JP2004129358A - Rotor of rotary electric machine - Google Patents

Rotor of rotary electric machine Download PDF

Info

Publication number
JP2004129358A
JP2004129358A JP2002288790A JP2002288790A JP2004129358A JP 2004129358 A JP2004129358 A JP 2004129358A JP 2002288790 A JP2002288790 A JP 2002288790A JP 2002288790 A JP2002288790 A JP 2002288790A JP 2004129358 A JP2004129358 A JP 2004129358A
Authority
JP
Japan
Prior art keywords
core member
rotor
laminated core
electric machine
base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002288790A
Other languages
Japanese (ja)
Other versions
JP3983640B2 (en
Inventor
Hiroyuki Akita
秋田 裕之
Yoshito Asao
浅尾 淑人
Akira Hashimoto
橋本 昭
Masaru Kuribayashi
栗林 勝
Nobuhiko Fujita
藤田 暢彦
Haruyuki Yonetani
米谷 晴之
Masaya Inoue
井上 正哉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2002288790A priority Critical patent/JP3983640B2/en
Publication of JP2004129358A publication Critical patent/JP2004129358A/en
Application granted granted Critical
Publication of JP3983640B2 publication Critical patent/JP3983640B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a rotor of a rotary electric machine that allows high speed rotation for improved output. <P>SOLUTION: A laminated core member 38 is formed into cylindrical shape by laminating annular plate members, and a plurality of salient poles are partitioned and formed in circumferential direction by a through hole that penetrates from one end side of the cylinder toward the other end side with a thinwall left out on the outer peripheral side. A field coil 45 is attached inside the laminated core member 38. A pair of pole core members 31 comprises a plurality of claw-like magnetic poles 34 formed radially at a disc-like base 33 and the outer peripheral part of it with a prescribed pitch, in which the base 33 pinches both ends of the laminated core member 38, each claw-like magnetic pole 34 axially penetrates the salient poles alternately of the laminated core member 38, and the tip of each of the claw-like magnetic pole 34 is bonded to the base 33 on corresponding side through a non-magnetic member 46. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
この発明は、例えば車載の交流発電機等のように高速回転で駆動される回転電機の回転子に係り、ポールコア部材の磁極部を積層コア部材で保持した回転子構造に関するものである。
【0002】
【従来の技術】
一般に、ランデル型の回転電機の回転子は、図16に示すように、円盤状の基部1およびこの基部1の外周部に所定のピッチを介して形成される複数の爪状磁極2でなる一対のポールコア部材3を、それぞれの各爪状磁極2が周方向に交互に噛み合うように、基部1同士を両側から突き合わせて、回転軸4に固着一体させる構成になっている。このため、図示はしないが稼働中に発生する遠心力により、爪状磁極2が径方向に変形して固定子の内周面に接触する恐れがあるので、予めその変形分だけ固定子との間のエアギャップを大きくして余裕を持たせておく必要があるため、出力が低減されるという問題点がある(例えば、特許文献1参照)。
【0003】
このような従来のランデル型の回転電機の回転子の問題点を解消するための先行技術として、この出願と同一の出願人により特願2002−242787号が出願されている。
図17はこの先行技術としての回転電機の回転子の構成を示す断面図、図18および19は図17における線XVIII−XVIIIおよび線XIX−XIXに沿った断面をそれぞれ示す断面図、図20は図17におけるポールコア部材の構成を示す斜視図である。
【0004】
図において、11は円盤状の基部12、この基部12の外周部に周方向に所定のピッチを介して先細に形成される複数の爪状磁極13、および基部12の爪状磁極13が形成される側の中央部に突出して形成され、中央部に回転子軸14が貫通する貫通穴15が形成されるボス部16でなる一対のポールコア部材、17は環状板部材18を積層して円筒状に形成される積層コア部材で、外周部には一端側から他端側に向けて、外周側に薄肉部19を残し且つスキューされて貫通する複数の貫通穴20が形成されており、これら各貫通穴20により周方向に複数の突極部21が区画して形成されている。
【0005】
又、これら各突極部21には、両ポールコア部材11の各爪状磁極13が貫通して嵌合可能な貫通穴22が、軸方向に延在してそれぞれ形成されており、又、突極部21を区画して形成する各貫通穴20には永久磁石23が嵌挿されている。
そして、両ポールコア部材11は、予め積層コア部材7の内側に界磁コイル24が挿入された後、積層コア部材17の両側から各爪状磁極13がそれぞれ各貫通穴22を貫通してお互いに噛み合い、且つ両ボス部16の端面が当接するように突き合わされ、これにより界磁コイル24は両ボス16と積層コア部材17の内周面との間に装着される。その後、両ボス部16の各貫通穴15に回転子軸14が貫通され、固着一体化されることにより回転子が構成されている。
【0006】
【特許文献1】
特開2001−231188号公報
【0007】
【発明が解決しようとする課題】
先行技術としての回転電機の回転子は以上のように構成され、積層コア部材17の外周部に外周側に薄肉部19を残して貫通する貫通穴20により複数の突極部21を区画して形成し、これら各突極部21内軸方向にそれぞれ貫通して形成される貫通穴22に爪状磁極13をそれぞれ貫通させ、各突極部21で爪状磁極13をそれぞれ保持させることにより、遠心力で変形するのを抑制して固定子(図示せず)との間のギャップを小さくし出力の向上を図り、又、薄肉部19により貫通穴20が積層コア部材17の外周側に開口するのを防止することにより、回転時に騒音が発生することが無くなり信頼性の向上を図ることを可能にし、さらに、この貫通穴22を永久磁石23の嵌挿穴として兼用させることにより、貫通穴を別途形成する工程を削減してコストの低減を図ることも可能にしている。
【0008】
しかしながら、このような回転子が車載の発電機に適用される場合、回転数が例えばエンジンの3倍近く高くなるため、各突極部21で保持されているとはいうものの、片持ち支持構造の各爪状磁極13を十分に保持することは困難となる。又、薄肉部19は両突極部21間の磁束漏れを少なくして損失を低減するためには薄い程良いが、貫通穴20内に永久磁石23を嵌挿させているので、この永久磁石23が遠心力により薄肉部19を突き破って飛び出すのを防止するためには、薄くするのにも限度がある等という問題点があった。
【0009】
この発明は上記のような問題点を解消するためになされたもので、高速回転に耐え且つ出力の向上が可能な回転電機の回転子を提供することを目的とするものである。
【0010】
【課題を解決するための手段】
この発明の請求項1に係る回転電機の回転子は、環状板部材を積層して円筒状に形成され、外周部に円筒の一端側から他端側に向けて外周側に薄肉部を残して貫通する貫通穴により、周方向に複数の突極部が区画して形成される積層コア部材と、積層コア部材の内側に装着される界磁コイルと、円盤状の基部および基部の外周部に周方向に所定のピッチを介して形成される複数の爪状磁極でなり、基部により積層コア部材の両端を挟持するとともに、各爪状磁極が積層コア部材の各突極部をそれぞれ交互に軸方向に貫通し、各爪状磁極の先端部が相対する側の基部に非磁性部材を介してそれぞれ固着される一対のポールコア部材とを備えたものである。
【0011】
又、この発明の請求項2に係る回転電機の回転子は、環状板部材を積層して円筒状に形成され、外周部に円筒の一端側から他端側に向けて外周側に薄肉部を残して貫通する貫通穴により、周方向に複数の突極部が区画して形成される積層コア部材と、積層コア部材の内側に装着される界磁コイルと、円盤状の基部および一端側が基部の外周近傍部に周方向に所定のピッチを介して固着される複数のピン状磁極でなり、基部により積層コア部材の両端を挟持するとともに、各ピン状磁極が積層コア部材の各突極部をそれぞれ交互に軸方向に貫通し、各ピン状磁極の他端が相対する側の基部に非磁性部材を介してそれぞれ固着される一対のポールコア部材とを備えたものである。
【0012】
又、この発明の請求項3に係る回転電機の回転子は、請求項1または2において、非磁性部材を、ポールコア部材の基部に埋設され、爪状磁極またはピン状磁極の他端が嵌合可能な嵌合穴を有したものとしたものである。
【0013】
又、この発明の請求項4に係る回転電機の回転子は、請求項1または2において、突極部を区画する貫通穴を略断面矩形状に形成し、内部に永久磁石を嵌挿するようにしたものである。
【0014】
又、この発明の請求項5に係る回転電機の回転子は、請求項4において、永久磁石が嵌挿される貫通穴を、長尺方向が積層コア部材の中心から延びる放射線に対して所定の角度を有した方向を向くように形成したものである。
【0015】
又、この発明の請求項6に係る回転電機の回転子は、請求項5において、一部の貫通穴を、相隣なる同士が外周側で接近するように形成したものである。
【0016】
又、この発明の請求項7に係る回転電機の回転子は、請求項5または6において、貫通穴の積層コア部材の外周側に位置する内面に段部を形成するようにしたものである。
【0017】
又、この発明の請求項8に係る回転電機の回転子は、請求項5または6において、永久磁石の側方に樹脂を埋設するようにしたものである。
【0018】
又、この発明の請求項9に係る回転電機の回転子は、請求項1または2において、積層コア部材の薄肉部を硬化処理するようにしたものである。
【0019】
【発明の実施の形態】
以下、この発明の実施の形態を図に基づいて説明する。
実施の形態1.
図1はこの発明の実施の形態1における回転電機の回転子の構成を示す断面図、図2は図1における回転電機の回転子を軸方向一端側から見た正面図、図3は図1における回転電機の回転子を軸方向他端側から見た正面図、図4は図1における線IV−IVに沿った断面を示す断面図、図5は図1における線V−Vに沿った断面を示す断面図、図6は図1における線VI−VIに沿った断面を示す断面図、図7は図1における線VII−VIIに沿った断面を示す断面図である。
【0020】
図において、31は外周部の周方向に所定のピッチを介して、あり溝状の切り欠き32が形成された円盤状の基部33と、この基部33の外周部の周方向に切り欠き32と交互に、所定のピッチを介し突出して形成される複数の爪状磁極34とでなる一対のポールコア部材で、基部33の爪状磁極34が突出される側の中央部には、ボス部35が突出して形成されるとともに、その中心部には回転子軸36が貫通する貫通穴37が形成されている。
【0021】
38は環状板部材39を積層して円筒状に形成される積層コア部材で、外周部には一端側から他端側に向けて、外周側に薄肉部40を残して貫通する略断面矩形状の複数の貫通穴41が形成されており、これら各貫通穴41により区画されて周方向に複数の突極部42が形成されている。そして、これら各突極部42には、両ポールコア部材31の各爪状磁極34が貫通して嵌合可能な貫通穴43が、軸方向に延在してそれぞれ形成されている。44は突極部42を区画して形成する各貫通穴41を貫通し嵌合される複数の永久磁石、45は両ポールコア部材31のボス部35に嵌合され、積層コア部材38の内側に装着される界磁コイル、46は両ポールコア部材31の切り欠き32に嵌合し、中央部に爪状磁極34が嵌合可能な嵌合穴47が形成された例えば非磁性鋼等でなる略台形状の非磁性部材である。
【0022】
そして、図1に示すように、予め積層コア部材38の内側に界磁コイル45を挿入した後、積層コア部材38の両側から両ポールコア部材31を互いに近づく方向に移動させ、各爪状磁極34をそれぞれ各貫通穴43に貫通させ、その先端を互いに相手側の切り欠き32に嵌合された非磁性部材46の嵌合穴47にそれぞれ嵌合させるとともに、両ボス部35の先端が当接するように突き合わせることにより、両ポールコア部材31の各爪状磁極34は積層コア部材38内で互いに噛み合った状態となり、界磁コイル45は両ボス部35と積層コア部材38の内周面との間に装着される。最後に、両ボス部35の各貫通穴37に回転子軸36が貫通され、固着されることにより回転子が完成する。
【0023】
このように上記実施の形態1によれば、ポールコア部材31の各爪状磁極34を積層コア部材38の各突極部42で保持するとともに、さらにその先端を互いに相手側のポールコア部材31の切り欠き32に嵌合された非磁性部材46の嵌合穴47に嵌合させて、基部33側でも保持して両端支持構造としているので、高速回転稼動により大きな遠心力が働いても変形するのを防止することができるため、固定子(図示せず)との間のギャップに余裕を持たせる必要が無くなり、ギャップを必要最小限に抑えることができるので、高速回転に耐え且つ出力の向上を図ることが可能になる。
【0024】
なお、上記構成ではポールコア部材31の各爪状磁極34の先端を保持する部材として、ポールコア部材31の基部33に形成されたあり溝状の切り欠き32に嵌合し、中央部に爪状磁極34が嵌合可能な嵌合穴47を有する略台形状の非磁性部材46を適用した場合について説明したが、これに限定されるものではなく、図示はしないが例えば切り欠き32に代えて円形状の貫通穴を配置し、この貫通穴に円形状の非磁性部材を嵌合させるようにしても良く、要するに、相手側のポールコア部材の基部に嵌合された非磁性部材で爪状磁極の先端を保持することにより、簡単な構成で両端支持構造とし、機械的強度を上げるとともに、磁気的な損失を抑制してさらに出力の向上を図ることが可能になる。
【0025】
又、上記では詳しく説明しなかったが、図から明らかなように突極部42を区画する貫通穴41を略断面矩形状に形成し、内部に永久磁石44を嵌挿するようにしているので、永久磁石44を嵌挿させるための貫通穴を別途形成する工程が削減されるために、コストの低減を図ることができる。
又、この貫通穴41を、長尺方向が積層コア部材38の中心から延びる放射線に対して、所定の角度を有した方向に向くように形成しているので、永久磁石44に作用する遠心力を貫通穴41の長尺方向内側面で受け、薄肉部40にかかる負担を軽減させることができるため、さらに高速回転に耐えることが可能になる。
【0026】
又、貫通穴41の放射線に対する角度が、相隣なる同士(例えば図4中※印で示す貫通穴41同士)で、外周側で近づく方向に向く部分では楔効果によりさらに耐力を上げることも可能となる。
さらに又、上記のように放射線に対して所定の角度を有して形成された貫通穴41に嵌挿された永久磁石44の側方、すなわち貫通穴41の内側面との間に樹脂を埋め込んで、固めるようにしても上記と同様、さらに耐力を上げることが可能となる。
【0027】
実施の形態2.
図8はこの発明の実施の形態2における回転電機の回転子の構成を示す斜視図、図9は図8における回転電機の回転子の構成を展開して示す斜視図、図10は図8における回転電機の回転子の構成を示す断面図、図11は図10における線XI−XIに沿った断面を示す断面図、図12は図10における線XII−XIIに沿った断面を示す断面図、図13は図10における線XIII−XIIIに沿った断面を示す断面図、図14は図10における線XIV−XIVに沿った断面を示す断面図である。
【0028】
図において、51は外周部の周方向に所定のピッチを介して、あり溝状の切り欠き52および貫通穴53が交互に形成され、一側中央部にボス部54が突出して形成されるとともに、その中心部には回転子軸55が貫通する貫通穴56が形成された基部、57はこの基部51の貫通穴56を貫通して嵌合可能なピン状磁極で、一端側に径太な係止部58が形成されており、基部51と共にポールコア部材59を構成している。そして、このポールコア部材59は互いの切り欠き52が周方向に互い違いとなるように一対配置されている。
【0029】
60は環状板部材61を積層して円筒状に形成される積層コア部材で、外周部にはポールコア部材59の切り欠き52の中央部、および貫通穴53とそれぞれ対応する位置に、ピン状磁極57が貫通可能な複数の貫通穴62が形成されるとともに、これら各貫通穴62間の一端側から他端側に向けて、外周側に薄肉部63を残して貫通する略断面矩形状の複数の貫通穴64が形成されており、これら各貫通穴64により区画されて周方向に複数の突極部65が形成されている。
【0030】
66は各貫通穴64を貫通して嵌合される複数の永久磁石、67は両ポールコア部材59のボス部54に嵌合され、積層コア部材60の内側に装着される界磁コイル、68は両ポールコア部材59の切り欠き52に嵌合し、中央部にピン状磁極57の先端が嵌着される嵌合穴69が形成された、例えば非磁性鋼等でなる略台形状の非磁性部材である。
【0031】
そして、図10に示すように、予め積層コア部材60の内側に界磁コイル67を挿入した後、積層コア部材60の両側から、各貫通穴53にそれぞれピン状磁極57が貫通されるとともに、各切り欠き52にそれぞれ非磁性部材68が嵌合された両ポールコア部材59を互いに近づく方向に移動させ、各ピン状磁極57の先端を相手側の非磁性部材68の嵌合穴69に嵌合させるとともに、両ボス部54の先端が当接するように突き合わせる。すると、両ポールコア部材59の各ピン状磁極57は、積層コア部材60内で互いに噛み合った状態となり、界磁コイル67は両ボス部54と積層コア部材60の内周面との間に装着される。そして最後に、各ピン状磁極57と非磁性部材68の間を、例えば溶接、接着等で固着した後、両ボス部54の各貫通穴56に回転子軸55が貫通され、固着されることにより回転子が完成する。なお、図9では上方に位置する基部51側のピン状磁極57が省略されている。
【0032】
このように上記実施の形態2によれば、ポールコア部材59の各ピン状磁極57を積層コア部材60の各突極部65で保持するとともに、さらにその先端を相手側のポールコア部材59の非磁性部材68の嵌合穴69に嵌合させ、基部51側でも保持して両端支持構造としているので、高速回転稼動により大きな遠心力が働いても変形するのを防止することができるため、固定子(図示せず)との間のギャップに余裕を持たせる必要が無くなり、ギャップを必要最小限に抑えることができるので、高速回転に耐え且つ出力の向上を図ることが可能になる。
【0033】
実施の形態3.
図15はこの発明の実施の形態3における回転電機の回転子の要部の構成を示す部分詳細図である。
図において、上記実施の形態2におけると同様な部分は同一符号を付して説明を省略する。70は突極部65を区画して形成し永久磁石66が貫通して嵌合される貫通穴で、薄肉部71を残した側の内面に段部72が形成され、この段部72の部分だけ薄肉部71の肉厚が厚くなっている。
【0034】
このように上記実施の形態3によれば、永久磁石66が嵌合される貫通穴70の薄肉部71を残した側の内面に段部72を形成し、この段部72で永久磁石66の端面を支持しているので、薄肉部71に負担をかけることなく肉厚の厚い段部72で遠心力を受けることができるため、さらに高速回転に耐えることが可能になる。なお、上記各実施の形態1、2においては説明しなかったが、それぞれ各薄肉部を例えば溶接、冷鍛等を施すことにより硬化処理しても、耐久力を上げることが可能になる。
【0035】
【発明の効果】
以上のように、この発明の請求項1によれば、環状板部材を積層して円筒状に形成され、外周部に円筒の一端側から他端側に向けて外周側に薄肉部を残して貫通する貫通穴により、周方向に複数の突極部が区画して形成される積層コア部材と、積層コア部材の内側に装着される界磁コイルと、円盤状の基部および基部の外周部に周方向に所定のピッチを介して形成される複数の爪状磁極でなり、基部により積層コア部材の両端を挟持するとともに、各爪状磁極が積層コア部材の各突極部をそれぞれ交互に軸方向に貫通し、各爪状磁極の先端部が相対する側の基部に非磁性部材を介してそれぞれ固着される一対のポールコア部材とを備えたので、高速回転に耐え且つ出力の向上が可能な回転電機の回転子を提供することができる。
【0036】
又、この発明の請求項2によれば、環状板部材を積層して円筒状に形成され、外周部に円筒の一端側から他端側に向けて外周側に薄肉部を残して貫通する貫通穴により、周方向に複数の突極部が区画して形成される積層コア部材と、積層コア部材の内側に装着される界磁コイルと、円盤状の基部および一端側が基部の外周近傍部に周方向に所定のピッチを介して固着される複数のピン状磁極でなり、基部により積層コア部材の両端を挟持するとともに、各ピン状磁極が積層コア部材の各突極部をそれぞれ交互に軸方向に貫通し、各ピン状磁極の他端が相対する側の基部に非磁性部材を介してそれぞれ固着される一対のポールコア部材とを備えたので、高速回転に耐え且つ出力の向上が可能な回転電機の回転子を提供することができる。
【0037】
又、この発明の請求項3によれば、請求項1または2において、非磁性部材を、ポールコア部材の基部に埋設され、爪状磁極またはピン状磁極の他端が嵌合可能な嵌合穴を有したものとしたので、簡単な構成で磁気的な損失を抑えるとともに、機械的強度の向上を図ることが可能な回転電機の回転子を提供することができる。
【0038】
又、この発明の請求項4によれば、請求項1または2において、突極部を区画する貫通穴を略断面矩形状に形成し、内部に永久磁石を嵌挿するようにしたので、コストの低減を図ることが可能な回転電機の回転子を提供することができる。
【0039】
又、この発明の請求項5によれば、請求項4において、永久磁石が嵌挿される貫通穴を、長尺方向が積層コア部材の中心から延びる放射線に対して所定の角度を有した方向を向くように形成したので、コストの低減は勿論のこと、高速回転に耐えることが可能な回転電機の回転子を提供することができる。
【0040】
又、この発明の請求項6によれば、請求項5において、一部の貫通穴を、相隣なる同士が外周側で接近するように形成したので、高速回転にさらに耐えることが可能な回転電機の回転子を提供することができる。
【0041】
又、この発明の請求項7によれば、請求項5または6において、貫通穴の積層コア部材の外周側に位置する内面に段部を形成するようにしたので、高速回転にさらに耐えることが可能な回転電機の回転子を提供することができる。
【0042】
又、この発明の請求項8によれば、請求項5または6において、永久磁石の側方に樹脂を埋設するようにしたので、高速回転にさらに耐えることが可能な回転電機の回転子を提供することができる。
【0043】
又、この発明の請求項9によれば、請求項1または2において、積層コア部材の薄肉部を硬化処理するようにしたので、高速回転にさらに耐えることが可能な回転電機の回転子を提供することができる。
【図面の簡単な説明】
【図1】この発明の実施の形態1における回転電機の回転子の構成を示す断面図である。
【図2】図1における回転電機の回転子を軸方向一端側から見た正面図である。
【図3】図1における回転電機の回転子を軸方向他端側から見た正面図である。
【図4】図1における線IV−IVに沿った断面を示す断面図である。
【図5】図1における線V−Vに沿った断面を示す断面図である。
【図6】図1における線VI−VIに沿った断面を示す断面図である。
【図7】図1における線VII−VIIに沿った断面を示す断面図である。
【図8】この発明の実施の形態2における回転電機の回転子の構成を示す斜視図である。
【図9】図8における回転電機の回転子の構成を展開して示す斜視図である。
【図10】図8における回転電機の回転子の構成を示す断面図である。
【図11】図10における線XI−XIに沿った断面を示す断面図である。
【図12】図10における線XII−XIIに沿った断面を示す断面図である。
【図13】図10における線XIII−XIIIに沿った断面を示す断面図である。
【図14】図10における線XIV−XIVに沿った断面を示す断面図である。
【図15】この発明の実施の形態3における回転電機の回転子の要部の構成を示す部分詳細図である。
【図16】従来の回転電機の回転子の構成を示す斜視図である。
【図17】先行技術における回転電機の回転子の構成を示す断面図である。
【図18】図17における線XVIII−XVIIIに沿った断面を示す断面図である。
【図19】図17における線XIX−XIXに沿った断面を示す断面図である。
【図20】図17におけるポールコア部材の構成を示す斜視図である。
【符号の説明】
31,59 ポールコア部材、32,52 切り欠き、33,51 基部、
34 爪状磁極、36,55 回転子軸、38,60 積層コア部材、
40,63,71 薄肉部、41,64,70 貫通穴、42,65 突極部、
44,66 永久磁石、45,67 界磁コイル、46,68 非磁性部材、
47,69 嵌合穴、57 ピン状磁極、72 段部。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a rotor of a rotating electric machine driven at high speed, such as an on-board AC generator, and more particularly to a rotor structure in which a magnetic pole portion of a pole core member is held by a laminated core member.
[0002]
[Prior art]
Generally, as shown in FIG. 16, a rotor of a Landel type rotating electric machine includes a pair of a disk-shaped base 1 and a plurality of claw-shaped magnetic poles 2 formed at a predetermined pitch on an outer periphery of the base 1. The base portions 1 are butted from both sides and are integrally fixed to the rotating shaft 4 so that the claw-shaped magnetic poles 2 alternately mesh in the circumferential direction. For this reason, although not shown, the centrifugal force generated during operation may cause the claw-shaped magnetic pole 2 to deform in the radial direction and come into contact with the inner peripheral surface of the stator. There is a problem that the output is reduced because it is necessary to increase the gap between the air gaps so as to have a margin (for example, see Patent Document 1).
[0003]
Japanese Patent Application No. 2002-242787 has been filed by the same applicant as the prior art as a prior art for solving such a problem of the rotor of the conventional Landel type rotary electric machine.
FIG. 17 is a cross-sectional view showing a configuration of a rotor of a rotary electric machine as the prior art, FIGS. 18 and 19 are cross-sectional views respectively showing cross sections along lines XVIII-XVIII and XIX-XIX in FIG. 17, and FIG. It is a perspective view which shows the structure of the pole core member in FIG.
[0004]
In the figure, reference numeral 11 denotes a disk-shaped base 12, a plurality of claw-shaped magnetic poles 13 tapered around the outer periphery of the base 12 at a predetermined pitch in the circumferential direction, and a claw-shaped magnetic pole 13 of the base 12 are formed. A pair of pole core members, each of which includes a boss portion 16 formed at a central portion on the opposite side and formed with a through hole 15 through which the rotor shaft 14 penetrates, a cylindrical member 17 is formed by laminating an annular plate member 18. A plurality of through holes 20 are formed in the outer peripheral portion from the one end side to the other end side, leaving a thin portion 19 on the outer peripheral side and skewed therethrough. A plurality of salient pole portions 21 are defined in the circumferential direction by the through holes 20.
[0005]
Each of the salient pole portions 21 is formed with a through hole 22 extending in the axial direction, through which the claw-shaped magnetic poles 13 of both pole core members 11 can be inserted and fitted. A permanent magnet 23 is inserted into each through hole 20 formed by partitioning the pole portion 21.
After the field coil 24 is inserted into the laminated core member 7 in advance, the claw-shaped magnetic poles 13 penetrate through the through holes 22 from both sides of the laminated core member 17 so that the two pole core members 11 The bosses 16 are engaged with each other so that the end faces of the bosses 16 are in contact with each other, whereby the field coil 24 is mounted between the bosses 16 and the inner peripheral surface of the laminated core member 17. Thereafter, the rotor shaft 14 is penetrated through each through hole 15 of both boss portions 16 and is fixedly integrated to form a rotor.
[0006]
[Patent Document 1]
JP 2001-231188 A
[Problems to be solved by the invention]
A rotor of a rotating electric machine as a prior art is configured as described above, and a plurality of salient pole portions 21 are defined by a through hole 20 penetrating the outer peripheral portion of the laminated core member 17 while leaving a thin portion 19 on the outer peripheral side. By forming the claw-shaped magnetic poles 13 in the through-holes 22 formed through the respective salient pole portions 21 in the axial direction, and holding the claw-shaped magnetic poles 13 in the respective salient pole portions 21, The gap with the stator (not shown) is reduced by suppressing the deformation due to the centrifugal force to improve the output, and the thin portion 19 opens the through hole 20 on the outer peripheral side of the laminated core member 17. By preventing the occurrence of noise, it is possible to eliminate noise during rotation and to improve reliability. Further, by using the through hole 22 as a fitting hole for the permanent magnet 23, Forming separately It is also possible to reduce the cost by reducing the.
[0008]
However, when such a rotor is applied to a generator mounted on a vehicle, the number of revolutions is, for example, nearly three times higher than that of the engine. It is difficult to sufficiently hold each of the claw-shaped magnetic poles 13. The thinner portion 19 is preferably thinner to reduce the magnetic flux leakage between the two salient pole portions 21 and reduce the loss. However, since the permanent magnet 23 is inserted into the through hole 20, There is a problem in that there is a limit to thinning in order to prevent the 23 from piercing through the thin portion 19 due to centrifugal force.
[0009]
SUMMARY OF THE INVENTION The present invention has been made to solve the above-described problems, and has as its object to provide a rotor of a rotating electric machine that can withstand high-speed rotation and that can improve output.
[0010]
[Means for Solving the Problems]
The rotor of the rotating electric machine according to claim 1 of the present invention is formed in a cylindrical shape by laminating annular plate members, and leaving a thin portion on the outer peripheral portion from the one end side to the other end side of the cylinder on the outer peripheral portion. A laminated core member formed by dividing a plurality of salient pole portions in the circumferential direction by a penetrating through-hole, a field coil mounted inside the laminated core member, a disc-shaped base and an outer peripheral portion of the base. It consists of a plurality of claw-shaped magnetic poles formed at a predetermined pitch in the circumferential direction, sandwiches both ends of the laminated core member by the base, and each claw-shaped magnetic pole alternately pivots each salient pole portion of the laminated core member. And a pair of pole core members that penetrate in the direction and are fixed to the base on the side opposite to the tip end of each claw-shaped magnetic pole via a non-magnetic member.
[0011]
Further, the rotor of the rotating electric machine according to claim 2 of the present invention is formed in a cylindrical shape by laminating annular plate members, and has a thin portion on the outer peripheral portion from the one end side to the other end side of the cylinder on the outer peripheral portion. A laminated core member formed by partitioning a plurality of salient pole portions in the circumferential direction by a through hole that is left through, a field coil mounted inside the laminated core member, a disc-shaped base and one end side formed as base portions. A plurality of pin-shaped magnetic poles fixed at a predetermined pitch in the circumferential direction in the vicinity of the outer periphery of the laminated core member, with both ends of the laminated core member being sandwiched by the base, and each pin-shaped magnetic pole being each salient pole portion of the laminated core member. Are alternately penetrated in the axial direction, and a pair of pole core members are respectively fixed to the base portions on the opposite sides of the other ends of the pin-shaped magnetic poles via non-magnetic members.
[0012]
According to a third aspect of the present invention, in the rotor for a rotating electric machine according to the first or second aspect, the nonmagnetic member is embedded in the base of the pole core member, and the other end of the claw-shaped magnetic pole or the pin-shaped magnetic pole is fitted. It has a possible fitting hole.
[0013]
According to a fourth aspect of the present invention, there is provided a rotor for a rotary electric machine according to the first or second aspect, wherein a through-hole defining the salient pole portion is formed in a substantially rectangular cross section, and a permanent magnet is inserted therein. It was made.
[0014]
According to a fifth aspect of the present invention, in the rotor of the rotating electric machine according to the fourth aspect, the through hole into which the permanent magnet is inserted is formed at a predetermined angle with respect to radiation whose longitudinal direction extends from the center of the laminated core member. It is formed so as to face a direction having
[0015]
Also, in the rotor of the rotary electric machine according to claim 6 of the present invention, in claim 5, some of the through holes are formed so that adjacent ones approach each other on the outer peripheral side.
[0016]
According to a seventh aspect of the present invention, there is provided a rotor for a rotary electric machine according to the fifth or sixth aspect, wherein a step is formed on an inner surface of the through-hole located on the outer peripheral side of the laminated core member.
[0017]
According to an eighth aspect of the present invention, there is provided a rotor for a rotary electric machine according to the fifth or sixth aspect, wherein a resin is buried beside the permanent magnet.
[0018]
According to a ninth aspect of the present invention, there is provided a rotor for a rotary electric machine according to the first or second aspect, wherein a thin portion of the laminated core member is subjected to hardening treatment.
[0019]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
Embodiment 1 FIG.
FIG. 1 is a sectional view showing a configuration of a rotor of a rotary electric machine according to Embodiment 1 of the present invention, FIG. 2 is a front view of the rotor of the rotary electric machine in FIG. 1 viewed from one axial end, and FIG. 1 is a front view of the rotor of the rotating electric machine viewed from the other end side in the axial direction, FIG. 4 is a sectional view showing a section taken along line IV-IV in FIG. 1, and FIG. 5 is a section taken along line VV in FIG. FIG. 6 is a cross-sectional view showing a cross section taken along line VI-VI in FIG. 1, and FIG. 7 is a cross-sectional view showing a cross section taken along line VII-VII in FIG.
[0020]
In the figure, reference numeral 31 denotes a disc-shaped base 33 having a groove-shaped notch 32 formed at a predetermined pitch in the circumferential direction of the outer peripheral portion, and a notch 32 in the circumferential direction of the outer peripheral portion of the base 33. A pair of pole core members composed of a plurality of claw-shaped magnetic poles 34 formed alternately and protruding through a predetermined pitch, and a boss 35 is provided at the center of the base 33 on the side where the claw-shaped magnetic poles 34 protrude. It is formed so as to protrude, and a through hole 37 through which the rotor shaft 36 penetrates is formed at the center thereof.
[0021]
Numeral 38 is a laminated core member formed by laminating annular plate members 39 into a cylindrical shape. The laminated core member has a substantially rectangular cross section penetrating from the one end side to the other end side, leaving a thin portion 40 on the outer peripheral side. Are formed, and a plurality of salient pole portions 42 are formed in the circumferential direction by being partitioned by the respective through holes 41. Each of the salient pole portions 42 is formed with a through-hole 43 extending in the axial direction, through which the claw-shaped magnetic poles 34 of the pole core members 31 can be fitted. A plurality of permanent magnets 44 are fitted through the through holes 41 formed by dividing the salient pole portions 42, and a plurality of permanent magnets 45 are fitted into the boss portions 35 of the pole core members 31. The field coil 46 to be mounted is fitted into the notch 32 of both pole core members 31 and has a fitting hole 47 formed at the center thereof into which the claw-shaped magnetic pole 34 can be fitted. It is a trapezoidal non-magnetic member.
[0022]
Then, as shown in FIG. 1, after inserting the field coil 45 inside the laminated core member 38 in advance, the two pole core members 31 are moved from both sides of the laminated core member 38 in a direction approaching each other, and each claw-shaped magnetic pole 34 is moved. Are respectively inserted into the through holes 43, the tips of which are respectively fitted into the fitting holes 47 of the nonmagnetic member 46 which are fitted into the notches 32 on the other side, and the tips of both bosses 35 abut. As a result, the claw-shaped magnetic poles 34 of the pole core members 31 are engaged with each other in the laminated core member 38, and the field coil 45 is formed between the boss portions 35 and the inner peripheral surface of the laminated core member 38. Attached in between. Finally, the rotor shaft 36 penetrates through the through holes 37 of both bosses 35 and is fixed, thereby completing the rotor.
[0023]
As described above, according to the first embodiment, each of the claw-shaped magnetic poles 34 of the pole core member 31 is held by each of the salient pole portions 42 of the laminated core member 38, and the tips thereof are further cut off from the pole core members 31 on the other side. It is fitted in the fitting hole 47 of the non-magnetic member 46 fitted in the notch 32 and is held on the base 33 side as well, so that both ends are supported. Therefore, it is not necessary to provide a margin for a gap with a stator (not shown), and the gap can be minimized. It becomes possible to plan.
[0024]
In the above configuration, as a member for holding the tip of each claw-shaped magnetic pole 34 of the pole core member 31, a claw-shaped notch 32 formed in the base 33 of the pole core member 31 is fitted, and a claw-shaped magnetic pole is provided at the center. The case where the non-magnetic member 46 having a substantially trapezoidal shape having a fitting hole 47 in which the fitting 34 can be fitted has been described. However, the present invention is not limited to this. A circular through-hole may be arranged, and a circular non-magnetic member may be fitted into this through-hole. In short, the claw-shaped magnetic pole is formed by a non-magnetic member fitted to the base of the other pole core member. By holding the leading end, it is possible to increase the mechanical strength, suppress the magnetic loss, and further improve the output while providing a simple structure for both ends supporting structure.
[0025]
Although not described in detail above, as is apparent from the drawing, the through-hole 41 for defining the salient pole portion 42 is formed in a substantially rectangular cross section, and the permanent magnet 44 is inserted therein. Since the step of separately forming a through hole for inserting the permanent magnet 44 is reduced, the cost can be reduced.
Further, since the through hole 41 is formed so that the long direction faces a direction having a predetermined angle with respect to the radiation extending from the center of the laminated core member 38, the centrifugal force acting on the permanent magnet 44 is formed. Can be received on the inner surface of the through hole 41 in the longitudinal direction and the load on the thin portion 40 can be reduced, so that it is possible to withstand high-speed rotation.
[0026]
In addition, when the angle of the through hole 41 with respect to the radiation is adjacent to each other (for example, the through holes 41 indicated by the mark * in FIG. 4), and the part facing the approach direction on the outer peripheral side can further increase the proof strength by the wedge effect. It becomes.
Furthermore, resin is embedded between the side of the permanent magnet 44 inserted into the through hole 41 formed at a predetermined angle with respect to the radiation as described above, that is, the inner surface of the through hole 41. Thus, even if the material is hardened, the proof stress can be further increased in the same manner as described above.
[0027]
Embodiment 2 FIG.
8 is a perspective view showing a configuration of a rotor of the rotary electric machine according to Embodiment 2 of the present invention, FIG. 9 is an exploded perspective view showing a configuration of the rotor of the rotary electric machine in FIG. 8, and FIG. FIG. 11 is a cross-sectional view showing a configuration of a rotor of a rotating electric machine, FIG. 11 is a cross-sectional view showing a cross section along line XI-XI in FIG. 10, FIG. 12 is a cross-sectional view showing a cross section along line XII-XII in FIG. FIG. 13 is a sectional view showing a section taken along line XIII-XIII in FIG. 10, and FIG. 14 is a sectional view showing a section taken along line XIV-XIV in FIG.
[0028]
In the figure, reference numeral 51 denotes a groove-shaped notch 52 and a through hole 53 alternately formed at a predetermined pitch in a circumferential direction of an outer peripheral portion, and a boss portion 54 is formed so as to protrude at a central portion on one side. A base portion having a through hole 56 formed at the center thereof and through which the rotor shaft 55 penetrates is formed. A pin-like magnetic pole 57 which can be fitted through the through hole 56 of the base portion 51 has a large diameter at one end. An engaging portion 58 is formed, and forms a pole core member 59 together with the base 51. The pole core members 59 are arranged in a pair so that the notches 52 are alternately arranged in the circumferential direction.
[0029]
Reference numeral 60 denotes a laminated core member formed by laminating the annular plate members 61 to form a cylindrical shape. Pin-shaped magnetic poles are provided on the outer peripheral portion at positions corresponding to the center of the notch 52 of the pole core member 59 and the through hole 53, respectively. A plurality of through-holes 62 through which the through-holes 57 can be formed are formed, and a plurality of substantially rectangular cross-sections penetrate from one end side to the other end side of each through-hole 62 while leaving a thin portion 63 on the outer peripheral side. Are formed, and a plurality of salient pole portions 65 are formed in the circumferential direction by being partitioned by these through holes 64.
[0030]
66 is a plurality of permanent magnets fitted through the through holes 64, 67 is a field coil fitted to the boss portions 54 of both pole core members 59 and mounted inside the laminated core member 60, 68 is A substantially trapezoidal non-magnetic member made of, for example, non-magnetic steel or the like, having a fitting hole 69 formed in the center portion thereof for fitting into the notch 52 of each of the pole core members 59 and receiving the tip of the pin-shaped magnetic pole 57. It is.
[0031]
Then, as shown in FIG. 10, after inserting the field coil 67 inside the laminated core member 60 in advance, the pin-shaped magnetic poles 57 are respectively passed through the through holes 53 from both sides of the laminated core member 60, The two pole core members 59 in which the non-magnetic members 68 are fitted into the respective notches 52 are moved toward each other, and the tips of the pin-shaped magnetic poles 57 are fitted into the fitting holes 69 of the non-magnetic member 68 on the other side. At the same time, the ends of both bosses 54 are butted against each other. Then, the respective pin-shaped magnetic poles 57 of both pole core members 59 are engaged with each other in the laminated core member 60, and the field coil 67 is mounted between both the boss portions 54 and the inner peripheral surface of the laminated core member 60. You. Finally, after fixing between the pin-shaped magnetic poles 57 and the non-magnetic member 68 by, for example, welding, bonding, or the like, the rotor shaft 55 is passed through the through holes 56 of the boss portions 54 and fixed. Completes the rotor. In FIG. 9, the pin-shaped magnetic pole 57 on the base 51 located above is omitted.
[0032]
As described above, according to the second embodiment, each of the pin-shaped magnetic poles 57 of the pole core member 59 is held by each of the salient pole portions 65 of the laminated core member 60, and the tip thereof is formed of the non-magnetic pole core member 59 of the mating pole core member 59. Since it is fitted into the fitting hole 69 of the member 68 and held at the base 51 side to form a support structure at both ends, even if a large centrifugal force is exerted by high-speed rotation operation, it is possible to prevent deformation, so that the stator (Not shown), there is no need to provide a margin, and the gap can be minimized, so that it is possible to withstand high-speed rotation and improve output.
[0033]
Embodiment 3 FIG.
FIG. 15 is a partial detailed view showing a configuration of a main part of a rotor of a rotary electric machine according to Embodiment 3 of the present invention.
In the figure, the same parts as those in the second embodiment are denoted by the same reference numerals, and the description is omitted. Reference numeral 70 denotes a through hole into which the salient pole portion 65 is partitioned and into which the permanent magnet 66 penetrates and is fitted. A step portion 72 is formed on the inner surface on the side where the thin portion 71 is left. Only the thickness of the thin portion 71 is increased.
[0034]
As described above, according to the third embodiment, the step portion 72 is formed on the inner surface of the through hole 70 in which the permanent magnet 66 is fitted, except for the thin portion 71, and the step portion 72 forms the permanent magnet 66. Since the end face is supported, the centrifugal force can be received by the thick step portion 72 without imposing a load on the thin portion 71, so that it is possible to withstand high-speed rotation. Although not described in each of the first and second embodiments, the durability can be improved even when each thin portion is hardened by, for example, welding or cold forging.
[0035]
【The invention's effect】
As described above, according to the first aspect of the present invention, the annular plate members are laminated and formed into a cylindrical shape, and a thin portion is left on the outer peripheral portion from the one end to the other end of the cylinder on the outer peripheral portion. A laminated core member formed by dividing a plurality of salient pole portions in the circumferential direction by a penetrating through-hole, a field coil mounted inside the laminated core member, a disc-shaped base and an outer peripheral portion of the base. It consists of a plurality of claw-shaped magnetic poles formed at a predetermined pitch in the circumferential direction, sandwiches both ends of the laminated core member by the base, and each claw-shaped magnetic pole alternately pivots each salient pole portion of the laminated core member. And a pair of pole core members fixed to the base on the side opposite to the tip of each claw-shaped magnetic pole via a non-magnetic member, so that it can withstand high-speed rotation and improve output. A rotor for a rotating electric machine can be provided.
[0036]
According to the second aspect of the present invention, the annular plate members are laminated to form a cylindrical shape, and the outer peripheral portion penetrates from the one end side to the other end side of the cylinder leaving a thin portion on the outer peripheral side. A laminated core member formed by dividing a plurality of salient pole portions in the circumferential direction by the hole, a field coil mounted inside the laminated core member, and a disk-shaped base and one end side near the outer periphery of the base It consists of a plurality of pin-shaped magnetic poles fixed at a predetermined pitch in the circumferential direction, sandwiches both ends of the laminated core member by the base, and each pin-shaped magnetic pole alternately pivots each salient pole portion of the laminated core member. And a pair of pole core members fixed to the base on the side opposite to the other end of each pin-shaped magnetic pole via a non-magnetic member, so that it can withstand high-speed rotation and improve output. A rotor for a rotating electric machine can be provided.
[0037]
According to a third aspect of the present invention, in the first or second aspect, the nonmagnetic member is embedded in the base of the pole core member, and the other end of the claw-shaped magnetic pole or the pin-shaped magnetic pole can be fitted therein. Therefore, it is possible to provide a rotor of a rotating electric machine that can suppress magnetic loss with a simple configuration and improve mechanical strength.
[0038]
According to the fourth aspect of the present invention, according to the first or second aspect, the through-hole for defining the salient pole portion is formed in a substantially rectangular cross section, and the permanent magnet is inserted therein, so that the cost is reduced. Thus, it is possible to provide a rotor of a rotating electric machine capable of reducing the number of rotations.
[0039]
According to a fifth aspect of the present invention, in the fourth aspect, the through hole into which the permanent magnet is inserted is formed such that the elongate direction has a predetermined angle with respect to the radiation extending from the center of the laminated core member. Since it is formed so as to face, it is possible to provide a rotor of a rotating electric machine that can withstand high-speed rotation as well as cost reduction.
[0040]
According to a sixth aspect of the present invention, in the fifth aspect, since some of the through holes are formed so that adjacent ones approach each other on the outer peripheral side, a rotation that can further endure high-speed rotation. An electric motor rotor can be provided.
[0041]
According to the seventh aspect of the present invention, in the fifth or sixth aspect, the step portion is formed on the inner surface of the through-hole located on the outer peripheral side of the laminated core member. It is possible to provide a possible rotor of a rotating electric machine.
[0042]
According to the eighth aspect of the present invention, since the resin is buried in the side of the permanent magnet in the fifth or sixth aspect, a rotor of a rotating electric machine that can withstand high-speed rotation is provided. can do.
[0043]
According to a ninth aspect of the present invention, in the first or second aspect, the thin portion of the laminated core member is subjected to the hardening treatment, so that the rotor of the rotating electric machine which can withstand high-speed rotation is provided. can do.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing a configuration of a rotor of a rotary electric machine according to Embodiment 1 of the present invention.
FIG. 2 is a front view of the rotor of the rotary electric machine in FIG. 1 as viewed from one axial end.
FIG. 3 is a front view of the rotor of the rotary electric machine in FIG. 1 as viewed from the other axial side.
FIG. 4 is a sectional view showing a section taken along line IV-IV in FIG. 1;
FIG. 5 is a sectional view showing a section taken along line VV in FIG. 1;
FIG. 6 is a sectional view showing a section taken along line VI-VI in FIG. 1;
FIG. 7 is a sectional view showing a section taken along line VII-VII in FIG. 1;
FIG. 8 is a perspective view showing a configuration of a rotor of a rotary electric machine according to Embodiment 2 of the present invention.
9 is an exploded perspective view showing a configuration of a rotor of the rotary electric machine in FIG. 8;
10 is a cross-sectional view illustrating a configuration of a rotor of the rotary electric machine in FIG.
FIG. 11 is a sectional view showing a section taken along line XI-XI in FIG. 10;
FIG. 12 is a sectional view showing a section taken along line XII-XII in FIG. 10;
FIG. 13 is a sectional view showing a section taken along line XIII-XIII in FIG. 10;
FIG. 14 is a sectional view showing a section taken along line XIV-XIV in FIG. 10;
FIG. 15 is a partial detailed view showing a configuration of a main part of a rotor of a rotary electric machine according to Embodiment 3 of the present invention.
FIG. 16 is a perspective view showing a configuration of a rotor of a conventional rotary electric machine.
FIG. 17 is a cross-sectional view illustrating a configuration of a rotor of a rotary electric machine according to the related art.
FIG. 18 is a sectional view showing a section taken along line XVIII-XVIII in FIG. 17;
FIG. 19 is a sectional view showing a section taken along line XIX-XIX in FIG. 17;
FIG. 20 is a perspective view showing a configuration of a pole core member in FIG. 17;
[Explanation of symbols]
31, 59 pole core member, 32, 52 cutout, 33, 51 base,
34 claw-shaped magnetic poles, 36, 55 rotor shafts, 38, 60 laminated core members,
40, 63, 71 Thin portion, 41, 64, 70 Through hole, 42, 65 Salient pole portion,
44, 66 permanent magnet, 45, 67 field coil, 46, 68 non-magnetic member,
47, 69 fitting holes, 57 pin-shaped magnetic poles, 72 steps.

Claims (9)

環状板部材を積層して円筒状に形成され、外周部に上記円筒の一端側から他端側に向けて外周側に薄肉部を残して貫通する貫通穴により、周方向に複数の突極部が区画して形成される積層コア部材と、上記積層コア部材の内側に装着される界磁コイルと、円盤状の基部および上記基部の外周部に周方向に所定のピッチを介して形成される複数の爪状磁極でなり、上記基部により上記積層コア部材の両端を挟持するとともに、上記各爪状磁極が上記積層コア部材の各突極部をそれぞれ交互に軸方向に貫通し、上記各爪状磁極の先端部が相対する側の上記基部に非磁性部材を介してそれぞれ固着される一対のポールコア部材とを備えたことを特徴とする回転電機の回転子。A plurality of salient pole portions are formed in the circumferential direction by a through-hole that is formed by laminating annular plate members and is formed in a cylindrical shape, and through an outer peripheral portion of the cylinder from one end side to the other end side, leaving a thin portion on the outer peripheral side, leaving a thin portion. Are formed by partitioning, a field coil mounted inside the laminated core member, and a disc-shaped base and an outer peripheral portion of the base formed at a predetermined pitch in a circumferential direction. A plurality of claw-shaped magnetic poles, both ends of the laminated core member being sandwiched by the base, and the claw-shaped magnetic poles alternately penetrate the salient pole portions of the laminated core member in the axial direction, respectively; A pair of pole core members fixed to the base on the side opposite to the tip end of the magnetic pole via a non-magnetic member, respectively. 環状板部材を積層して円筒状に形成され、外周部に上記円筒の一端側から他端側に向けて外周側に薄肉部を残して貫通する貫通穴により、周方向に複数の突極部が区画して形成される積層コア部材と、上記積層コア部材の内側に装着される界磁コイルと、円盤状の基部および一端側が上記基部の外周近傍部に周方向に所定のピッチを介して固着される複数のピン状磁極でなり、上記基部により上記積層コア部材の両端を挟持するとともに、上記各ピン状磁極が上記積層コア部材の各突極部をそれぞれ交互に軸方向に貫通し、上記各ピン状磁極の他端が相対する側の上記基部に非磁性部材を介してそれぞれ固着される一対のポールコア部材とを備えたことを特徴とする回転電機の回転子。A plurality of salient pole portions are formed in the circumferential direction by a through-hole that is formed by laminating annular plate members and is formed in a cylindrical shape, and through an outer peripheral portion of the cylinder from one end side to the other end side, leaving a thin portion on the outer peripheral side, leaving a thin portion. Are laminated and formed, a field coil mounted on the inside of the laminated core member, and a disc-shaped base and one end side are arranged at a predetermined pitch in a circumferential direction near an outer peripheral portion of the base. Consisting of a plurality of pin-shaped magnetic poles to be fixed, both ends of the laminated core member are sandwiched by the base, and the pin-shaped magnetic poles alternately penetrate the salient pole portions of the laminated core member in the axial direction, respectively. A rotor for a rotating electric machine, comprising: a pair of pole core members fixed to the base at the other end of each of the pin-shaped magnetic poles via a non-magnetic member. 上記非磁性部材は上記ポールコア部材の基部に埋設され、上記爪状磁極またはピン状磁極の他端が嵌合可能な嵌合穴を有していることを特徴とする請求項1または2記載の回転電機の回転子。3. The non-magnetic member according to claim 1, wherein the non-magnetic member is embedded in a base of the pole core member and has a fitting hole into which the other end of the claw-shaped magnetic pole or the pin-shaped magnetic pole can be fitted. Rotor of rotating electric machine. 上記突極部を区画する貫通穴は、略断面矩形状に形成され内部に永久磁石が嵌挿されていることを特徴とする請求項1または2記載の回転電機の回転子。The rotor of a rotary electric machine according to claim 1, wherein the through hole defining the salient pole portion is formed in a substantially rectangular cross section, and a permanent magnet is inserted therein. 上記永久磁石が嵌挿される貫通穴は、長尺方向が上記積層コア部材の中心から延びる放射線に対して所定の角度を有した方向を向くように形成されていることを特徴とする請求項4記載の回転電機の回転子。5. The through-hole in which the permanent magnet is inserted is formed such that its long direction faces a direction having a predetermined angle with respect to radiation extending from the center of the laminated core member. The rotor of the rotating electric machine according to the above description. 上記貫通穴の一部は、相隣なる同士が外周側で接近するように形成されていることを特徴とする請求項5記載の回転電機の回転子。The rotor of a rotary electric machine according to claim 5, wherein a part of the through hole is formed such that adjacent ones approach each other on an outer peripheral side. 上記貫通穴の上記積層コア部材の外周側に位置する内面に段部が形成されていることを特徴とする請求項5または6記載の回転電機の回転子。The rotor of a rotary electric machine according to claim 5, wherein a step portion is formed on an inner surface of the through hole located on an outer peripheral side of the laminated core member. 上記永久磁石の側方に樹脂が埋設されていることを特徴とする請求項5または6記載の回転電機の回転子。The rotor of a rotating electric machine according to claim 5, wherein a resin is buried beside the permanent magnet. 上記積層コア部材の薄肉部は硬化処理されていることを特徴とする請求項1または2記載の回転電機の回転子。The rotor of a rotating electric machine according to claim 1, wherein a thin portion of the laminated core member is subjected to a hardening treatment.
JP2002288790A 2002-10-01 2002-10-01 Rotating electrical machine rotor Expired - Fee Related JP3983640B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002288790A JP3983640B2 (en) 2002-10-01 2002-10-01 Rotating electrical machine rotor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002288790A JP3983640B2 (en) 2002-10-01 2002-10-01 Rotating electrical machine rotor

Publications (2)

Publication Number Publication Date
JP2004129358A true JP2004129358A (en) 2004-04-22
JP3983640B2 JP3983640B2 (en) 2007-09-26

Family

ID=32281182

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002288790A Expired - Fee Related JP3983640B2 (en) 2002-10-01 2002-10-01 Rotating electrical machine rotor

Country Status (1)

Country Link
JP (1) JP3983640B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011040247A1 (en) * 2009-09-30 2011-04-07 三菱電機株式会社 Lundell type rotating machine
JP2011516017A (en) * 2008-03-19 2011-05-19 ホガナス アクチボラグ (パブル) Integrated rotor pole piece
JP2017526332A (en) * 2014-07-31 2017-09-07 フランスコル テクノロジー Rotating electrical machine with homopolar structure
US10523070B2 (en) 2016-06-03 2019-12-31 Denso Corporation Rotor for rotary electric machine
WO2020017523A1 (en) * 2018-07-20 2020-01-23 パナソニックIpマネジメント株式会社 Embedded magnet type rotor, motor, and electrical appliance
CN109565195B (en) * 2016-08-22 2020-12-25 三菱电机株式会社 Commutating pole rotor, motor, and air conditioner
CN112865461A (en) * 2021-01-20 2021-05-28 西安交通大学 Ultra-high-speed permanent magnet synchronous motor applied to high-temperature environment

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011516017A (en) * 2008-03-19 2011-05-19 ホガナス アクチボラグ (パブル) Integrated rotor pole piece
WO2011040247A1 (en) * 2009-09-30 2011-04-07 三菱電機株式会社 Lundell type rotating machine
CN102577030A (en) * 2009-09-30 2012-07-11 三菱电机株式会社 Lundell type rotating machine
US8593029B2 (en) 2009-09-30 2013-11-26 Mitsubishi Electric Corporation Lundell type rotating machine
JP2017526332A (en) * 2014-07-31 2017-09-07 フランスコル テクノロジー Rotating electrical machine with homopolar structure
US10523070B2 (en) 2016-06-03 2019-12-31 Denso Corporation Rotor for rotary electric machine
CN109565195B (en) * 2016-08-22 2020-12-25 三菱电机株式会社 Commutating pole rotor, motor, and air conditioner
WO2020017523A1 (en) * 2018-07-20 2020-01-23 パナソニックIpマネジメント株式会社 Embedded magnet type rotor, motor, and electrical appliance
CN112865461A (en) * 2021-01-20 2021-05-28 西安交通大学 Ultra-high-speed permanent magnet synchronous motor applied to high-temperature environment

Also Published As

Publication number Publication date
JP3983640B2 (en) 2007-09-26

Similar Documents

Publication Publication Date Title
US9793770B2 (en) Permanent magnets rotor for rotating electric machine
EP1115189B1 (en) Permanent magnet type synchronous motor
CN110086274B (en) Permanent magnet embedded motor and method for manufacturing the same
JP5258509B2 (en) Permanent magnet motor rotor
US7408280B2 (en) Rotor of rotary electric machine
EP0923186B1 (en) Permanent magnet rotor type electric motor
EP1914863A2 (en) Permanent-magnet reluctance electrical rotary machine
JP5259927B2 (en) Permanent magnet rotating electric machine
JP5418837B2 (en) Laminated winding core, rotor provided with the same, and rotating electric machine
JP2001204146A (en) Rotor of rotating machine and its fabrication
JP7293371B2 (en) Rotor of rotary electric machine
JP2008099479A (en) Magnet-embedded type rotor in rotary electric machine, and the rotary electric machine using the same
US9225207B2 (en) Rotating electric motor and internal combustion engine supercharger
JP2001136690A (en) Rotor of rotating machine
JP2007014178A (en) Rotor
JP3747107B2 (en) Electric motor
JP2004129358A (en) Rotor of rotary electric machine
JP2000188837A (en) Permanent magnet rotor and its manufacture
JP3268762B2 (en) Rotor of rotating electric machine and method of manufacturing the same
JPH0833246A (en) Rotor for permanent magnet synchronous electric rotating machine
JP2006304532A (en) Rotor structure of axial gap rotating electric machine
JP4066219B2 (en) Synchronous machine with stationary field coil magnet
JP7059059B2 (en) Rotating machine rotor
JP2006304562A (en) Rotor structure of axial gap rotating electric machine
JP7059058B2 (en) Rotating machine rotor

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041206

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060718

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060801

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070327

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070521

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070703

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070704

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100713

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 3983640

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100713

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110713

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110713

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120713

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120713

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130713

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees