JP2004128257A - Plasma processing apparatus - Google Patents

Plasma processing apparatus Download PDF

Info

Publication number
JP2004128257A
JP2004128257A JP2002291065A JP2002291065A JP2004128257A JP 2004128257 A JP2004128257 A JP 2004128257A JP 2002291065 A JP2002291065 A JP 2002291065A JP 2002291065 A JP2002291065 A JP 2002291065A JP 2004128257 A JP2004128257 A JP 2004128257A
Authority
JP
Japan
Prior art keywords
plasma
electrode
plasma processing
processing apparatus
space
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002291065A
Other languages
Japanese (ja)
Inventor
Kazufumi Azuma
東 和文
Yukihiko Nakada
中田 行彦
Tetsuya Okamoto
岡本 哲也
Shinji Goto
後藤 真志
Hajime Shirai
白井 肇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Advanced LCD Technologies Development Center Co Ltd
Original Assignee
Advanced LCD Technologies Development Center Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advanced LCD Technologies Development Center Co Ltd filed Critical Advanced LCD Technologies Development Center Co Ltd
Priority to JP2002291065A priority Critical patent/JP2004128257A/en
Publication of JP2004128257A publication Critical patent/JP2004128257A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Plasma Technology (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Chemical Vapour Deposition (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a plasma processing apparatus that can generate a plasma even in unreduced pressure environments and perform uniform plasma processing over the entire surface of a substrate of relatively a large area. <P>SOLUTION: This plasma processing apparatus includes an electric power generating means 12 of generating high-frequency electric power and at least one electrode 14 which is at least one electrode electrically connected to the electric power generating means and has a space 18 into which gas for the plasma is introduced and a tapered opening tip 16 linked with the space. Another plasma processing apparatus further includes a conductive member 60 for supporting a plurality of electrodes 38 and electrically connected to the electric power generating means and electrode, and has a space for receiving the gas for plasma introduced into the electrode. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、プラズマ処理装置に関し、特に、半導体装置、液晶表示装置等の製造過程において施される、膜堆積、表面改質、エッチング等のためのプラズマ処理を施すための装置に関する。
【0002】
【従来の技術】
プラズマ処理装置として、梯子状に配列された複数の導体棒からなる梯子型電極を用いた平行平板型の高周波プラズマ処理装置がある。
【0003】
【発明が解決しようとする課題】
この装置によれば、一様な分布のプラズマを得ることができ、液晶パネル用基板のように比較的大きな面積を有する基板の全面に均一にプラズマ処理を施すことができる(例えば、特許文献1を参照。)。
【0004】
【特許文献1】
特開2000−73174号公報(第3〜4頁、図2)
【0005】
しかし、この装置では、一様な分布のプラズマを生じさせるために大気圧より低い所定の圧力に減圧しなければならず、減圧環境を作るための減圧装置及び減圧容器を必要とする。また、減圧容器は、該容器中のプラズマ生成用のガスの流れを制御することのできる構造を必要とする。このため、プラズマ処理装置として、複雑な構造になり、装置の製造費用が高価になる。
【0006】
本発明の目的は、非減圧環境においてもプラズマを生じさせることができるプラズマ処理装置を提供することにある。また、本発明の他の目的は、比較的大きな面積を有する基板の全面に均一にプラズマ処理を施すことができるプラズマ処理装置を提供することにある。
【0007】
【課題を解決する解決手段、作用及び効果】
本発明に係る、プラズマ処理装置は、被処理物にプラズマ処理を施すためのプラズマ処理装置であって、高周波電力を発生させるための電力発生手段と、前記電力発生手段に電気的に接続された少なくとも1つの電極であってプラズマ用ガスが導入される空間と該空間に連なる先細の開口先端部とを有する少なくとも1つの電極とを含む。
【0008】
本発明によれば、電極を、プラズマ用ガスが導入される空間と該空間に連なる先細の開口先端部とを有するものとしたことから、電極に供給された高周波電力を電極の先端部に集中させて、前記先端部に局所的な高電圧を発生させ、前記先端部と被処理物との間に放電を生じさせることができる。また、この放電が生じた空間に電極の開口先端部から導かれたプラズマ用ガスによりプラズマを生成することができる。このため、前記電極と被処理物との間にプラズマを常圧環境すなわち大気圧環境下で生じさせることができる。
【0009】
このような非減圧環境下で電極と被処理物との間にプラズマを生成することにより、プラズマ中の電子温度を下げ、プラズマによる被処理物の損傷を低減することができる。
【0010】
本発明に係る他のプラズマ処理装置は、さらに、複数の電極を支持する導電性部材であって前記電力発生手段と前記電極とに電気的に接続され、また、前記電極に導入される前記プラズマ用ガスを受け入れるための受け入れ空間を有する導電性部材を含む。
【0011】
これによれば、被処理物の被処理面の大きさに応じて適宜の数の電極を導電性部材に支持することにより、前記電極によるプラズマ生成を被処理物の全面で生じさせ、これにより、比較的大きな面積を有する被処理物の全面に均一かつ一時にプラズマ処理を施すことができる。また、例えば、複数の電極を直線状に配列、支持し、被処理物を電極の配列方向と直角の方向に移動させることにより、被処理物の全面に均一にプラズマ処理を施すことができる。
【0012】
好ましくは、さらに、前記被処理物を前記電極の開口先端部に相対するように保持するための保持部材を含む。これによれば、電極と被処理物との間の放電について、電極の先細の開口先端部から該先端部の前方の空間に対称的に広がる放電エネルギが被処理物に均一に与えられ、電極と被処理物との間に安定した放電が生じる。この安定した均一な放電によって、電極と被処理物とでのプラズマの生成を容易にし、また、生成されたプラズマを継続させることができる。
【0013】
好ましくは、前記被処理物は接地されている。これにより、電極と被処理物との間の放電についての基準電位が地球または大地の電位に等しく保たれ、安定した放電が継続され、プラズマを安定させることができる。
【0014】
【発明の実施の形態】
図1を参照するに、本発明に係るプラズマ処理装置が全体に符号10で示されている。プラズマ処理装置10は、電力発生手段12と、電力発生手段12に電気的に接続された電極14とを含む。
【0015】
プラズマ処理装置10は、後述するように電極14に導入されるプラズマ用ガスとして、例えば気体酸素を主として含む混合ガスを用いた、酸素プラズマによる酸化処理を行うための装置として用いられる。生成された酸素プラズマにより、例えば、液晶パネル用の基板上の金属膜に酸化処理を施すことができる。また、プラズマ処理装置10は、種々の気体元素を用いるアッシング、エッチング等のための装置として用いられる。
【0016】
高周波電力を発生させるための電力発生手段12として、無線周波数を有する交流電圧を発生させる高周波電源、図示の例のようなほぼ1mm以下の波長を有するマイクロ波による交流電圧を発生させるマイクロ波電源等を用いることができる。電力発生手段12は、電気的端子の一方において接地されている。
【0017】
電極14は、銅のような導電性材料からなる。図示の電極14は、全体に截頭円錐形状を呈し、先細の先端部16と、電力発生手段12の他方の電気的端子に接続された基部とを有する。電極14は、また、前記プラズマ用ガスが導入される空間(図示の例では細長い通路)18を有する。通路18は、その一端が電極14の先端部16の端面に開口し、その他端において電極14の側面に開口している。電極14には、通路18の前記他端において、プラズマ用ガスを供給するためのガス供給装置20の供給管22が密閉性を保つように取り付けられている。
【0018】
プラズマ処理が施される被処理物24が、電極14の先端部16に相対するように保持部材26に保持され、また、保持部材26を介して接地されている。図示の被処理物24は、プラズマ処理を施される金属膜が形成された液晶パネル用基板からなる。
【0019】
電力発生手段12によりマイクロ波の交流電圧を電極14に印加すると、電極14に供給された高周波電力が電極14の先端部16に集中し、先端部16に局所的な高電圧が発生する。この局所的な高電圧により、先端部16と被処理物24との間に、コロナ放電と呼ばれる放電を生じ、放電空間が形成される。このコロナ放電は、常圧環境すなわち大気圧環境下で生じる。
【0020】
一方、ガス供給装置20のバルブ28を開いて、ボンベ30内のプラズマ用ガスをマスフロー制御器32によって適量に調整したうえで供給管22に導き、供給管22から電極14の通路18に導入する。
【0021】
ガス供給装置20から電極14に導かれたプラズマ用ガスは、電極14の先端部16の開口から、先端部16と被処理物24との間に生じた前記放電空間に放出される。前記放電空間に放出された気体元素は電離し、電離した気体元素イオンがプラズマを生成する。
【0022】
このプラズマは、電極14の先端部16から被処理物24、図示の例では、プラズマ処理を施される金属膜が形成された液晶パネル用基板に、空間に対称的に広がる放電空間に沿って、プラズマジェット34として形成される。
【0023】
被処理物24は保持部材26を介して接地されているので、放電に関して、基準電位が地球または大地の電位に等しく保たれ、安定した放電が継続され、プラズマが安定する。
【0024】
また、被処理物24を接地せずに、電極14に印加する電圧、電極14の先端部16と被処理物24との間の距離等を調整することにより、プラズマジェット34を発生させ、維持することができる。
【0025】
本発明に係るプラズマ処理装置においては、プラズマを大気圧環境下で生成することができることから、プラズマ中の電子温度が下がり、プラズマによる被処理物24の損傷が低減される。
【0026】
プラズマによる被処理物24の損傷のより一層の低減のために、本発明に係るプラズマ処理装置では、コロナ放電を用い、電極14と被処理物24との間の距離を調整することにより、常圧で局所的な高電子密度、低電子温度のプラズマを生成することができる。
【0027】
図2及び図3を参照するに、本発明に係る他の例のプラズマ処理装置が全体に符号36で示されている。プラズマ処理装置36は、電力発生手段12および複数の電極38のほかに、さらに、電極38を支持する、電力発生手段12に電気的に接続された導電性部材40を備える。
【0028】
この例では、電極38は短管からなり、その基部において、板状の導電性部材40の下面に電気的に接続され、また密閉性を保つように例えば溶接されている。図示の電極38の先端部42はテーパ状にされ、これにより先細にされている。
【0029】
導電性部材40は、銅のような導電性材料からなり、下部材44と上部材46とを有する。導電性部材40には、下部材44に設けられかつ上部材46で閉じられた、プラズマ用ガスの受け入れ空間48が設けられている。受け入れ空間48は、下部材44に設けられた、ガス供給装置20からのプラズマ用ガスを導入する入口50と、プラズマ用ガスを電極38に導く出口52とを有する。上部材46は、下部材48に密閉性を保つように例えば溶接されている。
【0030】
導電性部材40は、インピーダンスを調整するための整合回路54を介して、電力発生手段12の電気的端子に接続されている。
【0031】
電極38は、電極38によって生成されたプラズマが被処理物24の被処理面56の全面で生じるように、被処理物24の被処理面56の大きさに応じて、その数量が定められる。これにより、被処理面56の全面に均一にかつ一時にプラズマ処理を施すことができる。
【0032】
プラズマ処理装置36によるプラズマ処理に関して、好ましいプラズマを生成するための具体的な例について、以下に説明する。
【0033】
用いた電極38は、0.3mmの内径を有する管状体からなり、その軸線に対してほぼ30度の傾斜(テーパ)をなす端面を有する先端部42を備える。この電極38を、200mm角の導電性部材40の下部材44の下面に、1mmの間隔で配列し、溶接した。
【0034】
電力発生手段12による供給電力を30Wに設定し、13.56MHzの周波数の交流電圧を、導電性部材40を通して電極38に印加した。プラズマ用ガスとして気体ヘリウム(以下「He」という。)を用い、マスフロー制御器32で1000sccmの流量に調整したHeを電極38に導いた。ここで、1sccmは、1標準cc/minとも表し、0℃の温度および1気圧(ほぼ1013hPa)の圧力環境下での1分間あたりの流量をccすなわちcm単位で示したものであり、1sccmはほぼ1.667×10−8/sである。
【0035】
電極38の先端部42と被処理物24の被処理面56との距離と、生じた電流値との関係を調べた。その結果、前記距離が1mm以下になると、電流値が急激に大きくなり、放電が不安定になることがわかった。また、前記距離が3mm以上になると、電流値が急激に小さくなり、プラズマジェットを維持することができない。この結果から、前記距離は、1mmから3mmの間が好ましい。
【0036】
次に、電極38の先端部42と被処理物24の被処理面56との距離を1.0mmとし、Heの供給流量を100sccmとしたときの、供給電力と電流値との関係を調べた。その結果、プラズマジェットを発生させるために必要な供給電力に閾値があり、この例で用いた電極38では、20W以上の供給電力を必要とすることがわかった。
【0037】
さらに、供給電力を30Wにし、また、電極38の先端部42と被処理物24の被処理面56との距離を1.0mmにし、Heの供給流量を変えたときの電流値を測定した。その結果、Heの供給流量が500sccm以上のとき、供給流量と電流値とが、ほぼ1次の関係すなわち比例関係にあることがわかった。
【0038】
以上の結果を考慮して、直径150mmのシリコン基板上にプラズマ用ガスとして酸素とHeとの混合ガス(酸素/Heの比率2%)を用い、電極38の先端部42と被処理物24の被処理面56との距離を1.0mmにし、大気圧環境下で、13.56MHzの高周波を30Wの電力で供給し、プラズマジェットを発生させて、シリコン基板の表面酸化処理を施した。そのときの表面酸化速度は約1nm/分であり、基板の直径方向での膜厚分布をエリプソメータで測定した。その結果、基板の面内の膜厚分布は±1.3%の誤差内に納まっていた。
【0039】
図4を参照するに、本発明に係るさらに他の例のプラズマ処理装置が全体に符号58で示されている。この例では、複数の電極38を支持する導電性部材60がほぼ長方形の断面形状を有する棒状体からなり、複数の電極38は導電性部材60の長手方向に等間隔に配置されている。
【0040】
電極38は、その一列の長さが被処理物24の被処理面56の幅寸法以上となるように、その数量が設定されている。これらの電極38によって生成されたプラズマは被処理物24の被処理面56の幅の全部にわたって生じる。被処理物24をローラ62、64で電極38の配列方向と直角の方向に移動させることにより、被処理物24の全面に均一にプラズマ処理を施すことができる。
【0041】
図2、図3及び図4に示す例では、電極38を導電性部材40、60に直接取り付けているが、導電性部材40、60に間接的に例えば導管を介して取り付けるようにしてもよい。
【図面の簡単な説明】
【図1】本発明に係るプラズマ処理装置の実施例を概略的に示す図。
【図2】本発明に係るプラズマ処理装置の他の実施例を概略的に示す図。
【図3】図2に示すプラズマ処理装置の、一部が断面で示された側面図。
【図4】本発明に係るプラズマ処理装置のさらに他の実施例を概略的に示す図。
【符号の説明】
10、36、58 プラズマ処理装置
12 電力発生手段
14、38 電極
16、42 先端部
18 通路
20 ガス供給装置
22 供給管
24 被処理物
26 保持部材
28 ボンベ
30 バルブ
32 マスフロー制御器
34 プラズマジェット
40、60 導電性部材
44 下部材
46 上部材
48 受け入れ空間
50 入口
52 出口
54 整合回路
56 被処理面
62、64 ローラ
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a plasma processing apparatus, and more particularly to an apparatus for performing plasma processing for film deposition, surface modification, etching, and the like, which is performed in a manufacturing process of a semiconductor device, a liquid crystal display device, and the like.
[0002]
[Prior art]
2. Description of the Related Art As a plasma processing apparatus, there is a parallel plate type high-frequency plasma processing apparatus using a ladder-type electrode composed of a plurality of conductor rods arranged in a ladder shape.
[0003]
[Problems to be solved by the invention]
According to this apparatus, a plasma having a uniform distribution can be obtained, and the entire surface of a substrate having a relatively large area, such as a substrate for a liquid crystal panel, can be subjected to plasma processing uniformly (for example, Patent Document 1). See.)
[0004]
[Patent Document 1]
JP 2000-73174 A (pages 3 and 4, FIG. 2)
[0005]
However, in this apparatus, the pressure must be reduced to a predetermined pressure lower than the atmospheric pressure in order to generate a plasma having a uniform distribution, and a pressure reducing device and a pressure reducing vessel for creating a reduced pressure environment are required. Further, the decompression vessel requires a structure capable of controlling a flow of a gas for plasma generation in the vessel. Therefore, the plasma processing apparatus has a complicated structure, and the manufacturing cost of the apparatus becomes high.
[0006]
An object of the present invention is to provide a plasma processing apparatus that can generate plasma even in a non-pressure-reduced environment. Another object of the present invention is to provide a plasma processing apparatus capable of uniformly performing plasma processing on the entire surface of a substrate having a relatively large area.
[0007]
[Means for Solving the Problems, Functions and Effects]
A plasma processing apparatus according to the present invention is a plasma processing apparatus for performing a plasma process on an object to be processed, and is electrically connected to a power generation unit for generating high-frequency power and the power generation unit. At least one electrode includes a space into which a plasma gas is introduced and at least one electrode having a tapered opening tip connected to the space.
[0008]
According to the present invention, since the electrode has a space into which the gas for plasma is introduced and a tapered opening tip connected to the space, the high-frequency power supplied to the electrode is concentrated at the tip of the electrode. Thus, a local high voltage can be generated at the tip, and a discharge can be generated between the tip and the workpiece. Also, plasma can be generated in the space where the discharge has occurred by the plasma gas introduced from the tip of the opening of the electrode. Therefore, plasma can be generated between the electrode and the object under normal pressure, that is, under atmospheric pressure.
[0009]
By generating plasma between the electrode and the object under such a non-pressure-reduced environment, the temperature of electrons in the plasma can be reduced, and damage to the object due to plasma can be reduced.
[0010]
Another plasma processing apparatus according to the present invention further includes a conductive member that supports a plurality of electrodes, is electrically connected to the power generation unit and the electrode, and further includes the plasma introduced to the electrode. A conductive member having a receiving space for receiving the working gas.
[0011]
According to this, by supporting an appropriate number of electrodes on the conductive member according to the size of the processing surface of the processing object, plasma generation by the electrodes is caused over the entire surface of the processing object, In addition, the entire surface of the object having a relatively large area can be uniformly and simultaneously subjected to plasma processing. In addition, for example, a plurality of electrodes are linearly arranged and supported, and the object is moved in a direction perpendicular to the arrangement direction of the electrodes, so that the entire surface of the object can be uniformly subjected to plasma processing.
[0012]
Preferably, the apparatus further includes a holding member for holding the object to be processed so as to face the opening end of the electrode. According to this, with respect to the discharge between the electrode and the object to be processed, discharge energy spreading symmetrically from the tapered opening tip of the electrode to the space in front of the tip is uniformly applied to the object, and A stable discharge is generated between the workpiece and the object. This stable and uniform discharge facilitates the generation of plasma between the electrode and the object to be processed, and allows the generated plasma to be continued.
[0013]
Preferably, the object is grounded. Thus, the reference potential for the discharge between the electrode and the object to be processed is kept equal to the potential of the earth or the ground, stable discharge is continued, and the plasma can be stabilized.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
Referring to FIG. 1, a plasma processing apparatus according to the present invention is indicated generally by reference numeral 10. The plasma processing apparatus 10 includes a power generation unit 12 and an electrode 14 that is electrically connected to the power generation unit 12.
[0015]
The plasma processing apparatus 10 is used as an apparatus for performing an oxidation process by oxygen plasma using a mixed gas mainly containing gaseous oxygen as a plasma gas introduced into the electrode 14 as described later. By the generated oxygen plasma, for example, an oxidation treatment can be performed on a metal film on a substrate for a liquid crystal panel. Further, the plasma processing apparatus 10 is used as an apparatus for ashing, etching, and the like using various gas elements.
[0016]
As the power generation means 12 for generating high-frequency power, a high-frequency power supply for generating an AC voltage having a radio frequency, a microwave power supply for generating an AC voltage using a microwave having a wavelength of about 1 mm or less as shown in the drawing, and the like. Can be used. The power generation means 12 is grounded at one of the electrical terminals.
[0017]
The electrode 14 is made of a conductive material such as copper. The illustrated electrode 14 has a generally frusto-conical shape and has a tapered tip 16 and a base connected to the other electrical terminal of the power generation means 12. The electrode 14 also has a space (an elongated passage in the illustrated example) 18 into which the plasma gas is introduced. One end of the passage 18 is open at the end surface of the tip portion 16 of the electrode 14, and the other end is open at the side surface of the electrode 14. At the other end of the passage 18, a supply pipe 22 of a gas supply device 20 for supplying a gas for plasma is attached to the electrode 14 so as to maintain the hermeticity.
[0018]
An object 24 to be subjected to the plasma processing is held by a holding member 26 so as to face the tip 16 of the electrode 14, and is grounded via the holding member 26. The illustrated workpiece 24 is formed of a liquid crystal panel substrate on which a metal film to be subjected to plasma processing is formed.
[0019]
When the microwave AC voltage is applied to the electrode 14 by the power generation means 12, the high-frequency power supplied to the electrode 14 is concentrated on the tip 16 of the electrode 14, and a local high voltage is generated at the tip 16. Due to this local high voltage, a discharge called corona discharge is generated between the tip end portion 16 and the object 24 to form a discharge space. This corona discharge occurs in a normal pressure environment, that is, an atmospheric pressure environment.
[0020]
On the other hand, the valve 28 of the gas supply device 20 is opened, the plasma gas in the cylinder 30 is adjusted to an appropriate amount by the mass flow controller 32, then guided to the supply pipe 22, and introduced from the supply pipe 22 into the passage 18 of the electrode 14. .
[0021]
The plasma gas introduced from the gas supply device 20 to the electrode 14 is released from the opening of the tip 16 of the electrode 14 into the discharge space generated between the tip 16 and the workpiece 24. The gas element released into the discharge space is ionized, and the ionized gas element ions generate plasma.
[0022]
This plasma flows from the tip end portion 16 of the electrode 14 to the object 24, in the illustrated example, the liquid crystal panel substrate on which the metal film to be subjected to the plasma processing is formed, along the discharge space symmetrically spreading in the space. , Formed as a plasma jet 34.
[0023]
Since the object 24 is grounded via the holding member 26, the reference potential is kept equal to the earth or ground potential with respect to discharge, stable discharge is continued, and plasma is stabilized.
[0024]
The plasma jet 34 is generated and maintained by adjusting the voltage applied to the electrode 14 and the distance between the tip 16 of the electrode 14 and the object 24 without grounding the object 24. can do.
[0025]
In the plasma processing apparatus according to the present invention, since the plasma can be generated under the atmospheric pressure environment, the temperature of the electrons in the plasma decreases, and the damage to the processing target 24 due to the plasma is reduced.
[0026]
In order to further reduce the damage of the workpiece 24 due to the plasma, the plasma processing apparatus according to the present invention uses a corona discharge to adjust the distance between the electrode 14 and the workpiece 24, so that the plasma processing apparatus is constantly used. A plasma having a high electron density and a low electron temperature can be locally generated by pressure.
[0027]
Referring to FIGS. 2 and 3, another example of a plasma processing apparatus according to the present invention is indicated by reference numeral 36. The plasma processing apparatus 36 includes, in addition to the power generation unit 12 and the plurality of electrodes 38, a conductive member 40 that supports the electrodes 38 and is electrically connected to the power generation unit 12.
[0028]
In this example, the electrode 38 is formed of a short tube, and at the base thereof, is electrically connected to the lower surface of the plate-shaped conductive member 40 and is welded, for example, so as to maintain hermeticity. The distal end 42 of the illustrated electrode 38 is tapered and thereby tapered.
[0029]
The conductive member 40 is made of a conductive material such as copper, and has a lower member 44 and an upper member 46. The conductive member 40 has a plasma gas receiving space 48 provided in the lower member 44 and closed by the upper member 46. The receiving space 48 has an inlet 50 provided in the lower member 44 for introducing the plasma gas from the gas supply device 20 and an outlet 52 for guiding the plasma gas to the electrode 38. The upper member 46 is, for example, welded to the lower member 48 so as to maintain hermeticity.
[0030]
The conductive member 40 is connected to an electric terminal of the power generation unit 12 via a matching circuit 54 for adjusting impedance.
[0031]
The number of the electrodes 38 is determined in accordance with the size of the processing surface 56 of the processing object 24 so that the plasma generated by the electrode 38 is generated on the entire processing surface 56 of the processing object 24. Thus, the entire surface of the processing surface 56 can be uniformly and simultaneously subjected to the plasma processing.
[0032]
Regarding the plasma processing by the plasma processing apparatus 36, a specific example for generating a preferable plasma will be described below.
[0033]
The electrode 38 used is formed of a tubular body having an inner diameter of 0.3 mm, and has a tip portion 42 having an end surface inclined (tapered) at about 30 degrees with respect to the axis thereof. The electrodes 38 were arranged on the lower surface of the lower member 44 of the conductive member 40 of 200 mm square at 1 mm intervals and welded.
[0034]
The power supplied by the power generation means 12 was set to 30 W, and an AC voltage having a frequency of 13.56 MHz was applied to the electrode 38 through the conductive member 40. Using gas helium (hereinafter referred to as “He”) as a plasma gas, He adjusted to a flow rate of 1000 sccm by the mass flow controller 32 was led to the electrode 38. Here, 1 sccm is also referred to as 1 standard cc / min, and indicates a flow rate per minute at a temperature of 0 ° C. and a pressure environment of 1 atm (approximately 1013 hPa) in units of cc, that is, cm 3. Is approximately 1.667 × 10 −8 m 3 / s.
[0035]
The relationship between the distance between the tip 42 of the electrode 38 and the surface 56 of the workpiece 24 and the generated current value was examined. As a result, it was found that when the distance became 1 mm or less, the current value increased sharply and the discharge became unstable. On the other hand, when the distance is 3 mm or more, the current value sharply decreases, and the plasma jet cannot be maintained. From this result, the distance is preferably between 1 mm and 3 mm.
[0036]
Next, the relationship between the supply power and the current value when the distance between the tip end portion 42 of the electrode 38 and the processing surface 56 of the processing target 24 was 1.0 mm and the supply flow rate of He was 100 sccm was examined. . As a result, it was found that the supply power required to generate the plasma jet had a threshold value, and the electrode 38 used in this example required a supply power of 20 W or more.
[0037]
Further, the current value was measured when the supply power was 30 W, the distance between the tip end portion 42 of the electrode 38 and the processing surface 56 of the processing target 24 was 1.0 mm, and the supply flow rate of He was changed. As a result, it was found that when the supply flow rate of He is 500 sccm or more, the supply flow rate and the current value have a substantially linear relationship, that is, a proportional relationship.
[0038]
In consideration of the above results, a mixed gas of oxygen and He (oxygen / He ratio: 2%) is used as a plasma gas on a silicon substrate having a diameter of 150 mm, and the tip portion 42 of the electrode 38 and the workpiece 24 The distance from the surface 56 to be processed was set to 1.0 mm, and a high frequency of 13.56 MHz was supplied at a power of 30 W under an atmospheric pressure environment to generate a plasma jet to perform a surface oxidation treatment of the silicon substrate. The surface oxidation rate at that time was about 1 nm / min, and the film thickness distribution in the diameter direction of the substrate was measured by an ellipsometer. As a result, the in-plane film thickness distribution of the substrate was within an error of ± 1.3%.
[0039]
Referring to FIG. 4, yet another example of a plasma processing apparatus according to the present invention is indicated generally by the reference numeral 58. In this example, the conductive member 60 supporting the plurality of electrodes 38 is formed of a rod having a substantially rectangular cross-sectional shape, and the plurality of electrodes 38 are arranged at equal intervals in the longitudinal direction of the conductive member 60.
[0040]
The number of the electrodes 38 is set such that the length of one row is equal to or greater than the width dimension of the processing surface 56 of the processing target 24. The plasma generated by these electrodes 38 is generated over the entire width of the processing surface 56 of the processing object 24. By moving the workpiece 24 in a direction perpendicular to the direction in which the electrodes 38 are arranged by the rollers 62 and 64, the entire surface of the workpiece 24 can be uniformly subjected to plasma processing.
[0041]
In the examples shown in FIGS. 2, 3 and 4, the electrode 38 is directly attached to the conductive members 40 and 60, but may be indirectly attached to the conductive members 40 and 60, for example, via a conduit. .
[Brief description of the drawings]
FIG. 1 is a view schematically showing an embodiment of a plasma processing apparatus according to the present invention.
FIG. 2 is a diagram schematically showing another embodiment of the plasma processing apparatus according to the present invention.
FIG. 3 is a side view showing a part of the plasma processing apparatus shown in FIG. 2 in a cross section;
FIG. 4 is a view schematically showing still another embodiment of the plasma processing apparatus according to the present invention.
[Explanation of symbols]
10, 36, 58 Plasma processing device 12 Power generation means 14, 38 Electrode 16, 42 Tip 18 Passage 20 Gas supply device 22 Supply pipe 24 Workpiece 26 Holding member 28 Cylinder 30 Valve 32 Mass flow controller 34 Plasma jet 40, Reference Signs List 60 Conductive member 44 Lower member 46 Upper member 48 Receiving space 50 Inlet 52 Outlet 54 Matching circuit 56 Processed surface 62, 64 Roller

Claims (4)

被処理物にプラズマ処理を施すためのプラズマ処理装置であって、高周波電力を発生させるための電力発生手段と、前記電力発生手段に電気的に接続された少なくとも1つの電極であってプラズマ用ガスが導入される空間と該空間に連なる先細の開口先端部とを有する少なくとも1つの電極とを含む、プラズマ処理装置。A plasma processing apparatus for performing plasma processing on an object to be processed, comprising: a power generation unit for generating high-frequency power; and at least one electrode electrically connected to the power generation unit, the plasma processing device comprising: A plasma processing apparatus, comprising: a space into which is introduced; and at least one electrode having a tapered opening front end connected to the space. 被処理物にプラズマ処理を施すためのプラズマ処理装置であって、高周波電力を発生させるための電力発生手段と、前記電力発生手段に電気的に接続された複数の電極であってプラズマ用ガスが導入される空間と該空間に連なる先細の開口先端部とを有する複数の電極と、前記電極を支持する導電性部材であって前記電力発生手段と前記電極とに電気的に接続され、また、前記電極に導入される前記プラズマ用ガスを受け入れるための受け入れ空間を有する導電性部材とを含む、プラズマ処理装置。A plasma processing apparatus for performing plasma processing on an object to be processed, a power generation unit for generating high-frequency power, and a plurality of electrodes electrically connected to the power generation unit, wherein a plasma gas is used. A plurality of electrodes having a space to be introduced and a tapered opening tip connected to the space, and a conductive member supporting the electrodes, electrically connected to the power generation means and the electrodes, A conductive member having a receiving space for receiving the plasma gas introduced into the electrode. さらに、前記被処理物を前記電極の先端部に相対するように保持するための保持部材を含む、請求項1または2に記載の装置。The apparatus according to claim 1, further comprising a holding member configured to hold the object to be processed so as to face a tip portion of the electrode. 前記被処理物は接地されている、請求項1から3のいずれか1項に記載の装置。The apparatus according to claim 1, wherein the workpiece is grounded.
JP2002291065A 2002-10-03 2002-10-03 Plasma processing apparatus Pending JP2004128257A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002291065A JP2004128257A (en) 2002-10-03 2002-10-03 Plasma processing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002291065A JP2004128257A (en) 2002-10-03 2002-10-03 Plasma processing apparatus

Publications (1)

Publication Number Publication Date
JP2004128257A true JP2004128257A (en) 2004-04-22

Family

ID=32282758

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002291065A Pending JP2004128257A (en) 2002-10-03 2002-10-03 Plasma processing apparatus

Country Status (1)

Country Link
JP (1) JP2004128257A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009032651A (en) * 2007-06-26 2009-02-12 Panasonic Electric Works Co Ltd Plasma treatment device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009032651A (en) * 2007-06-26 2009-02-12 Panasonic Electric Works Co Ltd Plasma treatment device

Similar Documents

Publication Publication Date Title
KR101239521B1 (en) Apparatus for the removal of a metal oxide from a substrate and methods therefor
TWI392000B (en) Apparatus for the removal of an edge polymer from a substrate and methods therefor
JP2748886B2 (en) Plasma processing equipment
US5221427A (en) Plasma generating device and method of plasma processing
US6664737B1 (en) Dielectric barrier discharge apparatus and process for treating a substrate
JP4794449B2 (en) RF pulsing technology for narrow gap capacitively coupled reactors
US6262523B1 (en) Large area atmospheric-pressure plasma jet
JP5214451B2 (en) Apparatus and method for removing fluorinated polymer from a substrate
JP3555470B2 (en) Etching method by atmospheric pressure high frequency plasma
JP2004165460A (en) Plasma processing apparatus
CN110537242A (en) Plasma reactor with electrode thread
CN105792495A (en) Apparatus of generating atmospheric-pressure uniform plasma brush and method thereof
JPH1012597A (en) Plasma-etching equipment and plasma etching method
KR100481492B1 (en) Apparatus and method for plasma formation of micro arc prevention type
JP2004353066A (en) Plasma source and plasma treatment system
JP2017204482A (en) Method and apparatus for providing anisotropic and mono-energetic neutral beam by non-ambipolar electron plasma
JP2004128257A (en) Plasma processing apparatus
TWI278953B (en) Apparatus for manufacturing semiconductor device
JP3175891B2 (en) Plasma generator and etching method using the same
KR100552388B1 (en) Atmospheric pressure plasma processing apparatus and its process
JPH07211654A (en) Plasma generating system and operating method thereof
KR100386526B1 (en) Atmospheric plasma apparatus using capillary electrode
KR100672230B1 (en) Device of cavity-cathode plasma
JP2004296868A (en) Plasma processing apparatus and processing method
JP2004305918A (en) Plasma treatment method and plasma treatment apparatus used therefor