JP2004129455A - Series connection capacitor provided with self-supplementary charging function - Google Patents

Series connection capacitor provided with self-supplementary charging function Download PDF

Info

Publication number
JP2004129455A
JP2004129455A JP2002293339A JP2002293339A JP2004129455A JP 2004129455 A JP2004129455 A JP 2004129455A JP 2002293339 A JP2002293339 A JP 2002293339A JP 2002293339 A JP2002293339 A JP 2002293339A JP 2004129455 A JP2004129455 A JP 2004129455A
Authority
JP
Japan
Prior art keywords
series
capacitor
capacitors
self
charging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002293339A
Other languages
Japanese (ja)
Other versions
JP3772140B2 (en
Inventor
Kazuo Yamashita
山下 和郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Radio Co Ltd
Original Assignee
Japan Radio Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Radio Co Ltd filed Critical Japan Radio Co Ltd
Priority to JP2002293339A priority Critical patent/JP3772140B2/en
Publication of JP2004129455A publication Critical patent/JP2004129455A/en
Application granted granted Critical
Publication of JP3772140B2 publication Critical patent/JP3772140B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Direct Current Feeding And Distribution (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a series connection capacitor provided with a self-supplementary charging function wherein when a plurality of capacitors connected in series are charged through an external charging circuit, voltage imbalance can be eliminated and maximum energy can be taken out. <P>SOLUTION: The series connection capacitor provided with a self-supplementary charging function comprises: a plurality of capacitors C101 to 106 connected in series; a common transformer T101 having a plurality of identical windings L101 to 106 connected for supplementarily charging a plurality of the capacitors; a plurality of switches SW101 to 106 which turn on and off the connections between a plurality of the windings of the common transformer and a plurality of the capacitors; and a switch control circuit B101 which generates a control signal for turning on and off a plurality of the switches at a high frequency in synchronization. If there is voltage imbalance among a plurality of the capacitors, a charging or discharging current is fed through a plurality of the windings of the common transformer connected with a plurality of the capacitors, and the voltages of the capacitors are thereby equalized. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、電気二重層大容量電解コンデンサやリチウムイオン電池を複数個直列接続して得られる高電圧大容量キャパシタにおいて、各キャパシタのキャパシティが不均一であっても充電時に均等電圧充電制御することにより、許容電圧限界まで最大エネルギーの蓄積が出来、放電時にも均等電圧に補充電制御することにより、蓄積エネルギーを有効に取り出すことが可能になる。
【0002】
従って、鉛蓄電池、リチウム二次電池、ポリマー二次電池、または、電気二重層大容量電解コンデンサを直列接続して使用する電気自動車において、電気自動車の航続距離を限界まで伸ばすことが出来る。
電気二重層大容量電解コンデンサは繰り返し急速充・放電に耐えるため、15ボルト耐圧程度にすることで自動車の鉛蓄電器に置き換え、現状の自動車でもアイドリングストップを可能に出来る。
【0003】
【従来の技術】
電解コンデンサを高耐圧化し、リップル電流を吸収する回路としては図15に示す構成としていた。
直列接続した抵抗器R1501〜1503により等電圧に分割し、電解コンデンサC1501〜1503の電圧が高いところでは抵抗器R1501〜1503を通して放電し、電解コンデンサの電圧が低いところでは抵抗器R1501〜1503を通して充電が行われ、結果として等電圧となる。
【0004】
図16はフライバック型DC−DCコンバータにより均等電圧充電を行う回路で、フライバックトランスT1601の2次巻き線L1601〜1603をそれぞれ同じ巻き数とすることで検波電圧が等しくなり、結果として各キャパシタ素子は均等電圧に充電される。
【0005】
【特許文献1】
特開2001−136660号公報
【0006】
【発明が解決しようとする課題】
図15の従来技術では抵抗器R1501〜1503により常時放電が行われている為に、抵抗値を小さくすれば均等充電速度を速めることが出来るが、抵抗器により放電するエネルギーが大きくなり、抵抗値を大きくすると放電量を小さく出来るが均等電圧動作が遅くなる欠点があった。
【0007】
また、図16の従来技術では均等電圧充電により耐電圧限界まで蓄積エネルギーを上げることは出来るが、各素子のキャパシティにアンバランスがあると均等電圧放電とはならない為、蓄積した最大エネルギーを取り出せない、或いは、充分にエネルギーを取り出さない内に逆充電を受ける素子が現れ、劣化・破壊を起こす欠点があった。
【0008】
さらに、均等充電回路のみで充電を行っている為に、整流用ダイオードCD1601〜1603の順方向ドロップ電圧によるエネルギー損失が大きく、充電効率を大幅に低下させる欠点があった。
【0009】
【課題を解決するための手段】
本発明は、前記目的を達成するため、充電に従って端子電圧が上昇するキャパシタを直列接続した複数個のキャパシタと、該キャパシタに補充電のために接続される共通トランスと、該共通トランスと前記キャパシタ間の接続を切換えるスイッチと、前記スイッチを高周波で同期して切り替える制御信号を発生させるスイッチ制御回路とを含み、該スイッチ制御回路によって前記各キャパシタ間に電圧が異なる場合に前記キャパシタに接続されている前記共通トランスの複数個の巻き線を介して充電又は放電電流を流し,前記キャパシタをほぼ均等な電圧にすることを特徴とする。
本発明では直列接続したキャパシタに対して外部充電回路により充電するが、個々のキャパシタ電圧にアンバランスが発生すると電圧の高いキャパシタから電圧の低いキャパシタに補充電を行う為、均等電圧充電となり、最大エネルギーの蓄積が出来る。
外部負荷に放電する場合も、端子電圧が早く低下するキャパシティの小さいキャパシタに対し、キャパシティの大きいキャパシタより補充電を行う為、電圧アンバランスを解消出来、最大エネルギーの取り出しが可能になる。
補充電はキャパシティのアンバランス量に対して動作する為、補充電回路に掛かる負担は小さく、スイッチング動作の為、充・放電効率が向上する。
【0010】
また上記本発明にかかる自己補充電機能付き直列接続キャパシタにおいて、前記共通トランスは、複数個の中点タップ付き巻き線(以下差動巻き線と言う)を有し、前記スイッチは交互に切換わり、1つの前記キャパシタに差動巻き線と差動スイッチを各々直列接続し、または1つの差動巻き線を2つのキャパシタと2つの差動スイッチを共用して直列接続する事を特徴とする。
本発明により各キャパシタとトランス巻き線との結合はプッシュ・プル動作の為、充電ON率はほぼ100%となり、補充電動作を効率よく行うことが出来る。
【0011】
また上記本発明にかかる自己補充電機能付き直列接続キャパシタにおいて、前記共通トランスを2個以上に分割し、各トランスは2次巻き線を有し、または差動巻き線と共用し、分割した各トランスを同じ巻き数で並列接続することを特徴とする。
直列キャパシタの数が多くなると1つの共有トランスでは巻き線数を確保出来なくなるが、トランスを分割して2次巻き線を並列接続することにより、多数の直列キャパシタの接続が可能となる。
【0012】
また上記発明にかかる自己補充電機能付き直列接続キャパシタにおいて、自己補充電機能付き直列接続キャパシタで構成されるブロック複数個からなり、2個以上のブロック間で1個以上のキャパシタを共用し、全キャパシタを直列接続することを特徴とする。
ブロック複数個接続により多数のキャパシタを直列接続できるようになる。
【0013】
また上記本発明にかかる自己補充電機能付き直列接続キャパシタにおいて、前記各キャパシタの電圧を測定し、各キャパシタ間に電圧差が生じた場合はスイッチ制御を起動し、各キャパシタ間に電圧差が生じない場合はスイッチ制御を停止することを特徴とする。
【0014】
また上記本発明にかかる自己補充電機能付き直列接続キャパシタにおいて、外部充電回路により本自己補充電機能付き直列接続キャパシタを充電する充電電流及び負荷回路に放電する放電電流を検出する充・放電電流検出回路を付加し、充・放電時にスイッチ制御を起動することを特徴とする。
【0015】
【発明の実施の形態】
図1は本発明の1実施例で、C101〜106は直列接続したキャパシタ、TM101は直列接続キャパシタのプラス端子、TM102は直列接続キャパシタのマイナス端子、T101は巻き線L101〜107を持つ共通トランス、SW101〜SW106はスイッチ、CD101は整流ダイオード、B101はスイッチ制御回路でSW101〜SW106を切換えする制御信号を発生する。
【0016】
図2はより具体的な回路を示したもので、図3は動作説明図である。
SW201〜SW206に電界効果トランジスタ(以下FETと言う)を使用し、スイッチの制御信号をトランスT202で分配している。
トランスT201の巻き線L201〜206の巻き数は同じであるため、FETスイッチSW201〜206を同期して高周波でON−OFFさせるとONの時の巻き線電圧は全て同じで、ほぼキャパシタC201〜206の電圧の平均電圧となる。
従って、キャパシタの電圧が異なる場合電圧が高いキャパシタからは巻き線の方向に放電電流が流れ、トランスの性質による逆起電流により電圧が低いキャパシタに対しては充電電流が流れ、各キャパシタの電圧は同じくなる。
各スイッチを同時にOFFとすると、共通トランスT201に蓄えられた磁気エネルギーにより逆起電圧が発生するが、巻き線L207と整流ダイオードCD201により直列接続したキャパシタ全部に対してエネルギー回収される。
各キャパシタの電圧が等しくなるとトランスの巻き線に向かって流れる電流はトランスのインダクタンスL(巻き線L201〜206)に対して流れる電流のみとなる。
I=e/L×t                 式(1)
I;電流値  e;キャパシタの電圧
L;トランスのインダクタンス  t;パルスのON時間
この式(1)から分かるように電流を小さく押さえるにはトランス巻き線の巻き数を多く、パルスのON時間を小さくすることが望ましいが、巻き数を多くすると巻き線抵抗による損失が大きくなるので、可能な限りパルスのON時間を短くする、つまり、ON−OFF周波数を高くすることが必要となる。
この電流と電圧積のパルス時間積分値はトランスに蓄えられる磁気エネルギーで、前述の様に巻き線L207と整流ダイオードCD201によりエネルギー回収が行われる。
【0017】
図3は巻き線L207の巻き数を巻き線L201〜206の6倍にした場合の巻き線電圧波形例で、ON時間t1に対し、OFF時の逆起電圧は順方向電圧とほぼ同じで、持続時間t2もt1とほぼ同じとなる。
【0018】
図4は別の実施例で、共通トランス20の巻き線に対してプッシュ・プル動作させるもので、巻き数は全て同じとする。
【0019】
図5はより具体的な回路を示したもので、図6は動作説明図である。
差動スイッチに2個のFETを使用し、方形波発生回路で生成したパルス信号をトランスT502により各FETスイッチに制御信号として分配する。
この方式では共通トランスT501の巻き線に発生するプラス・マイナス電圧は、ほぼキャパシタC501〜506の電圧の平均電圧となり、第1図の場合と同様、電圧の高いキャパシタからは巻き線方向に放電電流が流れ、電圧の低いキャパシタへは充電電流が流れ、どのキャパシタ電圧も同じになる。
各キャパシタの電圧が等しくなるとトランスの巻き線に向かって流れる電流はトランスのインダクタンスL(L501〜506)に対して流れる交流電流のみとなる。
ON−OFF及びOFF−ON信号の波形率は50%でよく、各キャパシタとトランス巻き線との結合はプッシュ・プル動作の為ON率はほぼ100%となり、補充電動作を効率よく行うことが出来る。
また、この方式ではトランスに蓄えられる磁気エネルギーは自動的に逆の半サイクルで回収されるため、エネルギー回収の為の巻き線と整流ダイオードは不要となる。
【0020】
図7は共通トランスを3つに分割した例で、直列キャパシタの数が多くなると1つの共有トランスでは巻き線数を確保出来なくなるが、2次巻き線で並列接続することにより、あたかも1つの共通トランスのように働くこととなる。
図7の例では2個ずつの直列接続キャパシタが1単位となって整然と直列接続されているが、1単位ずつは独立している為、接続順は任意である。
【0021】
図8、図9は複数の自己補充電直列接続キャパシタブロックを共有したキャパシタにより結合させた例で、図8は2個のキャパシタ(C806、807)を共用してキャパシタを直列接続している。
図8でキャパシタC801の電圧が高く、C812の電圧が低い場合について検証すると、C812には共通トランスT802を介してC806〜811より充電電流を受け、C801からは共通トランスT801を介してC802〜807に充電する。
従って、C801〜807ではC801の電圧が高く、C806とC807の電圧が低くなり、C806〜812ではC806とC807の電圧が高く、C812の電圧が低くなり、結果として、C801からC806とC807を介してC812に補充電が行われる。
図9では補充電する経路が多重化され、大電流化が図れる。
【0022】
補充電によりキャパシタ全部の電圧が等しくなると充・放電電流は小さくなり、従って、回路損失も小さくなるので、常時補充電動作をさせていても損失は小さいが、更に損失を小さくする手段として、電圧がアンバランスとなった時のみ補充電動作をさせる、或いは、外部回路による充・放電の時にアンバランスが発生するので、充・放電時にのみ補充電動作をさせる方法がある。
【0023】
図10は電圧アンバランスを検出して補充電動作をさせる回路例で、図11、図12は電圧アンバランス検出回路例で、図11はキャパシタ6個の直列電圧の6分の1電圧と夫々のキャパシタ電圧の差を絶対値増幅し加算したもので、全て等しくなれば出力電圧は直列キャパシタの中点電圧となる。
【0024】
図12では6個の抵抗器Rと12個の抵抗器rにより直列キャパシタ電圧を6等分し、抵抗器rにより誤差許容範囲を設定し、オープンコレクタ型(または、オープンドレイン型)のコンパレータにより誤差検出し、ワイアードオアにより合成したもので、全てが許容範囲電圧の場合にはHレベルとなり、1箇所でも許容範囲を超えていればLレベルとなる。
この信号を受けてスイッチ制御回路の動作をON−OFFさせる。
【0025】
図13は直列接続キャパシタの充・放電電流を電流検出回路で検出してスイッチ制御回路を起動するようにしたもので、図14は電流検出回路例である。
直列接続キャパシタに微小抵抗R1401を直列接続し、微小抵抗に発生する電圧を絶対値増幅することで充・放電電流を検出する。
充・放電電流がゼロで有れば、出力電圧は直列接続キャパシタの中点電圧となる。
【0026】
上記実施例で示したキャパシタとしては、電気二重層大容量電解コンデンサ、鉛蓄電器、リチウムイオン電池、ポリマー電池の様に、充電に従って端子電圧が上昇するコンデンサまたは二次電池等も含まれる。
【0027】
【発明の効果】
以上述べたように、補充電動作により直列接続キャパシタの充・放電時にも常にキャパシタ電圧を等しく保つことが出来る為、最大電力の蓄積と最大電力の取り出しが可能になり、キャパシティのアンバランスを補う補充電動作をスイッチングで行ってるので、エネルギー効率が高くなる。
また、図7、図8、図9のようにすることで多くのキャパシタを直列接続出来るので、たとえ2〜3ボルトのキャパシタでも数百ボルトのキャパシタとすることが出来、電気自動車等で電力効率を高くすることが出来る。
【図面の簡単な説明】
【図1】本発明の1実施例である。
【図2】本発明の具体的な回路である。
【図3】本発明の動作説明図である。
【図4】本発明の他の実施例である。
【図5】本発明の他の具体的な回路である。
【図6】本発明の他の動作説明図である。
【図7】共通トランスを3つに分割した例である。
【図8】複数の自己補充電機能付直列接続キャパシタブロックを共有したキャパシタにより結合させた例である。
【図9】複数の自己補充電機能付直列接続キャパシタブロックを共有したキャパシタにより結合させた例である。
【図10】電圧差を検出して補充電動作をさせる回路例である。
【図11】電圧差検出回路例である。
【図12】電圧差検出回路例である。
【図13】直列接続キャパシタの充・放電電流を検出してスイッチ制御回路を起動する例である。
【図14】電流検出回路例である。
【図15】抵抗器を使用した従来の均等電圧充電回路例である。
【図16】フライバックトランス使用した従来の均等電圧充電回路例である。
【符号の説明】
C101〜106、 201〜206、 401〜406、 501〜506、701〜706、 1001〜1006、 1101〜1106、1201〜1206、 1401〜1406、 1501〜1503、1601〜1606・・・キャパシタ
CB801、802、901〜903・・・自己補充電機能付直列接続キャパシタブロック
CD101、201、1601〜1606・・・整流ダイオード
B101、201、401、501、701・・・スイッチ制御回路
B202、502・・・パルス発生回路
L101〜107、201〜207、501〜506、1601〜1606・・・トランスの巻き線
SW101〜106、201〜206、401〜406、701〜718・・・スイッチ
T101、201、401、501、701〜703、801〜802・・・共通トランス
T202、205・・・制御信号分配トランス
T1601・・・フライバックトランス
TM101、201、401、501、701、801、1001、1101、1201、1301、1401・・・直列接続キャパシタのプラス端子
TM102、202、402、502、702、802、1002、1102、1202、1302、1402・・・直列接続キャパシタのマイナス端子
R1401・・・微小抵抗器
R1501〜1503・・・充放電用抵抗器
R・・・抵抗器
r・・・抵抗器
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention provides high-voltage large-capacity capacitors obtained by connecting a plurality of electric double-layer large-capacity electrolytic capacitors and lithium-ion batteries in series, and controls uniform voltage charging during charging even when the capacities of the capacitors are not uniform. As a result, the maximum energy can be stored up to the allowable voltage limit, and the stored energy can be effectively extracted by controlling the supplementary charge to a uniform voltage even during discharging.
[0002]
Therefore, in an electric vehicle using a lead storage battery, a lithium secondary battery, a polymer secondary battery, or an electric double-layer large-capacity electrolytic capacitor connected in series, the cruising distance of the electric vehicle can be extended to the limit.
Since the electric double layer large capacity electrolytic capacitor withstands repeated rapid charging and discharging, it can be replaced with a lead battery of an automobile by setting a withstand voltage of about 15 volts, and idling stop can be performed even in a current automobile.
[0003]
[Prior art]
The circuit for increasing the breakdown voltage of the electrolytic capacitor and absorbing the ripple current has the configuration shown in FIG.
It is divided into equal voltages by the resistors R1501 to 1503 connected in series, and is discharged through the resistors R1501 to 1503 when the voltage of the electrolytic capacitor C1501 to 1503 is high, and charged through the resistors R1501 to 1503 when the voltage of the electrolytic capacitor is low. Is performed, resulting in an equal voltage.
[0004]
FIG. 16 shows a circuit for performing equal voltage charging by a flyback type DC-DC converter. The detection voltages are equalized by making the secondary windings L1601 to 1603 of the flyback transformer T1601 the same number of turns, and as a result, each capacitor The device is charged to a uniform voltage.
[0005]
[Patent Document 1]
JP 2001-136660 A
[Problems to be solved by the invention]
In the prior art shown in FIG. 15, since the resistors R1501 to 1503 are constantly discharging, the uniform charging speed can be increased by reducing the resistance value. However, the energy discharged by the resistor increases, and the resistance value increases. However, there is a drawback that the uniform voltage operation is slowed down by increasing the discharge amount.
[0007]
Further, in the prior art shown in FIG. 16, the accumulated energy can be increased to the withstand voltage limit by the uniform voltage charging. However, if the capacities of the respective elements are unbalanced, the equal voltage discharge does not occur. There is a disadvantage that an element that is not charged or receives reverse charging before sufficient energy is taken out causes deterioration and destruction.
[0008]
Furthermore, since charging is performed only by the equalizing charging circuit, energy loss due to a forward drop voltage of the rectifying diodes CD1601 to 1603 is large, and there is a disadvantage that charging efficiency is greatly reduced.
[0009]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides a plurality of capacitors in which a capacitor whose terminal voltage increases in accordance with charging is connected in series, a common transformer connected to the capacitors for supplementary charging, the common transformer and the capacitor And a switch control circuit for generating a control signal for synchronously switching the switch at a high frequency, the switch control circuit being connected to the capacitor when a voltage is different between the capacitors. A charge or discharge current is passed through a plurality of windings of the common transformer, and the voltage of the capacitor is made substantially uniform.
In the present invention, the capacitors connected in series are charged by the external charging circuit. However, when an imbalance occurs in the individual capacitor voltages, the auxiliary voltage is charged from the high voltage capacitor to the low voltage capacitor. Energy can be stored.
Even in the case of discharging to an external load, a capacitor having a small capacity whose terminal voltage decreases quickly is supplemented by a capacitor having a large capacity, so that voltage imbalance can be eliminated and maximum energy can be extracted.
Since the auxiliary charging operates with respect to the unbalanced capacity, the load on the auxiliary charging circuit is small, and the switching operation improves the charging / discharging efficiency.
[0010]
In the above-described series-connected capacitor having a self-complementary charging function according to the present invention, the common transformer has a plurality of windings with a center tap (hereinafter referred to as a differential winding), and the switches are alternately switched. A differential winding and a differential switch are connected in series to one capacitor, or one differential winding is connected in series by sharing two capacitors and two differential switches.
According to the present invention, since the coupling between each capacitor and the transformer winding is a push-pull operation, the charging ON rate becomes almost 100%, and the auxiliary charging operation can be performed efficiently.
[0011]
In the above-described series-connected capacitor having a self-complementary charging function according to the present invention, the common transformer is divided into two or more, and each transformer has a secondary winding or is shared with a differential winding, and The transformer is connected in parallel with the same number of turns.
When the number of series capacitors increases, the number of windings cannot be secured with one shared transformer. However, by dividing the transformer and connecting the secondary windings in parallel, a large number of series capacitors can be connected.
[0012]
Further, in the series connection capacitor with self-supplementary charge function according to the present invention, the series connection capacitor includes a plurality of blocks each including the series connection capacitor with self-supplementary charge function, and one or more capacitors are shared between two or more blocks. It is characterized in that capacitors are connected in series.
By connecting a plurality of blocks, a large number of capacitors can be connected in series.
[0013]
Further, in the series-connected capacitor with a self-complementary charge function according to the present invention, the voltage of each capacitor is measured, and when a voltage difference occurs between the capacitors, switch control is activated, and a voltage difference occurs between the capacitors. When there is no switch control, the switch control is stopped.
[0014]
In the above-mentioned series connection capacitor with self-complementary charge function according to the present invention, charge / discharge current detection for detecting a charge current for charging the series connection capacitor with self-complementary charge function and a discharge current for discharging to a load circuit by an external charging circuit. A circuit is added, and switch control is activated at the time of charging / discharging.
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 1 shows an embodiment of the present invention. C101 to 106 are capacitors connected in series, TM101 is a plus terminal of the series connection capacitor, TM102 is a minus terminal of the series connection capacitor, T101 is a common transformer having windings L101 to L107, SW101 to SW106 are switches, CD101 is a rectifier diode, and B101 is a switch control circuit that generates a control signal for switching SW101 to SW106.
[0016]
FIG. 2 shows a more specific circuit, and FIG. 3 is an operation explanatory diagram.
A field effect transistor (hereinafter, referred to as an FET) is used for SW201 to SW206, and a switch control signal is distributed by a transformer T202.
Since the number of turns of the windings L201 to 206 of the transformer T201 is the same, when the FET switches SW201 to 206 are turned on and off at a high frequency in synchronization, the winding voltages at the time of ON are all the same, and the capacitors C201 to 206 Average voltage.
Therefore, when the voltage of the capacitor is different, the discharge current flows in the direction of the winding from the capacitor having the higher voltage, and the charging current flows to the capacitor having the lower voltage due to the back electromotive current due to the nature of the transformer. Will be the same.
When each switch is turned off at the same time, a counter electromotive voltage is generated by the magnetic energy stored in the common transformer T201, but energy is recovered for all the capacitors connected in series by the winding L207 and the rectifier diode CD201.
When the voltage of each capacitor becomes equal, the current flowing toward the winding of the transformer is only the current flowing to the inductance L of the transformer (windings L201 to 206).
I = e / L × t Equation (1)
I: Current value e; Capacitor voltage L; Transformer inductance t; Pulse ON time As can be seen from the equation (1), in order to suppress the current, the number of turns of the transformer winding is increased and the pulse ON time is reduced. Although it is desirable to increase the number of turns, the loss due to the winding resistance increases. Therefore, it is necessary to shorten the ON time of the pulse as much as possible, that is, to increase the ON-OFF frequency.
The pulse time integration value of the current-voltage product is the magnetic energy stored in the transformer, and the energy is recovered by the winding L207 and the rectifier diode CD201 as described above.
[0017]
FIG. 3 is an example of a winding voltage waveform when the number of windings of the winding L207 is six times that of the windings L201 to 206. For the ON time t1, the back electromotive voltage at OFF is almost the same as the forward voltage. The duration t2 is almost the same as t1.
[0018]
FIG. 4 shows another embodiment in which the push-pull operation is performed on the windings of the common transformer 20, and the number of turns is the same.
[0019]
FIG. 5 shows a more specific circuit, and FIG. 6 is an operation explanatory diagram.
Using two FETs for the differential switch, the pulse signal generated by the square wave generating circuit is distributed by the transformer T502 to each FET switch as a control signal.
In this method, the plus / minus voltage generated in the winding of the common transformer T501 is almost the average voltage of the voltages of the capacitors C501 to 506. As in the case of FIG. Flows, and a charging current flows to a capacitor having a low voltage, and the capacitor voltage becomes the same.
When the voltage of each capacitor becomes equal, the current flowing toward the winding of the transformer is only the AC current flowing to the inductance L (L501 to 506) of the transformer.
The waveform ratio of the ON-OFF and OFF-ON signals may be 50%, and the ON ratio becomes almost 100% because the coupling between each capacitor and the transformer winding is a push-pull operation, so that the auxiliary charging operation can be performed efficiently. I can do it.
Further, in this method, the magnetic energy stored in the transformer is automatically recovered in the opposite half cycle, so that the winding and the rectifier diode for recovering the energy are not required.
[0020]
FIG. 7 shows an example in which a common transformer is divided into three. If the number of series capacitors increases, the number of windings cannot be secured with one shared transformer, but as if one common transformer is connected in parallel with secondary windings, It will work like a trance.
In the example of FIG. 7, two series-connected capacitors are unitarily connected in series as one unit, but since each unit is independent, the connection order is arbitrary.
[0021]
FIGS. 8 and 9 show examples in which a plurality of self-complementary charging series-connected capacitor blocks are coupled by a shared capacitor. FIG. 8 shows two capacitors (C806 and 807) shared and capacitors connected in series.
In FIG. 8, when verifying the case where the voltage of the capacitor C801 is high and the voltage of C812 is low, C812 receives charging current from C806 to 811 via the common transformer T802, and C802 to 807 from C801 via the common transformer T801. To charge.
Accordingly, in C801 to 807, the voltage of C801 is high, and the voltage of C806 and C807 is low. In C806 to 812, the voltage of C806 and C807 is high and the voltage of C812 is low. As a result, C801 to C806 and C807 C812 is supplementarily charged.
In FIG. 9, the paths for auxiliary charging are multiplexed, and a large current can be achieved.
[0022]
When the voltages of all the capacitors become equal by the supplementary charge, the charge / discharge current decreases, and therefore the circuit loss also decreases.Thus, even if the supplementary charge operation is always performed, the loss is small. There is a method in which a supplementary charge operation is performed only when is unbalanced, or an unbalance occurs when charging / discharging by an external circuit.
[0023]
FIG. 10 shows an example of a circuit for detecting a voltage imbalance and performing a supplementary charging operation. FIGS. 11 and 12 show examples of a voltage imbalance detection circuit. FIG. 11 shows one sixth of the series voltage of six capacitors and each of them. Is obtained by amplifying the absolute value of the difference between the capacitor voltages and adding them. If all the values become equal, the output voltage becomes the midpoint voltage of the series capacitor.
[0024]
In FIG. 12, the series capacitor voltage is divided into six equal parts by six resistors R and twelve resistors r, an allowable error range is set by the resistor r, and an open collector type (or open drain type) comparator is used. The error is detected and synthesized by wired-OR. When all voltages are within the allowable range, the level becomes H level, and when even one of them exceeds the allowable range, the level becomes L level.
In response to this signal, the operation of the switch control circuit is turned on / off.
[0025]
FIG. 13 shows a configuration in which the charge / discharge current of a series-connected capacitor is detected by a current detection circuit to activate a switch control circuit. FIG. 14 shows an example of a current detection circuit.
A minute resistor R1401 is connected in series to a series-connected capacitor, and a charge / discharge current is detected by amplifying an absolute value of a voltage generated in the minute resistor.
If the charge / discharge current is zero, the output voltage will be the midpoint voltage of the series connected capacitors.
[0026]
Examples of the capacitor shown in the above embodiment include a capacitor whose terminal voltage rises as it is charged, a secondary battery, and the like, such as an electric double layer large capacity electrolytic capacitor, a lead battery, a lithium ion battery, and a polymer battery.
[0027]
【The invention's effect】
As described above, since the capacitor voltage can always be kept equal during charging / discharging of the series-connected capacitors by the supplementary charging operation, the maximum power can be stored and the maximum power can be taken out, and the imbalance in capacity can be achieved. Since the supplementary charging operation is performed by switching, the energy efficiency is increased.
7, 8, and 9, many capacitors can be connected in series, so that a capacitor of 2 to 3 volts can be a capacitor of several hundred volts, and the power efficiency of an electric vehicle or the like can be increased. Can be increased.
[Brief description of the drawings]
FIG. 1 is an embodiment of the present invention.
FIG. 2 is a specific circuit of the present invention.
FIG. 3 is a diagram illustrating the operation of the present invention.
FIG. 4 is another embodiment of the present invention.
FIG. 5 is another specific circuit of the present invention.
FIG. 6 is another operation explanatory view of the present invention.
FIG. 7 is an example in which a common transformer is divided into three parts.
FIG. 8 is an example in which a plurality of series-connected capacitor blocks with a self-complementary charging function are coupled by a shared capacitor.
FIG. 9 is an example in which a plurality of series-connected capacitor blocks with a self-complementary charging function are coupled by a shared capacitor.
FIG. 10 is an example of a circuit that performs a supplementary charging operation by detecting a voltage difference.
FIG. 11 is an example of a voltage difference detection circuit.
FIG. 12 is an example of a voltage difference detection circuit.
FIG. 13 is an example of activating a switch control circuit by detecting a charge / discharge current of a series-connected capacitor.
FIG. 14 is an example of a current detection circuit.
FIG. 15 is an example of a conventional equal voltage charging circuit using a resistor.
FIG. 16 is an example of a conventional equal voltage charging circuit using a flyback transformer.
[Explanation of symbols]
C101 to 106, 201 to 206, 401 to 406, 501 to 506, 701 to 706, 1001 to 1006, 1101 to 1106, 1201 to 1206, 1401 to 1406, 1501 to 1503, 1601 to 1606, capacitors CB801 and 802 , 901 to 903 ... series-connected capacitor blocks CD101, 201, 1601 to 1606 with self-supplementary charging function ... rectifier diodes B101, 201, 401, 501, 701 ... switch control circuits B202, 502 ... pulses Generating circuits L101 to 107, 201 to 207, 501 to 506, 1601 to 1606 ... Transformer windings SW101 to 106, 201 to 206, 401 to 406, 701 to 718 ... Switches T101, 201, 401, 501 , 70 1 to 703, 801 to 802 ... common transformer T202, 205 ... control signal distribution transformer T1601 ... flyback transformer TM101, 201, 401, 501, 701, 801, 1001, 1101, 1201, 1301, 1401 ... plus terminals TM102, 202, 402, 502, 702, 802, 1002, 1102, 1202, 1302, 1402 of series-connected capacitors-minus terminals R1401 of series-connected capacitors-minute resistors R1501 to 1503 ..Resistor for charging / discharging R: resistor r: resistor

Claims (6)

充電に従って端子電圧が上昇するキャパシタを直列接続した複数個のキャパシタと、
該キャパシタに補充電のために接続される共通トランスと、
該共通トランスと前記キャパシタ間の接続を切換えるスイッチと、
前記スイッチを高周波で同期して切換える制御信号を発生させるスイッチ制御回路とを含み、該スイッチ制御回路によって前記各キャパシタ間の電圧が異なる場合に前記キャパシタに接続されている前記共通トランスの複数個の巻き線を介して充電又は放電電流を流し,前記キャパシタを等電圧にすることを特徴とする自己補充電機能付き直列接続キャパシタ。
A plurality of capacitors connected in series with capacitors whose terminal voltage rises with charging;
A common transformer connected to the capacitor for auxiliary charging,
A switch for switching connection between the common transformer and the capacitor;
A switch control circuit for generating a control signal for switching the switch synchronously at a high frequency, wherein a plurality of the common transformers connected to the capacitor when the voltage between the capacitors is different by the switch control circuit. A series-connected capacitor with a self-complementary charging function, characterized in that a charging or discharging current flows through a winding to make the capacitor have an equal voltage.
請求項1の自己補充電機能付き直列接続キャパシタにおいて、前記共通トランスは、複数個の中点タップ付き巻き線(以下差動巻き線と言う)を有し、前記スイッチは交互に切換わり、1つの前記キャパシタに差動巻き線と差動スイッチを各々直列接続し、または1つの差動巻き線を2つのキャパシタと2つの差動スイッチを共用して直列接続することを特徴とする自己補充電機能付き直列接続キャパシタ。2. The series-connected capacitor with a self-complementary charging function according to claim 1, wherein the common transformer has a plurality of windings with a center tap (hereinafter referred to as a differential winding), and the switches are switched alternately. Self-complementary charging, wherein a differential winding and a differential switch are connected in series to one of the capacitors, or one differential winding is connected in series by sharing two capacitors and two differential switches. Series connected capacitor with function. 請求項1または請求項2の自己補充電機能付き直列接続キャパシタにおいて、前記共通トランスを2個以上に分割し、各トランスは2次巻き線を有し、または差動巻き線と共用し、分割した各トランスを同じ巻き数で並列接続することを特徴とする自己補充電機能付き直列接続キャパシタ。3. The series-connected capacitor according to claim 1, wherein the common transformer is divided into two or more, and each transformer has a secondary winding or is shared with a differential winding. A series-connected capacitor with a self-complementary charging function, characterized in that the above-mentioned transformers are connected in parallel with the same number of turns. 請求項1乃至3のいずれか一項記載の自己補充電機能付き直列接続キャパシタにおいて、自己補充電機能付き直列接続キャパシタで構成されるブロック複数個からなり、2個以上のブロック間で1個以上のキャパシタを共用し、全キャパシタを直列接続することを特徴とする自己補充電機能付き直列接続キャパシタ。The series-connected capacitor with a self-complementary charging function according to any one of claims 1 to 3, comprising a plurality of blocks each including a series-connected capacitor with a self-complementary charging function. A series-connected capacitor with a self-complementary charging function, wherein the capacitor is shared and all the capacitors are connected in series. 請求項1乃至4のいずれか一項記載の自己補充電機能付き直列接続キャパシタにおいて、前記各キャパシタの電圧を測定し、各キャパシタ間に電圧差が生じた場合はスイッチ制御を起動し、各キャパシタ間に電圧差が生じない場合はスイッチ制御を停止することを特徴とする自己補充電機能付き直列接続キャパシタ。5. The series-connected capacitor according to claim 1, wherein a voltage of each of the capacitors is measured, and when a voltage difference occurs between the capacitors, a switch control is started, and each of the capacitors is activated. A series-connected capacitor with a self-complementary charging function, wherein the switch control is stopped when no voltage difference occurs between them. 請求項1乃至5のいずれか一項記載の自己補充電機能付き直列接続キャパシタにおいて、外部充電回路により本自己補充電機能付き直列接続キャパシタを充電する充電電流及び負荷回路に放電する放電電流を検出する充・放電電流検出回路を付加し、充・放電時にスイッチ制御を起動することを特徴とする自己補充電機能付き直列接続キャパシタ。6. The series connection capacitor with a self-complementary charging function according to claim 1, wherein a charging current for charging the series connection capacitor with a self-complementary charging function and a discharge current for discharging to a load circuit are detected by an external charging circuit. A series-connected capacitor with a self-complementary charge function, characterized by adding a charge / discharge current detection circuit that activates switch control during charge / discharge.
JP2002293339A 2002-10-07 2002-10-07 Series connection capacitor with self-complementary charging function Expired - Fee Related JP3772140B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002293339A JP3772140B2 (en) 2002-10-07 2002-10-07 Series connection capacitor with self-complementary charging function

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002293339A JP3772140B2 (en) 2002-10-07 2002-10-07 Series connection capacitor with self-complementary charging function

Publications (2)

Publication Number Publication Date
JP2004129455A true JP2004129455A (en) 2004-04-22
JP3772140B2 JP3772140B2 (en) 2006-05-10

Family

ID=32284276

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002293339A Expired - Fee Related JP3772140B2 (en) 2002-10-07 2002-10-07 Series connection capacitor with self-complementary charging function

Country Status (1)

Country Link
JP (1) JP3772140B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007015362A1 (en) * 2005-08-01 2007-02-08 National University Corporation Saitama University Series electric double-layer capacitor device
WO2007105712A1 (en) * 2006-03-15 2007-09-20 Japan Radio Co., Ltd. Equivalent charging/discharging circuit, and equivalent charging/discharging system
JP2010288447A (en) * 2009-05-22 2010-12-24 Intersil Americas Inc System and method for cell balancing and charging
WO2013088695A2 (en) 2011-12-12 2013-06-20 Kabushiki Kaisha Toyota Jidoshokki Battery cell voltage equalization apparatus
KR20170015081A (en) * 2015-07-30 2017-02-08 한온시스템 주식회사 Method for voltage balancing of series-connected capacitors
US10164441B2 (en) 2009-05-22 2018-12-25 Intersil Americas LLC System and method for cell balancing and charging using a serially coupled inductor and capacitor

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007015362A1 (en) * 2005-08-01 2007-02-08 National University Corporation Saitama University Series electric double-layer capacitor device
WO2007105712A1 (en) * 2006-03-15 2007-09-20 Japan Radio Co., Ltd. Equivalent charging/discharging circuit, and equivalent charging/discharging system
JP2007252078A (en) * 2006-03-15 2007-09-27 Japan Radio Co Ltd Equal electricity accumulation/discharge circuit
JP2010288447A (en) * 2009-05-22 2010-12-24 Intersil Americas Inc System and method for cell balancing and charging
KR101922370B1 (en) 2009-05-22 2018-11-26 인터실 아메리카스 엘엘씨 System and method for cell balancing and charging
US10164441B2 (en) 2009-05-22 2018-12-25 Intersil Americas LLC System and method for cell balancing and charging using a serially coupled inductor and capacitor
WO2013088695A2 (en) 2011-12-12 2013-06-20 Kabushiki Kaisha Toyota Jidoshokki Battery cell voltage equalization apparatus
KR20170015081A (en) * 2015-07-30 2017-02-08 한온시스템 주식회사 Method for voltage balancing of series-connected capacitors
US10128667B2 (en) 2015-07-30 2018-11-13 Hanon Systems DC/DC converter with capacitor voltage balancing
KR102003834B1 (en) * 2015-07-30 2019-07-25 한온시스템 주식회사 Method for voltage balancing of series-connected capacitors

Also Published As

Publication number Publication date
JP3772140B2 (en) 2006-05-10

Similar Documents

Publication Publication Date Title
Chen et al. A multiwinding transformer cell-to-cell active equalization method for lithium-ion batteries with reduced number of driving circuits
US9368977B2 (en) Battery equalization circuits for series charging/discharging and controlling methods thereof
Park et al. Single-magnetic cell-to-cell charge equalization converter with reduced number of transformer windings
US7880433B2 (en) Charge equalization apparatus
CN100456613C (en) Switching power supply device
US7800346B2 (en) Device and method for equalizing charges of series-connected energy stores
US9484754B2 (en) Balancing series-connected electrical energy units
Moghaddam et al. Multi-winding equalization technique for lithium ion batteries for electrical vehicles
CN108923508B (en) Active equalization device for battery with flyback converter
WO2012042401A2 (en) Charge balancing system
US10615612B2 (en) Battery apparatus and cell balancing circuits
JP5692723B2 (en) One-stone voltage equalization circuit for series-connected storage cells
Abronzini et al. High performance active battery management system with multi-winding transformer
KR20150115281A (en) Apparatus and Method for Balancing Charging Cells
Uno et al. Direct cell-to-cell voltage equalizer using capacitively-isolated parallel-resonant converter for series-connected energy storage cells
Zeltser et al. ZCS resonant converter based parallel balancing of serially connected batteries string
JP2004129455A (en) Series connection capacitor provided with self-supplementary charging function
JP2006296179A (en) Electricity accumulating device of capacitor and its charging and discharging method
Yu et al. A multi-cell-to-multi-cell equalizer for series-connected batteries based on flyback conversion
JP3854592B2 (en) Charger charging device
Yashiro et al. Transformer-less bidirectional PWM converter integrating cell voltage equalizer using voltage multiplier for series connected energy storage cells
CN113715690A (en) Power supply system and control method thereof
Reema et al. A novel coupled inductor based active balancing technique for ultracapacitors
WO2021130464A1 (en) Power supply unit
Fan et al. The balancing system of super capacitor based on active clamped forward converter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040401

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050711

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050802

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050929

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060131

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060213

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090217

Year of fee payment: 3

S201 Request for registration of exclusive licence

Free format text: JAPANESE INTERMEDIATE CODE: R314201

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090217

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100217

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110217

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120217

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120217

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130217

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees