JP2004128807A - Radio frequency amplifying device - Google Patents

Radio frequency amplifying device Download PDF

Info

Publication number
JP2004128807A
JP2004128807A JP2002288858A JP2002288858A JP2004128807A JP 2004128807 A JP2004128807 A JP 2004128807A JP 2002288858 A JP2002288858 A JP 2002288858A JP 2002288858 A JP2002288858 A JP 2002288858A JP 2004128807 A JP2004128807 A JP 2004128807A
Authority
JP
Japan
Prior art keywords
data
output
input
level
stage amplifier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002288858A
Other languages
Japanese (ja)
Other versions
JP4037231B2 (en
Inventor
Naoyuki Haraguchi
原口 尚之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Kokusai Electric Inc
Original Assignee
Hitachi Kokusai Electric Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Kokusai Electric Inc filed Critical Hitachi Kokusai Electric Inc
Priority to JP2002288858A priority Critical patent/JP4037231B2/en
Publication of JP2004128807A publication Critical patent/JP2004128807A/en
Application granted granted Critical
Publication of JP4037231B2 publication Critical patent/JP4037231B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Testing Electric Properties And Detecting Electric Faults (AREA)
  • Amplifiers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To realize an amplifying device which has a small memory capacity and which can easily perform an assumption of a cause of a fault by solving the problem that a measurer must assume the cause of the fault while the data are correspondingly aligned by storing all data of parameters, such as, I/O signal levels, a gain, a temperature, a power source voltage, etc. in a large capacity memory so as to detect a fault value of the radio frequency amplifying device. <P>SOLUTION: In addition to the above-mentioned parameter measuring system, a real time clock is provided. When a faulted value occurs in the parameter, the fault data are recorded simultaneously at the time of the clock. Even when the temperature, the voltage, the gain, etc., are gradually changed, they are recorded, and data for assuming the cause of the fault are recorded. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明はRF増幅器における異常検出及びそれにより得られた異常データのロギング手段を有する構成に関する。
【0002】
【従来の技術】
図3は従来技術における無線RF増幅装置の回路構成例を示すブロック図である。1aは入力端子11から入力された無線RF信号を増幅する入力段増幅器、1bは入力段増幅器1aの出力を増幅して出力端子12を介して出力する出力段増幅器、2a’は入力段増幅器1aに入力される無線RF信号のレベルを検出し入力信号レベルデータを制御部6に出力する入力レベル検出部、2b’は出力段増幅器1bの出力信号レベルを検出し出力信号レベルデータを制御部に出力する出力レベル検出部、3はRF増幅装置内部の温度を測定し、この測定結果である温度データを制御部6に出力する温度センサ、4は本増幅装置における電源電圧を測定し電源電圧データを制御部に出力する電源電圧検出部、6は入力レベル検出部2a’の入力信号レベルデータ、出力レベル検出部2b’の出力信号レベルデータ、温度センサ3の温度データ、電源電圧検出部4の電圧データの各データを入力し、これら各データが規定値の範囲外になった場合に当該データ又は上記の全データをメモリ7に書き込むよう動作する制御部、7は制御部6より出力される各データを保持するメモリである。
【0003】
通常、所定の入力レベルの信号は入力段増幅器1aと出力段増幅器1bで増幅され、所望の出力レベルに増幅され出力されている。入力レベル検出部2a’、出力レベル検出部2b’、温度センサ3、電圧検出部4はこれら各部の計測結果を常時監視しており、そのデータを制御部6に出力している。
【0004】
ここで、何らかの異常状態が起きたときに、制御部6では上記各検出部と温度センサから出力される各データの異常値を判定し、その異常値データ又は全てのデータをメモリ7に出力しメモリ7はそのデータを保持する構成となっていた。
【0005】
【発明が解決しようとする課題】
しかしながら上述の従来技術では、異常値を検出してメモリ7にそのデータを保持しても、後の解析時には「異常値を検出した」という事実は確認できるが、原因を解析するためには十分なデータとはならない場合が多く、外部要因による異常値か内部に起因する異常値かの切り分けも難しい、又異常値とそのときのその他のデータを全てメモリ7に保持すると、データ量が増えメモリ容量の増大を招き、コストの高騰に繋がるという問題があった。このため、本発明においてはメモリ容量を増大させることなく、異常原因の究明可能な手段を有するRF増幅装置を提供することを目的としている。
【0006】
【課題を解決するための手段】
上記の目的を達成するために、本発明の
請求項1においては、無線RF信号を入力し増幅して出力する入力段増幅器と、前記入力段増幅器の出力を入力し、増幅して出力する出力段増幅器と、前記入力段増幅器に入力される前記無線RF信号のレベルを検出し、入力信号のレベルデータを制御部に出力する入力レベル検出部と、前記出力段増幅器の出力レベルを検出し、出力信号のレベルデータを前記制御部に出力する出力レベル検出部と、前記入力段増幅器及び前記出力段増幅器の内部温度を測定し、それによる測定温度データを前記制御部に出力する温度センサと、前記無線RF増幅装置の電源電圧を測定し、それによる測定電圧データを前記制御部に出力する電圧検出部と、前記温度データと、前記電圧データと、前記入力レベル検出部と前記出力レベル検出部のデータが予め定められたトリガ条件を満たした時に異常データとして出力する機能を有する前記制御部と、前記制御部の出力である異常データを記憶するメモリとを備えたRF増幅器において、日時データを出力するリアルタイムクロック部と、前記入力信号レベルおよび前記出力信号レベルのいずれか、または両者が許容限界値を越えた場合、前記リアルタイムクロック部から得られた時刻をメモリに記憶する手段と、増幅器ゲイン、装置温度、装置電源電圧の各パラメータの変化を検出する手段と、変化を生じたパラメータについて変化後の値を、前記リアルタイムクロック部から得られた時刻と共にメモリに記憶する手段とを有するRF増幅装置の構成について規定したものである。
【0007】
【発明の実施の形態】
以下、本発明を図により説明する。
図1は本発明における一実施の形態を示すブロック図である。1aは入力端子11からの無線RF信号を増幅する入力段増幅器、1bは入力段増幅器1aの出力を増幅して出力端子12に出力する出力段増幅器、2aは入力段増幅器1aに入力される無線RF信号のレベルを検出し入力レベルデータを制御部6に出力する入力レベル検出部、2bは出力段増幅器1bの出力レベルを検出し出力レベルデータを制御部6に出力する出力レベル検出部、3は増幅装置内部の温度測定を行ない温度データを制御部6に出力する温度センサ、4は電源電圧を測定しその測定結果である電圧データを制御部6に出力する電源電圧検出部、5は日時データを出力するリアルタイムクロック部(RTC)、6は入力レベル検出部2aの入力レベルデータ、出力レベル検出部2bの出力レベルデータ、温度センサ3の温度データ、電圧検出部4の電源電圧データ、リアルタイムクロック部5の日時データの各データを入力し、入力レベル検出部2aと出力レベル2bのデータが後述の書き込み条件を満たしたときにメモリ7に書き込むよう動作する制御部、7は制御部6より出力されるデータを保持するメモリである。
【0008】
通常入力信号レベルと出力信号レベルの関係は、各量をdB(デシベル)単位で示すと(1)および(2)式で表せる。
【0009】
B=A+G              (1)
G=Ga+Gb            (2)
(A:入力信号レベル、B:出力信号レベル、G:装置ゲインの初期値、Ga:入力段アンブ1aのゲイン、Gb:出力段増幅器2bのゲイン)
装置のゲインGは通常一定であるから、G=B−Aは一定の値となる。ところが装置内部で部品故障等があった場合ゲインGは一定の値とならず、初期値とは異なる値となる。又、長期間に渉り装置を稼動し続けた場合も徐々にではあるが同様にゲイン変動の現象となる。
【0010】
又、入力段増幅器1a、出力段増幅器1bを構成する増幅回路部品は、使用可能な電力条件があり過入力があると、部品破壊を引き起こす場合がある。又、出力段増幅器1bの出力は電波法等の法律で決められている出力レベルの限界を示す規定値があるために、例え故障等が起きた場合でも一定値以上の出力レベルを出力しないように、出力レベルBの値を常時監視する必要がある。
【0011】
従って、装置の異常状態のデータをメモリ7に取り込むためのトリガ条件として以下の条件が挙げられる。
▲1▼ A>Amax
▲2▼ B>Bmax
▲3▼ B−A≠G
ここで、AおよびBはそれぞれ上記の入力信号レベルおよび出力信号レベルであり、Amaxは過入力となる直前の許容最大入力レベルであり、Bmaxは上記電波法による規定値を与える限界出力レベルである。また、▲3▼の条件は長期に渉り徐々に変化する場合はゲインGの値をB−A=G’としてG=G’に置き換えて、G’の値が上記限界出力レベルBmaxを越えない範囲で監視を続け、変化を生じた時点毎にその時刻とゲインG’とをメモリ7に記録する。この値と等しいかまたはこれを越えた場合は、警報を発するかあるいは回路電源遮断等の手段が講じられる。ここで、温度センサ3の値、電源電圧検出部4の値、リアルタイムクロック部5の各データが記録として残しておくことにより、異常現象の原因解明の参考データとして使用し得る。これら各々のデータは前述の装置のゲインGの値と同様に、初期値を記憶しておき測定値と比較して初期値と異なった場合にデータをその時刻と共に記憶し、次回の比較元のデータを記憶したデータに置き換える。以下、この動作を図2に示すフローチャートにより説明する。
【0012】
図2において、図1の入力レベル検出部2aの入力信号である入力信号レベルAは最大許容入力レベルAmaxと大小関係が比較され(ステップ201)、A≧Amaxの場合は、本装置外の要因としてステップ203を経由して入力信号レベルAの値と、その時点でのリアルタイムクロック5による時刻とをメモリ7に書き込む(ステップ214)。A<Amaxであればステップ208に進み、出力レベル検出部2bの比較結果としてB≧Bmaxであれば出力過大で規定値を越えていることになるから、出力信号レベルBの値をステップ204を介してその時点でのリアルタイムクロック5による時刻と共にメモリ7に書き込み(ステップ214)、さらに後述の温度Tと電源電圧Vの判定を行う。また、B<Bmaxであればこれは正常動作の範囲内であるからステップ205のゲインGの判定に進む。
【0013】
ステップ205では装置ゲインの測定値G’と初期値Gとの比較を行なう。ここで、G≠G’であればステップ206を経由してリアルタイムクロック5によるその時点での時刻と共にメモリ7に変化したゲインの測定値G’を書き込み、同時に比較基準となるゲインの初期値Gをステップ207により測定値G’に置き換えてステップ205での以後の比較動作を実行させる。また、ステップ207によるG=G’の置き換え処理後は、後述の温度Tと電圧Vの判定に進む。一方、G=G’すなわちゲインに変化がない場合は増幅装置として異常はないことを示しているから、スタートに戻り次の測定待ちの状態となる。
温度Tと電圧Vの判定は次の様に実行される。すなわち、ステップ208において、温度センサ3の測定値T’が比較基準となる初期値Tに等しければ(T=T’)状態は正常であるとして次のステップである電源電圧Vの判定に進む。また、T’≠Tであればステップ210を経由してT’の値をその時点でのリアルタイムクロック5の示す時刻データと共にステップ214によりメモリ7に書き込むと同時に、以後の判定の基準値として使用する温度の初期設定値Tの値をT’に置き換えて次の電源電圧判定(ステップ211)に進む。同様に、電源電圧V判定も温度Tの判定と同様に、電源電圧測定値V’をステップ211において初期設定値Vと比較する。ここで、V=V’であれば、本装置は正常な動作状態にあることになるから一連の動作状態チェックを終了する。また、V≠V’であれば測定値T’をステップ213を経由してリアルタイムクロック5の示す時刻と共にメモリ7に書き込む(ステップ214)。これと同時にステップ211における判定基準となるVの値をV’に置き換えて以後の判定基準とする。以上の過程において温度に関してはT=T’、電源電圧に関してはV=V’による判定基準の置き換えは、最高装置温度の設計値、許容電源電圧範囲及び出力信号レベルBが最大許容値を越えるまで繰り返し継続される。
【0014】
以上のようにしてメモリ7に取り込んだデータの相互関係を調べることにより異常原因が外部にあるものか内部にあるものかの区別を判定することができるようになる。例えば、入力信号レベルA’が過大で、温度センサ3の指示が大である場合は入力過大によるもので、外的要因によるものと判定出来る。また、入力信号レベルA’、出力信号レベルB’ともに正常で装置ゲインGが大または電源電圧Vが大の場合で温度センサ3の指示が大の場合は内的要因によるものと判定出来る。
なお、ステップ214において、ゲインG、温度T、電源電圧Vの変化を記録する際、これらの変化が異常値に達した場合、すなわち前記の最大定格値以上に達した場合、メモリに記録すると同時に視角的または聴覚的に警報を発する機構を付加することも可能である。
【0015】
【発明の効果】
以上の様に本発明によれば装置の異常値が外部要因によるものか、内部に起因するものかの切り分けが容易に行うことが可能となる。又、異常値とそのときの温度、電源電圧等のデータの変化点をトリガとしてデータを保持することにより、全データを保持していなくても、データが保持されたときのその他のデータが判るようになり、少ないメモリ容量で多くのデータを保持できるので、メモリ容量の増加によるコスト高も回避できる。
【0016】
本発明は携帯電話等のRF増幅装置に特に有効である。
【図面の簡単な説明】
【図1】本発明の一実施の形態を示すブロック図。
【図2】従来技術の一例を示すブロック図。
【図3】本発明の作用を示す為のフローチャート。
【符号の説明】
1a:入力段増幅器
1b:出力段増幅器
2a、2a’:入力レベル検出回路
2b、2b’:出力レベル検出回路
3:温度センサ
4:電圧検出回路
5:リアルタイム・クロック(RTC)
6:制御部7:メモリ
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a configuration having a means for detecting abnormality in an RF amplifier and logging abnormal data obtained thereby.
[0002]
[Prior art]
FIG. 3 is a block diagram showing an example of a circuit configuration of a wireless RF amplifier according to the related art. 1a is an input-stage amplifier for amplifying a wireless RF signal input from the input terminal 11, 1b is an output-stage amplifier for amplifying the output of the input-stage amplifier 1a and outputting it through the output terminal 12, and 2a 'is the input-stage amplifier 1a. The input level detector 2b 'detects the level of the wireless RF signal input to the controller and outputs the input signal level data to the controller 6. The input level detector 2b' detects the output signal level of the output stage amplifier 1b and outputs the output signal level data to the controller. An output level detector 3 outputs a temperature sensor for measuring the temperature inside the RF amplifier, and outputs a temperature data as a measurement result to the controller 6. A power sensor 4 measures a power supply voltage in the amplifier and outputs a power supply voltage data. Is a power supply voltage detecting unit for outputting the input signal level data of the input level detecting unit 2 a ′, the output signal level data of the output level detecting unit 2 b ′, and the temperature data of the temperature sensor 3. A control unit that inputs data of the voltage data of the power supply voltage detection unit 4 and operates to write the data or all of the above data to the memory 7 when each of the data is out of the specified range; Reference numeral 7 denotes a memory that holds data output from the control unit 6.
[0003]
Usually, a signal of a predetermined input level is amplified by an input stage amplifier 1a and an output stage amplifier 1b, and is amplified to a desired output level and output. The input level detector 2a ', the output level detector 2b', the temperature sensor 3, and the voltage detector 4 constantly monitor the measurement results of these units, and output the data to the control unit 6.
[0004]
Here, when any abnormal state occurs, the control unit 6 determines an abnormal value of each data output from each of the detection units and the temperature sensor, and outputs the abnormal value data or all data to the memory 7. The memory 7 is configured to hold the data.
[0005]
[Problems to be solved by the invention]
However, in the above-described conventional technology, even if an abnormal value is detected and the data is stored in the memory 7, the fact that "an abnormal value has been detected" can be confirmed in the subsequent analysis, but it is not enough to analyze the cause. In many cases, it is difficult to distinguish between abnormal values due to external factors and abnormal values due to internal factors. In addition, when all abnormal values and other data at that time are stored in the memory 7, the amount of data increases. There is a problem that the capacity is increased and the cost is increased. Therefore, it is an object of the present invention to provide an RF amplifier having a means for investigating the cause of an abnormality without increasing the memory capacity.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, according to claim 1 of the present invention, an input stage amplifier for inputting, amplifying and outputting a wireless RF signal, and an output for inputting, amplifying and outputting the output of the input stage amplifier A stage amplifier, an input level detection unit that detects a level of the wireless RF signal input to the input stage amplifier, and outputs a level data of an input signal to a control unit, and detects an output level of the output stage amplifier, An output level detection unit that outputs level data of an output signal to the control unit, a temperature sensor that measures internal temperatures of the input stage amplifier and the output stage amplifier, and outputs measured temperature data to the control unit; A voltage detector that measures a power supply voltage of the wireless RF amplifier and outputs measured voltage data to the controller, the temperature data, the voltage data, and the input level detection. An RF comprising: the control unit having a function of outputting as abnormal data when data of the output level detecting unit satisfies a predetermined trigger condition; and a memory for storing abnormal data output from the control unit. In the amplifier, a real-time clock unit for outputting date and time data, and when one or both of the input signal level and the output signal level exceed an allowable limit value, store the time obtained from the real-time clock unit in a memory. Means for detecting a change in each parameter of the amplifier gain, the apparatus temperature, and the apparatus power supply voltage, and stores the changed value of the changed parameter in a memory together with the time obtained from the real-time clock unit. And a configuration of an RF amplification device having means.
[0007]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described with reference to the drawings.
FIG. 1 is a block diagram showing one embodiment of the present invention. 1a is an input-stage amplifier for amplifying a wireless RF signal from the input terminal 11, 1b is an output-stage amplifier for amplifying the output of the input-stage amplifier 1a and outputting it to the output terminal 12, and 2a is a wireless input to the input-stage amplifier 1a. An input level detection unit 2b for detecting the level of the RF signal and outputting input level data to the control unit 6; an output level detection unit 2b for detecting the output level of the output stage amplifier 1b and outputting the output level data to the control unit 6; Is a temperature sensor that measures the temperature inside the amplifying device and outputs temperature data to the control unit 6, 4 is a power supply voltage detection unit that measures a power supply voltage and outputs the measured voltage data to the control unit 6, 5 is a date and time A real-time clock section (RTC) 6 for outputting data includes input level data of the input level detecting section 2a, output level data of the output level detecting section 2b, and temperature of the temperature sensor 3. Data, the power supply voltage data of the voltage detection unit 4 and the date and time data of the real time clock unit 5 are input to the memory 7 when the data of the input level detection unit 2a and the data of the output level 2b satisfy the write condition described later. The control unit 7 that operates to write data is a memory that holds data output from the control unit 6.
[0008]
Normally, the relationship between the input signal level and the output signal level can be expressed by Equations (1) and (2) when each amount is expressed in dB (decibel).
[0009]
B = A + G (1)
G = Ga + Gb (2)
(A: input signal level, B: output signal level, G: initial value of device gain, Ga: gain of input stage amplifier 1a, Gb: gain of output stage amplifier 2b)
Since the gain G of the device is normally constant, G = BA is a constant value. However, when there is a component failure or the like inside the apparatus, the gain G does not take a constant value, but takes a value different from the initial value. Also, when the operation of the interfering device is continued for a long period of time, the phenomenon of gain fluctuation is also caused, though gradually.
[0010]
In addition, the amplifier circuit components constituting the input stage amplifier 1a and the output stage amplifier 1b may be destructed if there is an available power condition and there is an excessive input. Further, the output of the output stage amplifier 1b has a specified value indicating the limit of the output level determined by laws such as the Radio Law, so that even if a failure or the like occurs, the output level should not be higher than a certain value. In addition, it is necessary to constantly monitor the value of the output level B.
[0011]
Therefore, the following conditions are given as trigger conditions for loading data of the abnormal state of the apparatus into the memory 7.
▲ 1 ▼ A> Amax
▲ 2 ▼ B> Bmax
▲ 3 ▼ BA-G
Here, A and B are the input signal level and the output signal level, respectively, Amax is the maximum allowable input level immediately before excessive input, and Bmax is the limit output level that gives a specified value according to the Radio Law. . If the condition (3) changes gradually over a long period of time, the value of the gain G is replaced by G = G 'with BA = G', and the value of G 'exceeds the above-mentioned limit output level Bmax. Monitoring is continued within a range where no change occurs, and the time and the gain G ′ are recorded in the memory 7 each time a change occurs. If this value is equal to or exceeds this value, an alarm is issued or means such as shutting off the circuit power are taken. Here, the value of the temperature sensor 3, the value of the power supply voltage detecting unit 4, and the data of the real-time clock unit 5 are recorded and can be used as reference data for elucidating the cause of the abnormal phenomenon. For each of these data, the initial value is stored in the same manner as the value of the gain G of the above-described device, and when the measured value is different from the initial value, the data is stored together with the time, and the next comparison source is stored. Replace data with stored data. Hereinafter, this operation will be described with reference to the flowchart shown in FIG.
[0012]
2, an input signal level A, which is an input signal of the input level detection unit 2a in FIG. 1, is compared with a maximum allowable input level Amax in a magnitude relationship (step 201). If A ≧ Amax, a factor outside the present apparatus is used. Then, the value of the input signal level A and the time at that time by the real-time clock 5 are written into the memory 7 via step 203 (step 214). If A <Amax, the process proceeds to step 208. If B ≧ Bmax as a comparison result of the output level detection unit 2b, the output is excessive and exceeds the specified value. Then, the data is written into the memory 7 together with the time of the real-time clock 5 at that time (step 214), and the temperature T and the power supply voltage V described later are determined. If B <Bmax, this is within the range of normal operation, and the flow proceeds to the determination of the gain G in step 205.
[0013]
In step 205, the measured value G 'of the device gain is compared with the initial value G. Here, if G ≠ G ′, the changed gain measurement value G ′ is written to the memory 7 together with the current time by the real-time clock 5 via step 206, and at the same time, the initial gain value G serving as a comparison reference is written. Is replaced with the measured value G ′ in step 207, and the subsequent comparison operation in step 205 is executed. After the replacement process of G = G ′ in step 207, the process proceeds to the determination of the temperature T and the voltage V described later. On the other hand, if G = G ′, that is, if there is no change in the gain, it indicates that there is no abnormality in the amplifying device, and the process returns to the start and waits for the next measurement.
The determination of the temperature T and the voltage V is performed as follows. That is, in step 208, if the measured value T 'of the temperature sensor 3 is equal to the initial value T serving as the comparison reference (T = T'), the state is determined to be normal, and the process proceeds to the next step of determining the power supply voltage V. If T ′ ≠ T, the value of T ′ is written to the memory 7 in step 214 together with the current time data indicated by the real-time clock 5 via step 210, and is used as a reference value for subsequent determination. The value of the temperature initial setting value T to be replaced is replaced with T ', and the process proceeds to the next power supply voltage determination (step 211). Similarly, in the determination of the power supply voltage V, similarly to the determination of the temperature T, the measured power supply voltage value V ′ is compared with the initial setting value V in step 211. Here, if V = V ', the device is in a normal operation state, and thus a series of operation state checks is terminated. If V ≠ V ′, the measured value T ′ is written into the memory 7 together with the time indicated by the real-time clock 5 via step 213 (step 214). At the same time, the value of V serving as a criterion in step 211 is replaced with V ′, which is used as a subsequent criterion. In the above process, the judgment criteria are replaced by T = T 'for the temperature and V = V' for the power supply voltage until the design value of the maximum device temperature, the allowable power supply voltage range and the output signal level B exceed the maximum allowable value. Continued repeatedly.
[0014]
By examining the interrelationship of the data fetched into the memory 7 as described above, it is possible to determine whether the cause of the abnormality is external or internal. For example, when the input signal level A ′ is excessive and the instruction from the temperature sensor 3 is large, it can be determined that the input is excessive and that the external sensor is used. When the input signal level A 'and the output signal level B' are both normal and the device gain G is large or the power supply voltage V is large, and when the instruction from the temperature sensor 3 is large, it can be determined that the cause is an internal factor.
In step 214, when the changes in the gain G, the temperature T, and the power supply voltage V are recorded, when these changes reach an abnormal value, that is, when the changes reach the above-mentioned maximum rated value, they are recorded in a memory. It is also possible to add a visual or audible alarm mechanism.
[0015]
【The invention's effect】
As described above, according to the present invention, it is possible to easily determine whether an abnormal value of a device is caused by an external factor or an internal factor. In addition, by holding data using the abnormal value and a change point of data such as temperature and power supply voltage at that time as a trigger, even if not all data is held, other data when the data is held can be determined. As a result, a large amount of data can be held with a small memory capacity, so that a cost increase due to an increase in the memory capacity can be avoided.
[0016]
The present invention is particularly effective for an RF amplifier such as a mobile phone.
[Brief description of the drawings]
FIG. 1 is a block diagram showing an embodiment of the present invention.
FIG. 2 is a block diagram showing an example of a conventional technique.
FIG. 3 is a flowchart showing the operation of the present invention.
[Explanation of symbols]
1a: input stage amplifier 1b: output stage amplifier 2a, 2a ': input level detection circuit 2b, 2b': output level detection circuit 3: temperature sensor 4: voltage detection circuit 5: real time clock (RTC)
6: control unit 7: memory

Claims (1)

無線RF信号を入力し増幅して出力する入力段増幅器と、前記入力段増幅器の出力を入力し、増幅して出力する出力段増幅器と、前記入力段増幅器に入力される前記無線RF信号のレベルを検出し、入力信号のレベルデータを制御部に出力する入力レベル検出部と、前記出力段増幅器の出力レベルを検出し、出力信号のレベルデータを前記制御部に出力する出力レベル検出部と、前記入力段増幅器及び前記出力段増幅器の内部温度を測定し、それによる測定温度データを前記制御部に出力する温度センサと、前記無線RF増幅装置の電源電圧を測定し、それによる測定電圧データを前記制御部に出力する電圧検出部と、前記温度データと、前記電圧データと、前記入力レベル検出部と前記出力レベル検出部のデータが予め定められたトリガ条件を満たした時に異常データとして出力する機能を有する前記制御部と、前記制御部の出力である異常データを記憶するメモリとを備えたRF増幅器において、
日時データを出力するリアルタイムクロック部と、
前記入力信号レベルおよび前記出力信号レベルのいずれか、または両者が許容限界値を越えた場合、前記リアルタイムクロック部から得られた時刻をメモリに記憶する手段と、
増幅器ゲイン、装置温度、装置電源電圧の各パラメータの変化を検出する手段と、
変化を生じたパラメータについて変化後の値を、前記リアルタイムクロック部から得られた時刻と共にメモリに記憶する手段と
を有することを特徴とするRF増幅装置。
An input stage amplifier for inputting and amplifying and outputting a radio RF signal, an output stage amplifier for inputting and amplifying and outputting the output of the input stage amplifier, and a level of the radio RF signal input to the input stage amplifier And an input level detection unit that outputs level data of the input signal to the control unit, and an output level detection unit that detects the output level of the output stage amplifier and outputs level data of the output signal to the control unit. A temperature sensor that measures the internal temperatures of the input stage amplifier and the output stage amplifier and outputs the measured temperature data to the control unit, and measures the power supply voltage of the wireless RF amplifier, and measures the measured voltage data. A voltage detection unit that outputs to the control unit, the temperature data, the voltage data, and data of the input level detection unit and the output level detection unit are stored in a predetermined trigger condition. It said control unit having a function of outputting an abnormal data when filled with, the RF amplifier and a memory for storing the abnormality data which is the output of the control unit,
A real-time clock section for outputting date and time data,
Means for storing a time obtained from the real-time clock unit in a memory when one or both of the input signal level and the output signal level exceed an allowable limit value,
Means for detecting changes in parameters of amplifier gain, device temperature, and device power supply voltage;
Means for storing, in a memory, a changed value of the changed parameter together with a time obtained from the real-time clock unit.
JP2002288858A 2002-10-01 2002-10-01 RF amplifier Expired - Fee Related JP4037231B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002288858A JP4037231B2 (en) 2002-10-01 2002-10-01 RF amplifier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002288858A JP4037231B2 (en) 2002-10-01 2002-10-01 RF amplifier

Publications (2)

Publication Number Publication Date
JP2004128807A true JP2004128807A (en) 2004-04-22
JP4037231B2 JP4037231B2 (en) 2008-01-23

Family

ID=32281235

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002288858A Expired - Fee Related JP4037231B2 (en) 2002-10-01 2002-10-01 RF amplifier

Country Status (1)

Country Link
JP (1) JP4037231B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008245058A (en) * 2007-03-28 2008-10-09 Kenwood Corp Wireless transmitter and method of adjusting the wireless transmitter

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008245058A (en) * 2007-03-28 2008-10-09 Kenwood Corp Wireless transmitter and method of adjusting the wireless transmitter

Also Published As

Publication number Publication date
JP4037231B2 (en) 2008-01-23

Similar Documents

Publication Publication Date Title
US7846320B2 (en) Self-adjusting electrochemical sensor
US7346432B2 (en) Earthquake disaster prevention system
US20100070213A1 (en) Method for Monitoring the Electrical Energy Quality in an Electrical Energy Supply System, Power Quality Field Device and Power Quality System
US20210215545A1 (en) Temperature threshold determining device, temperature abnormality determining system, temperature threshold determining method
EP4145583A1 (en) Battery thermal runaway early warning method and apparatus, and medium and device
JP2004040281A (en) Mobile phone with environmental sensor
CN111274098B (en) Storage device alarm method and device based on internet of things (IoT)
CN113630707A (en) Sound system detection method, device, equipment, storage medium and sound system
EP2797000A1 (en) Portable electronic device
JP4037231B2 (en) RF amplifier
JPH0961482A (en) Abnormality detector for uninterruptive power supply
US11867569B2 (en) Temperature abnormality detection system, temperature abnormality detection method, and computer-readable recording medium
JP6587478B2 (en) Test system
JP2004077349A (en) Metal detecting device
KR101953631B1 (en) Camera power supply real-time monitoring system of optical inspection equipment
KR101332797B1 (en) Self-diagnosis apparatus for audio system
RU95924U1 (en) AMPLIFIER
JP7265402B2 (en) radio transmitter
EP4293366A1 (en) Signal processing circuit, controller, environment forming device, and signal processing method
JPH11110661A (en) Gas leakage alarm
KR0125710B1 (en) Humidity sensor checking method of microwave oven
KR101454599B1 (en) Fault Detection Device and Method for flash lamp of high-energy laser system
JP2004163215A (en) Maintenance program and maintenance apparatus of gas alarm
JP2021081345A (en) Detector
JP2002016445A (en) Warm-up judjing circuit, judjing method used therefor and amplifier mounting device mounted with the same circuit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050330

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070608

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070619

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070808

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070808

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070925

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071004

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071030

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071031

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101109

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111109

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111109

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121109

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121109

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131109

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees