を当接及び/又は挿入し、前記冷却手段から導出され電圧調整可能な直流電源装置に接続するリード線に通電して前記吸熱面から前記発熱面に熱を移送させて冷却を行うことを特徴とする脳波制御システム。6. The cooling device according to claim 5, wherein the cooling means is brought into contact with and / or inserted into the abnormal part of the subdural space where an abnormal part of the electroencephalogram is detected, using the intracranial implantable cerebral cooling device. An electroencephalogram control system, characterized in that cooling is performed by transferring heat from the heat-absorbing surface to the heat-generating surface by energizing a lead wire derived from the means and connected to a voltage-adjustable DC power supply. 請求項6記載の頭蓋内埋込み型大脳冷却装置を使用して、脳波の異常部位が検出された前記脳硬膜下腔の前記異常部位に前記冷却手段を当接及び/又は挿入し、前記冷却手段から導出され電圧調整可能な直流電源装置に接続するリード線に通電して前記吸熱面から前記発熱面に熱を移送させ、前記発熱面に送り込まれた前記熱を前記発熱面を通過する冷却水通路に冷却水を流水する水冷方式からなる放熱手段で放熱することを特徴とする脳波制御システム。7. Using the intracranial implantable cerebral cooling device according to claim 6, contacting and / or inserting the cooling means into the abnormal part of the subdural space where an abnormal part of the electroencephalogram is detected, and performing the cooling. Means for transferring heat from the heat-absorbing surface to the heat-generating surface by energizing a lead wire derived from the means and connected to a voltage-adjustable DC power supply, and cooling the heat sent to the heat-generating surface through the heat-generating surface An electroencephalogram control system characterized in that heat is radiated by a heat radiating means of a water cooling system in which cooling water flows in a water passage. 請求項7記載の頭蓋内埋込み型大脳冷却装置を使用して、脳波の異常部位が検出された前記脳硬膜下腔の前記異常部位に、前記冷却水通路の一部を当接し、該冷却水通路に冷却水を通水して放熱することを特徴とする脳波制御システム。8. Using the intracranial implantable cerebral cooling device according to claim 7, a part of the cooling water passage is brought into contact with the abnormal part of the subdural space where the abnormal part of the electroencephalogram is detected, and the cooling is performed. An electroencephalogram control system characterized in that heat is released by passing cooling water through a water passage.
JP2002299679A 2002-10-11 2002-10-11 EEG control system using an intracranial implantable cerebral cooling device Expired - Fee Related JP3843054B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002299679A JP3843054B2 (en) 2002-10-11 2002-10-11 EEG control system using an intracranial implantable cerebral cooling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002299679A JP3843054B2 (en) 2002-10-11 2002-10-11 EEG control system using an intracranial implantable cerebral cooling device

Publications (2)

Publication Number Publication Date
JP2004129964A true JP2004129964A (en) 2004-04-30
JP3843054B2 JP3843054B2 (en) 2006-11-08

Family

ID=32288746

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002299679A Expired - Fee Related JP3843054B2 (en) 2002-10-11 2002-10-11 EEG control system using an intracranial implantable cerebral cooling device

Country Status (1)

Country Link
JP (1) JP3843054B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006141993A (en) * 2004-10-19 2006-06-08 Tohoku Univ Cooling apparatus for internal organs
WO2007091424A1 (en) * 2006-02-09 2007-08-16 Yamaguchi University Brain-cooling apparatus to be buried in skull
JP2011083316A (en) * 2009-10-13 2011-04-28 Yamaguchi Univ Local cooling system
JP2011083315A (en) * 2009-10-13 2011-04-28 Yamaguchi Univ Local cooling system
JP2012516210A (en) * 2009-01-28 2012-07-19 ブレインスコープ カンパニー, インコーポレイテッド Method and apparatus for probabilistic objective assessment of brain function
CN105852855A (en) * 2016-04-15 2016-08-17 郑州科斗创客科技有限公司 Implantable cerebral electrode for measuring cerebral primary visual electrocorticograms in rodents
WO2021193539A1 (en) * 2020-03-25 2021-09-30 Ant5株式会社 In vivo cooling device
WO2021193540A1 (en) * 2020-03-25 2021-09-30 Ant5株式会社 Intravital cooling device
EP4141352A1 (en) * 2021-08-27 2023-03-01 Haris Sijaric Tempering device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130072776A1 (en) 2010-03-26 2013-03-21 Yamaguchi University Cerebral local portion cooling probe and cerebral function mapping device

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006141993A (en) * 2004-10-19 2006-06-08 Tohoku Univ Cooling apparatus for internal organs
WO2007091424A1 (en) * 2006-02-09 2007-08-16 Yamaguchi University Brain-cooling apparatus to be buried in skull
JP2012516210A (en) * 2009-01-28 2012-07-19 ブレインスコープ カンパニー, インコーポレイテッド Method and apparatus for probabilistic objective assessment of brain function
JP2011083316A (en) * 2009-10-13 2011-04-28 Yamaguchi Univ Local cooling system
JP2011083315A (en) * 2009-10-13 2011-04-28 Yamaguchi Univ Local cooling system
CN105852855A (en) * 2016-04-15 2016-08-17 郑州科斗创客科技有限公司 Implantable cerebral electrode for measuring cerebral primary visual electrocorticograms in rodents
WO2021193539A1 (en) * 2020-03-25 2021-09-30 Ant5株式会社 In vivo cooling device
WO2021193540A1 (en) * 2020-03-25 2021-09-30 Ant5株式会社 Intravital cooling device
JP2021153648A (en) * 2020-03-25 2021-10-07 国立大学法人山口大学 In vivo cooling device
JP7199671B2 (en) 2020-03-25 2023-01-06 Ant5株式会社 In vivo cooling device
EP4141352A1 (en) * 2021-08-27 2023-03-01 Haris Sijaric Tempering device

Also Published As

Publication number Publication date
JP3843054B2 (en) 2006-11-08

Similar Documents

Publication Publication Date Title
US11179269B2 (en) Cooling device having a plurality of controllable cooling elements to provide a predetermined cooling profile
US7232458B2 (en) Apparatus and methods for cooling a region within the body
US11559421B2 (en) Protective dressing with reusable phase-change material cooling insert
JP5322154B2 (en) System and method for cooling a return pad by providing uniform heat distribution to the return pad
JP5455320B2 (en) System and method for cooling a return pad by providing uniform heat distribution to the return pad
CN102596116B (en) Device, system and method of removing heat from subcutaneous lipid-rich cells
US6629990B2 (en) Heat-removal method and apparatus for treatment of movement disorder episodes
US10517755B2 (en) Methods and devices for brain cooling for treatment and/or prevention of epileptic seizures
EP1977709A1 (en) System and method for providing even heat distribution and cooling return pads
WO2007091424A1 (en) Brain-cooling apparatus to be buried in skull
JP2004129964A (en) Intra-skull embedded type cerebrum cooling unit and brain wave control system using the same
WO2007145456A1 (en) Medical apparatus capable of thermal stimulation using thermoelectric module
KR101477612B1 (en) Portable device for therapeutic hypothermia
US20240065882A1 (en) Smart thermoelectric brain hypothermia thermohipotherm and brain thermography device
US20210401618A1 (en) Implantable probe for localized cooling
MX2007003513A (en) Cooling device having a plurality of controllable cooling elements to provide a predetermined cooling profile

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060411

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060605

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060725

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060811

R150 Certificate of patent or registration of utility model

Ref document number: 3843054

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100818

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110818

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110818

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120818

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120818

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130818

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees