JP2004127684A - Aerial insulated wire - Google Patents

Aerial insulated wire Download PDF

Info

Publication number
JP2004127684A
JP2004127684A JP2002289330A JP2002289330A JP2004127684A JP 2004127684 A JP2004127684 A JP 2004127684A JP 2002289330 A JP2002289330 A JP 2002289330A JP 2002289330 A JP2002289330 A JP 2002289330A JP 2004127684 A JP2004127684 A JP 2004127684A
Authority
JP
Japan
Prior art keywords
hard copper
copper wire
wire
conductor
hollow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002289330A
Other languages
Japanese (ja)
Inventor
Tadayuki Uematsu
植松 忠之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP2002289330A priority Critical patent/JP2004127684A/en
Publication of JP2004127684A publication Critical patent/JP2004127684A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an aerial insulated wire including a detecting optical fiber allowing dismantlement/repair or reinstallation of the aerial insulated wire before occurrence of a serious accident by predicting occurrence of a stress corrosion fracture so as to prevent a contingency such as disconnection of a conductor even if the stress corrosion fracture occurs. <P>SOLUTION: This aerial insulated wire has: the conductor composed by intertwining a plurality of hard copper wires with one another; at least one hollow hard copper wire intertwined with the outer layer of the conductor and having a cross section smaller than those of the hard copper wires; and a coating formed of an insulating plastic and formed on the outside of the conductor and the hollow hard copper wire. The aerial insulated wire is characterized by disposing the optical fiber in the hollow part of the hollow hard copper wire. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、硬銅線を複数本撚り合わせて構成した導体に絶縁プラスチック製の被覆を施してなる架空絶縁電線に関するものであって、より詳細には前記硬銅線の応力腐食割れを事前に検知できる架空絶縁電線に関するものである。
【0002】
【従来の技術】
従来、一般的に使用されている架空絶縁電線は、硬銅線を複数本撚り合わせてなる導体の外側に、ポリエチレン等からなるプラスチック絶縁被覆を設けた構造になっている。
このような架空絶縁電線を長期間使用していると、電線の接続部等からこの絶縁電線内部に、例えば雨水が浸入し、導体を構成している硬銅線に応力腐食割れが発生し、硬銅線の断線事故が発生することがある。
そこで従来から、例えば雨水が絶縁電線内に浸入しないように導体間隙に水密コンパウンドを充填して水密構造にする(特許文献1)、といったものが提案されている。
【0003】
【特許文献1】実開昭52−53982号
【0004】
【発明が解決しようとする課題】
しかしながら、絶縁電線に水密コンパウンドを充填した場合は、該絶縁電線の接続作業や解体作業を行う際、水密コンパウンドを除去しなければならないが、この水密コンパウンドが周囲に飛び散り、作業環境を汚す、あるいは手にべたつく等して作業性を劣化させる、という問題がある。
これまでのところ硬銅線の応力腐食割れを防止し、かつ絶縁電線の接続作業や解体作業時の問題点、すなわち環境劣化問題や作業性劣化の問題を解決したものは得られていないのが現状である。
【0005】
本発明は前記現状に鑑みてなされたもので、その目的とするところは、硬銅線の応力腐食割れは直接的には防止できないが、次善の策として、もし硬銅線に応力腐食割れが発生したとしても、断線といった不測の事態が起きないように、事前に硬銅線の応力腐食割れの発生を予知し、大きな事故が起こる前に架空絶縁電線の解体修理あるいは張り替えのできる検知用光ファイバー入りの架空絶縁電線を提供することにある。
【0006】
【課題を解決するための手段】
そこで前記目的を達成すべく請求項1記載の本発明の架空絶縁電線は、硬銅線を複数本撚り合わせてなる導体と、該導体の外層に撚り合わせられその断面積が前記硬銅線の断面積より小さい少なくとも一本の中空硬銅線と、前記導体及び前記中空硬銅線の外方に設けられた絶縁プラスチックからなる被覆とを有し、前記中空硬銅線の中空部には光ファイバーが配置されていることを特徴とするものである。
このように導体の外層に、その断面積が前記硬銅線の断面積より小さい少なくとも一本の中空硬銅線を撚り合わせ、かつこの中空硬銅線の中空部に光ファイバーを挿入しておけば、仮に架空絶縁電線の接続部等から内部に雨水等水分が浸入したとしても、その断面積が導体を構成する硬銅線よりも小さく、しかも導体外周部にあって浸入水の影響を最も受け易い位置に配置された中空硬銅線から先に応力腐食割れが進行する。
【0007】
よって、導体の硬銅線より先に中空硬銅線が応力腐食割れを起こし、その結果中空硬銅線内の光ファイバーが引っ張られ伝送損失増加を起こす。これを光ファイバー端末に接続されたモニターから常時監視していれば、中空硬銅線の応力腐食割れが検知できる。そしてこのように中空硬銅線の応力腐食割れを知ることが出来れば、硬銅線への応力腐食割れの進行度が推測されるので、断線が起こる前にこの架空絶縁電線の修理や張り替えを行うことができる。
【0008】
また請求項2記載の本発明の架空絶縁電線は、請求項1記載の架空絶縁電線において、前記中空硬銅線の外径を前記硬銅線の外径より小さくしたことに特徴がある。
このように中空硬銅線の外径を硬銅線の外径より小さくしておけば、より確実に中空硬銅線側が導体を構成する硬銅線よりも先に応力腐食割れを起こし、導体側硬銅線の応力腐食割れの進行度をより確実に事前に推測できる。
【0009】
【発明の実施の形態】
図1は本発明の架空絶縁電線の一実施例を示す横断面図である。この実施例にあっては、硬銅線1を複数本撚り合わせて導体2を形成したものに、外径が前記硬銅線1の外径より小さい中空硬銅線3を撚り合わせ、しかる後この導体2及び中空硬銅線3の外側に、ポリエチレン等の絶縁プラスチックからなる被覆5を押出し被覆したものである。
なお図1では中空硬銅線3内には光ファイバー4が1本挿入されているが、複数本であってもなんら問題はない。また光ファイバー4は中空硬銅線3の製造時に挿入してもよいし、導体2に空の中空硬銅線3を撚り合わせ、これに被覆5を被せた後、例えば空気圧送法で挿入するなどしてもよい。
【0010】
このようにしてなる本発明の架空絶縁電線では、硬銅線1の応力腐食割れの進行を直接的には防止できないが、硬銅線1が応力腐食割れを起こし断線を起こす前に、硬銅線1の断面積より小さい、好ましくはその外径も小さい中空硬銅線3が先に応力腐食割れを起こし断線する。その結果、中空硬銅線3内に挿入されている光ファイバー4に大きな引張り応力が作用し、光ファイバー4の伝送損失が増加する。これを外部からモニターしていれば、硬銅線1が応力腐食割れを起こして導体の断線事故が発生する前に、硬銅線1の応力腐食割れ進行度を察知でき、適切な時期に架空絶縁電線の修理や取替えが可能になる。すなわち架空絶縁電線の断線事故等の大きな事故を未然に防ぐことが可能になる。
【0011】
【実施例】
以下に本発明の具体的実施例を、図1を参照しながら詳細に説明する。
素線径2.3mmの硬銅線1を19本撚り合わせて断面積80mmの導体2を製造した。この導体2の製造時に外径1.0mm、内径0.6mmの中空硬銅線3を図1のように導体2の最外層にある硬銅線1の硬銅線肩部に同時に撚り込んだ。しかる後ポリエチレンからなる被覆5を押出し被覆しこれを架橋し、約300mの長さの架空絶縁電線を製造した。最後に空気圧送法(空気圧7〜10Kg/cm )により前記中空硬銅線3内に光ファイバー4を1本通線した。
ところで図1が示すように、ほぼ円形の導体2に中空硬銅線3を撚り合わせたため、被覆5を施すと、中空硬銅線3の挿入位置が電線長手方向に延びるらせん状の突起として架空絶縁電線の外表面に現れる。しかしながら、むしろこの突起により、本発明の架空絶縁電線には低風圧効果や耐雪効果が生じて好ましい。
【0012】
なお、この実施例では中空硬銅線3を1本しか使用していないが、例えば導体2の中心に対して180度離れた位置にもう1本中空硬銅線3を配置せしめる等中空硬銅線3を複数本用いてもよい。
この場合、前述した中空硬銅線3により被覆5表面に生ずるらせん状の突起は2本あるいは複数本できることになり、この場合も前述した低風圧効果や耐雪効果が期待できる。
また、光ファイバー4の伝送損失の測定も常時モニターする方法ではなく定期的に測定する方法でもよい。
また、この実施例では中空硬銅線3の外径を硬銅線1のそれより小さくして、断面積も外径も硬銅線1のそれより小さくしたものを用いているが、単に、断面積のみ小さい中空硬銅線3を用いるだけでも本発明の効果は享受できる。
【0013】
このようにしてなる本発明の架空絶縁電線によれば、硬銅線1が応力腐食割れにより断線する前に、硬銅線1よりその断面積の小さい中空硬銅線3の方が先に応力腐食割れにより断線するから、その際中空硬銅線3内部に配置せしめた光ファイバー4の伝送損失が急激に増加することになる。それ故、光ファイバー4の伝送損失を定期的に、あるいは常時監視していれば中空硬銅線3の断線を知ることができ、もって導体2を構成する硬銅線1の応力腐食割れの進行度を推定できる。
このように本発明の架空絶縁電線にあっては、硬銅線1が応力腐食割れにより断線という大きな事故を起こす前に、この架空絶縁電線の修理や取替え作業をその時期を失することなく適切に施すことができる。
【0014】
本発明の架空絶縁電線の効果を確認するため以下の実験を行った。
前述した本発明の一実施例の架空絶縁電線をスパン長約30mの模擬電柱に架線して所定の張力を負荷した。この状態でスパン中央部の被覆5を1mに亘って剥ぎ取り、導体2を露出させた。しかる後露出させたこの導体2を、1N(1規定)のNHOH(水酸化アンモニウム)と2NのHSO (硫酸)とを加えた溶液を入れた硬質ビニル密閉容器に浸漬し、この状態で導体2に通電し、ヒートサイクル試験(20度〜80度間での繰り返し)を行った。約3ヶ月後に光ファイバー4の伝送損失増加が見られたので、この架空絶縁電線を電柱から撤去して解体し、硬銅線1及び中空硬銅線3の応力腐食状態を評価した。
【0015】
その結果、中空硬銅線3とこれの近傍に位置する硬銅線1に応力腐食割れが発見された。ここで中空硬銅線3は応力腐食割れで断線していたが、硬銅線1の方は断線するまでには至っていなかった。
このように本発明の架空絶縁電線によれば、導体2を構成する硬銅線1が応力腐食割れで断線する前に光ファイバー4入りの中空硬銅線3の断線及び光ファイバー4の伝送損失増加により、硬銅線1側の応力腐食割れの進行度を検知でき、もって硬銅線1が断線する前に架空絶縁電線の修理あるいは取り替え等適切な処理ができることが確認された。
【0016】
【発明の効果】
前述したように本発明の請求項1記載の架空絶縁電線によれば、硬銅線よりその断面積が小さい中空硬銅線が先に応力腐食割れによる断線を起こす。このことを中空硬銅線内部に収納した光ファイバーの伝送損失の増加という形で硬銅線の応力腐食割れによる断線が起こる前に検知することができる。よって適切な時期に架空絶縁電線の修理あるいは取り替え(張り替え)が可能となり、断線事故といった大きな事故を未然に防止することができる。
また本発明の請求項2記載の架空絶縁電線によれば、中空硬銅線の外径を硬銅線のそれより小さくしているため、より確実に硬銅線が応力腐食割れで断線する前に中空硬銅線側が応力腐食割れで断線する。よって硬銅線が応力腐食割れで断線事故を起こす前に、より確実にその応力腐食割れ進行度を検知でき、架空絶縁電線の修理、取り替えが可能になる。
【図面の簡単な説明】
【図1】本発明の架空絶縁電線の一実施例を示す横断面図である。
【符号の説明】
1 硬銅線
2 導体
3 中空硬銅線
4 光ファイバー
5 被覆
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an overhead insulated wire obtained by applying a coating made of insulating plastic to a conductor formed by twisting a plurality of hard copper wires, and more particularly, to stress corrosion cracking of the hard copper wire in advance. It relates to an overhead insulated wire that can be detected.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, an overhead insulated wire generally used has a structure in which a plastic insulating coating made of polyethylene or the like is provided outside a conductor formed by twisting a plurality of hard copper wires.
If such an aerial insulated wire is used for a long time, for example, rainwater infiltrates into the insulated wire from the connection portion of the wire and the like, and stress corrosion cracking occurs in the hard copper wire constituting the conductor, A hard copper wire disconnection accident may occur.
Therefore, conventionally, for example, a method has been proposed in which a conductor is filled with a watertight compound so as to prevent rainwater from entering the insulated wire to form a watertight structure (Patent Document 1).
[0003]
[Patent Document 1] Japanese Utility Model Application Laid-Open No. 52-53982
[Problems to be solved by the invention]
However, when the insulated wire is filled with the watertight compound, the watertight compound must be removed when connecting or disassembling the insulated wire, but the watertight compound scatters around and contaminates the working environment, or There is a problem that the workability is deteriorated due to stickiness to the hand.
To date, no solution has been obtained that prevents stress corrosion cracking of hard copper wires and solves the problems of connecting and dismantling work of insulated wires, that is, problems of environmental deterioration and workability deterioration. It is the current situation.
[0005]
The present invention has been made in view of the above-mentioned situation, and its purpose is to prevent stress corrosion cracking of a hard copper wire directly. Even if a fault occurs, the system predicts the occurrence of stress corrosion cracking of the hard copper wire in advance so that an unforeseen situation such as disconnection does not occur, and it is a detection system that can dismantle or repair an overhead insulated wire before a major accident occurs An object of the present invention is to provide an overhead insulated wire containing an optical fiber.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, the overhead insulated wire according to the present invention according to claim 1 includes a conductor formed by twisting a plurality of hard copper wires, and a cross-sectional area of the hard copper wire which is twisted to an outer layer of the conductor. At least one hollow hard copper wire having a smaller cross-sectional area, and a cover made of insulating plastic provided outside the conductor and the hollow hard copper wire, and an optical fiber is provided in a hollow portion of the hollow hard copper wire. Are arranged.
In this manner, at least one hollow hard copper wire whose cross-sectional area is smaller than the cross-sectional area of the hard copper wire is twisted in the outer layer of the conductor, and an optical fiber is inserted into the hollow portion of the hollow hard copper wire. Even if moisture such as rainwater intrudes into the interior of the overhead insulated wire from the connection, etc., its cross-sectional area is smaller than that of the hard copper wire that composes the conductor. The stress corrosion cracking progresses first from the hollow hard copper wire arranged at an easy position.
[0007]
Therefore, the hollow hard copper wire undergoes stress corrosion cracking prior to the conductor hard copper wire, and as a result, the optical fiber in the hollow hard copper wire is pulled, causing an increase in transmission loss. If this is constantly monitored from a monitor connected to the optical fiber terminal, stress corrosion cracking of the hollow hard copper wire can be detected. If the stress corrosion cracking of the hollow hard copper wire can be known in this way, the degree of stress corrosion cracking of the hard copper wire is estimated, so repair or replacement of the overhead insulated wire before disconnection occurs It can be carried out.
[0008]
An overhead insulated wire according to a second aspect of the present invention is characterized in that, in the overhead insulated wire according to the first aspect, the outer diameter of the hollow hard copper wire is smaller than the outer diameter of the hard copper wire.
If the outer diameter of the hollow hard copper wire is made smaller than the outer diameter of the hard copper wire in this manner, the hollow hard copper wire side more reliably causes stress corrosion cracking before the hard copper wire constituting the conductor, and The progress of the stress corrosion cracking of the side hard copper wire can be more reliably estimated in advance.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 1 is a cross-sectional view showing one embodiment of the overhead insulated wire of the present invention. In this embodiment, a hollow hard copper wire 3 having an outer diameter smaller than the outer diameter of the hard copper wire 1 is twisted to a conductor 2 formed by twisting a plurality of hard copper wires 1 and then The outside of the conductor 2 and the hollow hard copper wire 3 is extruded with a coating 5 made of an insulating plastic such as polyethylene.
Although one optical fiber 4 is inserted into the hollow hard copper wire 3 in FIG. 1, there is no problem if a plurality of optical fibers 4 are used. The optical fiber 4 may be inserted when the hollow hard copper wire 3 is manufactured, or the hollow hard hard copper wire 3 may be twisted around the conductor 2, covered with the coating 5, and then inserted by, for example, an air pressure method. May be.
[0010]
In the overhead insulated wire of the present invention thus constructed, the progress of stress corrosion cracking of the hard copper wire 1 cannot be directly prevented, but before the hard copper wire 1 undergoes stress corrosion cracking and breaks, The hollow hard copper wire 3 smaller than the cross-sectional area of the wire 1 and preferably smaller in outer diameter causes stress corrosion cracking first and breaks. As a result, a large tensile stress acts on the optical fiber 4 inserted into the hollow hard copper wire 3, and the transmission loss of the optical fiber 4 increases. If this is monitored from the outside, it is possible to detect the degree of stress corrosion cracking of the hard copper wire 1 before the hard copper wire 1 undergoes stress corrosion cracking and a conductor breakage accident occurs, and it is possible to sense the fictitious time at an appropriate time. Repair and replacement of insulated wires is possible. That is, it is possible to prevent a large accident such as an accidental disconnection of the overhead insulated wire.
[0011]
【Example】
Hereinafter, a specific embodiment of the present invention will be described in detail with reference to FIG.
It was prepared conductors 2 of the cross-sectional area 80 mm 2 of the wire diameter 2.3mm hard copper wire 1 19-ply together. When manufacturing the conductor 2, a hollow hard copper wire 3 having an outer diameter of 1.0 mm and an inner diameter of 0.6 mm was simultaneously twisted into the hard copper wire shoulder of the hard copper wire 1 in the outermost layer of the conductor 2 as shown in FIG. . Thereafter, a coating 5 made of polyethylene was extruded and coated and crosslinked to produce an overhead insulated wire having a length of about 300 m. Finally, one optical fiber 4 was passed through the hollow hard copper wire 3 by a pneumatic feeding method (pneumatic pressure: 7 to 10 kg / cm 2 ).
By the way, as shown in FIG. 1, since the hollow hard copper wire 3 is twisted around the substantially circular conductor 2, when the coating 5 is applied, the insertion position of the hollow hard copper wire 3 becomes an imaginary spiral projection extending in the longitudinal direction of the electric wire. Appears on the outer surface of the insulated wire. However, these projections are preferable because the overhead insulated wire of the present invention has a low wind pressure effect and a snow-resistant effect.
[0012]
Although only one hollow hard copper wire 3 is used in this embodiment, for example, another hollow hard copper wire 3 is arranged at a position 180 degrees away from the center of the conductor 2. A plurality of lines 3 may be used.
In this case, two or more spiral projections can be formed on the surface of the coating 5 by the hollow hard copper wire 3 described above, and also in this case, the low wind pressure effect and the snow resistance effect can be expected.
Also, the transmission loss of the optical fiber 4 may be measured periodically instead of constantly monitoring.
In this embodiment, the hollow hard copper wire 3 has an outer diameter smaller than that of the hard copper wire 1 and has a cross-sectional area and an outer diameter smaller than that of the hard copper wire 1. The effect of the present invention can be enjoyed only by using the hollow hard copper wire 3 having only a small cross-sectional area.
[0013]
According to the overhead insulated wire of the present invention thus formed, before the hard copper wire 1 is broken by stress corrosion cracking, the hollow hard copper wire 3 having a smaller cross-sectional area than the hard copper wire 1 has a higher stress. Since the wire is broken due to corrosion cracking, the transmission loss of the optical fiber 4 disposed inside the hollow hard copper wire 3 at that time sharply increases. Therefore, if the transmission loss of the optical fiber 4 is monitored regularly or constantly, the disconnection of the hollow hard copper wire 3 can be known, and the progress of stress corrosion cracking of the hard copper wire 1 constituting the conductor 2 can be known. Can be estimated.
As described above, in the overhead insulated wire according to the present invention, before the hard copper wire 1 breaks due to stress corrosion cracking, the repair or replacement work of the overhead insulated wire can be appropriately performed without losing the time. Can be applied to
[0014]
The following experiment was performed to confirm the effect of the overhead insulated wire of the present invention.
The above-mentioned overhead insulated wire according to one embodiment of the present invention was wired on a simulated electric pole having a span length of about 30 m and a predetermined tension was applied. In this state, the coating 5 at the center of the span was peeled off over 1 m to expose the conductor 2. After that, the exposed conductor 2 was immersed in a hard vinyl sealed container containing a solution containing 1N (1N) NH 4 OH (ammonium hydroxide) and 2N H 2 SO 4 (sulfuric acid), In this state, the conductor 2 was energized, and a heat cycle test (repeated between 20 degrees and 80 degrees) was performed. About three months later, an increase in the transmission loss of the optical fiber 4 was observed. The overhead insulated wire was removed from the utility pole and dismantled, and the stress corrosion state of the hard copper wire 1 and the hollow hard copper wire 3 was evaluated.
[0015]
As a result, stress corrosion cracking was found in the hollow hard copper wire 3 and the hard copper wire 1 located in the vicinity thereof. Here, the hollow hard copper wire 3 was broken due to stress corrosion cracking, but the hard copper wire 1 was not broken before breaking.
As described above, according to the overhead insulated wire of the present invention, before the hard copper wire 1 constituting the conductor 2 breaks due to stress corrosion cracking, the hollow hard copper wire 3 containing the optical fiber 4 breaks and the transmission loss of the optical fiber 4 increases. Thus, it was confirmed that the progress of the stress corrosion cracking on the hard copper wire 1 side could be detected, and that appropriate processing such as repair or replacement of the overhead insulated wire before the hard copper wire 1 was broken could be performed.
[0016]
【The invention's effect】
As described above, according to the overhead insulated wire according to the first aspect of the present invention, a hollow hard copper wire having a smaller cross-sectional area than a hard copper wire is first broken by stress corrosion cracking. This can be detected in the form of an increase in the transmission loss of the optical fiber housed inside the hollow hard copper wire before the hard copper wire is disconnected due to stress corrosion cracking. Therefore, the overhead insulated wire can be repaired or replaced (replaced) at an appropriate time, and a large accident such as a disconnection accident can be prevented.
According to the overhead insulated wire according to the second aspect of the present invention, since the outer diameter of the hollow hard copper wire is smaller than that of the hard copper wire, the hard copper wire can be more reliably broken by stress corrosion cracking. The hollow hard copper wire side breaks due to stress corrosion cracking. Therefore, before the hard copper wire breaks due to the stress corrosion cracking, the degree of the stress corrosion cracking progress can be detected more reliably, and the repair and replacement of the overhead insulated wire can be performed.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing one embodiment of an overhead insulated wire of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Hard copper wire 2 Conductor 3 Hollow hard copper wire 4 Optical fiber 5 Coating

Claims (2)

硬銅線を複数本撚り合わせてなる導体と、該導体の外層に撚り合わせられその断面積が前記硬銅線の断面積より小さい少なくとも一本の中空硬銅線と、前記導体及び前記中空硬銅線の外方に設けられた絶縁プラスチックからなる被覆とを有し、前記中空硬銅線の中空部には光ファイバーが配置されていることを特徴とする架空絶縁電線。A conductor formed by twisting a plurality of hard copper wires, at least one hollow hard copper wire twisted on an outer layer of the conductor and having a cross-sectional area smaller than that of the hard copper wire, the conductor and the hollow hard wire; An overhead insulated wire, comprising: a coating made of insulating plastic provided outside the copper wire; and an optical fiber disposed in a hollow portion of the hollow hard copper wire. 前記中空硬銅線の外径は前記硬銅線の外径より小さいことを特徴とする請求項1記載の架空絶縁電線。2. The overhead insulated wire according to claim 1, wherein an outer diameter of the hollow hard copper wire is smaller than an outer diameter of the hard copper wire.
JP2002289330A 2002-10-02 2002-10-02 Aerial insulated wire Pending JP2004127684A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002289330A JP2004127684A (en) 2002-10-02 2002-10-02 Aerial insulated wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002289330A JP2004127684A (en) 2002-10-02 2002-10-02 Aerial insulated wire

Publications (1)

Publication Number Publication Date
JP2004127684A true JP2004127684A (en) 2004-04-22

Family

ID=32281526

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002289330A Pending JP2004127684A (en) 2002-10-02 2002-10-02 Aerial insulated wire

Country Status (1)

Country Link
JP (1) JP2004127684A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100571604B1 (en) 2004-09-10 2006-04-17 엘에스전선 주식회사 Installation method of optical fiber composite electric power cable and cable structure for the same
CN109524166A (en) * 2018-11-29 2019-03-26 首瑞(天津)电气设备有限公司 It is a kind of for receiving and the cable of transferred arc signal

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100571604B1 (en) 2004-09-10 2006-04-17 엘에스전선 주식회사 Installation method of optical fiber composite electric power cable and cable structure for the same
CN109524166A (en) * 2018-11-29 2019-03-26 首瑞(天津)电气设备有限公司 It is a kind of for receiving and the cable of transferred arc signal

Similar Documents

Publication Publication Date Title
WO1999010951A1 (en) Wire harness with splice locators
JP2004127684A (en) Aerial insulated wire
EP1211142A2 (en) Waterproof structure for a wire harness
JP2009099346A (en) Wire end connection structure and connection method
US20040222012A1 (en) Small-gauge signal cable and its method of use
KR20160145090A (en) Conductor for bare overhead electric lines, especially for middle-high thermal limit, and low expansion at high electric loads
WO2012071032A1 (en) Seal for anode connection to cable and method of use
JP3954780B2 (en) Pre-detection method of overheat disconnection in the vicinity of compression joint of aluminum stranded wire
KR20080072458A (en) Method and apparatus for removing a steel strand of removable anchor
US9757889B2 (en) Non-conductive wire splice connector
CN116417206B (en) Insulating protective sleeve for communication cable steel strand
JP4035567B2 (en) Twin union wire for mounting reinforcement to prevent the fall of equipment or signs
JP2003123542A (en) Aerial insulated wire
KR200439809Y1 (en) A Electric line ties
JP6210641B2 (en) Covered wire intermediate material, covered wire, method for manufacturing covered wire, and wire harness
CN217588533U (en) Cable mechanism with data communication function
JP5390987B2 (en) Transmission line fall prevention device and installation method thereof
CN210894812U (en) Central tube type OPGW optical cable structure with embedded conductor
JP5412564B1 (en) Bird damage control device for overhead electric wires
JP2012134103A (en) Method for connecting insulation electric wire and method of manufacturing wire harness
JP2011083144A (en) Terminating connector for power cable
JP2005088694A (en) Optical fiber compound trolley wire
JP4604188B2 (en) Method of repairing straight sleeve connection part of overhead power transmission line and structure of repair part of straight sleeve connection part of overhead power transmission line
CN109768518A (en) The terminals and its installation method of a kind of cable cylindrical conductor center twisting fibers
JPH11335987A (en) End processing for synthetic yarn core wire rope and synthetic yarn core wire rope with end socket