JP2004127694A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
JP2004127694A
JP2004127694A JP2002289606A JP2002289606A JP2004127694A JP 2004127694 A JP2004127694 A JP 2004127694A JP 2002289606 A JP2002289606 A JP 2002289606A JP 2002289606 A JP2002289606 A JP 2002289606A JP 2004127694 A JP2004127694 A JP 2004127694A
Authority
JP
Japan
Prior art keywords
positive electrode
lini
electrode active
active material
composite oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002289606A
Other languages
Japanese (ja)
Inventor
Junichi Toriyama
鳥山 順一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP2002289606A priority Critical patent/JP2004127694A/en
Publication of JP2004127694A publication Critical patent/JP2004127694A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a nonaqueous electrolyte secondary battery excellent in both a cycle characteristic and thermal stability while utilizing a characteristic of a nickel-based composite oxide enabling high capacity. <P>SOLUTION: A substance prepared by coating each particle surface of the nickel-based composite oxide expressed by general formula LiNi<SB>1-z</SB>AL<SB>z</SB>O<SB>2</SB>(wherein 0.01≤z≤0.1) with a lithium-containing transition metal composite oxide expressed by general formula LiNi<SB>1-x-y</SB>Co<SB>x</SB>Mn<SB>y</SB>O<SB>2</SB>is used as a positive electrode active material of this battery. Thereby, while utilizing the characteristic of the nickel-based composite oxide that is high capacity, thermal stability and the cycle characteristic can be improved. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、非水電解質二次電池に関する。
【0002】
【従来の技術】
正極活物質及び負極活物質が互いにリチウムイオンを吸蔵・放出することによって電池として機能するリチウムイオン二次電池は、高電圧・高エネルギー密度を有し、携帯用機器等の用途に好適に用いることができる。このようなリチウムイオン二次電池用の正極活物質としては、層状複合酸化物であるコバルト酸リチウムが、4V級の高電圧を得ることができ、かつ高いエネルギー密度を有することから、既に広く実用化されている。
【0003】
しかし、その原料であるコバルトは、資源的にも乏しく高価であるため、今後も大幅に需要が拡大してゆく可能性を考えると、原料供給の面で不安があるとともに、さらに価格が高騰することもあり得る。そこで、最近ではコバルトに代わり得る正極原料が望まれている。
【0004】
ここで、ニッケル酸リチウム等のニッケル系複合酸化物は、コバルト酸リチウムと同様に層状構造を持つとともに、原料のニッケルがコバルトと比較して安価であること、単位重量当たりの充放電容量が大きいという利点を有することから、高容量化を実現できる電池材料として期待されている。
【0005】
ところが、ニッケル酸リチウムは、電解液との共存下において、比較的低温で熱分解が起こりやすいこと、および、充放電サイクルに伴う結晶構造の崩れが起こりやすいことから、ニッケル酸リチウムを用いた電池は、熱安定性およびサイクル特性に劣ることが知られている。
【0006】
そこで、高容量というニッケル酸リチウムの特性を生かしつつ、電池特性を改善するために、ニッケル酸リチウムの表面をコバルト酸リチウムまたはマンガン酸リチウムで被覆する技術が提案されている。このような技術は、例えば特許第3111791号公報に開示されている。
【0007】
【特許文献1】
特許第3111791号公報
【0008】
【発明が解決しようとする課題】
しかし、コバルト酸リチウムは結晶構造が安定しているため、サイクル特性の向上が期待できるものの、電解液共存下における熱安定性にやや劣る。一方、マンガン酸リチウムは、電解液共存下における熱安定性には優れるものの、結晶構造がやや不安定であるため、サイクル特性の向上はそれほど期待できない。このため、上記の技術によっても、熱安定性とサイクル特性とをバランスよく向上させることは困難であり、さらなる改善が求められていた。
【0009】
本発明は上記のような事情に鑑みてなされたものであり、その目的は、高容量化が可能というニッケル系複合酸化物の特性を生かしつつ、サイクル特性と熱安定性との双方に優れた非水電解質二次電池を提供することにある。
【0010】
【課題を解決するための手段】
本発明者は、リチウムニッケル複合酸化物の特性を生かしつつ、サイクル特性と熱安定性との双方に優れた非水電解質二次電池を提供すべく鋭意研究したところ、遷移金属としてニッケル、マンガンおよびコバルトを含むリチウム含有遷移金属複合酸化物が、熱安定性とサイクル特性とをバランスよく発揮し得る材料であることを見出した。一方、ニッケル酸リチウムにおけるニッケル原子の少量をアルミニウム等に置換したニッケル系複合酸化物は、結晶構造が安定化されることが一般に知られている。
【0011】
そこで、ニッケル系複合酸化物を芯材とし、その表面をこのリチウム含有遷移金属酸化物で被覆したところ、このものが、高容量化を実現でき、かつサイクル特性と熱安定性との双方に優れた正極活物質となり得ることを見出した。本発明は、かかる新規な知見に基づいてなされたものである。
【0012】
すなわち、本発明は、正極活物質を含有する正極活物質層を集電体上に形成させてなる正極を備えた非水電解質二次電池であって、前記正極活物質は、一般式LiNi1−zAl(但し0.01≦z≦0.1)で表されるニッケル系複合酸化物の粒子表面が、一般式LiNi1−x−yCoMnで表されるリチウム含有遷移金属複合酸化物により被覆されたものであることを特徴とする。
【0013】
本発明のニッケル系複合酸化物において、zの値は0.01以上0.1以下であることが好ましい。0.01未満であれば結晶構造の安定化が期待できず、また、0.1より多くなれば、高容量というニッケル酸リチウムの特性が減殺されてしまうため、好ましくない。
【0014】
本発明のリチウム含有遷移金属化合物(以下、「被覆材」と称することがある)において、コバルト原子は結晶構造を安定化させてサイクル特性の向上に、マンガン原子は熱安定性に、ニッケル原子は高容量化に、それぞれ寄与しているものと考えられる。ここで、これらの特性をバランスよく発揮させるためには、xの値は0.1以上0.3以下であり、かつ、yの値は0.2以上0.4以下であることが好ましい。
【0015】
本発明において、ニッケル系複合酸化物の粒子表面が被覆材で被覆された正極活物質を調製する方法としては、例えばニッケル系複合酸化物と、被覆材の原料とを湿式で混合してスラリーを調製し、これを乾燥後、焼成するという方法を適用できる。あるいは、ニッケル系複合酸化物の表面にCVD(化学蒸着)法、プラズマCVD法等により被覆材を蒸着する方法を適用することもできる。湿式混合により行う場合において、被覆材の原料としては、用いられる溶媒に溶解あるいは懸濁可能なものが好ましく、例えば被覆材を構成する金属元素の水溶性塩、酸化物ゾル等を使用できる。
被覆材中のニッケル、コバルト、マンガンの比率を調整する方法としては、原料の混合比を被覆在中の元素の組成比に合わせれば良い。
【0016】
【発明の作用、及び発明の効果】
本発明によれば、電池の正極活物質として、一般式LiNi1−zAl(但し0.01≦z≦0.1)で表されるニッケル系複合酸化物の粒子表面が、一般式LiNi1−x−yCoMnで表されるリチウム含有遷移金属複合酸化物により被覆されたものを使用する。これにより、高容量というニッケル系複合酸化物の特性を生かしつつ、熱安定性とサイクル特性とを改善することができる。
【0017】
【実施例】
以下、実施例を挙げて本発明をさらに詳細に説明する。
【0018】
<実施例1>
A.充放電サイクル特性
1.正極活物質の調製
1)ニッケル系複合酸化物の合成
炭酸リチウムの粉末と、炭酸ニッケルの粉末と、酸化アルミニウムとを、リチウムとニッケルとアルミニウムとの原子数の比が20:19:5となるように混合し、空気中、900℃で8時間焼成することにより、LiNi0.95Al0.05を得た。
【0019】
2)被覆材により被覆されたニッケル系複合酸化物の調製
95gのLiNi0.95Al0.05と、5gのLiNi0.7Co0.1Mn0.2とを混合し、水に懸濁してスラリーを調製した。このスラリーを乾燥した後、800℃で5時間焼成することにより、粒子表面がLiNi0.7Co0.1Mn0.2により被覆されたLiNi0.95Al0.05を得た。なお、被膜はニッケル酸リチウムに対して5重量%とした。
【0020】
2.リチウムイオン二次電池の作製
1)正極の作製
上記1.2)で調製された、被覆材により被覆されたLiNi0.95Al0.05を、正極活物質とした。この正極活物質に対して、結着剤としてポリフッ化ビニリデンを、導電剤としてアセチレンブラックを、重量比91:6:3の割合で混合し、正極合剤ペーストを調製した。このペーストの所定量を、厚さ20μmのアルミニウム箔からなる集電体の両面に均一に塗布し、乾燥後、プレスを行い、正極活物質層を備えた帯状の正極シートを作製した。
この正極シートの一端部に、厚さ100μmのアルミニウム片からなる正極リードを溶接した。
【0021】
2)負極の作製
負極活物質としてグラファイトを、このグラファイトに対して結着剤としてポリフッ化ビニリデンを重量比92:8の割合で混合し、負極合剤ペーストを調製した。このペーストを、厚さ14μmの銅箔からなる集電体の両面に均一に塗布し、上記正極シートと同様の方法により、帯状の負極シートを作製した。
この負極シートの一端部に、厚さ100μmのニッケル片からなる正極リードを溶接した。
【0022】
3)電解液の調製
エチレンカーボネート、およびジエチルカーボネートを、体積比1:1の割合で混合して、非水溶媒を調整した。この非水溶媒に、電解質としてリチウム塩であるLiPFを1.0mol/lの濃度で加え、非水電解液を調製した。
【0023】
4)電池の作製
正極シート、セパレータ、負極シート、セパレータを、正極リードおよび負極リードが溶接された側の端部がともに同じ側となるようにしつつ、この順に積層し、積層体とした。この積層体を、ポリエチレン製の長方形状の巻芯を中心として長円渦状に巻回し、発電素子を作製した。なお、セパレータとしては、ポリエチレン微多孔膜を使用した。
【0024】
この発電素子を、ラミネートフィルム製の袋状の電池ケース内に収納し、正極リードおよび負極リードを、電池ケースに固定した。そして、上記3)で調製した電解液を、正極シート、負極シートおよびセパレータが充分に湿潤し、かつ、電池ケース中に発電素子に保持されない電解液が存在しない量だけ電池ケース内に注入した。そして、電池ケースの開口を加熱圧着することで封口した。このようにして、公称容量600mAhのラミネート型非水電解質二次電池を作製した。
【0025】
2.充放電サイクル試験
上記の方法で作成した電池について、室温雰囲気下、0.5CAの定電流で4.2Vまで充電後、4.2Vの定電圧で、充電開始後3時間まで充電を行った。その後、この電池を0.5CAの定電流で2.75Vまで放電を行い、初期放電容量を測定した。これを1サイクルとして、300サイクル繰り返し、放電容量を測定した。
【0026】
B.熱安定性
1.電池の作製
上記A.と同様にして調製した正極活物質94重量%、アセチレンブラック2重量%、ポリフッ化ビニリデン4重量%を混合して正極合剤とし、これにN−メチル−2ピロリドンを添加して粘性体を調整した。この粘性体をアルミニウム箔に塗布して、150℃で真空乾燥させ、溶媒であるN−メチル−2ピロリドンを完全に揮発させた。そして、電極面積が3cmで電極多孔度が30%になるようにロールプレスした後、これを正極とし、対極および参照極にリチウム金属を用い、電解液に1MのLiPFを含むエチレンカーボネートとジエチルカーボネートとの混合溶液を用いて、試験電池を作製した。
【0027】
2.示差熱測定
上記1.で作製した試験電池を、0.5mA/cmの電流でLi0.3の状態になるまで充電したのち、正極合剤を取り出し、電解液を共存させたまま、示差走査熱量計(DSC)を用いて加熱し、そのときの放熱量および吸熱量を測定した。
【0028】
<実施例2>
正極活物質として、被覆材をLiNi0.6Co0.1Mn0.3としたものを使用した。
95gのLiNi0.95Al0.05と、5gのLiNi0.6Co0.1Mn0.3とを混合し、水に懸濁してスラリーを調製した。このスラリーを乾燥した後、800℃で5時間焼成することにより、正極活物質を調製した。
その他は、実施例1と同様にして電池を組み立て、試験を行った。
【0029】
<実施例3>
正極活物質として、被覆材をLiNi0.5Co0.1Mn0.4としたものを使用した。
95gのLiNi0.95Al0.05と、5gのLiNi0.5Co0.1Mn0.4とを混合し、水に懸濁してスラリーを調製した。このスラリーを乾燥した後、800℃で5時間焼成することにより、正極活物質を調製した。
その他は、実施例1と同様にして電池を組み立て、試験を行った。
【0030】
<実施例4>
正極活物質として、被覆材をLiNi0.6Co0.2Mn0.2としたものを使用した。
95gのLiNi0.95Al0.05と、5gのLiNi0.6Co0.2Mn0.2とを混合し、水に懸濁してスラリーを調製した。このスラリーを乾燥した後、800℃で5時間焼成することにより、正極活物質を調製した。
その他は、実施例1と同様にして電池を組み立て、試験を行った。
【0031】
<実施例5>
正極活物質として、被覆材をLiNi0.5Co0.2Mn0.3としたものを使用した。
95gのLiNi0.95Al0.05と、5gのLiNi0.5Co0.2Mn0.3とを混合し、水に懸濁してスラリーを調製した。このスラリーを乾燥した後、800℃で5時間焼成することにより、正極活物質を調製した。
その他は、実施例1と同様にして電池を組み立て、試験を行った。
【0032】
<実施例6>
正極活物質として、被覆材をLiNi0.4Co0.2Mn0.4としたものを使用した。
95gのLiNi0.95Al0.05と、5gのLiNi0.4Co0.2Mn0.4とを混合し、水に懸濁してスラリーを調製した。このスラリーを乾燥した後、800℃で5時間焼成することにより、正極活物質を調製した。
その他は、実施例1と同様にして電池を組み立て、試験を行った。
【0033】
<実施例7>
正極活物質として、被覆材をLiNi0.5Co0.3Mn0.2としたものを使用した。
95gのLiNi0.95Al0.05と、5gのLiNi0.5Co0.3Mn0.2とを混合し、水に懸濁してスラリーを調製した。このスラリーを乾燥した後、800℃で5時間焼成することにより、正極活物質を調製した。
その他は、実施例1と同様にして電池を組み立て、試験を行った。
【0034】
<実施例8>
正極活物質として、被覆材をLiNi0.4Co0.3Mn0.3としたものを使用した。
95gのLiNi0.95Al0.05と、5gのLiNi0.4Co0.3Mn0.3とを混合し、水に懸濁してスラリーを調製した。このスラリーを乾燥した後、800℃で5時間焼成することにより、正極活物質を調製した。
その他は、実施例1と同様にして電池を組み立て、試験を行った。
【0035】
<実施例9>
正極活物質として、被覆材をLiNi0.3Co0.3Mn0.4としたものを使用した。
95gのLiNi0.95Al0.05と、5gのLiNi0.3Co .3Mn0.4とを混合し、水に懸濁してスラリーを調製した。このスラリーを乾燥した後、800℃で5時間焼成することにより、正極活物質を調製した。
その他は、実施例1と同様にして電池を組み立て、試験を行った。
【0036】
<比較例1>
正極活物質として、被覆材をLiNi0.8Co0.1Mn0.1としたものを使用した。
95gのLiNi0.95Al0.05と、5gのLiNi0.8Co0.1Mn0.1とを混合し、水に懸濁してスラリーを調製した。このスラリーを乾燥した後、800℃で5時間焼成することにより、正極活物質を調製した。
その他は、実施例1と同様にして電池を組み立て、試験を行った。
【0037】
<比較例2>
正極活物質として、被覆材をLiNi0.8Mn0.2としたものを使用した。
95gのLiNi0.95Al0.05と、5gのLiNi0.8Mn0.2とを混合し、水に懸濁してスラリーを調製した。このスラリーを乾燥した後、800℃で5時間焼成することにより、正極活物質を調製した。
その他は、実施例1と同様にして電池を組み立て、試験を行った。
【0038】
<比較例3>
正極活物質として、被覆材をLiNi0.2Co0.4Mn0.4としたものを使用した。
95gのLiNi0.95Al0.05と、5gのLiNi0.2Co0.4Mn0.4とを混合し、水に懸濁してスラリーを調製した。このスラリーを乾燥した後、800℃で5時間焼成することにより、正極活物質を調製した。
その他は、実施例1と同様にして電池を組み立て、試験を行った。
【0039】
<比較例4>
正極活物質として、被覆材をLiNi0.2Co0.3Mn0.5としたものを使用した。
95gのLiNi0.95Al0.05と、5gのLiNi0.2Co0.3Mn0.5とを混合し、水に懸濁してスラリーを調製した。このスラリーを乾燥した後、800℃で5時間焼成することにより、正極活物質を調製した。
その他は、実施例1と同様にして電池を組み立て、試験を行った。
【0040】
<比較例5>
正極活物質として、被覆材をLiCoOとしたものを使用した。
95gのLiNi0.95Al0.05と、5gのLiCoOとを混合し、水に懸濁してスラリーを調製した。このスラリーを乾燥した後、800℃で5時間焼成することにより、正極活物質を調製した。
その他は、実施例1と同様にして電池を組み立て、試験を行った。
【0041】
<比較例6>
表面が被覆されていないLiNi0.95Al0.05を使用した他は、上記実施例1と同様にして電池を作製し、試験を行った。
【0042】
<結果と考察>
1.熱安定性
各実施例および比較例について、熱安定性試験の結果を表1に示した。
【0043】
【表1】

Figure 2004127694
【0044】
表1より、実施例1〜実施例9は、電解液共存下での発熱量が525mJ/g以下で熱的に安定であることがわかった。
一方、比較例1、比較例2、比較例5および比較例6においては、電解液共存下での発熱量が540mJ/g以上と高く、熱的に不安定であり、電池の正極活物質として使用することはきわめて難しい。また、比較例3および比較例4においては、電解液共存下での発熱量が350mJ/gと実施例1〜実施例9よりも安定であった。しかしながら、後述するように、比較例3および比較例4はサイクル維持率が非常に低く非水電解質電池の正極活物質として使用することは難しい。
【0045】
2.充放電サイクル試験
各実施例および比較例について、充放電サイクル試験を行った結果を表2に示した。ここで、サイクル維持率は、電池の1サイクル目の放電容量に対する300サイクル目の放電容量の比率で定義される。
【0046】
【表2】
Figure 2004127694
【0047】
表2より、実施例1〜実施例9は、サイクル維持率が85%以上で、良好であることがわかった。一方、比較例1および比較例2はサイクル維持率が85%以下となり、サイクル特性に劣った。また、比較例5および比較例6はサイクル維持率が88%以以上と良好であったが、前述のように電解液共存下での発熱量が540mJ/g以上と高いため、電池の正極活物質として使用することはきわめて難しい。一方、比較例3および比較例4においては、サイクル維持率が75%以下であり、サイクル特性がきわめて悪くなった。
以上の結果から、実施例1〜実施例9は、熱的にも安定でありかつサイクル特性も良好な活物質であるといえる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a non-aqueous electrolyte secondary battery.
[0002]
[Prior art]
A lithium ion secondary battery that functions as a battery by the positive and negative electrode active materials absorbing and releasing lithium ions from each other has a high voltage and a high energy density, and is preferably used for applications such as portable equipment. Can be. As such a positive electrode active material for a lithium ion secondary battery, lithium cobalt oxide, which is a layered composite oxide, can obtain a high voltage of 4V class and has a high energy density, so that it is already widely used. Has been
[0003]
However, its raw material, cobalt, is scarce in terms of resources and expensive, so considering the possibility that demand will continue to expand significantly, there is concern about the supply of raw materials and the price will rise further. It is possible. Therefore, recently, a cathode material that can replace cobalt has been desired.
[0004]
Here, a nickel-based composite oxide such as lithium nickel oxide has a layered structure similarly to lithium cobalt oxide, and nickel as a raw material is inexpensive as compared with cobalt and has a large charge / discharge capacity per unit weight. Therefore, it is expected as a battery material capable of realizing high capacity.
[0005]
However, lithium nickelate is liable to undergo thermal decomposition at a relatively low temperature in the coexistence with an electrolytic solution, and the crystal structure is likely to be destroyed during a charge / discharge cycle. Is known to have poor thermal stability and cycle characteristics.
[0006]
Therefore, in order to improve the battery characteristics while taking advantage of the high capacity of lithium nickelate, a technique of coating the surface of lithium nickelate with lithium cobaltate or lithium manganate has been proposed. Such a technique is disclosed in, for example, Japanese Patent No. 3111791.
[0007]
[Patent Document 1]
Japanese Patent No. 3111791
[Problems to be solved by the invention]
However, although lithium cobalt oxide has a stable crystal structure, although cycle characteristics can be expected to be improved, the thermal stability in the presence of an electrolyte is slightly inferior. On the other hand, although lithium manganate has excellent thermal stability in the presence of an electrolytic solution, its crystal structure is somewhat unstable, so that improvement in cycle characteristics cannot be expected so much. For this reason, it is difficult to improve the thermal stability and the cycle characteristics in a well-balanced manner even by the above-mentioned technology, and further improvement has been demanded.
[0009]
The present invention has been made in view of the above-described circumstances, and an object of the present invention is to make use of the characteristics of a nickel-based composite oxide capable of increasing capacity, and to have excellent both cycle characteristics and thermal stability. An object of the present invention is to provide a non-aqueous electrolyte secondary battery.
[0010]
[Means for Solving the Problems]
The present inventors have made intensive studies to provide a non-aqueous electrolyte secondary battery excellent in both cycle characteristics and thermal stability while making use of the characteristics of lithium nickel composite oxide, and as a transition metal, nickel, manganese and The present inventors have found that a lithium-containing transition metal composite oxide containing cobalt is a material that can exhibit a good balance between thermal stability and cycle characteristics. On the other hand, it is generally known that a nickel-based composite oxide in which a small amount of nickel atoms in lithium nickelate is replaced with aluminum or the like has a stabilized crystal structure.
[0011]
Therefore, when a nickel-based composite oxide is used as a core material and its surface is coated with this lithium-containing transition metal oxide, this material can realize a high capacity and is excellent in both cycle characteristics and thermal stability. And found that it could be a positive electrode active material. The present invention has been made based on such new findings.
[0012]
That is, the present invention relates to a nonaqueous electrolyte secondary battery including a positive electrode obtained by forming a positive electrode active material layer containing a positive electrode active material on a current collector, wherein the positive electrode active material has a general formula LiNi 1 -z Al z O 2 (where 0.01 ≦ z ≦ 0.1) the particle surface of the nickel-based composite oxide represented by the the general formula LiNi 1-x-y Co x Mn y O 2 It is characterized by being coated with a lithium-containing transition metal composite oxide.
[0013]
In the nickel-based composite oxide of the present invention, the value of z is preferably 0.01 or more and 0.1 or less. If it is less than 0.01, stabilization of the crystal structure cannot be expected, and if it is more than 0.1, the high capacity of lithium nickelate is undesirably reduced.
[0014]
In the lithium-containing transition metal compound of the present invention (hereinafter sometimes referred to as “coating material”), the cobalt atom stabilizes the crystal structure to improve the cycle characteristics, the manganese atom is thermally stable, and the nickel atom is It is considered that each contributes to higher capacity. Here, in order to exhibit these characteristics in a well-balanced manner, the value of x is preferably 0.1 or more and 0.3 or less, and the value of y is preferably 0.2 or more and 0.4 or less.
[0015]
In the present invention, as a method of preparing a positive electrode active material in which the surface of the particles of the nickel-based composite oxide is coated with the coating material, for example, a nickel-based composite oxide and a raw material of the coating material are wet-mixed to form a slurry. It is possible to apply a method of preparing, drying, and baking it. Alternatively, a method of depositing a coating material on the surface of the nickel-based composite oxide by a CVD (chemical vapor deposition) method, a plasma CVD method, or the like can be applied. In the case of performing wet mixing, as a raw material of the coating material, a material which can be dissolved or suspended in a solvent to be used is preferable.
As a method of adjusting the ratio of nickel, cobalt, and manganese in the coating material, the mixing ratio of the raw materials may be adjusted to the composition ratio of the elements in the coating.
[0016]
Effects of the Invention and Effects of the Invention
According to the present invention, as a positive electrode active material of a battery, the particle surface of a nickel-based composite oxide represented by the general formula LiNi 1-z Al z O 2 (where 0.01 ≦ z ≦ 0.1) is generally used. to use those coated with lithium-containing transition metal composite oxide represented by the formula LiNi 1-x-y Co x Mn y O 2. This makes it possible to improve the thermal stability and cycle characteristics while taking advantage of the high capacity of the nickel-based composite oxide.
[0017]
【Example】
Hereinafter, the present invention will be described in more detail with reference to examples.
[0018]
<Example 1>
A. Charge / discharge cycle characteristics Preparation of Positive Electrode Active Material 1) Synthesis of Nickel-Based Composite Oxide The powder of lithium carbonate, the powder of nickel carbonate, and the aluminum oxide have a ratio of atoms of lithium, nickel, and aluminum of 20: 19: 5. And calcination in air at 900 ° C. for 8 hours to obtain LiNi 0.95 Al 0.05 O 2 .
[0019]
2) Preparation of nickel-based composite oxide coated with coating material 95 g of LiNi 0.95 Al 0.05 O 2 and 5 g of LiNi 0.7 Co 0.1 Mn 0.2 O 2 were mixed, A slurry was prepared by suspending in water. After drying this slurry, it is baked at 800 ° C. for 5 hours to obtain LiNi 0.95 Al 0.05 O 2 whose particle surface is coated with LiNi 0.7 Co 0.1 Mn 0.2 O 2. Was. The coating was 5% by weight with respect to lithium nickelate.
[0020]
2. Preparation of Lithium Ion Secondary Battery 1) Preparation of Positive Electrode LiNi 0.95 Al 0.05 O 2 coated with a coating material prepared in 1.2) above was used as a positive electrode active material. This positive electrode active material was mixed with polyvinylidene fluoride as a binder and acetylene black as a conductive agent at a weight ratio of 91: 6: 3 to prepare a positive electrode mixture paste. A predetermined amount of this paste was uniformly applied to both surfaces of a current collector made of an aluminum foil having a thickness of 20 μm, dried, and pressed to prepare a belt-shaped positive electrode sheet provided with a positive electrode active material layer.
A positive electrode lead made of an aluminum piece having a thickness of 100 μm was welded to one end of the positive electrode sheet.
[0021]
2) Preparation of Negative Electrode A negative electrode mixture paste was prepared by mixing graphite as a negative electrode active material and polyvinylidene fluoride as a binder in a ratio of 92: 8 by weight to the graphite. This paste was uniformly applied to both sides of a current collector made of a copper foil having a thickness of 14 μm, and a strip-shaped negative electrode sheet was produced in the same manner as in the positive electrode sheet.
A positive electrode lead made of a nickel piece having a thickness of 100 μm was welded to one end of the negative electrode sheet.
[0022]
3) Preparation of electrolytic solution Ethylene carbonate and diethyl carbonate were mixed at a volume ratio of 1: 1 to prepare a non-aqueous solvent. To this non-aqueous solvent, LiPF 6 which is a lithium salt as an electrolyte was added at a concentration of 1.0 mol / l to prepare a non-aqueous electrolyte.
[0023]
4) Production of Battery The positive electrode sheet, the separator, the negative electrode sheet, and the separator were laminated in this order while the ends to which the positive electrode lead and the negative electrode lead were welded were on the same side to obtain a laminate. The laminate was wound in an elliptical spiral shape around a rectangular core made of polyethylene to produce a power generating element. In addition, a polyethylene microporous membrane was used as a separator.
[0024]
This power generating element was housed in a bag-shaped battery case made of a laminated film, and the positive electrode lead and the negative electrode lead were fixed to the battery case. Then, the electrolytic solution prepared in the above 3) was injected into the battery case in such an amount that the positive electrode sheet, the negative electrode sheet and the separator were sufficiently wetted and the electrolytic solution not held by the power generation element was not present in the battery case. Then, the opening of the battery case was sealed by heating and pressing. Thus, a laminated nonaqueous electrolyte secondary battery having a nominal capacity of 600 mAh was produced.
[0025]
2. Charge / discharge cycle test The battery prepared by the above method was charged at a constant current of 0.5 CA to 4.2 V in a room temperature atmosphere, and then charged at a constant voltage of 4.2 V for 3 hours after the start of charging. Thereafter, the battery was discharged at a constant current of 0.5 CA to 2.75 V, and the initial discharge capacity was measured. One cycle was repeated for 300 cycles, and the discharge capacity was measured.
[0026]
B. Thermal stability Preparation of Battery A positive electrode mixture was prepared by mixing 94% by weight of the positive electrode active material, 2% by weight of acetylene black, and 4% by weight of polyvinylidene fluoride prepared in the same manner as described above, and N-methyl-2-pyrrolidone was added thereto to adjust the viscous material. did. This viscous material was applied to an aluminum foil and dried at 150 ° C. under vacuum to completely evaporate the solvent N-methyl-2-pyrrolidone. Then, after roll-pressing so that the electrode area is 3 cm 2 and the electrode porosity is 30%, this is used as a positive electrode, lithium metal is used as a counter electrode and a reference electrode, and ethylene carbonate containing 1 M LiPF 6 is used as an electrolyte. A test battery was prepared using a mixed solution with diethyl carbonate.
[0027]
2. Differential heat measurement After charging the test battery prepared in the above at a current of 0.5 mA / cm 2 until the state of Li 0.3 was reached, the positive electrode mixture was taken out, and a differential scanning calorimeter (DSC) was used in the presence of the electrolyte. And the amount of heat released and the amount of heat absorbed at that time were measured.
[0028]
<Example 2>
As the positive electrode active material, a material having a coating material of LiNi 0.6 Co 0.1 Mn 0.3 O 2 was used.
95 g of LiNi 0.95 Al 0.05 O 2 and 5 g of LiNi 0.6 Co 0.1 Mn 0.3 O 2 were mixed and suspended in water to prepare a slurry. After drying this slurry, it was baked at 800 ° C. for 5 hours to prepare a positive electrode active material.
Otherwise, the battery was assembled and tested in the same manner as in Example 1.
[0029]
<Example 3>
As the positive electrode active material, one having a coating material of LiNi 0.5 Co 0.1 Mn 0.4 O 2 was used.
95 g of LiNi 0.95 Al 0.05 O 2 and 5 g of LiNi 0.5 Co 0.1 Mn 0.4 O 2 were mixed and suspended in water to prepare a slurry. After drying this slurry, it was baked at 800 ° C. for 5 hours to prepare a positive electrode active material.
Otherwise, the battery was assembled and tested in the same manner as in Example 1.
[0030]
<Example 4>
As the positive electrode active material, one having a coating material of LiNi 0.6 Co 0.2 Mn 0.2 O 2 was used.
95 g of LiNi 0.95 Al 0.05 O 2 and 5 g of LiNi 0.6 Co 0.2 Mn 0.2 O 2 were mixed and suspended in water to prepare a slurry. After drying this slurry, it was baked at 800 ° C. for 5 hours to prepare a positive electrode active material.
Otherwise, the battery was assembled and tested in the same manner as in Example 1.
[0031]
<Example 5>
As the positive electrode active material, one having a coating material of LiNi 0.5 Co 0.2 Mn 0.3 O 2 was used.
95 g of LiNi 0.95 Al 0.05 O 2 and 5 g of LiNi 0.5 Co 0.2 Mn 0.3 O 2 were mixed and suspended in water to prepare a slurry. After drying this slurry, it was baked at 800 ° C. for 5 hours to prepare a positive electrode active material.
Otherwise, the battery was assembled and tested in the same manner as in Example 1.
[0032]
<Example 6>
As the positive electrode active material, one having a coating material of LiNi 0.4 Co 0.2 Mn 0.4 O 2 was used.
95 g of LiNi 0.95 Al 0.05 O 2 and 5 g of LiNi 0.4 Co 0.2 Mn 0.4 O 2 were mixed and suspended in water to prepare a slurry. After drying this slurry, it was baked at 800 ° C. for 5 hours to prepare a positive electrode active material.
Otherwise, the battery was assembled and tested in the same manner as in Example 1.
[0033]
<Example 7>
As the positive electrode active material, one having a coating material of LiNi 0.5 Co 0.3 Mn 0.2 O 2 was used.
95 g of LiNi 0.95 Al 0.05 O 2 and 5 g of LiNi 0.5 Co 0.3 Mn 0.2 O 2 were mixed and suspended in water to prepare a slurry. After drying this slurry, it was baked at 800 ° C. for 5 hours to prepare a positive electrode active material.
Otherwise, the battery was assembled and tested in the same manner as in Example 1.
[0034]
Example 8
As the positive electrode active material, one having a coating material of LiNi 0.4 Co 0.3 Mn 0.3 O 2 was used.
95 g of LiNi 0.95 Al 0.05 O 2 and 5 g of LiNi 0.4 Co 0.3 Mn 0.3 O 2 were mixed and suspended in water to prepare a slurry. After drying this slurry, it was baked at 800 ° C. for 5 hours to prepare a positive electrode active material.
Otherwise, the battery was assembled and tested in the same manner as in Example 1.
[0035]
<Example 9>
As the positive electrode active material, a material having a coating material of LiNi 0.3 Co 0.3 Mn 0.4 O 2 was used.
95 g of LiNi 0.95 Al 0.05 O 2 and 5 g of LiNi 0.3 Co 0 . 3 Mn 0.4 O 2 was mixed and suspended in water to prepare a slurry. After drying this slurry, it was baked at 800 ° C. for 5 hours to prepare a positive electrode active material.
Otherwise, the battery was assembled and tested in the same manner as in Example 1.
[0036]
<Comparative Example 1>
As the positive electrode active material, one having a coating material of LiNi 0.8 Co 0.1 Mn 0.1 O 2 was used.
95 g of LiNi 0.95 Al 0.05 O 2 and 5 g of LiNi 0.8 Co 0.1 Mn 0.1 O 2 were mixed and suspended in water to prepare a slurry. After drying this slurry, it was baked at 800 ° C. for 5 hours to prepare a positive electrode active material.
Otherwise, the battery was assembled and tested in the same manner as in Example 1.
[0037]
<Comparative Example 2>
As the positive electrode active material, one having a coating material of LiNi 0.8 Mn 0.2 O 2 was used.
95 g of LiNi 0.95 Al 0.05 O 2 and 5 g of LiNi 0.8 Mn 0.2 O 2 were mixed and suspended in water to prepare a slurry. After drying this slurry, it was baked at 800 ° C. for 5 hours to prepare a positive electrode active material.
Otherwise, the battery was assembled and tested in the same manner as in Example 1.
[0038]
<Comparative Example 3>
As the positive electrode active material, one having a coating material of LiNi 0.2 Co 0.4 Mn 0.4 O 2 was used.
95 g of LiNi 0.95 Al 0.05 O 2 and 5 g of LiNi 0.2 Co 0.4 Mn 0.4 O 2 were mixed and suspended in water to prepare a slurry. After drying this slurry, it was baked at 800 ° C. for 5 hours to prepare a positive electrode active material.
Otherwise, the battery was assembled and tested in the same manner as in Example 1.
[0039]
<Comparative Example 4>
As the positive electrode active material, a material having a coating material of LiNi 0.2 Co 0.3 Mn 0.5 O 2 was used.
95 g of LiNi 0.95 Al 0.05 O 2 and 5 g of LiNi 0.2 Co 0.3 Mn 0.5 O 2 were mixed and suspended in water to prepare a slurry. After drying this slurry, it was baked at 800 ° C. for 5 hours to prepare a positive electrode active material.
Otherwise, the battery was assembled and tested in the same manner as in Example 1.
[0040]
<Comparative Example 5>
As the positive electrode active material, one having a coating material of LiCoO 2 was used.
95 g of LiNi 0.95 Al 0.05 O 2 and 5 g of LiCoO 2 were mixed and suspended in water to prepare a slurry. After drying this slurry, it was baked at 800 ° C. for 5 hours to prepare a positive electrode active material.
Otherwise, the battery was assembled and tested in the same manner as in Example 1.
[0041]
<Comparative Example 6>
A battery was prepared and tested in the same manner as in Example 1 except that LiNi 0.95 Al 0.05 O 2 having an uncoated surface was used.
[0042]
<Results and Discussion>
1. Table 1 shows the results of the thermal stability test for each example and comparative example.
[0043]
[Table 1]
Figure 2004127694
[0044]
From Table 1, it was found that Examples 1 to 9 were thermally stable with a calorific value of 525 mJ / g or less in the presence of the electrolytic solution.
On the other hand, in Comparative Example 1, Comparative Example 2, Comparative Example 5, and Comparative Example 6, the calorific value in the coexistence of the electrolytic solution was as high as 540 mJ / g or more, which was thermally unstable and used as a positive electrode active material of a battery. Extremely difficult to use. In Comparative Examples 3 and 4, the calorific value in the presence of the electrolytic solution was 350 mJ / g, which was more stable than Examples 1 to 9. However, as will be described later, Comparative Examples 3 and 4 have extremely low cycle maintenance rates, and are difficult to use as positive electrode active materials for non-aqueous electrolyte batteries.
[0045]
2. Charge / discharge cycle test Table 2 shows the results of the charge / discharge cycle test performed on each of the examples and comparative examples. Here, the cycle retention rate is defined as a ratio of the discharge capacity at the 300th cycle to the discharge capacity at the first cycle of the battery.
[0046]
[Table 2]
Figure 2004127694
[0047]
From Table 2, it was found that Examples 1 to 9 had good cycle maintenance rates of 85% or more. On the other hand, Comparative Example 1 and Comparative Example 2 had a cycle retention of 85% or less, and were inferior in cycle characteristics. In Comparative Examples 5 and 6, the cycle retention was as good as 88% or more, but as described above, the calorific value in the presence of the electrolyte was as high as 540 mJ / g or more. Very difficult to use as a substance. On the other hand, in Comparative Examples 3 and 4, the cycle maintenance ratio was 75% or less, and the cycle characteristics were extremely poor.
From the above results, it can be said that Examples 1 to 9 are active materials that are thermally stable and have good cycle characteristics.

Claims (2)

正極活物質を含有する正極活物質層を集電体上に形成させてなる正極を備えた非水電解質二次電池であって、
前記正極活物質は、一般式LiNi1−zAl(但し0.01≦z≦0.1)で表されるニッケル系複合酸化物の粒子表面が、一般式LiNi1−x−yCoMnで表されるリチウム含有遷移金属複合酸化物により被覆されたものであることを特徴とする非水電解質二次電池。
A non-aqueous electrolyte secondary battery including a positive electrode formed by forming a positive electrode active material layer containing a positive electrode active material on a current collector,
The positive electrode active material, the particle surface of the general formula LiNi 1-z Al z O 2 ( where 0.01 ≦ z ≦ 0.1) nickel-based composite oxide represented by the general formula LiNi 1-x-y Co x Mn y nonaqueous electrolyte secondary batteries, characterized by the lithium-containing transition metal composite oxide represented by O 2 in which coated.
前記リチウム含有遷移金属複合酸化物において、xの値が0.1以上0.3以下であり、かつ、yの値が0.2以上0.4以下であることを特徴とする請求項1に記載の非水電解質二次電池。2. The lithium-containing transition metal composite oxide according to claim 1, wherein the value of x is 0.1 or more and 0.3 or less, and the value of y is 0.2 or more and 0.4 or less. The non-aqueous electrolyte secondary battery according to the above.
JP2002289606A 2002-10-02 2002-10-02 Nonaqueous electrolyte secondary battery Pending JP2004127694A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002289606A JP2004127694A (en) 2002-10-02 2002-10-02 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002289606A JP2004127694A (en) 2002-10-02 2002-10-02 Nonaqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JP2004127694A true JP2004127694A (en) 2004-04-22

Family

ID=32281725

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002289606A Pending JP2004127694A (en) 2002-10-02 2002-10-02 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP2004127694A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006101138A1 (en) * 2005-03-23 2006-09-28 Matsushita Electric Industrial Co., Ltd. Lithium ion secondary battery and method for manufacturing same
JP2006302880A (en) * 2005-03-23 2006-11-02 Matsushita Electric Ind Co Ltd Lithium ion secondary battery and its manufacturing method
JP2007273441A (en) * 2006-03-06 2007-10-18 Sony Corp Positive electrode active material, its manufacturing method, and nonaqueous electrolyte secondary battery
JP2007317585A (en) * 2006-05-29 2007-12-06 Hitachi Vehicle Energy Ltd Positive electrode active material for lithium secondary battery, and the lithium secondary cell using the same
JP2008521196A (en) * 2004-12-31 2008-06-19 アイユーシーエフ−エイチワイユー(インダストリー−ユニバーシティー コーオペレイション ファウンデーション ハンヤン ユニバーシティー) Positive electrode active material for lithium secondary battery having double layer structure, method for producing the same, and lithium secondary battery using the same
WO2008123011A1 (en) 2007-03-05 2008-10-16 Toda Kogyo Corporation Li-Ni COMPLEX OXIDE PARTICLE POWDER FOR NONAQUEOUS ELECTROLYTE SECONDARY BATTERY, METHOD FOR PRODUCING THE SAME, AND NONAQUEOUS ELECTROLYTE SECONDARY BATTERY
JP2009193686A (en) * 2008-02-12 2009-08-27 Sumitomo Metal Mining Co Ltd Positive electrode active material for nonaqueous electrolyte secondary battery and method of manufacturing the same
US7615313B2 (en) * 2003-06-24 2009-11-10 Canon Kabushiki Kaisha Electrode material for lithium secondary battery including particles having central portion and surface portion, electrode structure and lithium secondary battery
JP2009266433A (en) * 2008-04-22 2009-11-12 Sumitomo Metal Mining Co Ltd Positive electrode active substance for non-aqueous electrolyte secondary battery, its manufacturing method, and non-aqueous electrolyte secondary battery using the same
WO2010029745A1 (en) * 2008-09-10 2010-03-18 戸田工業株式会社 Li-Ni COMPOSITE OXIDE PARTICLE POWDER FOR NON-AQUEOUS ELECTROLYTE SECONDARY BATTERY AND METHOD FOR PRODUCTION THEREOF, AND NON-AQUEOUS ELECTROLYTE SECONDARY BATTERY
WO2011040383A1 (en) 2009-09-30 2011-04-07 戸田工業株式会社 Positive electrode active material powder, method for producing same, and nonaqueous electrolyte secondary battery
US7981544B2 (en) 2007-02-13 2011-07-19 Sanyo Electric Co., Ltd. Positive electrode for nonaqueous electrolyte secondary battery, and production method thereof
WO2012133113A1 (en) 2011-03-30 2012-10-04 戸田工業株式会社 Positive electrode active material granular powder and method for producing same, and nonaqueous electrolyte secondary battery
US8679670B2 (en) 2007-06-22 2014-03-25 Boston-Power, Inc. CID retention device for Li-ion cell
US8758941B2 (en) 2009-02-27 2014-06-24 Hitachi, Ltd. Positive electrode material for lithium ion secondary battery and lithium ion secondary battery using the same
WO2015151606A1 (en) * 2014-03-31 2015-10-08 日立金属株式会社 Positive electrode active material for lithium ion secondary batteries, method for producing same and lithium ion secondary battery
JP2020087619A (en) * 2018-11-21 2020-06-04 本田技研工業株式会社 Positive electrode active material particles for lithium-ion secondary battery and lithium-ion secondary battery including the same

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7615313B2 (en) * 2003-06-24 2009-11-10 Canon Kabushiki Kaisha Electrode material for lithium secondary battery including particles having central portion and surface portion, electrode structure and lithium secondary battery
US7640150B2 (en) 2003-06-24 2009-12-29 Canon Kabushiki Kaisha Method of judging the propriety of a positive electrode active material
JP2008521196A (en) * 2004-12-31 2008-06-19 アイユーシーエフ−エイチワイユー(インダストリー−ユニバーシティー コーオペレイション ファウンデーション ハンヤン ユニバーシティー) Positive electrode active material for lithium secondary battery having double layer structure, method for producing the same, and lithium secondary battery using the same
US10454106B2 (en) 2004-12-31 2019-10-22 Iucf-Hyu (Industry-University Cooperation Foundation Hanyang University) Double-layer cathode active materials for lithium secondary batteries, method for preparing the active materials, and lithium secondary batteries using the active materials
WO2006101138A1 (en) * 2005-03-23 2006-09-28 Matsushita Electric Industrial Co., Ltd. Lithium ion secondary battery and method for manufacturing same
KR100911798B1 (en) 2005-03-23 2009-08-12 파나소닉 주식회사 Lithium ion secondary battery and manufacturing method therefor
JP2006302880A (en) * 2005-03-23 2006-11-02 Matsushita Electric Ind Co Ltd Lithium ion secondary battery and its manufacturing method
US7879494B2 (en) 2005-03-23 2011-02-01 Panasonic Corporation Lithium ion secondary battery and manufacturing method therefor
JP2007273441A (en) * 2006-03-06 2007-10-18 Sony Corp Positive electrode active material, its manufacturing method, and nonaqueous electrolyte secondary battery
JP2007317585A (en) * 2006-05-29 2007-12-06 Hitachi Vehicle Energy Ltd Positive electrode active material for lithium secondary battery, and the lithium secondary cell using the same
US8043387B2 (en) 2007-02-13 2011-10-25 Sanyo Electric Co., Ltd. Positive electrode for nonaqueous electrolyte secondary battery, and production method thereof
US7981544B2 (en) 2007-02-13 2011-07-19 Sanyo Electric Co., Ltd. Positive electrode for nonaqueous electrolyte secondary battery, and production method thereof
WO2008123011A1 (en) 2007-03-05 2008-10-16 Toda Kogyo Corporation Li-Ni COMPLEX OXIDE PARTICLE POWDER FOR NONAQUEOUS ELECTROLYTE SECONDARY BATTERY, METHOD FOR PRODUCING THE SAME, AND NONAQUEOUS ELECTROLYTE SECONDARY BATTERY
US8679670B2 (en) 2007-06-22 2014-03-25 Boston-Power, Inc. CID retention device for Li-ion cell
JP2009193686A (en) * 2008-02-12 2009-08-27 Sumitomo Metal Mining Co Ltd Positive electrode active material for nonaqueous electrolyte secondary battery and method of manufacturing the same
JP2009266433A (en) * 2008-04-22 2009-11-12 Sumitomo Metal Mining Co Ltd Positive electrode active substance for non-aqueous electrolyte secondary battery, its manufacturing method, and non-aqueous electrolyte secondary battery using the same
JP2010092848A (en) * 2008-09-10 2010-04-22 Toda Kogyo Corp Li-Ni COMPOSITE OXIDE PARTICLE POWDER FOR NONAQUEOUS ELECTROLYTE SECONDARY BATTERY, ITS MANUFACTURING METHOD, AND NONAQUEOUS ELECTROLYTE SECONDARY BATTERY
WO2010029745A1 (en) * 2008-09-10 2010-03-18 戸田工業株式会社 Li-Ni COMPOSITE OXIDE PARTICLE POWDER FOR NON-AQUEOUS ELECTROLYTE SECONDARY BATTERY AND METHOD FOR PRODUCTION THEREOF, AND NON-AQUEOUS ELECTROLYTE SECONDARY BATTERY
US8758941B2 (en) 2009-02-27 2014-06-24 Hitachi, Ltd. Positive electrode material for lithium ion secondary battery and lithium ion secondary battery using the same
WO2011040383A1 (en) 2009-09-30 2011-04-07 戸田工業株式会社 Positive electrode active material powder, method for producing same, and nonaqueous electrolyte secondary battery
WO2012133113A1 (en) 2011-03-30 2012-10-04 戸田工業株式会社 Positive electrode active material granular powder and method for producing same, and nonaqueous electrolyte secondary battery
KR20140010405A (en) 2011-03-30 2014-01-24 도다 고교 가부시끼가이샤 Positive electrode active material granular powder and method for producing same, and nonaqueous electrolyte secondary battery
WO2015151606A1 (en) * 2014-03-31 2015-10-08 日立金属株式会社 Positive electrode active material for lithium ion secondary batteries, method for producing same and lithium ion secondary battery
JPWO2015151606A1 (en) * 2014-03-31 2017-04-13 日立金属株式会社 Positive electrode active material for lithium ion secondary battery, method for producing the same, and lithium ion secondary battery
JP2020087619A (en) * 2018-11-21 2020-06-04 本田技研工業株式会社 Positive electrode active material particles for lithium-ion secondary battery and lithium-ion secondary battery including the same
JP7079716B2 (en) 2018-11-21 2022-06-02 本田技研工業株式会社 Positive positive active material particles for lithium ion secondary batteries and lithium ion secondary batteries equipped with them

Similar Documents

Publication Publication Date Title
JP6353329B2 (en) Anode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP4985524B2 (en) Lithium secondary battery
JP2004127694A (en) Nonaqueous electrolyte secondary battery
JP2013222612A (en) Nonaqueous secondary battery
JP7414702B2 (en) Cathode active material for lithium secondary batteries
JP5709010B2 (en) Non-aqueous electrolyte secondary battery
TWI663128B (en) Electrode material for secondary battery and secondary battery
JP6448462B2 (en) Anode active material for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and method for producing anode active material for nonaqueous electrolyte secondary battery
JP2003173775A (en) Nonaqueous electrolyte secondary battery
JP2007273259A (en) Method of manufacturing nonaqueous electrolyte secondary battery
JP5279567B2 (en) Nonaqueous electrolyte secondary battery
JP6477152B2 (en) Positive electrode material, positive electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
KR20170076348A (en) Positive active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same
JP5863631B2 (en) Method for producing non-aqueous electrolyte secondary battery
JP4678457B2 (en) Lithium transition metal composite oxide for positive electrode active material of lithium secondary battery and lithium secondary battery using the same
JP6931090B2 (en) Anode composition and method of prelithiumization of anode
JP2004127695A (en) Nonaqueous electrolyte secondary battery
JP4895335B2 (en) Non-aqueous battery
JP2009104974A (en) Cathode material for nonaqueous secondary battery, its manufacturing method, and nonaqueous secondary battery using it
WO2012090728A1 (en) Non-aqueous electrolyte secondary cell
JP2003151559A (en) Organic electrolyte battery
JP4158212B2 (en) Method for producing lithium secondary battery and method for producing positive electrode active material for lithium secondary battery
JP2005071712A (en) Manufacturing method of positive electrode
JP2006344395A (en) Cathode for lithium secondary battery and utilization and manufacturing method of the same
JP2000208167A (en) Nonaqueous electrolyte secondary battery