JP2004125609A - Gas-blast circuit-breaker - Google Patents

Gas-blast circuit-breaker Download PDF

Info

Publication number
JP2004125609A
JP2004125609A JP2002290094A JP2002290094A JP2004125609A JP 2004125609 A JP2004125609 A JP 2004125609A JP 2002290094 A JP2002290094 A JP 2002290094A JP 2002290094 A JP2002290094 A JP 2002290094A JP 2004125609 A JP2004125609 A JP 2004125609A
Authority
JP
Japan
Prior art keywords
flow rate
zero
zero point
flow
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002290094A
Other languages
Japanese (ja)
Other versions
JP4110908B2 (en
Inventor
Koichi Ueki
植木 浩一
Kaoru Onishi
大西 薫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2002290094A priority Critical patent/JP4110908B2/en
Priority to CNB031602541A priority patent/CN1234053C/en
Priority to KR1020030068160A priority patent/KR20040030352A/en
Publication of JP2004125609A publication Critical patent/JP2004125609A/en
Application granted granted Critical
Publication of JP4110908B2 publication Critical patent/JP4110908B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/66Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters
    • G01F1/662Constructional details
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/26Details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F3/00Measuring the volume flow of fluids or fluent solid material wherein the fluid passes through the meter in successive and more or less isolated quantities, the meter being driven by the flow
    • G01F3/02Measuring the volume flow of fluids or fluent solid material wherein the fluid passes through the meter in successive and more or less isolated quantities, the meter being driven by the flow with measuring chambers which expand or contract during measurement
    • G01F3/20Measuring the volume flow of fluids or fluent solid material wherein the fluid passes through the meter in successive and more or less isolated quantities, the meter being driven by the flow with measuring chambers which expand or contract during measurement having flexible movable walls, e.g. diaphragms, bellows
    • G01F3/22Measuring the volume flow of fluids or fluent solid material wherein the fluid passes through the meter in successive and more or less isolated quantities, the meter being driven by the flow with measuring chambers which expand or contract during measurement having flexible movable walls, e.g. diaphragms, bellows for gases

Abstract

<P>PROBLEM TO BE SOLVED: To provide a gas-blast circuit-breaker for accurately measuring the quantity of flow, when an apparatus is not used after the gas-blast circuit-breaker has been installed and monitoring the quantity of a medium consumed and whether a state of use is safe. <P>SOLUTION: The quantity of flow of a gas is detected by a flow detecting means 14. The quantity of flow is converted by a flow-computing means 20. A zero flow range set in a zero point setting means 23 is compared with the determined quantity of flow, to determine the presence or absence of deviation at a zero point determining means 24. When a flow value, determined by the flow computing means 20, indicates anomalous use from an output signal of the flow-detecting means 14, an anomaly-determining means 21 outputs cutoff. A cutoff signal is outputted, when a cutoff means 22 is not in the operating state, and when deviation from zero point flow range is determined by the zero point determining means 24. Zero point correction is measured by a state determining mens 25 to determine a new flow correction value. The new flow correction value is stored in a flow correction value setting means. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、超音波を用いて配管内を流れる各種媒体、例えば各種都市ガスあるいはLPガス等流量を検出しその媒体使用量を正確に計測し媒体使用量及びその使用状態が安全か否かを監視するガス遮断装置に関する。
【0002】
【従来の技術】
従来のこの種のガス遮断装置は、例えば特許文献1に示されるように図7の構成になっていた。図7は従来のガス遮断装置のブロック図を示す。
【0003】
図7において、1は流体管路、2は第1振動子で、超音波を送受信し流体管路1の上流側に設置される。3は第2振動子で、超音波を送受信し流体管路1の下流側に対向して取り付けられている。4は送信回路で、第1振動子2へ超音波信号を送信し、5は増幅回路で、第2振動子3で受信した信号を増幅する。6は比較回路で、増幅された信号と基準信号とを比較する。7は計時手段で、超音波の発信から受信迄の時間をタイマカウンタで計測する。8は計測回路で、送信回路4から計時手段7迄を含む。9は流量演算手段で、計時手段7による超音波伝搬時間に応じて管路の大きさ、流れの状態を考慮して流量値を求める。10は周期可変手段で、流量演算手段9の値によって測定周期の変更を行う。11は計測開始手段で、周期可変手段10の値に応じて送信回路への信号送出タイミングを調節する。12は計測終了手段で、流量演算手段9の演算終了を検出する。13は電圧制御手段で、計測終了手段13に同期して計測回路8の電圧を低下させ、又計測開始手段11による計測開始と同期して計測回路8の電圧を復帰させる。
【0004】
次に従来例の構成の動作を説明する。都市ガス、LPガス等の媒体ガスの流れる流体管路1内において、計測開始手段11から送信回路4からバースト信号が送出され、第1振動子2で発信された超音波信号は流体管路1の流れの中を伝搬し、第2振動子3で受信され、更に増幅回路5と比較回路6で信号処理され発信から受信までの時間を計時手段7で測定する。流量が大きい時は計時サンプリングを速くして誤差を小さくする必要があり、又流量が小さい時、或いは流量零の時は計測サンプリングを遅くしてもほとんど誤差にならない。よって流量演算手段9の値に応じて計測間隔を変更する。流量演算手段9の値が小さい時周期可変手段10で計測時間の間隔を大きくし、流量演算手段9の値が大きいなるに伴って計測時間の間隔を小さくする。又計測と計測との間には計測回路8の電圧を低減する。流量演算手段9によって流量計測を終了すると計測終了手段12に信号送出し電圧制御手段13で電圧を下げるか、零にする。計測開始手段11によって計測開始前に電圧制御手段13により計測回路8の電圧を元に復帰させる。
【0005】
【特許文献1】
特開平9−21667号公報
【0006】
【発明が解決しようとする課題】
しかしながら上記従来の構成では、ガス遮断装置を設置した以降計測回路8や第1振動子2、或いは第2振動子3の計時変化によりガス器具が未使用時の流量値即ち流量零もしくは所定流量範囲内(この範囲内を流量零と定義する)からずれた場合の方法やどのようにして求めるかが開示されていない。
【0007】
本発明は上記課題を解決するもので、ガス遮断装置設置以降都市ガスやLPGガス等の使用がない場合、即ちガス器具を未使用時の流量を正確に計測し、ガス媒体使用量及びその使用状態が安全か否かを監視するガス遮断装置を提供することを目的としたものである。
【0008】
【課題を解決するための手段】
この課題を解決するために本発明は、流量検出手段で検出した流速を流量演算手段で流量に換算し、零点設定手段に設定した流量零範囲と、求めた流量とを比較し逸脱したか否かを零点判定手段で判定し、流量検出手段の出力信号より流量演算手段で求めた流量値が異常使用時遮断手段に遮断信号を出力する異常判定手段と、遮断手段が作動していない状態で零点判定手段より零点流量範囲逸脱と判定している場合遮断手段に遮断信号を出力し状態判定手段により零点補正計測を行なわせ、所定範囲内にはいる流量補正値を求め、記憶した流量補正値で換算した流量を補正する様に流量補正値を流量補正値設定手段に格納する構成にしている。
【0009】
このことにより、ガス遮断装置設置以降ガス器具未使用時のガス流量、即ち流量零状態を正確に計測でき、間違ってガス器具を使用したと判断し積算し続けるのを防止でき、かつガスの使用状態を監視するのに正確な使用量を計測し監視できる。
【0010】
【発明の実施の形態】
本発明は上記目的を達成するため、媒体内の流速を検出する流量検出手段と、媒体流路を遮断する遮断手段と、前記流量検出手段で検出した流速より流量に換算する流量演算手段と、前記流量検出手段の流量零範囲を設定する零点設定手段と、前記流量演算手段で求めた流量が前記零点設定手段で設定した流量零範囲を逸脱したか否かを判定する零点判定手段と、前記流量検出手段の出力信号より前記流量演算手段で求めた流量値が異常使用量か否かを判定し異常時前記遮断手段に遮断信号を出力する異常判定手段と、前記異常判定手段より前記遮断手段を駆動していない状態で前記零点判定手段より零点流量範囲逸脱との状態信号を出力している場合前記遮断手段に遮断信号を出力し零点補正計測を行う状態判定手段と、前記状態判定手段で零点補正計測を開始すると前記流量演算手段より所定範囲内にはいる流量補正値を求める流量補正値設定手段とからなる。
【0011】
そして器具使用中及び停止時のガス流量を流量検出手段で流速を検出し流量演算手段で流量換算しその流量値が異常な使用状態値かどうかを異常判定手段で監視しつつ、一方器具停止時の流量値が所定流量範囲内かどうかを零点判定手段で監視しており、異常判定手段でガス使用状態が異常と判定時遮断手段を駆動しガス供給を停止するが、零点判定手段で所定範囲以外と判定されると状態判定手段では零点補正可能かどうかを判定し、異常判定手段で異常と判定し遮断手段を駆動している場合零点補正不可と判定し遅延し、ガス器具使用の異常状態が改善され通常状態に戻った時零点補正可能と判定し、零点補正値を計測開始し、器具停止時の流量値を流量検出手段で求め流量演算手段で換算し流量補正値設定手段に新補正値として記憶し、以後流量計測時流量演算手段で流量値を求め流量補正値設定手段に格納した新補正値で補正演算し、その結果値で異常判定手段や零点判定手段で評価判定するので、ガス圧低下状態やガス器具漏洩遮断した異常な状態で流量零時の補正値を求めないので、ガス流量計測精度が上がり、ガス器具の使用状態を正確な流量計測で監視でき信頼性や安全性が向上する。
【0012】
更に本発明は上記目的を達成するため、媒体内の流速を検出する流量検出手段と、媒体流路を遮断する遮断手段と、前記流量検出手段で検出した流速より流量に換算する流量演算手段と、前記流量検出手段の流量零範囲を設定する零点設定手段と、前記流量演算手段で求めた流量が前記零点設定手段で設定した流量零範囲を逸脱したか否かを判定する零点判定手段と、前記流量検出手段の出力信号より前記流量演算手段で求めた流量値が異常使用量か否かを判定し異常時前記遮断手段に遮断信号を出力する異常判定手段と、前記異常判定手段より前記遮断手段を駆動していない状態で前記零点判定手段より零点流量範囲逸脱との状態信号を出力している場合前記遮断手段に遮断信号を出力し零点補正計測を行う状態判定手段と、前記状態判定手段で零点補正計測を開始すると前記流量演算手段より所定範囲内にはいる流量補正値を求める流量補正値設定手段と、前記遮断手段を開状態にする信号を出力する復帰手段と、前記状態判定手段により零点補正計測時前記復帰手段からの復帰信号を受付禁止にする復帰禁止手段とからなる。
【0013】
そして器具使用中及び停止時のガス流量を流量検出手段で流速を検出し流量演算手段で流量換算しその流量値が異常な使用状態値かどうかを異常判定手段で監視しつつ、一方器具停止時の流量値が所定流量範囲内かどうかを零点判定手段で監視しており、異常判定手段でガス使用状態が異常と判定時遮断手段を駆動しガス供給を停止するが、零点判定手段で所定範囲以外と判定されると状態判定手段では零点補正可能かどうかを判定し、異常判定手段で異常と判定し遮断手段を駆動している場合零点補正不可と判定し遅延し、ガス器具使用の異常状態が改善され通常状態に戻った時零点補正可能と判定し、零点補正値を計測開始し、器具停止時の流量値を流量検出手段で求め流量演算手段で換算し流量補正値設定手段に新補正値として記憶し、以後流量計測時流量演算手段で流量値を求め流量補正値設定手段に格納した新補正値で補正演算し流量値を求めるが、状態判定手段により新流量補正値を求める零点計測中は遮断手段が作動し流路は閉止状態で、復帰禁止手段に零点計測中で復帰信号の受付禁止状態にしており、誤って復帰手段を操作されガスが流れ流量補正値を正しく計測できないということがないようにされており、ガス流量計測精度が上がり結果ガス器具の使用状態を正確な流量計測で監視でき信頼性や安全性が向上する。
【0014】
更に本発明は上記目的を達成するため、媒体内の流速を検出する流量検出手段と、媒体流路を遮断する遮断手段と、前記流量検出手段で検出した流速より流量に換算する流量演算手段と、前記流量検出手段の流量零範囲を設定する零点設定手段と、前記流量演算手段で求めた流量が前記零点設定手段で設定した流量零範囲を逸脱したか否かを判定する零点判定手段と、前記流量検出手段の出力信号より前記流量演算手段で求めた流量値が異常使用量か否かを判定し異常時前記遮断手段に遮断信号を出力する異常判定手段と、前記異常判定手段より前記遮断手段を駆動していない状態で前記零点判定手段より零点流量範囲逸脱との状態信号を出力している場合前記遮断手段に遮断信号を出力し零点補正計測を行う状態判定手段と、外部より設定器や通信等により指示電文を受信し強制的に零点補正計測指示電文を受信すると前記状態判定手段に零点補正制御を開始させる通信制御手段と、前記状態判定手段より或いは前記通信手段より零点補正計測を開始すると前記流量演算手段より所定範囲内にはいる流量補正値を求める流量補正値設定手段とからなる。
【0015】
そして器具使用中及び停止時のガス流量を流量検出手段で流速を検出し流量演算手段で流量換算しその流量値が異常な使用状態値かどうかを異常判定手段で監視しつつ、一方器具停止時の流量値が所定流量範囲内かどうかを零点判定手段で監視しており、異常判定手段でガス使用状態が異常と判定時遮断手段を駆動しガス供給を停止するが、零点判定手段で所定範囲以外と判定されると状態判定手段では零点補正可能かどうかを判定し、異常判定手段で異常と判定し遮断手段を駆動している場合零点補正不可と判定し遅延し、ガス器具使用の異常状態が改善され通常状態に戻った時零点補正可能と判定し、零点補正値を計測開始し、器具停止時の流量値を流量検出手段で求め流量演算手段で換算し流量補正値設定手段に新補正値として記憶し、以後流量計測時流量演算手段で流量値を求め流量補正値設定手段に格納した新補正値で補正演算し流量値を求めるが、一方外部より設定器やセンタ等より通信回線を介し零点補正計測開始指示を行う電文を通信制御手段が受信すると、状態判定手段により新流量補正値を求める零点計測制御開始指示を行うので、任意の時間帯にガス事業者が行うことができ、随時ガス流量計測精度を向上させることができ、結果ガス器具の使用状態を正確な流量計測で監視でき信頼性や安全性が向上する。
【0016】
更に本発明は上記目的を達成するため、媒体内の流速を検出する流量検出手段と、媒体流路を遮断する遮断手段と、前記流量検出手段で検出した流速より流量に換算する流量演算手段と、前記流量検出手段の流量零範囲を設定する零点設定手段と、前記流量演算手段で求めた流量が前記零点設定手段で設定した流量零範囲を逸脱したか否かを判定する零点判定手段と、前記流量検出手段の出力信号より前記流量演算手段で求めた流量値が異常使用量か否かを判定し異常時前記遮断手段に遮断信号を出力する異常判定手段と、前記異常判定手段より前記遮断手段を駆動していない状態で前記零点判定手段より零点流量範囲逸脱との状態信号を出力している場合前記遮断手段に遮断信号を出力し零点補正計測を行う状態判定手段と、前記状態判定手段で零点補正計測を開始すると前記流量演算手段より所定範囲内にはいる流量補正値を求める流量補正値設定手段と、前記状態判定手段による零点補正開始となると零点補正中を示す表示を行う報知手段とからなる。
【0017】
そして器具使用中及び停止時のガス流量を流量検出手段で流速を検出し流量演算手段で流量換算しその流量値が異常な使用状態値かどうかを異常判定手段で監視しつつ、一方器具停止時の流量値が所定流量範囲内かどうかを零点判定手段で監視しており、異常判定手段でガス使用状態が異常と判定時遮断手段を駆動しガス供給を停止すると共に異常表示し警告するが、又零点判定手段で所定範囲以外と判定されると状態判定手段では零点補正可能かどうかを判定し、異常判定手段で異常と判定し遮断手段を駆動している場合零点補正不可と判定し遅延し、ガス器具使用の異常状態が改善され通常状態に戻った時零点補正可能と判定し、零点補正値を計測開始し当時に報知手段で零点補正計測中表示を行い、器具停止時の流量値を流量検出手段で求め流量演算手段で換算し流量補正値設定手段に新補正値として記憶し、以後流量計測時流量演算手段で流量値を求め流量補正値設定手段に格納した新補正値で補正演算するが、異常状態とは異なる表示で零点補正中であることをガス需要家や点検にきたガス事業者に通知でき、ガス使用可能状態、ガス器具の異常使用状態を検知し遮断した状態とは別の流量計測の校正中を示す表示が報知手段でなされるので、一目でガス遮断装置の状況がわかり使い勝手が向上する効果がある。
【0018】
更に本発明は上記目的を達成するため、媒体内の流速を検出する流量検出手段と、媒体流路を遮断する遮断手段と、前記流量検出手段で検出した流速より流量に換算する流量演算手段と、前記流量演算手段で求めた流量値を積算する流量積算手段と、前記流量検出手段の流量零範囲を設定する零点設定手段と、前記流量演算手段で求めた流量が前記零点設定手段で設定した流量零範囲を逸脱したか否かを判定する零点判定手段と、前記流量検出手段の出力信号より前記流量演算手段で求めた流量値が異常使用量か否かを判定し異常時前記遮断手段に遮断信号を出力する異常判定手段と、前記異常判定手段より前記遮断手段を駆動していない状態で前記零点判定手段より零点流量範囲逸脱との状態信号を出力している場合前記遮断手段に遮断信号を出力し零点補正計測を行う状態判定手段と、前記状態判定手段で零点補正計測を開始すると前記流量演算手段より所定範囲内にはいる流量補正値を求める流量補正値設定手段と、前記流量積算手段で求めた流量積算値を表示すると共に前記流量補正値設定手段により求まった流量補正値を切替えて表示する表示手段と、外部より設定器や通信等により指示電文を受信し零点補正表示電文を受信すると前記表示手段に零点表示に切替えさせる通信手段とからなる。
【0019】
そして器具使用中及び停止時のガス流量を流量検出手段で流速を検出し流量演算手段で流量換算しその流量値が異常な使用状態値かどうかを異常判定手段で監視しつつ、一方器具停止時の流量値が所定流量範囲内かどうかを零点判定手段で監視しており、異常判定手段でガス使用状態が異常と判定時遮断手段を駆動しガス供給を停止すると共に表示手段で異常表示し警告するが、又零点判定手段で所定範囲以外と判定されると状態判定手段では零点補正可能かどうかを判定し、異常判定手段で異常と判定し遮断手段を駆動している場合零点補正不可と判定し遅延し、ガス器具使用の異常状態が改善され通常状態に戻った時零点補正可能と判定し、零点補正値を計測開始し、器具停止時の流量値を流量検出手段で求め流量演算手段で換算し流量補正値設定手段に新補正値として記憶し、以後流量計測時流量演算手段で流量値を求め流量補正値設定手段に格納した新補正値で補正演算するが、以後流量計測時流量演算手段で流量値を求め流量補正値設定手段に格納した新補正値で補正演算し、その結果値で異常判定手段や零点判定手段で器具の安全使用状態かどうかを評価判定すると共に、求めた流量値で流量積算手段でガス使用量を積算し積算値を表示手段で表示すると共に、通信で零点補正した流量補正値を表示することが可能で、表示切替要求の通信電文を通信手段で受信すると流量積算手段で求めたガス使用量を表示する積算表示部に零点補正量である流量補正値を表示することが可能で、ガス事業者はガス遮断装置の状態を定量的に監視することができ、又ガス流量計測精度の維持管理が容易でメンテナンスの容易性が高まり使い勝手や信頼性や安全性が向上する。
【0020】
更に本発明は上記目的を達成するため、媒体内の流速を検出する流量検出手段と、媒体流路を遮断する遮断手段と、前記流量検出手段で検出した流速より流量に換算する流量演算手段と、前記流量演算手段で求めた流量値を積算する流量積算手段と、前記流量検出手段の流量零範囲を設定する零点設定手段と、前記流量演算手段で求めた流量が前記零点設定手段で設定した流量零範囲を逸脱したか否かを判定する零点判定手段と、前記流量検出手段の出力信号より前記流量演算手段で求めた流量値が異常使用量か否かを判定し異常時前記遮断手段に遮断信号を出力する異常判定手段と、前記異常判定手段より前記遮断手段を駆動していない状態で前記零点判定手段より零点流量範囲逸脱との状態信号を出力している場合前記遮断手段に遮断信号を出力し零点補正計測を行う状態判定手段と、前記状態判定手段で零点補正計測を開始すると前記流量演算手段より所定範囲内にはいる流量補正値を求める流量補正値設定手段と、前記遮断手段を開状態にする信号を出力する復帰手段と、前記流量積算手段で求めた流量積算値を表示すると共に前記流量補正値設定手段により求まった流量補正値を切替えて表示する表示手段と、前記復帰手段を所定時間操作により前記表示手段に零点表示に切替えさせる表示制御手段とからなる。
【0021】
そして器具使用中及び停止時のガス流量を流量検出手段で流速を検出し流量演算手段で流量換算しその流量値が異常な使用状態値かどうかを異常判定手段で監視しつつ、一方器具停止時の流量値が所定流量範囲内かどうかを零点判定手段で監視しており、異常判定手段でガス使用状態が異常と判定時遮断手段を駆動しガス供給を停止すると共に表示手段で異常表示し警告するが、又零点判定手段で所定範囲以外と判定されると状態判定手段では零点補正可能かどうかを判定し、異常判定手段で異常と判定し遮断手段を駆動している場合零点補正不可と判定し遅延し、ガス器具使用の異常状態が改善され通常状態に戻った時零点補正可能と判定し、零点補正値を計測開始し、器具停止時の流量値を流量検出手段で求め流量演算手段で換算し流量補正値設定手段に新補正値として記憶し、以後流量計測時流量演算手段で流量値を求め流量補正値設定手段に格納した新補正値で補正演算するが、以後流量計測時流量演算手段で流量値を求め流量補正値設定手段に格納した新補正値で補正演算し、その結果値で異常判定手段や零点判定手段で器具の安全使用状態かどうかを評価判定すると共に、求めた流量値で流量積算手段でガス使用量を積算し積算値を表示手段で表示すると共に、復帰手段でで零点補正した流量補正値を表示することが可能で、復帰手段を所定時間操作すると表示切替手段により流量積算手段で求めたガス使用量を表示する積算表示部に零点補正量である流量補正値を表示することが可能で、ガス事業者はガス遮断装置の状態を定量的に監視することができ、又ガス流量計測精度の維持管理が容易でメンテナンスの容易性が高まり使い勝手や信頼性や安全性が向上する。
【0022】
【実施例】
以下、本発明の第1、第2、第3、第4、第5、及び第6の実施例を図1、図2、図3、図4、図5、図6を参照して説明する。図1、図2、図3、図4、図5、図6において、図7と同一機能を有する構成要素に関しては同一番号を付した。
【0023】
(実施例1)
図1は本発明の第1の実施例のガス遮断装置で、14は流量検出手段で、都市ガス或いはLPG等のガス媒体の流路1に対向設置された上流側振動子2、下流側振動子3間で超音波信号を一方から他方に発信しその伝搬時間より使用ガスの流速を検出する。流量検出手段14の一例として次の様な方法がある。即ち流速検出手段14は、切替手段15と、送信手段16と、受信手段17と、繰返手段18と、伝搬時間計測手段19とからなる。送信手段16と受信手段17とは切替手段15に接続され、切替手段15はまず送信手段16を上流側振動子2に、受信手段17を下流側振動子3に接続し、次は送信手段16を下流側振動子3に、受信手段17を上流側振動子2に接続するというように交互に送信手段16と受信手段17の接続先を切り替える。繰返手段18は切替手段15により上流側振動子2に受信手段17を、一方下流側振動子3に送信手段16を接続された時、送信手段16から発信された超音波信号が上流側振動子2から流路1を経て更に下流側振動子3から受信手段17で受信されるが、この超音波信号の送信から受信迄を繰り返し行い、更に伝搬時間計測手段19でその間の信号伝搬時間を計測する動作を繰り返し行う。伝搬時間計測手段19は超音波信号の送信から受信までの時間を計測し累積する。次に切替手段15により下流側振動子3に受信手段17を、上流側振動子2に送信手段16が接続され、前述の動作を繰り返し行う。
【0024】
伝搬時間計測手段19は最初受信し求めた伝搬時間と、次に切替手段15により切り替えた後計測した信号伝搬時間とから伝搬時間差を求める。
【0025】
20は流量演算手段で、求めた伝搬時間、つまり流速値より使用している媒体量、即ちガス流量を流量を求める。21は異常判定手段で、流量演算手段20で求めたガス流量から異常なガス器具使用状態かどうかを判定する。例えばストーブ等の使用器具へガスを供給するホースが何らかの原因で外れた時、発生する異常な大流量を監視するための合計流量遮断値や、器具の通常使用する最大使用時間よりはるかに長く使用された場合に対応した使用時間の制限時間を規定した使用時間遮断テーブルが異常判定手段22に格納され、それに該当する異常がないか監視する。22は遮断手段で、異常判定手段21から異常と判定された時遮断信号が出力されガス流路1を遮断する。
【0026】
23は零点設定手段で、器具停止時の流量零を指定する流量範囲(例えば±1.5L/h等)を設定記憶する。24は零点判定手段で、零点設定手段23で設定した流量零状態に入ったか否かを監視する。25は状態判定手段で、零点判定手段24より器具停止状態で流量零指定流量範囲外にずれたか否かを通知する信号と異常判定手段221から異常状態か否かを示す信号とを判定し、流量零を再度計測するかどうかを判定する。遮断手段22が作動せず通常のガス使用可能状態で零点ズレを検出時、状態判定手段25は遮断手段22を閉じ、新流量補正値を計測しにいく。26は流量補正手段で、遮断手段22で流路1を閉じ流量検出手段14で流速を検出し流量演算手段20で求めた流量値を流量零時の流量補正値として記憶する。27は報知手段で、異常判定手段22でガスの使用状態が異常と判定し、遮断手段23を駆動した場合遮断状態や遮断内容を液晶表示素子等に表示すると共にガスの安全監視を行っているセンタに電話回線などで通報する。
【0027】
次に上記構成の動作を説明する。ガス遮断装置設置時、ガス器具の使用がない時流量検出手段14で検出した流速値より流量演算手段20で換算した流量値は零或いは所定流量範囲内(例えば±1.5L/h未満)である。流量零となるように予め流量補正値を計測し流量零或いは所定流量範囲内となるように流量補正値設定手段26に記憶格納させ、流量演算手段20で換算した流量値を流量補正値で補正している。ここでガスの未使用時とは例えば流量演算手段20でガス器具使用時その使用流量を登録するが、全く未登録の時器具の使用が無いと判定する。しかし長期的に使用するに従って種々の環境条件、温度や湿度等の影響により器具未使用時の流量値が流量零あるいは所定流量範囲内とならずあたかも何らかのガス器具を使用しているかの流量値を示し、零点設定手段23に設定された流量零状態或いは所定流量範囲(例えば±1.5L/h未満)より逸脱する。即ち予め求めていた流量補正値よりずれる場合がある。
【0028】
当初設定した流量補正値で流量演算手段20で換算した流量値は、器具使用時異常判定手段21で異常な使用をされていないか流量値かどうか監視している。
【0029】
ホースはずれのような大流量の生ガスが放出されているような流量検出時、遮断手段22を駆動し、ガス供給を停止する。報知手段27においてその遮断した異常内容をガス需要家や、ガス事業者に報知する。
【0030】
一方、器具停止状態で流路1に設置した流量検出手段14で流速検知し流量演算手段20で流量値に換算し零点判定手段24で所定流量範囲内の流量値として検出されていたのに、零点設定手段23で設定された所定範囲より逸脱する流量値が検出された時、流量零状態よりずれたと判定し、状態判定手段25では零点補正を行ってよいか判定する。即ち状態判定手段25は、零点判定手段23で零点ズレを検出したのを受け、異常判定手段21でガス器具使用の異常などがない通常ガス使用状態でのみ零点補正処理を行う。異常判定手段21より状態判定手段25へ異常状態信号が入っている場合、例えばホースはずれ等の異常と判定し遮断手段22駆動している場合、流路1の末端は開放状態である。又大気開放状態になれば、空気が逆流し配管内に都市ガスやLPガスと混合状態になる可能性がある。異常判定手段21で器具の異常使用判定により遮断した場合、流路1はこうした異常な状況であり、高精度の流量計測を行うための零点補正計測を異常判定手段21で異常判定後行うと異常な流速を検出し流量補正値として設定され、高精度計測できなくなる可能性がある。そこで異常判定手段21より異常判定した信号が状態判定手段25に入力された場合、零点判定手段24より零点ズレ状態と判定した信号が入力されていても、新流量補正値を計測する処理を遅延する。
【0031】
即ち、異常判定手段21が作動し、異常遮断状態や異常遮断状態からの復帰状態では零点補正計測処理を行わない。異常状態が解除され、通常のガス使用可能状態になってから状態判定手段25より零点補正計測開始信号が出力される。
【0032】
状態判定手段25より計測可能信号が遮断手段22に出力されると、遮断手段22は流路1を閉止し、ガス流量が流れない状態にして新流量補正値の計測、即ち零点補正計測を行う。流量値補正設定手段26は遮断手段22が駆動され流路1が遮断された状態で、流量検出手段19で流量計測し流量演算手段20で流量換算し、流量零状態より逸脱した流量信号を入力すると新しい流量補正値として記憶格納される。零点計測状態では、遮断手段22で流路1を閉じるので流量補正値は器具が使用されない、完全に流量がない状態で流量補正量が計測される。
【0033】
そしてこの記憶した流量補正値を用いて流量演算手段20で流量換算時に補正する。以降遮断手段26を駆動し流路1を開け通常通りガス器具が使用できる状態で、流速検出手段14で流速を検出し流量演算手段20で換算した流量値を流量補正値設定手段26に記憶した新流量補正値で補正(補正値の符号は±があり、加算補正又減算補正がある)する。結果、器具停止時の流量値は流量零或いは所定流量範囲内(流量零範囲と定義する)に入り、器具使用時も正確に流量計測ができる。流量補正値は流量零時の零点補正値(零点オフセット値)として更新され、常に流量零となるように調整される。ガス器具未使用時、ずれて検出された微少流量をあたかも器具が使用されていると間違ってガス使用量積算されたり、又ガスが漏れているとして間違って警告表示されることがなく極めて流量計測精度が向上し安全性、使い勝手が向上する。
【0034】
このようにしてガス遮断装置設置以降、自動的に流量零状態に調節するように最適な流量補正値を、異常判定手段21が作動したような状態ではなく通常のガスを使用する状態において正確に計測し記憶設定できるので、ガス器具使用状態の監視において間違って異常な大流量と誤判定し合計流量遮断としたり、又使用時間遮断の制限時間を決定する際のガス流量の計測を間違って行い異なる制限時間を設定されることなく正確に異常判定手段21でガスの使用状態を監視できる。
【0035】
(実施例2)
図2は本発明の第2の実施例のガス遮断装置である。図2において、図1、図3、図4、図5、図6及び図7と同一機能を有する構成要素には同一番号を付し説明は省略する。
【0036】
図2で、28は復帰手段で、異常手段21により遮断手段22が作動し、流路1が閉じられていた場合、復帰させるために操作すると遮断手段22へ開信号が出力される。29は復帰禁止手段で、通常復帰手段28より復帰信号が出力されると、遮断手段22へ出力するが、状態判定手段25により零点補正計測開始信号が出力され復帰禁止手段29に入力されると、零点補正計測中は復帰手段27からの復帰信号を受付禁止にし、遮断手段22へ出力しないようにする。即ち器具停止時の流量値を求めるため遮断手段22を駆動し流路1を閉じ、流速検出手段14により流速を検出し流量演算手段20で換算した流量値を新流量補正値として記憶設定する処理を実行中は流量計測精度に影響を与えないように、零点補正計測が終了する迄復帰禁止状態に保持している。
【0037】
次に上記構成の動作を説明する。ガス遮断装置設置時、ガス器具の使用がない時流量検出手段14で検出した流速値より流量演算手段20で換算した流量値は零或いは所定流量範囲内(例えば±1.5L/h未満)である。流量零となるように予め流量補正値を計測し流量零或いは所定流量範囲内となるように流量補正値設定手段26に記憶格納させ、流量演算手段20で換算した流量値を流量補正値で補正している。ここでガスの未使用時とは例えば流量演算手段20でガス器具使用時その使用流量を登録するが、全く未登録の時器具の使用が無いと判定する。
【0038】
しかし長期的に使用するに従って種々の環境条件、温度や湿度等の影響により器具未使用時の流量値が流量零あるいは所定流量範囲内とならずあたかも何らかのガス器具を使用しているかの流量値を示し、零点設定手段23に設定された流量零状態或いは所定流量範囲(例えば±1.5L/h未満)より逸脱する。即ち予め求めていた流量補正値よりずれる場合がある。
【0039】
当初設定した流量補正値で流量演算手段20で換算した流量値は、器具使用時異常判定手段21で異常な使用をされていないか流量値かどうか監視している。
【0040】
ホースはずれのような大流量の生ガスが放出されているような流量検出時、遮断手段22を駆動し、ガス供給を停止する。報知手段27においてその遮断した異常内容をガス需要家や、ガス事業者に報知する。ホースはずれ等の異常内容を改善し、復帰手段28を操作すると、通常復帰禁止手段29を介して遮断手段22を開状態にする。
【0041】
一方、器具停止状態で流路1に設置した流量検出手段14で流速検知し流量演算手段20で流量値に換算し零点判定手段24で所定流量範囲内の流量値として検出されていたのに、零点設定手段23で設定された所定範囲より逸脱する流量値が検出された時、流量零状態よりずれたと判定し、状態判定手段25では零点補正を行ってよいか判定する。即ち状態判定手段25は、零点判定手段23で零点ズレを検出したのを受け、異常判定手段21でガス器具使用の異常などがない通常ガス使用状態でのみ零点補正処理を行う。異常判定手段21より状態判定手段25へ異常状態信号が入っている場合、例えばホースはずれ等の異常と判定し遮断手段22駆動している場合、流路1の末端は開放状態で、空気が逆流し流路1内の都市ガスやLPガスと混合状態になる可能性がある。異常判定手段21で器具の異常使用判定により遮断した場合、流路1はこうした異常な状況であり、高精度の流量計測を行うための零点補正計測を異常判定手段21で異常判定後行うと異常な流速を検出し流量補正値として設定され、高精度計測できなくなる可能性がある。そこで異常判定手段21より異常判定した信号が状態判定手段25に入力された場合、零点判定手段24より零点ズレ状態と判定した信号が入力されていても、新流量補正値を計測する処理を遅延する。即ち、異常判定手段21が作動し、異常遮断状態や異常遮断状態からの復帰状態では零点補正計測処理を行わない。異常状態が解除され、通常のガス使用可能状態になってから状態判定手段25より零点補正計測開始信号が出力され、同時に復帰禁止手段29へ零点補正制御開始信号が出力される。
【0042】
状態判定手段25より計測可能信号が遮断手段22に出力されると、遮断手段22は流路1を閉止し、ガス流量が流れない状態にして新流量補正値の計測、即ち零点補正計測を行う。流量値補正設定手段26は遮断手段22が駆動され流路1が遮断された状態で、流量検出手段19で流量計測し流量演算手段20で流量換算し、流量零状態より逸脱した流量信号を入力すると新しい流量補正値として記憶格納される。零点計測状態では、遮断手段22で流路1を閉じるので流量補正値は器具が使用されない、完全に流量がない状態で流量補正量が計測される。
【0043】
この間、復帰手段28からの復帰信号は、復帰禁止手段29により受付禁止状態であり、遮断手段22は零点補正中は開かないように制御される。即ち流量補正値計測時、誤って復帰手段28を操作される可能性があり、誤って開けられると圧力変動が生じ異常な流量値となるが、その流量値を新零点補正値として計測すると流量計測精度が悪くなる為、こうした誤計測とならないように復帰禁止手段29で復帰信号を禁止している。
【0044】
そしてこの記憶した流量補正値を用いて流量演算手段20で流量換算時に補正する。以降遮断手段26を駆動し流路1を開け通常通りガス器具が使用できる状態で、流速検出手段14で流速を検出し流量演算手段20で換算した流量値を流量補正値設定手段26に記憶した新流量補正値で補正(補正値の符号は±があり、加算補正又減算補正がある)する。結果、器具停止時の流量値は流量零或いは所定流量範囲内(流量零範囲と定義する)に入り、器具使用時も正確に流量計測ができる。流量補正値は流量零時の零点補正値(零点オフセット値)として更新され、常に流量零となるように調整される。ガス器具未使用時、ずれて検出された微少流量をあたかも器具が使用されていると間違ってガス使用量積算されたり、又ガスが漏れているとして間違って警告表示されることがなく極めて流量計測精度が向上し安全性、使い勝手が向上する。
【0045】
このようにしてガス遮断装置設置以降、自動的に流量零状態に調節するように最適な流量補正値を、計測している最中に不意に誤って復帰手段28を操作され、ガス圧の変動を生じ、異常な流量値を零点補正として計測しないようにしており、結果正確に流量計測し記憶設定できるので、ガス器具使用状態の監視において間違って異常な大流量と誤判定し合計流量遮断としたり、又使用時間遮断の制限時間を決定する際のガス流量の計測を間違って行い異なる制限時間を設定されることなく正確に異常判定手段21でガスの使用状態を監視できる。
【0046】
(実施例3)
図3は本発明の第3の実施例のガス遮断装置である。図3において、図1、図2、図4、図5、図6及び図7と同一機能を有する構成要素には同一番号を付し説明は省略する。
【0047】
図3で、30は通信制御手段で、外部より設定器やガス事業者のセンタより通信電文により、ガス使用量や瞬時流量、あるいは異常手段21により遮断手段22が作動した内容を確認できると共に、零点補正要求を任意のタイミングで送り、通信制御手段30で受信すると、状態判定手段25へ零点補正制御信号を出力する。状態判定手段25は、定期的に零点判定手段24で流量零範囲ズレが生じているか確認しており、定期的なタイミングで零点補正制御信号を出力するが、通信制御手段からの要求電文を受信すると任意のタイミングで零点補正制御を開始する。ガス遮断装置組み立て時等、定期的に零点補正計測を確認し実施していては正確な流量計測及び異常判定手段21での正確な検査ができるまでに時間を要するが、通信制御要求電文により任意のタイミングで流量補正値計測を行うので、素早い検査を行えるようにしている。
【0048】
次に上記構成の動作を説明する。ガス遮断装置設置時、ガス器具の使用がない時流量検出手段14で検出した流速値より流量演算手段20で換算した流量値は零或いは所定流量範囲内(例えば±1.5L/h未満)である。流量零となるように予め流量補正値を計測し流量零或いは所定流量範囲内となるように流量補正値設定手段26に記憶格納させ、流量演算手段20で換算した流量値を流量補正値で補正している。ここでガスの未使用時とは例えば流量演算手段20でガス器具使用時その使用流量を登録するが、全く未登録の時器具の使用が無いと判定する。
【0049】
しかし長期的に使用するに従って種々の環境条件、温度や湿度等の影響により器具未使用時の流量値が流量零あるいは所定流量範囲内とならずあたかも何らかのガス器具を使用しているかの流量値を示し、零点設定手段23に設定された流量零状態或いは所定流量範囲(例えば±1.5L/h未満)より逸脱する。即ち予め求めていた流量補正値よりずれる場合がある。
【0050】
当初設定した流量補正値で流量演算手段20で換算した流量値は、器具使用時異常判定手段21で異常な使用をされていないか流量値かどうか監視している。
【0051】
ホースはずれのような大流量の生ガスが放出されているような流量検出時、遮断手段22を駆動し、ガス供給を停止する。報知手段27においてその遮断した異常内容をガス需要家や、ガス事業者に報知する。
【0052】
一方、器具停止状態で流路1に設置した流量検出手段14で流速検知し流量演算手段20で流量値に換算し零点判定手段24で所定流量範囲内の流量値として検出されていたのに、零点設定手段23で設定された所定範囲より逸脱する流量値が検出された時、流量零状態よりずれたと判定し、状態判定手段25では零点補正を行ってよいか判定する。即ち状態判定手段25は、零点判定手段23で零点ズレを検出したのを受け、異常判定手段21でガス器具使用の異常などがない通常ガス使用状態でのみ零点補正処理を行う。異常判定手段21より状態判定手段25へ異常状態信号が入っている場合、例えばホースはずれ等の異常と判定し遮断手段22駆動している場合、流路1の末端は開放状態で、空気が逆流し流路1内の都市ガスやLPガスと混合状態になる可能性がある。異常判定手段21で器具の異常使用判定により遮断した場合、流路1はこうした異常な状況であり、高精度の流量計測を行うための零点補正計測を異常判定手段21で異常判定後行うと異常な流速を検出し流量補正値として設定され、高精度計測できなくなる可能性がある。そこで異常判定手段21より異常判定した信号が状態判定手段25に入力された場合、零点判定手段24より零点ズレ状態と判定した信号が入力されていても、新流量補正値を計測する処理を遅延する。即ち、異常判定手段21が作動し、異常遮断状態や異常遮断状態からの復帰状態では零点補正計測処理を行わない。異常状態が解除され、通常のガス使用可能状態になってから状態判定手段25より零点補正計測開始信号が出力され、同時に復帰禁止手段29へ零点補正制御開始信号が出力される。
【0053】
状態判定手段25より計測可能信号が遮断手段22に出力されると、遮断手段22は流路1を閉止し、ガス流量が流れない状態にして新流量補正値の計測、即ち零点補正計測を行う。一方外部よりガス事業者が設定器等より、或いはガス事業者の保安センタより零点補正制御要求電文をガス遮断装置に送信し通信制御手段30で受信すると、状態制御手段25に零点補正制御開始の信号を出力する。
【0054】
定期的な零点判定手段24による零点補正開始要求のほかに、任意のタイミングでの新流量補正値計測要求を送り開始することができる。ガス遮断装置の組立て時の検査において随時異常判定や流量計測の検査を行う為、正確な流量補正値が必要であり、通信電文により即座に最適値を調べることができる。更に、漏洩事故などあり、正確な流量計測が必須であり、ガス遮断装置を含むガス供給設備の定期的な保守点検が必要であり、又水害などにあいガス遮断装置が水没などの被害を受け、機能そのものが影響がなかった場合、校正点検が必要であり、随時の即ち任意のタイミングでの零点補正値の確認ができ必要があったが、通信制御手段30によりこうした対応ができる。
【0055】
流量値補正設定手段26は遮断手段22が駆動され流路1が遮断された状態で、流量検出手段19で流量計測し流量演算手段20で流量換算し、流量零状態より逸脱した流量信号を入力すると新しい流量補正値として記憶格納される。零点計測状態では、遮断手段22で流路1を閉じるので流量補正値は器具が使用されない、完全に流量がない状態で流量補正量が計測される。
【0056】
そしてこの記憶した流量補正値を用いて流量演算手段20で流量換算時に補正する。以降遮断手段26を駆動し流路1を開け通常通りガス器具が使用できる状態で、流速検出手段14で流速を検出し流量演算手段20で換算した流量値を流量補正値設定手段26に記憶した新流量補正値で補正(補正値の符号は±があり、加算補正又減算補正がある)する。結果、器具停止時の流量値は流量零或いは所定流量範囲内(流量零範囲と定義する)に入り、器具使用時も正確に流量計測ができる。流量補正値は流量零時の零点補正値(零点オフセット値)として更新され、常に流量零となるように調整される。ガス器具未使用時、ずれて検出された微少流量をあたかも器具が使用されていると間違ってガス使用量積算されたり、又ガスが漏れているとして間違って警告表示されることがなく極めて流量計測精度が向上し安全性、使い勝手が向上する。
【0057】
このようにしてガス遮断装置設置以降、自動的に流量零状態に調節するように最適な流量補正値を、任意のタイミングで正確に流量計測し記憶設定できるので、ガス器具使用状態の監視において間違って異常な大流量と誤判定し合計流量遮断としたり、又使用時間遮断の制限時間を決定する際のガス流量の計測を間違って行い異なる制限時間を設定されることなく正確に異常判定手段21でガスの使用状態を監視でき、信頼性や安全性が向上している。
【0058】
(実施例4)
図4は本発明の第4の実施例のガス遮断装置である。図4において、図1、図2、図3、図5、図6及び図7と同一機能を有する構成要素には同一番号を付し説明は省略する。
【0059】
図4で、31は報知手段で、異常手段21によりガス器具の使用異常と判定し遮断手段22を作動した時、異常内容を警告表示されるが、一方通常状態において状態判定手段25により零点補正計測開始信号が出力されると、零点補正中である表示を行い、ガス需要家やガス事業者に流量補正値の校正中である内容を通知する。即ち零点補正は器具停止時に行うが、通常状態表示ではガス器具を使用可能と誤判断されるのを防いでいる。零点補正計測終了後は、零点補正中表示は消灯され通常のガス器具使用状態となる。
【0060】
次に上記構成の動作を説明する。ガス遮断装置設置時、ガス器具の使用がない時流量検出手段14で検出した流速値より流量演算手段20で換算した流量値は零或いは所定流量範囲内(例えば±1.5L/h未満)である。流量零となるように予め流量補正値を計測し流量零或いは所定流量範囲内となるように流量補正値設定手段26に記憶格納させ、流量演算手段20で換算した流量値を流量補正値で補正している。ここでガスの未使用時とは例えば流量演算手段20でガス器具使用時その使用流量を登録するが、全く未登録の時器具の使用が無いと判定する。しかし長期的に使用するに従って種々の環境条件、温度や湿度等の影響により器具未使用時の流量値が流量零あるいは所定流量範囲内とならずあたかも何らかのガス器具を使用しているかの流量値を示し、零点設定手段23に設定された流量零状態或いは所定流量範囲(例えば±1.5L/h未満)より逸脱する。即ち予め求めていた流量補正値よりずれる場合がある。
【0061】
当初設定した流量補正値で流量演算手段20で換算した流量値は、器具使用時異常判定手段21で異常な使用をされていないか流量値かどうか監視している。
【0062】
ホースはずれのような大流量の生ガスが放出されているような流量検出時、遮断手段22を駆動し、ガス供給を停止する。報知手段27においてその遮断した異常内容をガス需要家や、ガス事業者に報知する。
【0063】
一方、器具停止状態で流路1に設置した流量検出手段14で流速検知し流量演算手段20で流量値に換算し零点判定手段24で所定流量範囲内の流量値として検出されていたのに、零点設定手段23で設定された所定範囲より逸脱する流量値が検出された時、流量零状態よりずれたと判定し、状態判定手段25では零点補正を行ってよいか判定する。即ち状態判定手段25は、零点判定手段23で零点ズレを検出したのを受け、異常判定手段21でガス器具使用の異常などがない通常ガス使用状態でのみ零点補正処理を行う。異常判定手段21より状態判定手段25へ異常状態信号が入っている場合、例えばホースはずれ等の異常と判定し遮断手段22駆動している場合、流路1の末端は開放状態である。又大気開放状態になれば、空気が逆流し配管内に都市ガスやLPガスと混合状態になる可能性がある。異常判定手段21で器具の異常使用判定により遮断した場合、流路1はこうした異常な状況であり、高精度の流量計測を行うための零点補正計測を異常判定手段21で異常判定後行うと異常な流速を検出し流量補正値として設定され、高精度計測できなくなる可能性がある。そこで異常判定手段21より異常判定した信号が状態判定手段25に入力された場合、零点判定手段24より零点ズレ状態と判定した信号が入力されていても、新流量補正値を計測する処理を遅延する。
【0064】
即ち、異常判定手段21が作動し、異常遮断状態や異常遮断状態からの復帰状態では零点補正計測処理を行わない。異常状態が解除され、通常のガス使用可能状態になってから状態判定手段25より零点補正計測開始信号が出力される。同時に報知手段31で零点補正計測中である表示を開始し、ガス器具使用不可能状態である旨をガス需要家やガス事業者に通知する。又、電話回線などを通じてガス事業者に零点補正中であることと通知できるので、事業者側では設置されたガス遮断装置の校正回数等の管理が容易にでき装置自身のメンテナンス情報として活用できる。
【0065】
状態判定手段25より計測可能信号が遮断手段22に出力されると、遮断手段22は流路1を閉止し、ガス流量が流れない状態にして新流量補正値の計測、即ち零点補正計測を行う。流量値補正設定手段26は遮断手段22が駆動され流路1が遮断された状態で、流量検出手段19で流量計測し流量演算手段20で流量換算し、流量零状態より逸脱した流量信号を入力すると新しい流量補正値として記憶格納される。零点計測状態では、遮断手段22で流路1を閉じるので流量補正値は器具が使用されない、完全に流量がない状態で流量補正量が計測される。
【0066】
そしてこの記憶した流量補正値を用いて流量演算手段20で流量換算時に補正する。以降遮断手段26を駆動し流路1を開け通常通りガス器具が使用できる状態で、流速検出手段14で流速を検出し流量演算手段20で換算した流量値を流量補正値設定手段26に記憶した新流量補正値で補正(補正値の符号は±があり、加算補正又減算補正がある)する。結果、器具停止時の流量値は流量零或いは所定流量範囲内(流量零範囲と定義する)に入り、器具使用時も正確に流量計測ができる。流量補正値は流量零時の零点補正値(零点オフセット値)として更新され、常に流量零となるように調整される。ガス器具未使用時、ずれて検出された微少流量をあたかも器具が使用されていると間違ってガス使用量積算されたり、又ガスが漏れているとして間違って警告表示されることがなく極めて流量計測精度が向上し安全性、使い勝手が向上する。
【0067】
このようにしてガス遮断装置設置以降、自動的に流量零状態に調節するように最適な流量補正値を、異常判定手段21が作動したような状態ではなく通常のガスを使用する状態において正確に計測し記憶設定する際、報知手段31で零点補正中表示を行い、通常のガス器具使用可能状態ではないことを通知できるので、ガス需要家、ガス事業者はガス遮断装置の校正中であることを認識でき、遮断手段22が開動作しない等とあわてることなく、結果正しい新流量補正値が計測できガス器具使用状態の監視において間違って異常な大流量と誤判定し合計流量遮断としたり、又使用時間遮断の制限時間を決定する際のガス流量の計測を間違って行い異なる制限時間を設定されることなく正確に異常判定手段21でガスの使用状態を監視でき信頼性や安全性が向上している。
【0068】
(実施例5)
図5は本発明の第5の実施例のガス遮断装置である。図5において、図1、図2、図3、図4、図6及び図7と同一機能を有する構成要素には同一番号を付し説明は省略する。
【0069】
図5で、32は流量積算手段で、流量検出手段14で検出したガス器具のガス使用量を積算計測する。33は表示手段で、流量積算手段32でガス使用量を計測した内容を表示しガス事業者が毎月定期的に検針する為の積算表示手段33aと、異常手段21によりガス器具の使用異常と判定し遮断手段22を作動した時、異常内容を警告表示する部分と、状態判定手段25により零点補正計測開始信号が出力されると、零点補正中である表示を行う異常校正表示手段33bとからなる。積算表示手段33aは、ガス需要家やガス事業者にガス使用量を通知する為、7セグメントの数字桁表示である。
【0070】
次に上記構成の動作を説明する。ガス遮断装置設置時、ガス器具の使用がない時流量検出手段14で検出した流速値より流量演算手段20で換算した流量値は零或いは所定流量範囲内(例えば±1.5L/h未満)である。流量零となるように予め流量補正値を計測し流量零或いは所定流量範囲内となるように流量補正値設定手段26に記憶格納させ、流量演算手段20で換算した流量値を流量補正値で補正している。ここでガスの未使用時とは例えば流量演算手段20でガス器具使用時その使用流量を登録するが、全く未登録の時器具の使用が無いと判定する。
【0071】
しかし長期的に使用するに従って種々の環境条件、温度や湿度等の影響により器具未使用時の流量値が流量零あるいは所定流量範囲内とならずあたかも何らかのガス器具を使用しているかの流量値を示し、零点設定手段23に設定された流量零状態或いは所定流量範囲(例えば±1.5L/h未満)より逸脱する。即ち予め求めていた流量補正値よりずれる場合がある。
【0072】
当初設定した流量補正値で流量演算手段20で換算した流量値は、器具使用時異常判定手段21で異常な使用をされていないか流量値かどうか監視している。ホースはずれのような大流量の生ガスが放出されているような流量検出時、遮断手段22を駆動し、ガス供給を停止する。表示手段33においてその遮断した異常内容をガス需要家や、ガス事業者に報知する。又、流量演算手段20で求めたガス器具の使用流量を流量積算手段32で積算カウントする。更にガス需要家のガス使用量の累積積算値を表示手段33の積算表示手段33aに表示し、ガス事業者が定期的な検針チェックを行える。
【0073】
一方、器具停止状態で流路1に設置した流量検出手段14で流速検知し流量演算手段20で流量値に換算し零点判定手段24で所定流量範囲内の流量値として検出されていたのに、零点設定手段23で設定された所定範囲より逸脱する流量値が検出された時、流量零状態よりずれたと判定し、状態判定手段25では零点補正を行ってよいか判定する。即ち状態判定手段25は、零点判定手段23で零点ズレを検出したのを受け、異常判定手段21でガス器具使用の異常などがない通常ガス使用状態でのみ零点補正処理を行う。異常判定手段21より状態判定手段25へ異常状態信号が入っている場合、例えばホースはずれ等の異常と判定し遮断手段22駆動している場合、流路1の末端は開放状態である。又大気開放状態になれば、空気が逆流し配管内に都市ガスやLPガスと混合状態になる可能性がある。異常判定手段21で器具の異常使用判定により遮断した場合、流路1はこうした異常な状況であり、高精度の流量計測を行うための零点補正計測を異常判定手段21で異常判定後行うと異常な流速を検出し流量補正値として設定され、高精度計測できなくなる可能性がある。そこで異常判定手段21より異常判定した信号が状態判定手段25に入力された場合、零点判定手段24より零点ズレ状態と判定した信号が入力されていても、新流量補正値を計測する処理を遅延する。
【0074】
即ち、異常判定手段21が作動し、異常遮断状態や異常遮断状態からの復帰状態では零点補正計測処理を行わない。異常状態が解除され、通常のガス使用可能状態になってから状態判定手段25より零点補正計測開始信号が出力される。同時に表示手段33で零点補正計測中である表示を開始し、ガス器具使用不可能状態であり、流量補正値の校正中であることをガス需要家やガス事業者に通知する。
【0075】
即ち零点補正は器具停止時に行うが、通常状態表示ではガス器具を使用可能と誤判断されるのを防いでいる。零点補正計測終了後は、零点補正中表示は消灯され通常のガス器具使用状態となる。又、電話回線などを通じてガス事業者に零点補正中であることと通知できるので、事業者側では設置されたガス遮断装置の校正回数等の管理が容易にでき装置自身のメンテナンス情報として活用できる。
【0076】
状態判定手段25より計測可能信号が遮断手段22に出力されると、遮断手段22は流路1を閉止し、ガス流量が流れない状態にして新流量補正値の計測、即ち零点補正計測を行う。流量値補正設定手段26は遮断手段22が駆動され流路1が遮断された状態で、流量検出手段19で流量計測し流量演算手段20で流量換算し、流量零状態より逸脱した流量信号を入力すると新しい流量補正値として記憶格納される。零点計測状態では、遮断手段22で流路1を閉じるので流量補正値は器具が使用されない、完全に流量がない状態で流量補正量が計測される。
【0077】
ガス遮断装置のメンテナンスする場合、零点補正量の推移は重要な要素であり、外部より設定器や通信電文等により流量補正値を読み出したり、表示する必要があり、通信手段34に流量補正値要求が受信されると、表示手段33の積算表示手段33aに積算値表示を切替えて、流量補正値を表示する。この値よりガス事業者は設置したガス遮断装置の流量計測性能を監視することができる。その値の推移を記録監視していけば、特性の経時変化等の把握監視ができる。又外部より通信手段へ積算表示要求を送信し、受信すると通常通りの積算表示に戻る。
【0078】
この記憶した流量補正値を用いて流量演算手段20で流量換算時に補正する。
【0079】
以降遮断手段26を駆動し流路1を開け通常通りガス器具が使用できる状態で、流速検出手段14で流速を検出し流量演算手段20で換算した流量値を流量補正値設定手段26に記憶した新流量補正値で補正(補正値の符号は±があり、加算補正又減算補正がある)する。結果、器具停止時の流量値は流量零或いは所定流量範囲内(流量零範囲と定義する)に入り、器具使用時も正確に流量計測ができる。
【0080】
流量補正値は流量零時の零点補正値(零点オフセット値)として更新され、常に流量零となるように調整される。ガス器具未使用時、ずれて検出された微少流量をあたかも器具が使用されていると間違ってガス使用量積算されたり、又ガスが漏れているとして間違って警告表示されることがなく極めて流量計測精度が向上し安全性、使い勝手が向上する。
【0081】
このようにしてガス遮断装置設置以降、自動的に流量零状態に調節するように最適な流量補正値を、異常判定手段21が作動したような状態ではなく通常のガスを使用する状態において正確に計測し記憶設定すると共に、通信手段34により表示手段33で零点補正値表示を行えるので、ガス事業者はガス遮断装置の流量計測性能の校正内容やその計時変化状態を監視できるので、メンテナンス管理に役立ち、又異常流量検出時の解析にも役立ち、器具或いは設備異常かガス遮断装置の計測部の異常か等を判別でき、使い勝手、メンテナンス性や信頼性が向上している。
【0082】
(実施例6)
図6は本発明の第6の実施例のガス遮断装置である。図6において、図1、図2、図3、図4、図5及び図7と同一機能を有する構成要素には同一番号を付し説明は省略する。
【0083】
図6で、35は表示切替手段で、復帰手段28は異常判定手段21で異常検出時遮断状態にある遮断手段22を操作されると開状態へ制御するが、一方通常状態等において復帰手段28を所定時間操作されたのを計測すると、表示手段33の積算表示手段33aを零点補正値である流量補正値に表示切替制御する。表示手段33で、流量積算手段32でガス使用量を計測した内容を表示しガス事業者が毎月定期的に検針する為の積算表示手段33aと、異常手段21によりガス器具の使用異常と判定し遮断手段22を作動した時、異常内容を警告表示する部分と、状態判定手段25により零点補正計測開始信号が出力されると、零点補正中である表示を行う異常校正表示手段33bとがあり、積算表示手段33aは、ガス需要家やガス事業者にガス使用量を通知する為、7セグメントの数字桁表示である。
【0084】
次に上記構成の動作を説明する。ガス遮断装置設置時、ガス器具の使用がない時流量検出手段14で検出した流速値より流量演算手段20で換算した流量値は零或いは所定流量範囲内(例えば±1.5L/h未満)である。流量零となるように予め流量補正値を計測し流量零或いは所定流量範囲内となるように流量補正値設定手段26に記憶格納させ、流量演算手段20で換算した流量値を流量補正値で補正している。ここでガスの未使用時とは例えば流量演算手段20でガス器具使用時その使用流量を登録するが、全く未登録の時器具の使用が無いと判定する。
【0085】
しかし長期的に使用するに従って種々の環境条件、温度や湿度等の影響により器具未使用時の流量値が流量零あるいは所定流量範囲内とならずあたかも何らかのガス器具を使用しているかの流量値を示し、零点設定手段23に設定された流量零状態或いは所定流量範囲(例えば±1.5L/h未満)より逸脱する。即ち予め求めていた流量補正値よりずれる場合がある。
【0086】
当初設定した流量補正値で流量演算手段20で換算した流量値は、器具使用時異常判定手段21で異常な使用をされていないか流量値かどうか監視している。
【0087】
ホースはずれのような大流量の生ガスが放出されているような流量検出時、遮断手段22を駆動し、ガス供給を停止する。表示手段33においてその遮断した異常内容をガス需要家や、ガス事業者に報知する。ホースはずれ等の異常が改善された後、復帰手段28を操作すると遮断手段22開信号が出力され、流路1が開きガス供給可能状態となる。又、流量演算手段20で求めたガス器具の使用流量を流量積算手段32で積算カウントする。更にガス需要家のガス使用量の累積積算値を表示手段33の積算表示手段33aに表示し、ガス事業者が定期的な検針チェックを行える。
【0088】
一方、器具停止状態で流路1に設置した流量検出手段14で流速検知し流量演算手段20で流量値に換算し零点判定手段24で所定流量範囲内の流量値として検出されていたのに、零点設定手段23で設定された所定範囲より逸脱する流量値が検出された時、流量零状態よりずれたと判定し、状態判定手段25では零点補正を行ってよいか判定する。即ち状態判定手段25は、零点判定手段23で零点ズレを検出したのを受け、異常判定手段21でガス器具使用の異常などがない通常ガス使用状態でのみ零点補正処理を行う。異常判定手段21より状態判定手段25へ異常状態信号が入っている場合、例えばホースはずれ等の異常と判定し遮断手段22駆動している場合、流路1の末端は開放状態である。又大気開放状態になれば、空気が逆流し配管内に都市ガスやLPガスと混合状態になる可能性がある。異常判定手段21で器具の異常使用判定により遮断した場合、流路1はこうした異常な状況であり、高精度の流量計測を行うための零点補正計測を異常判定手段21で異常判定後行うと異常な流速を検出し流量補正値として設定され、高精度計測できなくなる可能性がある。そこで異常判定手段21より異常判定した信号が状態判定手段25に入力された場合、零点判定手段24より零点ズレ状態と判定した信号が入力されていても、新流量補正値を計測する処理を遅延する。
【0089】
即ち、異常判定手段21が作動し、異常遮断状態や異常遮断状態からの復帰状態では零点補正計測処理を行わない。異常状態が解除され、通常のガス使用可能状態になってから状態判定手段25より零点補正計測開始信号が出力される。同時に表示手段33で零点補正計測中である表示を開始し、ガス器具使用不可能状態であり、流量補正値の校正中であることをガス需要家やガス事業者に通知する。
【0090】
即ち零点補正は器具停止時に行うが、通常状態表示ではガス器具を使用可能と誤判断されるのを防いでいる。零点補正計測終了後は、零点補正中表示は消灯され通常のガス器具使用状態となる。又、電話回線などを通じてガス事業者に零点補正中であることと通知できるので、事業者側では設置されたガス遮断装置の校正回数等の管理が容易にでき装置自身のメンテナンス情報として活用できる。
【0091】
状態判定手段25より計測可能信号が遮断手段22に出力されると、遮断手段22は流路1を閉止し、ガス流量が流れない状態にして新流量補正値の計測、即ち零点補正計測を行う。流量値補正設定手段26は遮断手段22が駆動され流路1が遮断された状態で、流量検出手段19で流量計測し流量演算手段20で流量換算し、流量零状態より逸脱した流量信号を入力すると新しい流量補正値として記憶格納される。零点計測状態では、遮断手段22で流路1を閉じるので流量補正値は器具が使用されない、完全に流量がない状態で流量補正量が計測される。
【0092】
ガス遮断装置のメンテナンスする場合、零点補正量の推移は重要な要素であり、復帰手段28により設定器や通信電文等を介さずに流量補正値を読み出したり、表示する。ガス事業者が設定器やポータブルの通信手段等を現場へ持っていくのを忘れる場合があり、簡易的な方法で流量補正値を表示する必要がある。遮断手段22が作動していない状態で復帰手段28が操作され、表示切替手段35が所定時間操作されたのを検出すると、表示手段33の積算表示手段33aに積算値表示を切替えて、流量補正値を表示する。この実際の流量補正値よりガス事業者は設置したガス遮断装置の流量計測性能を監視することができる。その値の推移を記録監視していけば、特性の経時変化等の把握監視ができる。又所定時間復帰手段28への無操作状態を表示切替手段35が検出すると、通常通りの積算表示に戻る。
【0093】
この記憶した流量補正値を用いて流量演算手段20で流量換算時に補正する。
【0094】
以降遮断手段26を駆動し流路1を開け通常通りガス器具が使用できる状態で、流速検出手段14で流速を検出し流量演算手段20で換算した流量値を流量補正値設定手段26に記憶した新流量補正値で補正(補正値の符号は±があり、加算補正又減算補正がある)する。結果、器具停止時の流量値は流量零或いは所定流量範囲内(流量零範囲と定義する)に入り、器具使用時も正確に流量計測ができる。
【0095】
流量補正値は流量零時の零点補正値(零点オフセット値)として更新され、常に流量零となるように調整される。ガス器具未使用時、ずれて検出された微少流量をあたかも器具が使用されていると間違ってガス使用量積算されたり、又ガスが漏れているとして間違って警告表示されることがなく極めて流量計測精度が向上し安全性、使い勝手が向上する。
【0096】
このようにしてガス遮断装置設置以降、自動的に流量零状態に調節するように最適な流量補正値を、異常判定手段21が作動したような状態ではなく通常のガスを使用する状態において正確に計測し記憶設定すると共に、復帰手段28で所定操作されると表示手段33で零点補正値表示を行えるので、ガス事業者はガス遮断装置の流量計測性能の校正内容やその計時変化状態を監視できるので、メンテナンス管理に役立ち、又異常流量検出時の解析にも役立ち、器具或いは設備異常かガス遮断装置の計測部の異常か等を判別でき、使い勝手、メンテナンス性や信頼性が向上している。
【0097】
【発明の効果】
以上説明したように本発明の請求項1によれば、媒体内の流速を検出する流量検出手段と、媒体流路を遮断する遮断手段と、前記流量検出手段で検出した流速より流量に換算する流量演算手段と、前記流量検出手段の流量零範囲を設定する零点設定手段と、前記流量演算手段で求めた流量が前記零点設定手段で設定した流量零範囲を逸脱したか否かを判定する零点判定手段と、前記流量検出手段の出力信号より前記流量演算手段で求めた流量値が異常使用量か否かを判定し異常時前記遮断手段に遮断信号を出力する異常判定手段と、前記異常判定手段より前記遮断手段を駆動していない状態で前記零点判定手段より零点流量範囲逸脱との状態信号を出力している場合前記遮断手段に遮断信号を出力し零点補正計測を行う状態判定手段と、前記状態判定手段で零点補正計測を開始すると前記流量演算手段より所定範囲内にはいる流量補正値を求める流量補正値設定手段とを設けており、器具使用中及び停止時のガス流量を流量検出手段で流速を検出し流量演算手段で流量換算しその流量値が異常な使用状態値かどうかを異常判定手段で監視しつつ、一方器具停止時の流量値が所定流量範囲内かどうかを零点判定手段で監視しており、異常判定手段でガス使用状態が異常と判定時遮断手段を駆動しガス供給を停止するが、零点判定手段で所定範囲以外と判定されると状態判定手段では零点補正可能かどうかを判定し、異常判定手段で異常と判定し遮断手段を駆動している場合零点補正不可と判定し遅延し、ガス器具使用の異常状態が改善され通常状態に戻った時零点補正可能と判定し、零点補正値を計測開始し、器具停止時の流量値を流量検出手段で求め流量演算手段で換算し流量補正値設定手段に新補正値として記憶し、以後流量計測時流量演算手段で流量値を求め流量補正値設定手段に格納した新補正値で補正演算し、その結果値で異常判定手段や零点判定手段で評価判定するので、ガス圧低下状態やガス器具漏洩遮断した異常な状態で流量零時の補正値を求めないので、ガス流量計測精度が上がり、ガス器具の使用状態を正確な流量計測で監視でき信頼性や安全性が向上する。
【0098】
又説明したように本発明の請求項2によれば、媒体内の流速を検出する流量検出手段と、媒体流路を遮断する遮断手段と、前記流量検出手段で検出した流速より流量に換算する流量演算手段と、前記流量検出手段の流量零範囲を設定する零点設定手段と、前記流量演算手段で求めた流量が前記零点設定手段で設定した流量零範囲を逸脱したか否かを判定する零点判定手段と、前記流量検出手段の出力信号より前記流量演算手段で求めた流量値が異常使用量か否かを判定し異常時前記遮断手段に遮断信号を出力する異常判定手段と、前記異常判定手段より前記遮断手段を駆動していない状態で前記零点判定手段より零点流量範囲逸脱との状態信号を出力している場合前記遮断手段に遮断信号を出力し零点補正計測を行う状態判定手段と、前記状態判定手段で零点補正計測を開始すると前記流量演算手段より所定範囲内にはいる流量補正値を求める流量補正値設定手段と、前記遮断手段を開状態にする信号を出力する復帰手段と、前記状態判定手段により零点補正計測時前記復帰手段からの復帰信号を受付禁止にする復帰禁止手段とを設けており、器具使用中及び停止時のガス流量を流量検出手段で流速を検出し流量演算手段で流量換算しその流量値が異常な使用状態値かどうかを異常判定手段で監視しつつ、一方器具停止時の流量値が所定流量範囲内かどうかを零点判定手段で監視しており、異常判定手段でガス使用状態が異常と判定時遮断手段を駆動しガス供給を停止するが、零点判定手段で所定範囲以外と判定されると状態判定手段では零点補正可能かどうかを判定し、異常判定手段で異常と判定し遮断手段を駆動している場合零点補正不可と判定し遅延し、ガス器具使用の異常状態が改善され通常状態に戻った時零点補正可能と判定し、零点補正値を計測開始し、器具停止時の流量値を流量検出手段で求め流量演算手段で換算し流量補正値設定手段に新補正値として記憶し、以後流量計測時流量演算手段で流量値を求め流量補正値設定手段に格納した新補正値で補正演算し流量値を求めるが、状態判定手段により新流量補正値を求める零点計測中は遮断手段が作動し流路は閉止状態で、復帰禁止手段に零点計測中で復帰信号の受付禁止状態にしており、誤って復帰手段を操作されガスが流れ流量補正値を正しく計測できないということがないようにされており、ガス流量計測精度が上がり結果ガス器具の使用状態を正確な流量計測で監視でき信頼性や安全性が向上する。
【0099】
又説明したように本発明の請求項3によれば、媒体内の流速を検出する流量検出手段と、媒体流路を遮断する遮断手段と、前記流量検出手段で検出した流速より流量に換算する流量演算手段と、前記流量検出手段の流量零範囲を設定する零点設定手段と、前記流量演算手段で求めた流量が前記零点設定手段で設定した流量零範囲を逸脱したか否かを判定する零点判定手段と、前記流量検出手段の出力信号より前記流量演算手段で求めた流量値が異常使用量か否かを判定し異常時前記遮断手段に遮断信号を出力する異常判定手段と、前記異常判定手段より前記遮断手段を駆動していない状態で前記零点判定手段より零点流量範囲逸脱との状態信号を出力している場合前記遮断手段に遮断信号を出力し零点補正計測を行う状態判定手段と、外部より設定器や通信等により指示電文を受信し強制的に零点補正計測指示電文を受信すると前記状態判定手段に零点補正制御を開始させる通信制御手段と、前記状態判定手段より或いは前記通信手段より零点補正計測を開始すると前記流量演算手段より所定範囲内にはいる流量補正値を求める流量補正値設定手段とを設けており、器具使用中及び停止時のガス流量を流量検出手段で流速を検出し流量演算手段で流量換算しその流量値が異常な使用状態値かどうかを異常判定手段で監視しつつ、一方器具停止時の流量値が所定流量範囲内かどうかを零点判定手段で監視しており、異常判定手段でガス使用状態が異常と判定時遮断手段を駆動しガス供給を停止するが、零点判定手段で所定範囲以外と判定されると状態判定手段では零点補正可能かどうかを判定し、異常判定手段で異常と判定し遮断手段を駆動している場合零点補正不可と判定し遅延し、ガス器具使用の異常状態が改善され通常状態に戻った時零点補正可能と判定し、零点補正値を計測開始し、器具停止時の流量値を流量検出手段で求め流量演算手段で換算し流量補正値設定手段に新補正値として記憶し、以後流量計測時流量演算手段で流量値を求め流量補正値設定手段に格納した新補正値で補正演算し流量値を求めるが、一方外部より設定器やセンタ等より通信回線を介し零点補正計測開始指示を行う電文を通信制御手段が受信すると、状態判定手段により新流量補正値を求める零点計測制御開始指示を行うので、任意の時間帯にガス事業者が行うことができ、随時ガス流量計測精度を向上させることができ、結果ガス器具の使用状態を正確な流量計測で監視でき信頼性や安全性が向上する。
【0100】
又説明したように本発明の請求項4によれば、媒体内の流速を検出する流量検出手段と、媒体流路を遮断する遮断手段と、前記流量検出手段で検出した流速より流量に換算する流量演算手段と、前記流量検出手段の流量零範囲を設定する零点設定手段と、前記流量演算手段で求めた流量が前記零点設定手段で設定した流量零範囲を逸脱したか否かを判定する零点判定手段と、前記流量検出手段の出力信号より前記流量演算手段で求めた流量値が異常使用量か否かを判定し異常時前記遮断手段に遮断信号を出力する異常判定手段と、前記異常判定手段より前記遮断手段を駆動していない状態で前記零点判定手段より零点流量範囲逸脱との状態信号を出力している場合前記遮断手段に遮断信号を出力し零点補正計測を行う状態判定手段と、前記状態判定手段で零点補正計測を開始すると前記流量演算手段より所定範囲内にはいる流量補正値を求める流量補正値設定手段と、前記状態判定手段による零点補正開始となると零点補正中を示す表示を行う報知手段とを設けており、器具使用中及び停止時のガス流量を流量検出手段で流速を検出し流量演算手段で流量換算しその流量値が異常な使用状態値かどうかを異常判定手段で監視しつつ、一方器具停止時の流量値が所定流量範囲内かどうかを零点判定手段で監視しており、異常判定手段でガス使用状態が異常と判定時遮断手段を駆動しガス供給を停止すると共に異常表示し警告するが、又零点判定手段で所定範囲以外と判定されると状態判定手段では零点補正可能かどうかを判定し、異常判定手段で異常と判定し遮断手段を駆動している場合零点補正不可と判定し遅延し、ガス器具使用の異常状態が改善され通常状態に戻った時零点補正可能と判定し、零点補正値を計測開始し当時に報知手段で零点補正計測中表示を行い、器具停止時の流量値を流量検出手段で求め流量演算手段で換算し流量補正値設定手段に新補正値として記憶し、以後流量計測時流量演算手段で流量値を求め流量補正値設定手段に格納した新補正値で補正演算するが、異常状態とは異なる表示で零点補正中であることをガス需要家や点検にきたガス事業者に通知でき、ガス使用可能状態、ガス器具の異常使用状態を検知し遮断した状態とは別の流量計測の校正中を示す表示が報知手段でなされるので、一目でガス遮断装置の状況がわかり使い勝手が向上する効果がある。
【0101】
又説明したように本発明の請求項5によれば、媒体内の流速を検出する流量検出手段と、媒体流路を遮断する遮断手段と、前記流量検出手段で検出した流速より流量に換算する流量演算手段と、前記流量演算手段で求めた流量値を積算する流量積算手段と、前記流量検出手段の流量零範囲を設定する零点設定手段と、前記流量演算手段で求めた流量が前記零点設定手段で設定した流量零範囲を逸脱したか否かを判定する零点判定手段と、前記流量検出手段の出力信号より前記流量演算手段で求めた流量値が異常使用量か否かを判定し異常時前記遮断手段に遮断信号を出力する異常判定手段と、前記異常判定手段より前記遮断手段を駆動していない状態で前記零点判定手段より零点流量範囲逸脱との状態信号を出力している場合前記遮断手段に遮断信号を出力し零点補正計測を行う状態判定手段と、前記状態判定手段で零点補正計測を開始すると前記流量演算手段より所定範囲内にはいる流量補正値を求める流量補正値設定手段と、前記流量積算手段で求めた流量積算値を表示すると共に前記流量補正値設定手段により求まった流量補正値を切替えて表示する表示手段と、外部より設定器や通信等により指示電文を受信し零点補正表示電文を受信すると前記表示手段に零点表示に切替えさせる通信手段とを設けており、器具使用中及び停止時のガス流量を流量検出手段で流速を検出し流量演算手段で流量換算しその流量値が異常な使用状態値かどうかを異常判定手段で監視しつつ、一方器具停止時の流量値が所定流量範囲内かどうかを零点判定手段で監視しており、異常判定手段でガス使用状態が異常と判定時遮断手段を駆動しガス供給を停止すると共に表示手段で異常表示し警告するが、又零点判定手段で所定範囲以外と判定されると状態判定手段では零点補正可能かどうかを判定し、異常判定手段で異常と判定し遮断手段を駆動している場合零点補正不可と判定し遅延し、ガス器具使用の異常状態が改善され通常状態に戻った時零点補正可能と判定し、零点補正値を計測開始し、器具停止時の流量値を流量検出手段で求め流量演算手段で換算し流量補正値設定手段に新補正値として記憶し、以後流量計測時流量演算手段で流量値を求め流量補正値設定手段に格納した新補正値で補正演算するが、以後流量計測時流量演算手段で流量値を求め流量補正値設定手段に格納した新補正値で補正演算し、その結果値で異常判定手段や零点判定手段で器具の安全使用状態かどうかを評価判定すると共に、求めた流量値で流量積算手段でガス使用量を積算し積算値を表示手段で表示すると共に、通信で零点補正した流量補正値を表示することが可能で、表示切替要求の通信電文を通信手段で受信すると流量積算手段で求めたガス使用量を表示する積算表示部に零点補正量である流量補正値を表示することが可能で、ガス事業者はガス遮断装置の状態を定量的に監視することができ、又ガス流量計測精度の維持管理が容易でメンテナンスの容易性が高まり使い勝手や信頼性や安全性が向上する。
【0102】
又説明したように本発明の請求項6によれば、媒体内の流速を検出する流量検出手段と、媒体流路を遮断する遮断手段と、前記流量検出手段で検出した流速より流量に換算する流量演算手段と、前記流量演算手段で求めた流量値を積算する流量積算手段と、前記流量検出手段の流量零範囲を設定する零点設定手段と、前記流量演算手段で求めた流量が前記零点設定手段で設定した流量零範囲を逸脱したか否かを判定する零点判定手段と、前記流量検出手段の出力信号より前記流量演算手段で求めた流量値が異常使用量か否かを判定し異常時前記遮断手段に遮断信号を出力する異常判定手段と、前記異常判定手段より前記遮断手段を駆動していない状態で前記零点判定手段より零点流量範囲逸脱との状態信号を出力している場合前記遮断手段に遮断信号を出力し零点補正計測を行う状態判定手段と、前記状態判定手段で零点補正計測を開始すると前記流量演算手段より所定範囲内にはいる流量補正値を求める流量補正値設定手段と、前記遮断手段を開状態にする信号を出力する復帰手段と、前記流量積算手段で求めた流量積算値を表示すると共に前記流量補正値設定手段により求まった流量補正値を切替えて表示する表示手段と、前記復帰手段を所定時間操作により前記表示手段に零点表示に切替えさせる表示制御手段とを設けており、器具使用中及び停止時のガス流量を流量検出手段で流速を検出し流量演算手段で流量換算しその流量値が異常な使用状態値かどうかを異常判定手段で監視しつつ、一方器具停止時の流量値が所定流量範囲内かどうかを零点判定手段で監視しており、異常判定手段でガス使用状態が異常と判定時遮断手段を駆動しガス供給を停止すると共に表示手段で異常表示し警告するが、又零点判定手段で所定範囲以外と判定されると状態判定手段では零点補正可能かどうかを判定し、異常判定手段で異常と判定し遮断手段を駆動している場合零点補正不可と判定し遅延し、ガス器具使用の異常状態が改善され通常状態に戻った時零点補正可能と判定し、零点補正値を計測開始し、器具停止時の流量値を流量検出手段で求め流量演算手段で換算し流量補正値設定手段に新補正値として記憶し、以後流量計測時流量演算手段で流量値を求め流量補正値設定手段に格納した新補正値で補正演算するが、以後流量計測時流量演算手段で流量値を求め流量補正値設定手段に格納した新補正値で補正演算し、その結果値で異常判定手段や零点判定手段で器具の安全使用状態かどうかを評価判定すると共に、求めた流量値で流量積算手段でガス使用量を積算し積算値を表示手段で表示すると共に、復帰手段でで零点補正した流量補正値を表示することが可能で、復帰手段を所定時間操作すると表示切替手段により流量積算手段で求めたガス使用量を表示する積算表示部に零点補正量である流量補正値を表示することが可能で、ガス事業者はガス遮断装置の状態を定量的に監視することができ、又ガス流量計測精度の維持管理が容易でメンテナンスの容易性が高まり使い勝手や信頼性や安全性が向上する。
【図面の簡単な説明】
【図1】本発明の実施例1のガス遮断装置の制御ブロック図
【図2】本発明の実施例2のガス遮断装置の制御ブロック図
【図3】本発明の実施例3のガス遮断装置の制御ブロック図
【図4】本発明の実施例4のガス遮断装置の制御ブロック図
【図5】本発明の実施例5のガス遮断装置の制御ブロック図
【図6】本発明の実施例6のガス遮断装置の制御ブロック図
【図7】従来のガス遮断装置の制御ブロック図
【符号の説明】
14 流速検出手段
20 流量演算手段
21 異常判定手段
22 遮断手段
23 零点設定手段
24 零点判定手段
25 状態判定手段
26 流量補正手段
28 復帰手段
29 復帰禁止手段
30 通信制御手段
31 報知手段
32 流量積算手段
33 表示手段
34 通信手段
35 表示切替手段
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention detects the flow rate of various media flowing in a pipe using ultrasonic waves, for example, various city gas or LP gas, accurately measures the media usage, and determines whether the media usage and its use state are safe. It relates to a gas shutoff device to be monitored.
[0002]
[Prior art]
A conventional gas shut-off device of this type has a configuration shown in FIG. 7, for example, as shown in Patent Document 1. FIG. 7 shows a block diagram of a conventional gas shut-off device.
[0003]
In FIG. 7, reference numeral 1 denotes a fluid pipeline, and 2 denotes a first vibrator, which transmits and receives ultrasonic waves and is installed on the upstream side of the fluid pipeline 1. Reference numeral 3 denotes a second vibrator, which transmits and receives ultrasonic waves, and is attached to a downstream side of the fluid pipeline 1 so as to face the same. Reference numeral 4 denotes a transmission circuit, which transmits an ultrasonic signal to the first transducer 2, and reference numeral 5 denotes an amplification circuit, which amplifies a signal received by the second transducer 3. A comparison circuit 6 compares the amplified signal with a reference signal. Reference numeral 7 denotes a time measuring means for measuring the time from transmission of the ultrasonic wave to reception of the ultrasonic wave by a timer counter. Reference numeral 8 denotes a measuring circuit, which includes the transmitting circuit 4 to the timing means 7. Numeral 9 denotes a flow rate calculating means for obtaining a flow rate value in consideration of the size of the pipeline and the flow state in accordance with the ultrasonic wave propagation time by the time measuring means 7. Numeral 10 is a cycle variable means for changing the measurement cycle according to the value of the flow rate calculating means 9. Numeral 11 denotes a measurement start unit which adjusts a signal transmission timing to the transmission circuit according to the value of the cycle variable unit 10. Numeral 12 denotes a measurement end means for detecting the end of the operation of the flow rate operation means 9. Reference numeral 13 denotes a voltage control unit which lowers the voltage of the measurement circuit 8 in synchronization with the measurement end unit 13 and restores the voltage of the measurement circuit 8 in synchronization with the start of measurement by the measurement start unit 11.
[0004]
Next, the operation of the conventional configuration will be described. A burst signal is transmitted from the transmission circuit 4 from the measurement start means 11 in the fluid pipe 1 in which a medium gas such as city gas or LP gas flows, and the ultrasonic signal transmitted from the first vibrator 2 is , And received by the second vibrator 3, further subjected to signal processing by the amplifier circuit 5 and the comparison circuit 6, and the time from transmission to reception is measured by the timer 7. When the flow rate is large, it is necessary to increase the time sampling to reduce the error. When the flow rate is small or when the flow rate is zero, even if the measurement sampling is slowed down, almost no error occurs. Therefore, the measurement interval is changed according to the value of the flow rate calculating means 9. When the value of the flow rate calculating means 9 is small, the interval of the measuring time is increased by the time period variable means 10, and as the value of the flow rate calculating means 9 increases, the measuring time interval is reduced. Further, the voltage of the measurement circuit 8 is reduced between measurements. When the flow rate measurement is completed by the flow rate calculation means 9, a signal is sent to the measurement end means 12 and the voltage is reduced or set to zero by the voltage control means 13. Before the measurement is started by the measurement start means 11, the voltage of the measurement circuit 8 is restored by the voltage control means 13.
[0005]
[Patent Document 1]
JP-A-9-21667
[0006]
[Problems to be solved by the invention]
However, in the above-described conventional configuration, the flow rate value when the gas appliance is not used, that is, the flow rate is zero or the predetermined flow rate range is determined by the time change of the measuring circuit 8, the first vibrator 2, or the second vibrator 3 after the gas shut-off device is installed. It does not disclose a method in the case where the flow rate deviates from the range (the range is defined as zero flow rate) and how to obtain the flow rate.
[0007]
The present invention solves the above-mentioned problems, and in the case where there is no use of city gas or LPG gas after the installation of the gas shutoff device, that is, accurately measures the flow rate when the gas appliance is not used, and uses the gas medium usage amount and its use. It is an object of the present invention to provide a gas shut-off device for monitoring whether a state is safe.
[0008]
[Means for Solving the Problems]
In order to solve this problem, the present invention converts the flow rate detected by the flow rate detecting means into a flow rate by the flow rate calculating means, compares the zero flow rate range set by the zero point setting means with the obtained flow rate, and determines whether or not the flow rate deviates. The flow rate value obtained by the flow rate calculating means from the output signal of the flow rate detecting means is determined by the zero point determining means, and the abnormality determining means for outputting a shut-off signal to the shut-off means when abnormal use is performed, and in a state where the shut-off means is not operated. If the zero point determining means determines that the flow rate deviates from the zero point flow range, a shutoff signal is output to the shutoff means and the state determining means performs zero point correction measurement, a flow rate correction value falling within a predetermined range is obtained, and the stored flow rate correction value is stored. The flow rate correction value is stored in the flow rate correction value setting means so as to correct the flow rate converted in step (1).
[0009]
This makes it possible to accurately measure the gas flow rate when the gas appliance is not used after the gas shut-off device is installed, that is, the zero flow state, prevent the accidental determination that the gas appliance has been used, and prevent the accumulation of the gas appliance from being continued. Accurate usage can be measured and monitored to monitor the condition.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
The present invention, in order to achieve the above object, a flow rate detecting means for detecting the flow rate in the medium, a blocking means for blocking the medium flow path, and a flow rate calculating means for converting the flow rate detected by the flow rate detecting means into a flow rate, Zero point setting means for setting a flow rate zero range of the flow rate detecting means, zero point determining means for determining whether or not the flow rate obtained by the flow rate calculating means has deviated from the flow rate zero range set by the zero point setting means; Abnormality determining means for determining whether or not the flow rate value obtained by the flow rate calculating means is an abnormal use amount from an output signal of the flow rate detecting means and outputting a shutoff signal to the shutoff means in the event of an abnormality; and If the zero point determination means outputs a state signal indicating that the flow rate deviates from the zero point flow range in a state in which the zero point flow rate is not driven, a state determination means that outputs a shutoff signal to the shutoff means to perform zero point correction measurement, and the state determination means Comprising a flow rate correction value setting means for determining the flow rate correction value falls within a predetermined range from the flow rate calculating means to start the zero point correction measurement.
[0011]
The flow rate of the gas during the use and at the time of stoppage is detected by the flow rate detection means, the flow rate is converted by the flow rate calculation means, and the flow rate value is monitored by the abnormality determination means to determine whether the flow rate value is abnormal. The zero point determination means monitors whether the flow rate value is within the predetermined flow rate range, and the abnormality determination means drives the shut-off means when the gas use state is determined to be abnormal, and stops the gas supply. If it is determined to be other than zero, the state determination means determines whether the zero point can be corrected, and the abnormality determination means determines that it is abnormal. It is determined that zero point correction is possible when the condition returns to normal and the zero point correction value can be measured.Then, the flow rate value when the appliance is stopped is obtained by the flow rate detection means, converted by the flow rate calculation means, and newly corrected by the flow rate correction value setting means. Memorized as a value Thereafter, the flow rate is calculated by the flow rate calculation means at the time of flow rate measurement, the correction calculation is performed using the new correction value stored in the flow rate correction value setting means, and the result is evaluated and determined by the abnormality determination means or the zero point determination means. Since the correction value when the flow rate is zero is not obtained in the abnormal state where the leakage of the gas appliance is interrupted, the gas flow measurement accuracy is improved, and the use condition of the gas appliance can be monitored by accurate flow measurement, thereby improving reliability and safety.
[0012]
Furthermore, in order to achieve the above object, the present invention provides a flow rate detecting means for detecting a flow velocity in a medium, a shutoff means for shutting off a medium flow path, and a flow rate calculating means for converting the flow rate detected by the flow rate detecting means into a flow rate. Zero point setting means for setting a zero flow rate range of the flow rate detecting means, zero point determination means for determining whether or not the flow rate obtained by the flow rate calculation means has deviated from the zero flow rate range set by the zero point setting means, Abnormality determining means for determining whether or not the flow rate value obtained by the flow rate calculating means is an abnormal use amount from an output signal of the flow rate detecting means and outputting a shutoff signal to the shutoff means in the event of an abnormality; A state determination means for outputting a shutoff signal to the shutoff means to perform zero point correction measurement when the zero point determination means outputs a status signal indicating a deviation from the zero point flow range while the means is not driven; and A flow correction value setting means for obtaining a flow correction value falling within a predetermined range from the flow calculation means when the zero point correction measurement is started at the stage; a return means for outputting a signal for opening the shutoff means; Means for prohibiting reception of the return signal from the return means at the time of zero point correction measurement.
[0013]
The flow rate of the gas during the use and at the time of stoppage is detected by the flow rate detection means, the flow rate is converted by the flow rate calculation means, and the flow rate value is monitored by the abnormality determination means to determine whether the flow rate value is abnormal. The zero point determination means monitors whether the flow rate value is within the predetermined flow rate range, and the abnormality determination means drives the shut-off means when the gas use state is determined to be abnormal, and stops the gas supply. If it is determined to be other than zero, the state determination means determines whether the zero point can be corrected, and the abnormality determination means determines that it is abnormal. It is determined that zero point correction is possible when the condition returns to normal and the zero point correction value can be measured.Then, the flow rate value when the appliance is stopped is obtained by the flow rate detection means, converted by the flow rate calculation means, and newly corrected by the flow rate correction value setting means. Memorized as a value Thereafter, at the time of flow rate measurement, the flow rate value is obtained by the flow rate calculating means and the correction value is calculated by the new correction value stored in the flow rate correction value setting means to obtain the flow rate value. In operation, the flow path is closed, the return prohibition means is in the zero point measurement and the reception of the return signal is prohibited, so that the return means is not operated by mistake and the gas flows and the flow rate correction value can not be measured correctly. As a result, the accuracy of gas flow measurement is improved, and as a result, the use condition of gas appliances can be monitored with accurate flow measurement, thereby improving reliability and safety.
[0014]
Furthermore, in order to achieve the above object, the present invention provides a flow rate detecting means for detecting a flow velocity in a medium, a shutoff means for shutting off a medium flow path, and a flow rate calculating means for converting the flow rate detected by the flow rate detecting means into a flow rate. Zero point setting means for setting a zero flow rate range of the flow rate detecting means, zero point determination means for determining whether or not the flow rate obtained by the flow rate calculation means has deviated from the zero flow rate range set by the zero point setting means, Abnormality determining means for determining whether or not the flow rate value obtained by the flow rate calculating means is an abnormal use amount from an output signal of the flow rate detecting means and outputting a shutoff signal to the shutoff means in the event of an abnormality; In the case where the zero point determination means outputs a state signal indicating that the flow rate deviates from the zero point flow range in a state where the means is not driven, a state determination means for outputting a shutoff signal to the shutoff means and performing zero point correction measurement, and setting from outside. Communication control means for receiving the instruction message by communication or the like and forcibly receiving the zero point correction measurement instruction message, and causing the state determination means to start the zero point correction control; and performing zero point correction measurement from the state determination means or the communication means. When started, the flow rate correction value setting means for obtaining a flow rate correction value falling within a predetermined range from the flow rate calculation means.
[0015]
The flow rate of the gas during the use and at the time of stoppage is detected by the flow rate detection means, the flow rate is converted by the flow rate calculation means, and the flow rate value is monitored by the abnormality determination means to determine whether the flow rate value is abnormal. The zero point determination means monitors whether the flow rate value is within the predetermined flow rate range, and the abnormality determination means drives the shut-off means when the gas use state is determined to be abnormal, and stops the gas supply. If it is determined to be other than zero, the state determination means determines whether the zero point can be corrected, and the abnormality determination means determines that it is abnormal. It is determined that zero point correction is possible when the condition returns to normal and the zero point correction value can be measured.Then, the flow rate value when the appliance is stopped is obtained by the flow rate detection means, converted by the flow rate calculation means, and newly corrected by the flow rate correction value setting means. Memorized as a value After that, when measuring the flow rate, the flow rate value is calculated by the flow rate calculation means and the correction value is calculated by the new correction value stored in the flow rate correction value setting means, and the flow rate value is obtained. When the communication control means receives the telegram for giving an instruction, the state determination means gives a zero flow measurement control start instruction for obtaining a new flow rate correction value, so that the gas company can perform it at any time and the gas flow rate measurement accuracy can be adjusted as needed. As a result, the use condition of the gas appliance can be monitored by accurate flow measurement, thereby improving reliability and safety.
[0016]
Furthermore, in order to achieve the above object, the present invention provides a flow rate detecting means for detecting a flow velocity in a medium, a shutoff means for shutting off a medium flow path, and a flow rate calculating means for converting the flow rate detected by the flow rate detecting means into a flow rate. Zero point setting means for setting a zero flow rate range of the flow rate detecting means, zero point determination means for determining whether or not the flow rate obtained by the flow rate calculation means has deviated from the zero flow rate range set by the zero point setting means, Abnormality determining means for determining whether or not the flow rate value obtained by the flow rate calculating means is an abnormal use amount from an output signal of the flow rate detecting means and outputting a shutoff signal to the shutoff means in the event of an abnormality; A state determination means for outputting a shutoff signal to the shutoff means to perform zero point correction measurement when the zero point determination means outputs a status signal indicating a deviation from the zero point flow range while the means is not driven; and When the zero point correction measurement is started at the stage, a flow rate correction value setting means for obtaining a flow rate correction value falling within a predetermined range from the flow rate calculation means, and a notification indicating that the zero point correction is being performed when the zero point correction is started by the state determination means. Means.
[0017]
The flow rate of the gas during the use and at the time of stoppage is detected by the flow rate detection means, the flow rate is converted by the flow rate calculation means, and the flow rate value is monitored by the abnormality determination means to determine whether the flow rate value is abnormal. The zero point determination means monitors whether the flow rate value is within a predetermined flow rate range, and the abnormality determination means drives the cutoff means when the gas use state is determined to be abnormal, stops the gas supply, and displays an error warning. If the zero point determining means determines that the zero point is out of the predetermined range, the state determining means determines whether the zero point can be corrected, and the abnormality determining means determines that it is abnormal. When the abnormal state of gas appliance use is improved and it returns to the normal state, it is determined that zero point correction is possible, the zero point correction value is measured, and at that time, the zero point correction measurement is displayed by the notification means, and the flow rate value when the appliance is stopped is displayed. Flow rate detection means The calculated flow rate is converted by the calculated flow rate calculation means and stored as a new correction value in the flow rate correction value setting means. Thereafter, the flow rate value is calculated by the flow rate calculation means during flow rate measurement, and the correction value is calculated using the new correction value stored in the flow rate correction value setting means. It is possible to notify the gas customer and the gas company who came to the inspection that the zero correction is being performed with a display different from the state, and detect the gas usable state and abnormal use state of the gas appliance and measure the flow rate different from the state where the gas appliance was shut off Since the display indicating that calibration is in progress is made by the notification means, the status of the gas shut-off device can be known at a glance, and there is an effect that usability is improved.
[0018]
Furthermore, in order to achieve the above object, the present invention provides a flow rate detecting means for detecting a flow velocity in a medium, a shutoff means for shutting off a medium flow path, and a flow rate calculating means for converting the flow rate detected by the flow rate detecting means into a flow rate. A flow rate integrating means for integrating the flow rate values obtained by the flow rate calculating means, a zero point setting means for setting a zero flow rate range of the flow rate detecting means, and a flow rate obtained by the flow rate calculating means set by the zero point setting means. Zero point determining means for determining whether or not the flow rate has deviated from the zero range, and determining whether or not the flow rate value obtained by the flow rate calculating means from the output signal of the flow rate detecting means is an abnormal use amount, and determining whether or not the interrupting means is abnormal. Abnormality determining means for outputting a shut-off signal; and outputting a state signal indicating that the zero-point determining means deviates from the zero-point flow range in a state where the interrupting means is not driven by the abnormality determining means. And a flow rate correction value setting means for obtaining a flow rate correction value falling within a predetermined range from the flow rate calculating means when the state determination means starts the zero point correction measurement; and Display means for displaying the integrated flow rate value obtained by the means and switching and displaying the flow rate correction value obtained by the flow rate correction value setting means, and receiving an instruction message from an external device via a setting device or communication to receive a zero point correction display message. Communication means for causing the display means to switch to zero point display upon receipt.
[0019]
The flow rate of the gas during the use and at the time of stoppage is detected by the flow rate detection means, the flow rate is converted by the flow rate calculation means, and the flow rate value is monitored by the abnormality determination means to determine whether the flow rate value is abnormal. The zero point determination means monitors whether the flow rate value is within the predetermined flow rate range, and the abnormality determination means drives the shut-off means when the gas usage state is determined to be abnormal, stops the gas supply, and displays an abnormality on the display means to give a warning. However, if the zero point determining means determines that the zero point is out of the predetermined range, the state determining means determines whether or not the zero point can be corrected, and the abnormality determining means determines that there is an abnormality. When the abnormal state of gas appliance use is improved and it returns to the normal state, it is determined that the zero point correction is possible, the zero point correction value is measured, the flow rate value when the appliance is stopped is obtained by the flow rate detection means, and the flow rate calculation means is used. Converted flow rate It is stored in the positive value setting means as a new correction value, and thereafter the flow rate value is calculated by the flow rate calculating means at the time of flow measurement, and the correction value is calculated by the new correction value stored in the flow rate correction value setting means. The value is calculated and corrected using the new correction value stored in the flow rate correction value setting means.The result value is used to judge whether or not the appliance is in a safe use state by the abnormality determination means or zero point determination means, and the flow rate is determined by the obtained flow value. The gas usage is integrated by the integration means, and the integrated value is displayed on the display means, and the flow rate correction value with the zero point corrected by communication can be displayed. When the communication message of the display switching request is received by the communication means, the flow integration means It is possible to display the flow rate correction value, which is the zero point correction amount, on the integrated display unit that displays the gas usage amount obtained in the above.The gas company can monitor the state of the gas shutoff device quantitatively, and Flow measurement accuracy Maintenance management usability and reliability and safety can be improved growing ease of easy maintenance.
[0020]
Furthermore, in order to achieve the above object, the present invention provides a flow rate detecting means for detecting a flow velocity in a medium, a shutoff means for shutting off a medium flow path, and a flow rate calculating means for converting the flow rate detected by the flow rate detecting means into a flow rate. A flow rate integrating means for integrating the flow rate values obtained by the flow rate calculating means, a zero point setting means for setting a zero flow rate range of the flow rate detecting means, and a flow rate obtained by the flow rate calculating means set by the zero point setting means. Zero point determining means for determining whether or not the flow rate has deviated from the zero range, and determining whether or not the flow rate value obtained by the flow rate calculating means from the output signal of the flow rate detecting means is an abnormal use amount, and determining whether or not the interrupting means is abnormal. Abnormality determining means for outputting a shut-off signal; and outputting a state signal indicating that the zero-point determining means deviates from the zero-point flow range in a state where the interrupting means is not driven by the abnormality determining means. And a flow rate correction value setting means for obtaining a flow rate correction value falling within a predetermined range from the flow rate calculation means when the state determination means starts the zero point correction measurement, and the shut-off means. Return means for outputting a signal for opening the flow control means, display means for displaying the integrated flow value obtained by the flow integration means and switching and displaying the flow correction value obtained by the flow correction value setting means, Display control means for switching the means to the zero point display by operating the means for a predetermined time.
[0021]
The flow rate of the gas during the use and at the time of stoppage is detected by the flow rate detection means, the flow rate is converted by the flow rate calculation means, and the flow rate value is monitored by the abnormality determination means to determine whether the flow rate value is abnormal. The zero point determination means monitors whether the flow rate value is within the predetermined flow rate range, and the abnormality determination means drives the shut-off means when the gas usage state is determined to be abnormal, stops the gas supply, and displays an abnormality on the display means to give a warning. However, if the zero point determining means determines that the zero point is out of the predetermined range, the state determining means determines whether or not the zero point can be corrected, and the abnormality determining means determines that there is an abnormality. When the abnormal state of gas appliance use is improved and it returns to the normal state, it is determined that the zero point correction is possible, the zero point correction value is measured, the flow rate value when the appliance is stopped is obtained by the flow rate detection means, and the flow rate calculation means is used. Converted flow rate It is stored in the positive value setting means as a new correction value, and thereafter the flow rate value is calculated by the flow rate calculating means at the time of flow measurement, and the correction value is calculated by the new correction value stored in the flow rate correction value setting means. The value is calculated and corrected using the new correction value stored in the flow rate correction value setting means.The result value is used to judge whether or not the appliance is in a safe use state by the abnormality determination means or zero point determination means, and the flow rate is determined by the obtained flow value. The gas usage is integrated by the integrating means, the integrated value is displayed on the display means, and the flow rate correction value corrected to the zero point by the return means can be displayed. When the return means is operated for a predetermined time, the flow rate is integrated by the display switching means. It is possible to display the flow rate correction value, which is the zero point correction amount, on the integrated display section that displays the gas usage amount obtained by the means, and the gas company can quantitatively monitor the state of the gas shutoff device, and Gas flow Ease of maintenance is easy measuring accuracy maintenance is improved usability and reliability and safety increase.
[0022]
【Example】
Hereinafter, first, second, third, fourth, fifth, and sixth embodiments of the present invention will be described with reference to FIGS. 1, 2, 3, 4, 5, and 6. FIG. . 1, 2, 3, 4, 5, and 6, components having the same functions as those in FIG. 7 are denoted by the same reference numerals.
[0023]
(Example 1)
FIG. 1 shows a gas shut-off device according to a first embodiment of the present invention. Numeral 14 denotes a flow rate detecting means, which is an upstream vibrator 2 opposed to a flow path 1 of a gas medium such as city gas or LPG, and a downstream vibrator. An ultrasonic signal is transmitted from one element to another element, and the flow velocity of the used gas is detected from the propagation time. As an example of the flow rate detecting means 14, there is the following method. That is, the flow velocity detecting means 14 includes a switching means 15, a transmitting means 16, a receiving means 17, a repeating means 18, and a propagation time measuring means 19. The transmitting means 16 and the receiving means 17 are connected to the switching means 15, and the switching means 15 first connects the transmitting means 16 to the upstream vibrator 2, the receiving means 17 to the downstream vibrator 3, and then the transmitting means 16 Is connected to the downstream vibrator 3 and the receiving means 17 is connected to the upstream vibrator 2 so that the connection destinations of the transmitting means 16 and the receiving means 17 are alternately switched. When the receiving means 17 is connected to the upstream vibrator 2 by the switching means 15 and the transmitting means 16 is connected to the downstream vibrator 3 by the switching means 15, the ultrasonic signal transmitted from the transmitting means 16 receives the upstream vibration. The ultrasonic wave signal is received from the transducer 2 via the flow path 1 and further from the downstream transducer 3 by the receiving means 17. The transmission and reception of the ultrasonic signal are repeated, and the propagation time measuring means 19 determines the signal propagation time therebetween. Repeat the measurement operation. The propagation time measuring means 19 measures and accumulates the time from transmission to reception of the ultrasonic signal. Next, the receiving means 17 is connected to the downstream vibrator 3 and the transmitting means 16 is connected to the upstream vibrator 2 by the switching means 15, and the above operation is repeated.
[0024]
The propagation time measuring means 19 obtains a propagation time difference from the propagation time obtained first and the signal propagation time measured after switching by the switching means 15.
[0025]
Numeral 20 denotes a flow rate calculating means for obtaining the flow rate obtained from the obtained propagation time, that is, the flow rate value, that is, the amount of medium used, that is, the gas flow rate. Reference numeral 21 denotes an abnormality determination unit which determines whether or not the gas appliance is in an abnormal use state from the gas flow rate obtained by the flow rate calculation unit 20. For example, when the hose that supplies gas to the equipment used, such as a stove, comes off for any reason, the total flow cutoff value to monitor the abnormal large flow that occurs, or use for much longer than the maximum use time of normal use of the equipment The use time cut-off table defining the use time limit corresponding to the case is stored in the abnormality determination means 22 and monitored for the corresponding abnormality. Reference numeral 22 denotes a shut-off unit, which outputs a shut-off signal when the abnormality judging unit 21 judges that the gas flow is abnormal.
[0026]
Reference numeral 23 denotes a zero point setting means for setting and storing a flow rate range (for example, ± 1.5 L / h) for designating a zero flow rate when the appliance is stopped. Numeral 24 denotes a zero point judging means for monitoring whether or not the flow rate has become zero set by the zero point setting means 23. Numeral 25 is a state determination means, which determines from the zero point determination means 24 a signal notifying whether or not the flow rate is out of the zero flow rate specified range in the appliance stopped state and a signal indicating whether the state is abnormal from the abnormality determination means 221, It is determined whether to measure the flow rate zero again. When the zero point deviation is detected in a normal gas usable state without the shutoff means 22 being operated, the state determination means 25 closes the shutoff means 22 and starts measuring a new flow rate correction value. Reference numeral 26 denotes a flow rate correcting means, which closes the flow path 1 by the shut-off means 22, detects the flow velocity by the flow rate detecting means 14, and stores the flow rate value obtained by the flow rate calculating means 20 as a flow rate correction value when the flow rate is zero. Reference numeral 27 denotes a notification unit. When the use state of the gas is determined to be abnormal by the abnormality determination unit 22 and the shut-down unit 23 is driven, the cut-off state and the details of the cut-off are displayed on a liquid crystal display element and the like, and the safety of the gas is monitored. Report to the center by telephone line.
[0027]
Next, the operation of the above configuration will be described. When the gas shut-off device is installed, when the gas appliance is not used, the flow rate value converted by the flow rate calculating means 20 from the flow rate value detected by the flow rate detecting means 14 is zero or within a predetermined flow rate range (for example, less than ± 1.5 L / h). is there. The flow rate correction value is measured in advance so that the flow rate becomes zero, stored in the flow rate correction value setting means 26 so that the flow rate becomes zero or within a predetermined flow rate range, and the flow rate value converted by the flow rate calculation means 20 is corrected by the flow rate correction value. are doing. Here, when the gas is not used, for example, when the gas appliance is used, the used flow rate is registered by the flow rate calculating means 20, but when no gas is registered, it is determined that the appliance is not used. However, due to various environmental conditions, temperature, humidity, etc., the flow rate value when the equipment is not used does not fall to zero flow rate or within a predetermined flow rate range as long as it is used over a long period of time. The flow rate deviates from the zero flow rate state set in the zero point setting means 23 or a predetermined flow rate range (for example, less than ± 1.5 L / h). That is, the flow rate correction value may deviate from the flow rate correction value obtained in advance.
[0028]
The flow rate value converted by the flow rate calculation means 20 with the initially set flow rate correction value is monitored by the appliance use abnormality determination means 21 for abnormal use or whether the flow rate value is used.
[0029]
At the time of detecting a flow rate at which a large flow rate of raw gas is released, such as a hose disconnection, the shut-off means 22 is driven to stop the gas supply. The notifying means 27 notifies the gas user or gas company of the details of the interrupted abnormality.
[0030]
On the other hand, while the instrument was stopped, the flow rate was detected by the flow rate detecting means 14 installed in the flow path 1, converted to a flow rate value by the flow rate calculating means 20, and detected as a flow rate value within a predetermined flow rate range by the zero point determining means 24. When a flow rate value deviating from the predetermined range set by the zero point setting means 23 is detected, it is determined that the flow rate has deviated from the zero flow state, and the state determination means 25 determines whether zero point correction may be performed. That is, the state determination means 25 receives the detection of the zero point deviation by the zero point determination means 23, and performs the zero point correction processing only in the normal gas use state where there is no abnormality in the use of the gas appliance by the abnormality determination means 21. When an abnormal condition signal is input from the abnormal condition judging device 21 to the state judging device 25, for example, when it is judged that the hose is out of order and the shut-off device 22 is driven, the end of the flow path 1 is open. Further, if the air is released to the atmosphere, the air may flow backward and become mixed with the city gas and the LP gas in the piping. The flow path 1 is in such an abnormal state when the abnormality is determined by the abnormality determining means 21 due to the abnormal use determination of the appliance. The flow rate may be detected and set as a flow rate correction value, and high-precision measurement may not be performed. Therefore, when a signal determined to be abnormal by the abnormality determination unit 21 is input to the state determination unit 25, the process of measuring the new flow rate correction value is delayed even if a signal determined to be in the zero point deviation state is input from the zero point determination unit 24. I do.
[0031]
That is, the abnormality determination means 21 operates, and the zero point correction measurement process is not performed in the abnormal shut-off state or the return state from the abnormal shut-off state. After the abnormal state is released and the gas becomes available, the state determination means 25 outputs a zero-point correction measurement start signal.
[0032]
When a measurable signal is output from the state determination unit 25 to the shut-off unit 22, the shut-off unit 22 closes the flow path 1 and sets a state in which the gas flow does not flow, and performs measurement of a new flow rate correction value, that is, zero point correction measurement. . The flow rate correction setting means 26 measures the flow rate by the flow rate detecting means 19, converts the flow rate by the flow rate calculating means 20, and inputs a flow rate signal deviating from the zero flow rate state in a state where the shutoff means 22 is driven and the flow path 1 is shut off. Then, it is stored and stored as a new flow rate correction value. In the zero point measurement state, since the flow path 1 is closed by the shut-off means 22, the flow rate correction value is measured in a state in which no instrument is used and the flow rate is completely non-existent.
[0033]
Using the stored flow rate correction value, the flow rate calculating means 20 corrects the flow rate when converting the flow rate. After that, the flow rate value detected by the flow rate detecting means 14 and converted by the flow rate calculating means 20 was stored in the flow rate correction value setting means 26 in a state where the shutoff means 26 was driven to open the flow path 1 and the gas appliance could be used as usual. Correction is made with the new flow rate correction value (the correction value has a sign ± and there is addition correction or subtraction correction). As a result, the flow rate value when the appliance is stopped is zero flow or within a predetermined flow range (defined as a zero flow range), and the flow rate can be measured accurately even when the appliance is used. The flow rate correction value is updated as a zero point correction value (zero point offset value) when the flow rate is zero, and is adjusted so that the flow rate always becomes zero. When a gas appliance is not used, a very small flow rate that is detected as a deviation is measured as if the appliance is being used, without incorrectly accumulating the amount of gas used or a warning is displayed incorrectly as a leaking gas. Accuracy is improved, and safety and usability are improved.
[0034]
In this way, after the gas shut-off device is installed, the optimum flow rate correction value for automatically adjusting the flow rate to the zero state is accurately set in a state where the normal gas is used, not in a state where the abnormality determination means 21 is operated. Since it can be measured and stored, it is possible to mistakenly judge it as an abnormal large flow rate when monitoring the use status of gas appliances and to shut off the total flow rate, or incorrectly measure the gas flow rate when determining the time limit for shutting off the use time. The gas use state can be accurately monitored by the abnormality determination means 21 without setting different time limits.
[0035]
(Example 2)
FIG. 2 shows a gas shut-off device according to a second embodiment of the present invention. In FIG. 2, components having the same functions as those in FIGS. 1, 3, 4, 5, 6, and 7 are denoted by the same reference numerals, and description thereof is omitted.
[0036]
In FIG. 2, reference numeral 28 denotes a return means. When the shut-off means 22 is operated by the abnormality means 21 and the flow path 1 is closed, when an operation is performed to return the flow path 1, an open signal is output to the cut-off means 22. Reference numeral 29 denotes a return prohibiting means. When a return signal is output from the normal return means 28, the signal is output to the interrupting means 22. However, when a zero point correction measurement start signal is output by the state determining means 25 and input to the return prohibiting means 29, During the zero-point correction measurement, the reception of the return signal from the return means 27 is prohibited, and is not output to the cutoff means 22. That is, the process of driving the shutoff means 22 to obtain the flow rate value when the appliance is stopped, closing the flow path 1, detecting the flow velocity by the flow velocity detection means 14, and storing and setting the flow rate value converted by the flow rate calculation means 20 as a new flow rate correction value. During execution of, the return-to-return prohibition state is maintained until the zero point correction measurement is completed so as not to affect the flow rate measurement accuracy.
[0037]
Next, the operation of the above configuration will be described. When the gas shut-off device is installed, when the gas appliance is not used, the flow rate value converted by the flow rate calculating means 20 from the flow rate value detected by the flow rate detecting means 14 is zero or within a predetermined flow rate range (for example, less than ± 1.5 L / h). is there. The flow rate correction value is measured in advance so that the flow rate becomes zero, stored in the flow rate correction value setting means 26 so that the flow rate becomes zero or within a predetermined flow rate range, and the flow rate value converted by the flow rate calculation means 20 is corrected by the flow rate correction value. are doing. Here, when the gas is not used, for example, when the gas appliance is used, the used flow rate is registered by the flow rate calculating means 20, but when no gas is registered, it is determined that the appliance is not used.
[0038]
However, due to various environmental conditions, temperature, humidity, etc., the flow rate value when the equipment is not used does not fall to zero flow rate or within a predetermined flow rate range as long as it is used over a long period of time. The flow rate deviates from the zero flow rate state set in the zero point setting means 23 or a predetermined flow rate range (for example, less than ± 1.5 L / h). That is, the flow rate correction value may deviate from the flow rate correction value obtained in advance.
[0039]
The flow rate value converted by the flow rate calculation means 20 with the initially set flow rate correction value is monitored by the appliance use abnormality determination means 21 for abnormal use or whether the flow rate value is used.
[0040]
At the time of detecting a flow rate at which a large flow rate of raw gas is released, such as a hose disconnection, the shut-off means 22 is driven to stop the gas supply. The notifying means 27 notifies the gas user or gas company of the details of the interrupted abnormality. When the content of an abnormality such as a hose slippage is improved and the return means 28 is operated, the shut-off means 22 is opened via the normal return prohibition means 29.
[0041]
On the other hand, while the instrument was stopped, the flow rate was detected by the flow rate detecting means 14 installed in the flow path 1, converted to a flow rate value by the flow rate calculating means 20, and detected as a flow rate value within a predetermined flow rate range by the zero point determining means 24. When a flow rate value deviating from the predetermined range set by the zero point setting means 23 is detected, it is determined that the flow rate has deviated from the zero flow state, and the state determination means 25 determines whether zero point correction may be performed. That is, the state determination means 25 receives the detection of the zero point deviation by the zero point determination means 23, and performs the zero point correction processing only in the normal gas use state where there is no abnormality in the use of the gas appliance by the abnormality determination means 21. When an abnormal condition signal is input from the abnormal condition judging device 21 to the state judging device 25, for example, when it is judged that an abnormality such as a hose disconnection occurs and the shut-off device 22 is driven, the end of the flow path 1 is open and air flows backward. There is a possibility that the mixed gas with the city gas and the LP gas in the flow path 1 will be mixed. The flow path 1 is in such an abnormal state when the abnormality is determined by the abnormality determining means 21 due to the abnormal use determination of the appliance. The flow rate may be detected and set as a flow rate correction value, and high-precision measurement may not be performed. Therefore, when a signal determined to be abnormal by the abnormality determination unit 21 is input to the state determination unit 25, the process of measuring the new flow rate correction value is delayed even if a signal determined to be in the zero point deviation state is input from the zero point determination unit 24. I do. That is, the abnormality determination means 21 operates, and the zero point correction measurement process is not performed in the abnormal shut-off state or the return state from the abnormal shut-off state. After the abnormal state is released and a normal gas usable state is established, a zero point correction measurement start signal is output from the state determination means 25 and a zero point correction control start signal is output to the return inhibition means 29 at the same time.
[0042]
When a measurable signal is output from the state determination unit 25 to the shut-off unit 22, the shut-off unit 22 closes the flow path 1 and sets a state in which the gas flow does not flow, and performs measurement of a new flow rate correction value, that is, zero point correction measurement. . The flow rate correction setting means 26 measures the flow rate by the flow rate detecting means 19, converts the flow rate by the flow rate calculating means 20, and inputs a flow rate signal deviating from the zero flow rate state in a state where the shutoff means 22 is driven and the flow path 1 is shut off. Then, it is stored and stored as a new flow rate correction value. In the zero point measurement state, since the flow path 1 is closed by the shut-off means 22, the flow rate correction value is measured in a state in which no instrument is used and the flow rate is completely non-existent.
[0043]
During this time, the return signal from the return means 28 is prohibited from being received by the return prohibition means 29, and the cutoff means 22 is controlled so as not to open during zero point correction. That is, when the flow rate correction value is measured, there is a possibility that the resetting means 28 may be erroneously operated, and if it is opened erroneously, a pressure fluctuation occurs and an abnormal flow rate value is obtained. Since the measurement accuracy is degraded, the return prohibiting means 29 prohibits the return signal to prevent such erroneous measurement.
[0044]
Using the stored flow rate correction value, the flow rate calculating means 20 corrects the flow rate when converting the flow rate. After that, the flow rate value detected by the flow rate detecting means 14 and converted by the flow rate calculating means 20 was stored in the flow rate correction value setting means 26 in a state where the shutoff means 26 was driven to open the flow path 1 and the gas appliance could be used as usual. Correction is made with the new flow rate correction value (the correction value has a sign ± and there is addition correction or subtraction correction). As a result, the flow rate value when the appliance is stopped is zero flow or within a predetermined flow range (defined as a zero flow range), and the flow rate can be measured accurately even when the appliance is used. The flow rate correction value is updated as a zero point correction value (zero point offset value) when the flow rate is zero, and is adjusted so that the flow rate always becomes zero. When a gas appliance is not used, a very small flow rate that is detected as a deviation is measured as if the appliance is being used, without incorrectly accumulating the amount of gas used or a warning is displayed incorrectly as a leaking gas. Accuracy is improved, and safety and usability are improved.
[0045]
In this way, after the gas shut-off device is installed, the recovery means 28 is accidentally operated by mistake during the measurement of the optimum flow rate correction value so as to automatically adjust the flow rate to the zero state, and the fluctuation of the gas pressure. The abnormal flow value is not measured as zero point correction, and the flow rate can be accurately measured and stored. In addition, the gas use state can be accurately monitored by the abnormality determination means 21 without incorrectly measuring the gas flow rate when determining the time limit for shutting off the use time and setting a different time limit.
[0046]
(Example 3)
FIG. 3 shows a gas shut-off device according to a third embodiment of the present invention. 3, components having the same functions as those in FIGS. 1, 2, 4, 5, 6, and 7 are denoted by the same reference numerals, and description thereof is omitted.
[0047]
In FIG. 3, reference numeral 30 denotes a communication control means, which can confirm the gas usage and the instantaneous flow rate, or the content of the operation of the shut-off means 22 by the abnormality means 21 by a communication message from a setter or a gas company center from the outside, and When a zero point correction request is sent at an arbitrary timing and received by the communication control means 30, a zero point correction control signal is output to the state determination means 25. The state determination means 25 periodically checks whether or not the zero flow rate deviation has occurred in the zero point determination means 24, and outputs a zero point correction control signal at a regular timing, but receives a request message from the communication control means. Then, zero point correction control is started at an arbitrary timing. If the zero-point correction measurement is regularly checked and performed, such as when assembling the gas shut-off device, it takes time for accurate flow rate measurement and accurate inspection by the abnormality determination means 21 to be performed. Since the flow rate correction value is measured at the timing of, quick inspection can be performed.
[0048]
Next, the operation of the above configuration will be described. When the gas shut-off device is installed, when the gas appliance is not used, the flow rate value converted by the flow rate calculating means 20 from the flow rate value detected by the flow rate detecting means 14 is zero or within a predetermined flow rate range (for example, less than ± 1.5 L / h). is there. The flow rate correction value is measured in advance so that the flow rate becomes zero, stored in the flow rate correction value setting means 26 so that the flow rate becomes zero or within a predetermined flow rate range, and the flow rate value converted by the flow rate calculation means 20 is corrected by the flow rate correction value. are doing. Here, when the gas is not used, for example, when the gas appliance is used, the used flow rate is registered by the flow rate calculating means 20, but it is determined that the appliance is not used when the gas appliance is not registered at all.
[0049]
However, due to various environmental conditions, temperature, humidity, etc., the flow rate value when the equipment is not used does not fall to zero flow rate or within a predetermined flow rate range as long as it is used over a long period of time. The flow rate deviates from the zero flow rate state set in the zero point setting means 23 or a predetermined flow rate range (for example, less than ± 1.5 L / h). That is, the flow rate correction value may deviate from the flow rate correction value obtained in advance.
[0050]
The flow rate value converted by the flow rate calculation means 20 with the initially set flow rate correction value is monitored by the appliance use abnormality determination means 21 for abnormal use or whether the flow rate value is used.
[0051]
At the time of detecting a flow rate at which a large flow rate of raw gas is released, such as a hose disconnection, the shut-off means 22 is driven to stop the gas supply. The notifying means 27 notifies the gas user or gas company of the details of the interrupted abnormality.
[0052]
On the other hand, while the instrument was stopped, the flow rate was detected by the flow rate detecting means 14 installed in the flow path 1, converted to a flow rate value by the flow rate calculating means 20, and detected as a flow rate value within a predetermined flow rate range by the zero point determining means 24. When a flow rate value deviating from the predetermined range set by the zero point setting means 23 is detected, it is determined that the flow rate has deviated from the zero flow state, and the state determination means 25 determines whether zero point correction may be performed. That is, the state determination means 25 receives the detection of the zero point deviation by the zero point determination means 23, and performs the zero point correction processing only in the normal gas use state where there is no abnormality in the use of the gas appliance by the abnormality determination means 21. When an abnormal condition signal is input from the abnormal condition judging device 21 to the state judging device 25, for example, when it is judged that an abnormality such as a hose disconnection occurs and the shut-off device 22 is driven, the end of the flow path 1 is open and air flows backward. There is a possibility that the mixed gas with the city gas and the LP gas in the flow path 1 will be mixed. The flow path 1 is in such an abnormal state when the abnormality is determined by the abnormality determining means 21 due to the abnormal use determination of the appliance. The flow rate may be detected and set as a flow rate correction value, and high-precision measurement may not be performed. Therefore, when a signal determined to be abnormal by the abnormality determination unit 21 is input to the state determination unit 25, the process of measuring the new flow rate correction value is delayed even if a signal determined to be in the zero point deviation state is input from the zero point determination unit 24. I do. That is, the abnormality determination means 21 operates, and the zero point correction measurement process is not performed in the abnormal shut-off state or the return state from the abnormal shut-off state. After the abnormal state is released and a normal gas usable state is established, a zero point correction measurement start signal is output from the state determination means 25 and a zero point correction control start signal is output to the return inhibition means 29 at the same time.
[0053]
When a measurable signal is output from the state determination unit 25 to the shut-off unit 22, the shut-off unit 22 closes the flow path 1 and sets a state in which the gas flow does not flow, and performs measurement of a new flow rate correction value, that is, zero point correction measurement. . On the other hand, when the gas company externally sends a zero-point correction control request message from the setting device or the like or from the security center of the gas company to the gas cutoff device and receives it by the communication control means 30, the state control means 25 starts the zero-point correction control. Output a signal.
[0054]
In addition to the zero point correction start request by the zero point determination means 24 periodically, a new flow rate correction value measurement request at an arbitrary timing can be started to be sent. In the inspection at the time of assembling the gas shut-off device, an abnormality determination and an inspection of the flow measurement are performed at any time. Therefore, an accurate flow correction value is required, and the optimum value can be immediately checked by a communication message. In addition, there are leaks, etc., and accurate flow measurement is indispensable.Periodic maintenance and inspection of gas supply equipment including gas shutoff devices is required. If the function itself has no influence, it is necessary to perform a calibration check, and it is necessary to confirm the zero point correction value at any time, that is, at an arbitrary timing.
[0055]
The flow rate correction setting means 26 measures the flow rate by the flow rate detecting means 19, converts the flow rate by the flow rate calculating means 20, and inputs a flow rate signal deviating from the zero flow rate state in a state where the shutoff means 22 is driven and the flow path 1 is shut off. Then, it is stored and stored as a new flow rate correction value. In the zero point measurement state, since the flow path 1 is closed by the shut-off means 22, the flow rate correction value is measured in a state in which no instrument is used and the flow rate is completely non-existent.
[0056]
Using the stored flow rate correction value, the flow rate calculating means 20 corrects the flow rate when converting the flow rate. After that, the flow rate value detected by the flow rate detecting means 14 and converted by the flow rate calculating means 20 was stored in the flow rate correction value setting means 26 in a state where the shutoff means 26 was driven to open the flow path 1 and the gas appliance could be used as usual. Correction is made with the new flow rate correction value (the correction value has a sign ± and there is addition correction or subtraction correction). As a result, the flow rate value when the appliance is stopped is zero flow or within a predetermined flow range (defined as a zero flow range), and the flow rate can be measured accurately even when the appliance is used. The flow rate correction value is updated as a zero point correction value (zero point offset value) when the flow rate is zero, and is adjusted so that the flow rate always becomes zero. When a gas appliance is not used, a very small flow rate that is detected as a deviation is measured as if the appliance is being used, without incorrectly accumulating the amount of gas used or a warning is displayed incorrectly as a leaking gas. Accuracy is improved, and safety and usability are improved.
[0057]
In this way, after the gas shut-off device is installed, the optimal flow rate correction value to automatically adjust the flow rate to the zero state can be accurately measured and stored at any timing. The abnormal flow rate is determined incorrectly as an abnormal large flow rate, and the total flow rate is cut off. Also, the gas flow rate is incorrectly measured when determining the time limit for shutting down the use time, so that the abnormal time determination means 21 can be accurately set without setting different time limits. Can monitor the gas usage status, improving reliability and safety.
[0058]
(Example 4)
FIG. 4 shows a gas shut-off device according to a fourth embodiment of the present invention. 4, components having the same functions as those in FIGS. 1, 2, 3, 5, 6, and 7 are denoted by the same reference numerals, and description thereof is omitted.
[0059]
In FIG. 4, reference numeral 31 denotes a notifying means. When the use of the gas appliance is judged to be abnormal by the abnormal means 21 and the shut-off means 22 is operated, the contents of the abnormality are displayed as a warning. When the measurement start signal is output, a display indicating that the zero correction is being performed is performed, and the content that the flow correction value is being calibrated is notified to the gas customer or gas company. That is, the zero point correction is performed when the appliance is stopped, but in the normal state display, the erroneous determination that the gas appliance can be used is prevented. After the completion of the zero-point correction measurement, the display indicating that the zero-point correction is being performed is turned off and the gas appliance is in a normal use state.
[0060]
Next, the operation of the above configuration will be described. When the gas shut-off device is installed, when the gas appliance is not used, the flow rate value converted by the flow rate calculating means 20 from the flow rate value detected by the flow rate detecting means 14 is zero or within a predetermined flow rate range (for example, less than ± 1.5 L / h). is there. The flow rate correction value is measured in advance so that the flow rate becomes zero, stored in the flow rate correction value setting means 26 so that the flow rate becomes zero or within a predetermined flow rate range, and the flow rate value converted by the flow rate calculation means 20 is corrected by the flow rate correction value. are doing. Here, when the gas is not used, for example, when the gas appliance is used, the used flow rate is registered by the flow rate calculating means 20, but when no gas is registered, it is determined that the appliance is not used. However, due to various environmental conditions, temperature, humidity, etc., the flow rate value when the equipment is not used does not fall to zero flow rate or within a predetermined flow rate range as long as it is used over a long period of time. The flow rate deviates from the zero flow rate state set in the zero point setting means 23 or a predetermined flow rate range (for example, less than ± 1.5 L / h). That is, the flow rate correction value may deviate from the flow rate correction value obtained in advance.
[0061]
The flow rate value converted by the flow rate calculation means 20 with the initially set flow rate correction value is monitored by the appliance use abnormality determination means 21 for abnormal use or whether the flow rate value is used.
[0062]
At the time of detecting a flow rate at which a large flow rate of raw gas is released, such as a hose disconnection, the shut-off means 22 is driven to stop the gas supply. The notifying means 27 notifies the gas user or gas company of the details of the interrupted abnormality.
[0063]
On the other hand, while the instrument was stopped, the flow rate was detected by the flow rate detecting means 14 installed in the flow path 1, converted to a flow rate value by the flow rate calculating means 20, and detected as a flow rate value within a predetermined flow rate range by the zero point determining means 24. When a flow rate value deviating from the predetermined range set by the zero point setting means 23 is detected, it is determined that the flow rate has deviated from the zero flow state, and the state determination means 25 determines whether zero point correction may be performed. That is, the state determination means 25 receives the detection of the zero point deviation by the zero point determination means 23, and performs the zero point correction processing only in the normal gas use state where there is no abnormality in the use of the gas appliance by the abnormality determination means 21. When an abnormal condition signal is input from the abnormal condition judging device 21 to the state judging device 25, for example, when it is judged that the hose is out of order and the shut-off device 22 is driven, the end of the flow path 1 is open. Further, if the air is released to the atmosphere, the air may flow backward and become mixed with the city gas and the LP gas in the piping. The flow path 1 is in such an abnormal state when the abnormality is determined by the abnormality determining means 21 due to the abnormal use determination of the appliance. The flow rate may be detected and set as a flow rate correction value, and high-precision measurement may not be performed. Therefore, when a signal determined to be abnormal by the abnormality determination unit 21 is input to the state determination unit 25, the process of measuring the new flow rate correction value is delayed even if a signal determined to be in the zero point deviation state is input from the zero point determination unit 24. I do.
[0064]
That is, the abnormality determination means 21 operates, and the zero point correction measurement process is not performed in the abnormal shut-off state or the return state from the abnormal shut-off state. After the abnormal state is released and the gas becomes available, the state determination means 25 outputs a zero-point correction measurement start signal. At the same time, the notification means 31 starts displaying that the zero point correction measurement is being performed, and notifies the gas consumer or gas company that the gas appliance is in an unusable state. In addition, since the gas company can be notified through the telephone line or the like that the zero correction is being performed, the company can easily manage the number of calibrations of the installed gas shut-off device and can utilize it as maintenance information of the device itself.
[0065]
When a measurable signal is output from the state determination unit 25 to the shut-off unit 22, the shut-off unit 22 closes the flow path 1 and sets a state in which the gas flow does not flow, and performs measurement of a new flow rate correction value, that is, zero point correction measurement. . The flow rate correction setting means 26 measures the flow rate by the flow rate detecting means 19, converts the flow rate by the flow rate calculating means 20, and inputs a flow rate signal deviating from the zero flow rate state in a state where the shutoff means 22 is driven and the flow path 1 is shut off. Then, it is stored and stored as a new flow rate correction value. In the zero point measurement state, since the flow path 1 is closed by the shut-off means 22, the flow rate correction value is measured in a state in which no instrument is used and the flow rate is completely non-existent.
[0066]
Using the stored flow rate correction value, the flow rate calculating means 20 corrects the flow rate when converting the flow rate. After that, the flow rate value detected by the flow rate detecting means 14 and converted by the flow rate calculating means 20 was stored in the flow rate correction value setting means 26 in a state where the shutoff means 26 was driven to open the flow path 1 and the gas appliance could be used as usual. Correction is made with the new flow rate correction value (the correction value has a sign ± and there is addition correction or subtraction correction). As a result, the flow rate value when the appliance is stopped is zero flow or within a predetermined flow range (defined as a zero flow range), and the flow rate can be measured accurately even when the appliance is used. The flow rate correction value is updated as a zero point correction value (zero point offset value) when the flow rate is zero, and is adjusted so that the flow rate always becomes zero. When a gas appliance is not used, a very small flow rate that is detected as a deviation is measured as if the appliance is being used, without incorrectly accumulating the amount of gas used or a warning is displayed incorrectly as a leaking gas. Accuracy is improved, and safety and usability are improved.
[0067]
In this way, after the gas shut-off device is installed, the optimum flow rate correction value for automatically adjusting the flow rate to the zero state is accurately set in a state where the normal gas is used, not in a state where the abnormality determination means 21 is operated. At the time of measurement and storage setting, the notifying means 31 performs a display indicating that the zero point correction is being performed, so that it is possible to notify that the normal gas appliance is not in a usable state, so that the gas consumer and the gas company are calibrating the gas shut-off device. The new flow rate correction value can be measured correctly without any inconvenience that the shut-off means 22 does not open, etc. It is possible to accurately monitor the gas usage state with the abnormality determination means 21 without erroneously measuring the gas flow rate when determining the time limit for shutting off the use time and setting a different time limit. And safety is improved.
[0068]
(Example 5)
FIG. 5 shows a gas shut-off device according to a fifth embodiment of the present invention. 5, components having the same functions as those in FIGS. 1, 2, 3, 4, 6, and 7 are denoted by the same reference numerals, and description thereof is omitted.
[0069]
In FIG. 5, reference numeral 32 denotes a flow rate integrating means for integrating and measuring the gas usage of the gas appliance detected by the flow rate detecting means 14. Reference numeral 33 denotes display means, which displays the content of gas usage measured by the flow rate integrating means 32, and is used by the gas company to periodically and regularly read the meter. When the shut-off means 22 is actuated, there is a portion for displaying a warning about the content of the abnormality, and when the state determination means 25 outputs a zero-point correction measurement start signal, an abnormality calibration display means 33b for displaying that zero-point correction is being performed. . The integration display means 33a is a seven-segment numeral digit display for notifying the gas consumer or gas company of the gas usage.
[0070]
Next, the operation of the above configuration will be described. When the gas shut-off device is installed, when the gas appliance is not used, the flow rate value converted by the flow rate calculating means 20 from the flow rate value detected by the flow rate detecting means 14 is zero or within a predetermined flow rate range (for example, less than ± 1.5 L / h). is there. The flow rate correction value is measured in advance so that the flow rate becomes zero, stored in the flow rate correction value setting means 26 so that the flow rate becomes zero or within a predetermined flow rate range, and the flow rate value converted by the flow rate calculation means 20 is corrected by the flow rate correction value. are doing. Here, when the gas is not used, for example, when the gas appliance is used, the used flow rate is registered by the flow rate calculating means 20, but when no gas is registered, it is determined that the appliance is not used.
[0071]
However, due to various environmental conditions, temperature, humidity, etc., the flow rate value when the equipment is not used does not fall to zero flow rate or within a predetermined flow rate range as long as it is used over a long period of time. The flow rate deviates from the zero flow rate state set in the zero point setting means 23 or a predetermined flow rate range (for example, less than ± 1.5 L / h). That is, the flow rate correction value may deviate from the flow rate correction value obtained in advance.
[0072]
The flow rate value converted by the flow rate calculation means 20 with the initially set flow rate correction value is monitored by the appliance use abnormality determination means 21 for abnormal use or whether the flow rate value is used. At the time of detecting a flow rate at which a large flow rate of raw gas is released, such as a hose disconnection, the shut-off means 22 is driven to stop the gas supply. On the display means 33, the details of the interrupted abnormality are reported to a gas customer or a gas company. The flow rate of the gas appliance obtained by the flow rate calculating means 20 is integrated and counted by the flow rate integrating means 32. Further, the cumulative integrated value of the gas consumption of the gas consumer is displayed on the integrated display means 33a of the display means 33, so that the gas company can perform a regular meter reading check.
[0073]
On the other hand, while the instrument was stopped, the flow rate was detected by the flow rate detecting means 14 installed in the flow path 1, converted to a flow rate value by the flow rate calculating means 20, and detected as a flow rate value within a predetermined flow rate range by the zero point determining means 24. When a flow rate value deviating from the predetermined range set by the zero point setting means 23 is detected, it is determined that the flow rate has deviated from the zero flow state, and the state determination means 25 determines whether zero point correction may be performed. That is, the state determination means 25 receives the detection of the zero point deviation by the zero point determination means 23, and performs the zero point correction processing only in the normal gas use state where there is no abnormality in the use of the gas appliance by the abnormality determination means 21. When an abnormal condition signal is input from the abnormal condition judging device 21 to the state judging device 25, for example, when it is judged that the hose is out of order and the shut-off device 22 is driven, the end of the flow path 1 is open. Further, if the air is released to the atmosphere, the air may flow backward and become mixed with the city gas and the LP gas in the piping. The flow path 1 is in such an abnormal state when the abnormality is determined by the abnormality determining means 21 due to the abnormal use determination of the appliance. The flow rate may be detected and set as a flow rate correction value, and high-precision measurement may not be performed. Therefore, when a signal determined to be abnormal by the abnormality determination unit 21 is input to the state determination unit 25, the process of measuring the new flow rate correction value is delayed even if a signal determined to be in the zero point deviation state is input from the zero point determination unit 24. I do.
[0074]
That is, the abnormality determination means 21 operates, and the zero point correction measurement process is not performed in the abnormal shut-off state or the return state from the abnormal shut-off state. After the abnormal state is released and the gas becomes available, the state determination means 25 outputs a zero-point correction measurement start signal. At the same time, the display means 33 starts displaying that the zero point correction measurement is being performed, and notifies the gas consumer or gas company that the gas appliance is in an unusable state and the flow rate correction value is being calibrated.
[0075]
That is, the zero point correction is performed when the appliance is stopped, but in the normal state display, the erroneous determination that the gas appliance can be used is prevented. After the completion of the zero-point correction measurement, the display indicating that the zero-point correction is being performed is turned off and the gas appliance is in a normal use state. In addition, since the gas company can be notified through the telephone line or the like that the zero correction is being performed, the company can easily manage the number of calibrations of the installed gas shut-off device and can utilize it as maintenance information of the device itself.
[0076]
When a measurable signal is output from the state determination unit 25 to the shut-off unit 22, the shut-off unit 22 closes the flow path 1 and sets a state in which the gas flow does not flow, and performs measurement of a new flow rate correction value, that is, zero point correction measurement. . The flow rate correction setting means 26 measures the flow rate by the flow rate detecting means 19, converts the flow rate by the flow rate calculating means 20, and inputs a flow rate signal deviating from the zero flow rate state in a state where the shutoff means 22 is driven and the flow path 1 is shut off. Then, it is stored and stored as a new flow rate correction value. In the zero point measurement state, since the flow path 1 is closed by the shut-off means 22, the flow rate correction value is measured in a state in which no instrument is used and the flow rate is completely non-existent.
[0077]
When performing maintenance of the gas shut-off device, the transition of the zero point correction amount is an important factor, and it is necessary to read or display the flow rate correction value from an external device using a setting device, a communication message, or the like. Is received, the integrated value display is switched to the integrated display means 33a of the display means 33, and the flow rate correction value is displayed. From this value, the gas company can monitor the flow measurement performance of the installed gas shut-off device. If the transition of the value is recorded and monitored, it is possible to grasp and monitor the change over time of the characteristic. In addition, an integration display request is transmitted from the outside to the communication means, and upon receipt, the display returns to the normal integration display.
[0078]
Using the stored flow rate correction value, the flow rate calculating means 20 corrects the flow rate when converting the flow rate.
[0079]
After that, the flow rate value detected by the flow rate detecting means 14 and converted by the flow rate calculating means 20 was stored in the flow rate correction value setting means 26 in a state where the shutoff means 26 was driven to open the flow path 1 and the gas appliance could be used as usual. Correction is made with the new flow rate correction value (the correction value has a sign ± and there is addition correction or subtraction correction). As a result, the flow rate value when the appliance is stopped is zero flow or within a predetermined flow range (defined as a zero flow range), and the flow rate can be measured accurately even when the appliance is used.
[0080]
The flow rate correction value is updated as a zero point correction value (zero point offset value) when the flow rate is zero, and is adjusted so that the flow rate always becomes zero. When a gas appliance is not used, a very small flow rate that is detected as a deviation is measured as if the appliance is being used, without incorrectly accumulating the amount of gas used or a warning is displayed incorrectly as a leaking gas. Accuracy is improved, and safety and usability are improved.
[0081]
In this way, after the gas shut-off device is installed, the optimum flow rate correction value for automatically adjusting the flow rate to the zero state is accurately set in a state where the normal gas is used, not in a state where the abnormality determination means 21 is operated. In addition to measuring and storing, the zero point correction value can be displayed on the display means 33 by the communication means 34, so that the gas company can monitor the calibration contents of the flow rate measurement performance of the gas shut-off device and its time-varying change state. It is useful, and also useful for analysis at the time of detecting an abnormal flow rate. It is possible to determine whether there is an abnormality in an instrument or equipment or an abnormality in a measurement unit of a gas shut-off device, thereby improving usability, maintainability, and reliability.
[0082]
(Example 6)
FIG. 6 shows a gas shut-off device according to a sixth embodiment of the present invention. 6, components having the same functions as those in FIGS. 1, 2, 3, 4, 5, and 7 are denoted by the same reference numerals, and description thereof is omitted.
[0083]
In FIG. 6, reference numeral 35 denotes a display switching means, and a return means 28 controls the opening means 22 when the interruption means 22 which is in the interruption state at the time of abnormality detection is operated by the abnormality judging means 21. Is operated for a predetermined time, the integrated display means 33a of the display means 33 is subjected to display switching control to a flow rate correction value which is a zero point correction value. The display means 33 displays the contents of the gas usage measured by the flow rate integrating means 32, and the integrating and displaying means 33a for the gas company to periodically read the meter every month. The abnormality means 21 determines that the use of the gas appliance is abnormal. When the shut-off means 22 is operated, there is a part for displaying a warning of the content of the abnormality, and when the state determination means 25 outputs a zero-point correction measurement start signal, there is an abnormality calibration display means 33b for displaying that the zero-point correction is being performed. The integration display means 33a is a seven-segment numeral digit display for notifying the gas consumer or gas company of the gas usage.
[0084]
Next, the operation of the above configuration will be described. When the gas shut-off device is installed, when the gas appliance is not used, the flow rate value converted by the flow rate calculating means 20 from the flow rate value detected by the flow rate detecting means 14 is zero or within a predetermined flow rate range (for example, less than ± 1.5 L / h). is there. The flow rate correction value is measured in advance so that the flow rate becomes zero, stored in the flow rate correction value setting means 26 so that the flow rate becomes zero or within a predetermined flow rate range, and the flow rate value converted by the flow rate calculation means 20 is corrected by the flow rate correction value. are doing. Here, when the gas is not used, for example, when the gas appliance is used, the used flow rate is registered by the flow rate calculating means 20, but when no gas is registered, it is determined that the appliance is not used.
[0085]
However, due to various environmental conditions, temperature, humidity, etc., the flow rate value when the equipment is not used does not fall to zero flow rate or within a predetermined flow rate range as long as it is used over a long period of time. The flow rate deviates from the zero flow rate state set in the zero point setting means 23 or a predetermined flow rate range (for example, less than ± 1.5 L / h). That is, the flow rate correction value may deviate from the flow rate correction value obtained in advance.
[0086]
The flow rate value converted by the flow rate calculation means 20 with the initially set flow rate correction value is monitored by the appliance use abnormality determination means 21 for abnormal use or whether the flow rate value is used.
[0087]
At the time of detecting a flow rate at which a large flow rate of raw gas is released, such as a hose disconnection, the shut-off means 22 is driven to stop the gas supply. On the display means 33, the details of the interrupted abnormality are reported to a gas customer or a gas company. After the abnormality such as the disconnection of the hose has been improved, when the return means 28 is operated, an open signal of the shut-off means 22 is output, and the flow path 1 is opened to be in a gas supplyable state. The flow rate of the gas appliance obtained by the flow rate calculating means 20 is integrated and counted by the flow rate integrating means 32. Further, the cumulative integrated value of the gas consumption of the gas consumer is displayed on the integrated display means 33a of the display means 33, so that the gas company can perform a regular meter reading check.
[0088]
On the other hand, while the instrument was stopped, the flow rate was detected by the flow rate detecting means 14 installed in the flow path 1, converted to a flow rate value by the flow rate calculating means 20, and detected as a flow rate value within a predetermined flow rate range by the zero point determining means 24. When a flow rate value deviating from the predetermined range set by the zero point setting means 23 is detected, it is determined that the flow rate has deviated from the zero flow state, and the state determination means 25 determines whether zero point correction may be performed. That is, the state determination means 25 receives the detection of the zero point deviation by the zero point determination means 23, and performs the zero point correction processing only in the normal gas use state where there is no abnormality in the use of the gas appliance by the abnormality determination means 21. When an abnormal condition signal is input from the abnormal condition judging device 21 to the state judging device 25, for example, when it is judged that the hose is out of order and the shut-off device 22 is driven, the end of the flow path 1 is open. Further, if the air is released to the atmosphere, the air may flow backward and become mixed with the city gas and the LP gas in the piping. The flow path 1 is in such an abnormal state when the abnormality is determined by the abnormality determining means 21 due to the abnormal use determination of the appliance. The flow rate may be detected and set as a flow rate correction value, and high-precision measurement may not be performed. Therefore, when a signal determined to be abnormal by the abnormality determination unit 21 is input to the state determination unit 25, the process of measuring the new flow rate correction value is delayed even if a signal determined to be in the zero point deviation state is input from the zero point determination unit 24. I do.
[0089]
That is, the abnormality determination means 21 operates, and the zero point correction measurement process is not performed in the abnormal shut-off state or the return state from the abnormal shut-off state. After the abnormal state is released and the gas becomes available, the state determination means 25 outputs a zero-point correction measurement start signal. At the same time, the display means 33 starts displaying that the zero point correction measurement is being performed, and notifies the gas consumer or gas company that the gas appliance is in an unusable state and the flow rate correction value is being calibrated.
[0090]
That is, the zero point correction is performed when the appliance is stopped, but in the normal state display, the erroneous determination that the gas appliance can be used is prevented. After the completion of the zero-point correction measurement, the display indicating that the zero-point correction is being performed is turned off and the gas appliance is in a normal use state. In addition, since the gas company can be notified through the telephone line or the like that the zero correction is being performed, the company can easily manage the number of calibrations of the installed gas shut-off device and can utilize it as maintenance information of the device itself.
[0091]
When a measurable signal is output from the state determination unit 25 to the shut-off unit 22, the shut-off unit 22 closes the flow path 1 and sets a state in which the gas flow does not flow, and performs measurement of a new flow rate correction value, that is, zero point correction measurement. . The flow rate correction setting means 26 measures the flow rate by the flow rate detecting means 19, converts the flow rate by the flow rate calculating means 20, and inputs a flow rate signal deviating from the zero flow rate state in a state where the shutoff means 22 is driven and the flow path 1 is shut off. Then, it is stored and stored as a new flow rate correction value. In the zero point measurement state, since the flow path 1 is closed by the shut-off means 22, the flow rate correction value is measured in a state in which no instrument is used and the flow rate is completely non-existent.
[0092]
When performing maintenance of the gas shut-off device, the transition of the zero point correction amount is an important factor, and the flow rate correction value is read out or displayed by the return means 28 without using a setting device or a communication message. In some cases, the gas company forgets to bring the setting device or portable communication means to the site, and it is necessary to display the flow rate correction value by a simple method. When it is detected that the return switch 28 has been operated and the display switching unit 35 has been operated for a predetermined time in a state where the shutoff unit 22 is not operating, the integrated value display is switched to the integrated display unit 33a of the display unit 33, and the flow rate correction is performed. Display the value. From this actual flow correction value, the gas company can monitor the flow measurement performance of the installed gas shut-off device. If the transition of the value is recorded and monitored, it is possible to grasp and monitor the change over time of the characteristic. When the display switching means 35 detects a non-operation state of the return means 28 for a predetermined time, the display returns to the normal integrated display.
[0093]
Using the stored flow rate correction value, the flow rate calculating means 20 corrects the flow rate when converting the flow rate.
[0094]
After that, the flow rate value detected by the flow rate detecting means 14 and converted by the flow rate calculating means 20 was stored in the flow rate correction value setting means 26 in a state where the shutoff means 26 was driven to open the flow path 1 and the gas appliance could be used as usual. Correction is made with the new flow rate correction value (the correction value has a sign ± and there is addition correction or subtraction correction). As a result, the flow rate value when the appliance is stopped is zero flow or within a predetermined flow range (defined as a zero flow range), and the flow rate can be measured accurately even when the appliance is used.
[0095]
The flow rate correction value is updated as a zero point correction value (zero point offset value) when the flow rate is zero, and is adjusted so that the flow rate always becomes zero. When a gas appliance is not used, a very small flow rate that is detected as a deviation is measured as if the appliance is being used, without incorrectly accumulating the amount of gas used or a warning is displayed incorrectly as a leaking gas. Accuracy is improved, and safety and usability are improved.
[0096]
In this way, after the gas shut-off device is installed, the optimum flow rate correction value for automatically adjusting the flow rate to the zero state is accurately set in a state where the normal gas is used, not in a state where the abnormality determination means 21 is operated. Measurement and storage are set, and when a predetermined operation is performed by the return means 28, the zero point correction value can be displayed on the display means 33, so that the gas company can monitor the calibration contents of the flow rate measurement performance of the gas shut-off device and the time-changed state thereof. Therefore, it is useful for maintenance management and also for analysis at the time of detecting an abnormal flow rate, and it is possible to determine whether there is an abnormality in an instrument or equipment or an abnormality in a measurement unit of a gas shut-off device, thereby improving usability, maintainability, and reliability.
[0097]
【The invention's effect】
As described above, according to the first aspect of the present invention, the flow rate detecting means for detecting the flow rate in the medium, the shutoff means for shutting off the medium flow path, and the flow rate is converted from the flow rate detected by the flow rate detecting means. Flow rate calculating means, zero point setting means for setting a zero flow rate range of the flow rate detecting means, and a zero point for determining whether or not the flow rate obtained by the flow rate calculating means has deviated from the zero flow rate set by the zero point setting means. Determining means, determining whether or not the flow rate value obtained by the flow rate calculating means is an abnormal use amount from an output signal of the flow rate detecting means, and outputting a shutoff signal to the shutoff means in the event of an abnormality; A state determining unit that outputs a shut-off signal to the shut-off unit and performs zero-point correction measurement when the zero-point determining unit outputs a state signal indicating that the flow rate deviates from the zero-point flow range in a state in which the shut-off unit is not driven by the unit. Said Flow rate correction value setting means for obtaining a flow rate correction value falling within a predetermined range from the flow rate calculation means when the zero point correction measurement is started by the state determination means, and the gas flow rate during the use of the appliance and at the time of stoppage is detected by the flow rate detection means. The flow rate is detected by the flow rate calculating means, the flow rate is converted by the flow rate calculating means, and the abnormal flow rate value is monitored by the abnormality determining means while the flow rate value when the appliance is stopped is within the predetermined flow rate range while the zero point determining means. When the abnormality determination means determines that the gas use state is abnormal, the disconnection means is driven and the gas supply is stopped, but if the zero point determination means determines that the gas is out of the predetermined range, the state determination means can perform zero point correction. It is determined that the zero point correction is impossible when the interrupting means is driven and the zero point correction is impossible and the delay is determined.When the abnormal state of gas appliance use is improved and the state returns to the normal state, it is determined that the zero point correction is possible. And The point correction value is measured and the flow rate value when the appliance is stopped is obtained by the flow rate detection means, converted by the flow rate calculation means, stored as a new correction value in the flow rate correction value setting means, and thereafter, the flow rate value is calculated by the flow rate measurement flow rate calculation means. Correction calculation is performed using the new correction value stored in the calculated flow rate correction value setting means, and the resulting value is evaluated and determined by the abnormality determination means or the zero point determination means. Since the correction value at the time is not obtained, the gas flow measurement accuracy is improved, and the usage state of the gas appliance can be monitored by accurate flow measurement, thereby improving reliability and safety.
[0098]
As described above, according to the second aspect of the present invention, the flow rate detecting means for detecting the flow velocity in the medium, the shut-off means for shutting off the medium flow path, and the flow rate is converted from the flow rate detected by the flow rate detecting means. Flow rate calculating means, zero point setting means for setting a zero flow rate range of the flow rate detecting means, and a zero point for determining whether or not the flow rate obtained by the flow rate calculating means has deviated from the zero flow rate set by the zero point setting means. Determining means, determining whether or not the flow rate value obtained by the flow rate calculating means is an abnormal use amount from an output signal of the flow rate detecting means, and outputting a shutoff signal to the shutoff means in the event of an abnormality; A state determining unit that outputs a shut-off signal to the shut-off unit and performs zero-point correction measurement when the zero-point determining unit outputs a state signal indicating that the flow rate deviates from the zero-point flow range in a state in which the shut-off unit is not driven by the unit. Said condition Flow rate correction value setting means for obtaining a flow rate correction value falling within a predetermined range from the flow rate calculation means when the zero point correction measurement is started by the determination means; return means for outputting a signal for opening the shutoff means; A return prohibiting means for prohibiting the reception of the return signal from the return means at the time of zero point correction measurement by the determination means is provided, and the gas flow rate during the use of the appliance and at the time of stop is detected by the flow rate detection means, and the flow rate calculation means. While the flow rate is converted and the flow value is monitored by the abnormality determining means for an abnormal use state value, the zero point determining means monitors whether the flow value when the appliance is stopped is within a predetermined flow rate range. When the gas use state is determined to be abnormal, the shutoff means is driven to stop the gas supply, but when the zero point determination means determines that the gas is out of the predetermined range, the state determination means determines whether or not the zero point can be corrected, and determines whether the abnormality is zero. If the stage is judged abnormal and the cut-off means is driven, it is determined that zero correction is impossible and it is delayed.When the abnormal state of gas appliance use is improved and it returns to the normal state, it is determined that zero correction is possible and the zero correction value is measured. Start, the flow rate value when the appliance is stopped is obtained by the flow rate detection means, converted by the flow rate calculation means and stored as a new correction value in the flow rate correction value setting means, and thereafter the flow rate value is obtained by the flow rate calculation time flow rate calculation means and the flow rate correction value is set. The flow rate value is obtained by performing a correction operation using the new correction value stored in the means, but during the zero point measurement for obtaining the new flow rate correction value by the state determination means, the shut-off means operates and the flow path is in a closed state, and the return inhibition means is measuring the zero point. In this state, the return signal is prohibited, and the return means is not accidentally operated to prevent the gas from flowing and the flow rate correction value cannot be measured correctly. The exact Monitoring can be performed with simple flow measurement, improving reliability and safety.
[0099]
As described above, according to the third aspect of the present invention, the flow rate detecting means for detecting the flow velocity in the medium, the shut-off means for shutting off the medium flow path, and the flow rate is converted from the flow rate detected by the flow rate detecting means. Flow rate calculating means, zero point setting means for setting a zero flow rate range of the flow rate detecting means, and a zero point for determining whether or not the flow rate obtained by the flow rate calculating means has deviated from the zero flow rate set by the zero point setting means. Determining means, determining whether or not the flow rate value obtained by the flow rate calculating means is an abnormal use amount from an output signal of the flow rate detecting means, and outputting a shutoff signal to the shutoff means in the event of an abnormality; A state determining unit that outputs a shut-off signal to the shut-off unit and performs zero-point correction measurement when the zero-point determining unit outputs a state signal indicating that the flow rate deviates from the zero-point flow range in a state in which the shut-off unit is not driven by the unit. Outside Communication control means for receiving an instruction message by a setting device or communication and forcibly receiving a zero-point correction measurement instruction message, causing the state determination means to start zero-point correction control; and zero-point correction by the state determination means or the communication means. When the measurement is started, a flow rate correction value setting means for obtaining a flow rate correction value falling within a predetermined range from the flow rate calculation means is provided. While the flow rate is converted by the arithmetic means and the flow rate value is monitored by the abnormality determination means to determine whether the flow rate value is an abnormal use state value, the flow rate value when the appliance is stopped is monitored by the zero point determination means to determine whether the flow rate value is within a predetermined flow rate range. When the gas use state is determined to be abnormal by the abnormality determination means, the shutoff means is driven to stop the gas supply, but when the zero point determination means determines that the gas is out of the predetermined range, the state determination means determines whether the zero point can be corrected. If the abnormality determination means determines that an abnormality has occurred and the shut-off means is being driven, it is determined that zero point correction is impossible and delayed, and when the abnormal state of gas appliance use is improved and the state returns to the normal state, it is determined that zero point correction is possible. , Measurement of the zero point correction value is started, the flow value when the appliance is stopped is obtained by the flow rate detection means, converted by the flow rate calculation means, and stored as a new correction value in the flow rate correction value setting means. Is calculated using the new correction value stored in the flow rate correction value setting means, and the flow rate value is calculated.On the other hand, the communication control means receives a message from an external device such as a setter or center via a communication line to issue a zero point correction measurement start instruction. Then, the zero determination measurement control start instruction for obtaining the new flow rate correction value is performed by the state determination means, so that the gas company can perform it at any time, and the gas flow rate measurement accuracy can be improved at any time. of Use conditions can be monitored with accurate flow measurement, improving reliability and safety.
[0100]
As described above, according to the fourth aspect of the present invention, the flow rate detecting means for detecting the flow velocity in the medium, the cutoff means for cutting off the medium flow path, and the flow rate is converted from the flow rate detected by the flow rate detecting means. Flow rate calculating means, zero point setting means for setting a zero flow rate range of the flow rate detecting means, and a zero point for determining whether or not the flow rate obtained by the flow rate calculating means has deviated from the zero flow rate set by the zero point setting means. Determining means, determining whether or not the flow rate value obtained by the flow rate calculating means is an abnormal use amount from an output signal of the flow rate detecting means, and outputting a shutoff signal to the shutoff means in the event of an abnormality; A state determining unit that outputs a shut-off signal to the shut-off unit and performs zero-point correction measurement when the zero-point determining unit outputs a state signal indicating that the flow rate deviates from the zero-point flow range in a state in which the shut-off unit is not driven by the unit. Said condition When the zero point correction measurement is started by the determination means, a flow rate correction value setting means for obtaining a flow rate correction value falling within a predetermined range from the flow rate calculation means, and when the zero point correction is started by the state determination means, a display indicating that the zero point correction is being performed is performed. An alarm means is provided, and the gas flow rate during the use and stop of the instrument is detected by the flow rate detection means, the flow rate is calculated by the flow rate calculation means, and the flow rate value is monitored by the abnormality determination means whether the flow rate value is abnormal. On the other hand, the zero point determination means monitors whether the flow rate value when the appliance is stopped is within a predetermined flow rate range, and stops the gas supply by driving the cutoff means when the gas use state is determined to be abnormal by the abnormality determination means. An alarm is displayed and a warning is issued. If the zero point determining means determines that the value is out of the predetermined range, the state determining means determines whether the zero point can be corrected. When it is judged that the zero point correction is impossible and delayed, the abnormal state of gas appliance use is improved and when it returns to the normal state, it is determined that the zero point correction is possible, the zero point correction value is started, and the notification means displays the zero point correction measurement display at that time. Then, the flow rate value when the appliance is stopped is obtained by the flow rate detection means, converted by the flow rate calculation means and stored as a new correction value in the flow rate correction value setting means, and thereafter, the flow rate value is obtained by the flow rate calculation time flow rate calculation means and the flow rate correction value setting means Compensation calculation is performed using the new correction value stored in the storage unit, but it is possible to notify the gas customer and the gas company who came to the inspection that the zero correction is being performed with a display different from the abnormal state, and the gas use state and abnormal use of gas appliances Since a display indicating that the flow measurement is being calibrated, which is different from the state in which the state is detected and cut off, is performed by the notification means, the status of the gas cutoff device can be known at a glance, and the usability is improved.
[0101]
As described above, according to claim 5 of the present invention, the flow rate detecting means for detecting the flow velocity in the medium, the cutoff means for shutting off the medium flow path, and the flow rate is converted from the flow rate detected by the flow rate detecting means. A flow rate calculating means, a flow rate integrating means for integrating the flow rate value obtained by the flow rate calculating means, a zero point setting means for setting a zero flow rate range of the flow rate detecting means, and a flow rate obtained by the flow rate calculating means for setting the zero point. A zero-point determining means for determining whether the flow rate deviates from a zero flow range set by the means; and determining whether or not the flow rate value obtained by the flow rate calculating means from the output signal of the flow rate detecting means is an abnormal usage amount. An abnormality determining unit that outputs a shut-off signal to the shut-off unit; and a state signal indicating that the zero-point determining unit outputs a deviation from a zero-point flow rate range in a state where the interrupting unit is not driven by the abnormality determining unit. By means State determination means for outputting a disconnection signal and performing zero point correction measurement, and a flow rate correction value setting means for obtaining a flow rate correction value falling within a predetermined range from the flow rate calculation means when the state determination means starts zero point correction measurement; A display means for displaying the integrated flow rate value obtained by the flow rate integrating means and switching and displaying the flow rate correction value obtained by the flow rate correction value setting means; When receiving a message, the display means is provided with a communication means for switching to a zero point display, and the gas flow rate when the instrument is in use and at the time of stop is detected by the flow rate detection means, the flow rate is converted by the flow rate calculation means, and the flow rate value is calculated. While the abnormal use state value is monitored by the abnormality determination means, the zero point determination means monitors whether the flow rate value when the appliance is stopped is within a predetermined flow rate range. When the use state is determined to be abnormal, the shutoff means is driven to stop the gas supply, and the display means displays an error to warn the user.If the zero point determination means determines that the value is out of the predetermined range, the state determination means determines whether the zero point can be corrected. If the abnormality determination means determines that an abnormality has occurred and the shut-off means is being driven, it is determined that zero point correction is impossible and delayed, and when the abnormal state of gas appliance use is improved and the state returns to the normal state, it is determined that zero point correction is possible. , Measurement of the zero point correction value is started, the flow value when the appliance is stopped is obtained by the flow rate detection means, converted by the flow rate calculation means, and stored as a new correction value in the flow rate correction value setting means. Is calculated using the new correction value stored in the flow rate correction value setting means.After that, the flow rate is calculated by the flow rate calculation means during flow measurement, and the correction value is calculated using the new correction value stored in the flow rate correction value setting means. With abnormality judgment means And the zero point determination means evaluates whether or not the appliance is in a safe use state.The flow rate integration means integrates the gas usage with the obtained flow value, and the integrated value is displayed on the display means. It is possible to display the value, and when the communication message of the display switching request is received by the communication means, the flow rate correction value which is the zero point correction amount can be displayed on the integration display section which displays the gas usage obtained by the flow rate integration means. It is possible, and the gas company can quantitatively monitor the state of the gas shut-off device, and the maintenance and management of the gas flow measurement accuracy is easy, the maintenance is easy, and the usability, reliability and safety are improved.
[0102]
As described above, according to the sixth aspect of the present invention, the flow rate detecting means for detecting the flow velocity in the medium, the cutoff means for cutting off the medium flow path, and the flow rate is converted from the flow rate detected by the flow rate detecting means. A flow rate calculating means, a flow rate integrating means for integrating the flow rate value obtained by the flow rate calculating means, a zero point setting means for setting a zero flow rate range of the flow rate detecting means, and a flow rate obtained by the flow rate calculating means for setting the zero point. A zero-point determining means for determining whether the flow rate deviates from a zero flow range set by the means; and determining whether or not the flow rate value obtained by the flow rate calculating means from the output signal of the flow rate detecting means is an abnormal usage amount. An abnormality determining unit that outputs a shut-off signal to the shut-off unit; and a state signal indicating that the zero-point determining unit outputs a deviation from a zero-point flow rate range in a state where the interrupting unit is not driven by the abnormality determining unit. By means State determination means for outputting a disconnection signal and performing zero point correction measurement, and a flow rate correction value setting means for obtaining a flow rate correction value falling within a predetermined range from the flow rate calculation means when the state determination means starts zero point correction measurement; Return means for outputting a signal for opening the shut-off means, display means for displaying the integrated flow value obtained by the flow integration means and switching and displaying the flow correction value obtained by the flow correction value setting means, Display control means for switching the return means to the zero point display on the display means by operating for a predetermined time, detecting the gas flow rate during the use of the appliance and at the time of stoppage by the flow rate detection means, and converting the gas flow rate by the flow rate calculation means. While monitoring the flow value is an abnormal use state value by abnormality determination means, meanwhile, the zero value determination means monitors whether the flow value when the appliance is stopped is within a predetermined flow range, When the gas use state is determined to be abnormal by the normal determination means, the cutoff means is driven to stop the gas supply, and the display means displays an error to warn the user. Judge whether the zero point can be corrected, determine that the abnormality is judged by the abnormality judging means, and when the shut-off means is driven, judge that the zero point cannot be corrected and delay, and when the abnormal state of gas appliance use is improved and return to the normal state, the zero point Judgment that correction is possible, start measuring the zero point correction value, obtain the flow rate value when the appliance is stopped by the flow rate detection means, convert it by the flow rate calculation means and store it as a new correction value in the flow rate correction value setting means. The flow rate value is calculated by the calculating means, and the correction value is calculated using the new correction value stored in the flow rate correction value setting means. Thereafter, the flow rate value is calculated by the flow rate calculating means during flow rate measurement, and the correction value is calculated using the new correction value stored in the flow rate correction value setting means. And the result The value is used to judge whether or not the appliance is in a safe use state by the abnormality determination means or the zero point determination means, the gas usage is integrated by the flow rate integration means with the obtained flow rate value, the integrated value is displayed on the display means, and the return means is provided. It is possible to display the flow rate correction value that has been zero-corrected by pressing, and when the return means is operated for a predetermined period of time, the display switching means displays the gas usage calculated by the flow rate integrating means. The value can be displayed, the gas company can monitor the status of the gas shut-off device quantitatively, and the maintenance and management of the gas flow measurement accuracy is easy, and the maintenance is easy. Safety is improved.
[Brief description of the drawings]
FIG. 1 is a control block diagram of a gas cutoff device according to a first embodiment of the present invention.
FIG. 2 is a control block diagram of a gas cutoff device according to a second embodiment of the present invention.
FIG. 3 is a control block diagram of a gas shutoff device according to a third embodiment of the present invention.
FIG. 4 is a control block diagram of a gas cutoff device according to a fourth embodiment of the present invention.
FIG. 5 is a control block diagram of a gas cutoff device according to a fifth embodiment of the present invention.
FIG. 6 is a control block diagram of a gas shut-off device according to a sixth embodiment of the present invention.
FIG. 7 is a control block diagram of a conventional gas shut-off device.
[Explanation of symbols]
14 Flow velocity detecting means
20 Flow rate calculation means
21 Abnormality judgment means
22 Blocking means
23 Zero point setting means
24 Zero point determination means
25 State determination means
26 Flow rate correction means
28 Return means
29 Return prohibition means
30 Communication control means
31 Notification means
32 Flow rate integration means
33 display means
34 communication means
35 Display switching means

Claims (6)

媒体内の流速を検出する流量検出手段と、媒体流路を遮断する遮断手段と、前記流量検出手段で検出した流速より流量に換算する流量演算手段と、前記流量検出手段の流量零範囲を設定する零点設定手段と、前記流量演算手段で求めた流量が前記零点設定手段で設定した流量零範囲を逸脱したか否かを判定する零点判定手段と、前記流量検出手段の出力信号より前記流量演算手段で求めた流量値が異常使用量か否かを判定し異常時前記遮断手段に遮断信号を出力する異常判定手段と、前記異常判定手段より前記遮断手段を駆動していない状態で前記零点判定手段より零点流量範囲逸脱との状態信号を出力している場合前記遮断手段に遮断信号を出力し零点補正計測を行う状態判定手段と、前記状態判定手段で零点補正計測を開始すると前記流量演算手段より所定範囲内にはいる流量補正値を求める流量補正値設定手段とを備えたガス遮断装置。A flow rate detecting means for detecting a flow velocity in the medium; a shutoff means for shutting off the medium flow path; a flow rate calculating means for converting the flow rate detected by the flow rate detecting means into a flow rate; and setting a zero flow rate range of the flow rate detecting means. Zero point setting means for performing the flow rate calculation, the zero point determination means for determining whether the flow rate obtained by the flow rate calculation means has deviated from the zero flow rate range set by the zero point setting means, and the flow rate calculation based on the output signal of the flow rate detection means. Means for judging whether or not the flow rate value obtained by the means is an abnormal use amount and outputting a shut-off signal to the shut-off means in the event of an error; and determining the zero point in a state where the shut-off means is not driven by the abnormality judgment means. Means for outputting a shut-off signal to the shut-off means to perform zero-point correction measurement when the means outputs a status signal indicating a deviation from the zero-point flow range; and Gas cutoff apparatus and a flow rate correction value setting means for determining the flow rate correction value falls within a predetermined range from the arithmetic means. 媒体内の流速を検出する流量検出手段と、媒体流路を遮断する遮断手段と、前記流量検出手段で検出した流速より流量に換算する流量演算手段と、前記流量検出手段の流量零範囲を設定する零点設定手段と、前記流量演算手段で求めた流量が前記零点設定手段で設定した流量零範囲を逸脱したか否かを判定する零点判定手段と、前記流量検出手段の出力信号より前記流量演算手段で求めた流量値が異常使用量か否かを判定し異常時前記遮断手段に遮断信号を出力する異常判定手段と、前記異常判定手段より前記遮断手段を駆動していない状態で前記零点判定手段より零点流量範囲逸脱との状態信号を出力している場合前記遮断手段に遮断信号を出力し零点補正計測を行う状態判定手段と、前記状態判定手段で零点補正計測を開始すると前記流量演算手段より所定範囲内にはいる流量補正値を求める流量補正値設定手段と、前記遮断手段を開状態にする信号を出力する復帰手段と、前記状態判定手段により零点補正計測時前記復帰手段からの復帰信号を受付禁止にする復帰禁止手段とを備えたガス遮断装置。A flow rate detecting means for detecting a flow velocity in the medium; a shutoff means for shutting off the medium flow path; a flow rate calculating means for converting the flow rate detected by the flow rate detecting means into a flow rate; and setting a zero flow rate range of the flow rate detecting means. Zero-point setting means, zero-point determination means for determining whether the flow rate obtained by the flow rate calculation means has deviated from the zero flow rate range set by the zero-point setting means, and the flow rate calculation based on the output signal of the flow rate detection means. Means for judging whether or not the flow rate value obtained by the means is an abnormal use amount and outputting a shut-off signal to the shut-off means in the event of an error; and determining the zero point in a state where the shut-off means is not driven by the abnormality judgment means. Means for outputting a shut-off signal to the shut-off means to perform zero-point correction measurement when the means outputs a status signal indicating a deviation from the zero-point flow range; and A flow rate correction value setting means for obtaining a flow rate correction value falling within a predetermined range from an arithmetic means; a return means for outputting a signal for opening the shutoff means; and a zero point correction measurement by the state determination means. And a return prohibiting means for prohibiting the reception of the return signal. 媒体内の流速を検出する流量検出手段と、媒体流路を遮断する遮断手段と、前記流量検出手段で検出した流速より流量に換算する流量演算手段と、前記流量検出手段の流量零範囲を設定する零点設定手段と、前記流量演算手段で求めた流量が前記零点設定手段で設定した流量零範囲を逸脱したか否かを判定する零点判定手段と、前記流量検出手段の出力信号より前記流量演算手段で求めた流量値が異常使用量か否かを判定し異常時前記遮断手段に遮断信号を出力する異常判定手段と、前記異常判定手段より前記遮断手段を駆動していない状態で前記零点判定手段より零点流量範囲逸脱との状態信号を出力している場合前記遮断手段に遮断信号を出力し零点補正計測を行う状態判定手段と、外部より設定器や通信等により指示電文を受信し強制的に零点補正計測指示電文を受信すると前記状態判定手段に零点補正制御を開始させる通信制御手段と、前記状態判定手段より或いは前記通信手段より零点補正計測を開始すると前記流量演算手段より所定範囲内にはいる流量補正値を求める流量補正値設定手段とを備えたガス遮断装置。A flow rate detecting means for detecting a flow velocity in the medium; a shutoff means for shutting off the medium flow path; a flow rate calculating means for converting the flow rate detected by the flow rate detecting means into a flow rate; and setting a zero flow rate range of the flow rate detecting means. Zero point setting means for performing the flow rate calculation, the zero point determination means for determining whether the flow rate obtained by the flow rate calculation means has deviated from the zero flow rate range set by the zero point setting means, and the flow rate calculation based on the output signal of the flow rate detection means. Means for judging whether or not the flow rate value obtained by the means is an abnormal use amount and outputting a shut-off signal to the shut-off means in the event of an error; and determining the zero point in a state where the shut-off means is not driven by the abnormality judgment means. If the means outputs a status signal indicating a deviation from the zero point flow range, a shutoff signal is output to the shutoff means to perform zero point correction measurement, and a command message is received from an external device via a setting device, communication, or the like, and is forcibly received. When the zero point correction measurement instruction message is received, communication control means for starting the zero point correction control to the state determination means, and when the zero point correction measurement is started by the state determination means or the communication means, within a predetermined range from the flow rate calculation means. A gas shut-off device comprising: a flow rate correction value setting means for determining a flow rate correction value to be inserted. 媒体内の流速を検出する流量検出手段と、媒体流路を遮断する遮断手段と、前記流量検出手段で検出した流速より流量に換算する流量演算手段と、前記流量検出手段の流量零範囲を設定する零点設定手段と、前記流量演算手段で求めた流量が前記零点設定手段で設定した流量零範囲を逸脱したか否かを判定する零点判定手段と、前記流量検出手段の出力信号より前記流量演算手段で求めた流量値が異常使用量か否かを判定し異常時前記遮断手段に遮断信号を出力する異常判定手段と、前記異常判定手段より前記遮断手段を駆動していない状態で前記零点判定手段より零点流量範囲逸脱との状態信号を出力している場合前記遮断手段に遮断信号を出力し零点補正計測を行う状態判定手段と、前記状態判定手段で零点補正計測を開始すると前記流量演算手段より所定範囲内にはいる流量補正値を求める流量補正値設定手段と、前記状態判定手段による零点補正開始となると零点補正中を示す表示を行う報知手段とを備えたガス遮断装置。A flow rate detecting means for detecting a flow velocity in the medium; a shutoff means for shutting off the medium flow path; a flow rate calculating means for converting the flow rate detected by the flow rate detecting means into a flow rate; and setting a zero flow rate range of the flow rate detecting means. Zero point setting means for performing the flow rate calculation, the zero point determination means for determining whether the flow rate obtained by the flow rate calculation means has deviated from the zero flow rate range set by the zero point setting means, and the flow rate calculation based on the output signal of the flow rate detection means. Means for judging whether or not the flow rate value obtained by the means is an abnormal use amount and outputting a shut-off signal to the shut-off means in the event of an error; and determining the zero point in a state where the shut-off means is not driven by the abnormality judgment means. Means for outputting a shut-off signal to the shut-off means to perform zero-point correction measurement when the means outputs a status signal indicating a deviation from the zero-point flow range; and And a flow rate correction value setting means for determining the flow rate correction value falls within a predetermined range from the arithmetic unit, the gas shutoff device including a notification unit performs display indicating that the zero-point correction start until the zero point correction by the state determining means. 媒体内の流速を検出する流量検出手段と、媒体流路を遮断する遮断手段と、前記流量検出手段で検出した流速より流量に換算する流量演算手段と、前記流量演算手段で求めた流量値を積算する流量積算手段と、前記流量検出手段の流量零範囲を設定する零点設定手段と、前記流量演算手段で求めた流量が前記零点設定手段で設定した流量零範囲を逸脱したか否かを判定する零点判定手段と、前記流量検出手段の出力信号より前記流量演算手段で求めた流量値が異常使用量か否かを判定し異常時前記遮断手段に遮断信号を出力する異常判定手段と、前記異常判定手段より前記遮断手段を駆動していない状態で前記零点判定手段より零点流量範囲逸脱との状態信号を出力している場合前記遮断手段に遮断信号を出力し零点補正計測を行う状態判定手段と、前記状態判定手段で零点補正計測を開始すると前記流量演算手段より所定範囲内にはいる流量補正値を求める流量補正値設定手段と、前記流量積算手段で求めた流量積算値を表示すると共に前記流量補正値設定手段により求まった流量補正値を切替えて表示する表示手段と、外部より設定器や通信等により指示電文を受信し零点補正表示電文を受信すると前記表示手段に零点表示に切替えさせる通信手段とを備えたガス遮断装置。Flow rate detecting means for detecting the flow rate in the medium, blocking means for blocking the medium flow path, flow rate calculating means for converting the flow rate detected by the flow rate detecting means into a flow rate, and a flow rate value obtained by the flow rate calculating means. Flow rate integrating means for integrating, zero point setting means for setting a zero flow rate range of the flow rate detecting means, and determination as to whether or not the flow rate obtained by the flow rate calculating means has deviated from the zero flow rate range set by the zero point setting means. Zero-point determination means, and abnormality determination means for determining whether or not the flow rate value obtained by the flow rate calculation means is an abnormal use amount from an output signal of the flow rate detection means, and outputting a cutoff signal to the cutoff means in the event of an abnormality; When the status signal indicating that the zero point flow rate deviates from the zero point flow rate is output from the zero point determining device in a state where the interrupting device is not driven by the abnormality determining device, a status determination is performed in which a shutoff signal is output to the interrupting device to perform zero point correction measurement And a flow rate correction value setting means for obtaining a flow rate correction value falling within a predetermined range from the flow rate calculation means when the zero point correction measurement is started by the state determination means, and a flow rate integrated value obtained by the flow rate integration means. And display means for switching and displaying the flow rate correction value obtained by the flow rate correction value setting means, and switching to zero point display on the display means upon receiving an instruction message from a setting device or communication from the outside and receiving a zero point correction display message. And a communication means for causing the gas to shut off. 媒体内の流速を検出する流量検出手段と、媒体流路を遮断する遮断手段と、前記流量検出手段で検出した流速より流量に換算する流量演算手段と、前記流量演算手段で求めた流量値を積算する流量積算手段と、前記流量検出手段の流量零範囲を設定する零点設定手段と、前記流量演算手段で求めた流量が前記零点設定手段で設定した流量零範囲を逸脱したか否かを判定する零点判定手段と、前記流量検出手段の出力信号より前記流量演算手段で求めた流量値が異常使用量か否かを判定し異常時前記遮断手段に遮断信号を出力する異常判定手段と、前記異常判定手段より前記遮断手段を駆動していない状態で前記零点判定手段より零点流量範囲逸脱との状態信号を出力している場合前記遮断手段に遮断信号を出力し零点補正計測を行う状態判定手段と、前記状態判定手段で零点補正計測を開始すると前記流量演算手段より所定範囲内にはいる流量補正値を求める流量補正値設定手段と、前記遮断手段を開状態にする信号を出力する復帰手段と、前記流量積算手段で求めた流量積算値を表示すると共に前記流量補正値設定手段により求まった流量補正値を切替えて表示する表示手段と、前記復帰手段を所定時間操作により前記表示手段に零点表示に切替えさせる表示制御手段とを備えたガス遮断装置。Flow rate detecting means for detecting the flow rate in the medium, blocking means for blocking the medium flow path, flow rate calculating means for converting the flow rate detected by the flow rate detecting means into a flow rate, and a flow rate value obtained by the flow rate calculating means. Flow rate integrating means for integrating, zero point setting means for setting a zero flow rate range of the flow rate detecting means, and determining whether or not the flow rate obtained by the flow rate calculating means has deviated from the zero flow rate range set by the zero point setting means. Zero-point determination means, and abnormality determination means for determining whether or not the flow rate value obtained by the flow rate calculation means is an abnormal use amount from an output signal of the flow rate detection means, and outputting a cutoff signal to the cutoff means in the event of an abnormality; When the status signal indicating that the zero point flow rate deviates from the zero point flow rate is output from the zero point determining device in a state where the interrupting device is not driven by the abnormality determining device, a status determination is performed in which a shutoff signal is output to the interrupting device to perform zero point correction measurement A step, a flow rate correction value setting means for obtaining a flow rate correction value falling within a predetermined range from the flow rate calculating means when a zero point correction measurement is started by the state determination means, and a return for outputting a signal for opening the shutoff means. Means, display means for displaying the integrated flow value obtained by the flow integrating means and switching and displaying the flow correction value obtained by the flow correction value setting means, and displaying the return means on the display means by operating for a predetermined time. A gas shutoff device comprising: display control means for switching to zero point display.
JP2002290094A 2002-10-02 2002-10-02 Gas shut-off device Expired - Fee Related JP4110908B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2002290094A JP4110908B2 (en) 2002-10-02 2002-10-02 Gas shut-off device
CNB031602541A CN1234053C (en) 2002-10-02 2003-09-28 Gas breaking device
KR1020030068160A KR20040030352A (en) 2002-10-02 2003-10-01 Gas shutoff device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002290094A JP4110908B2 (en) 2002-10-02 2002-10-02 Gas shut-off device

Publications (2)

Publication Number Publication Date
JP2004125609A true JP2004125609A (en) 2004-04-22
JP4110908B2 JP4110908B2 (en) 2008-07-02

Family

ID=32282080

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002290094A Expired - Fee Related JP4110908B2 (en) 2002-10-02 2002-10-02 Gas shut-off device

Country Status (3)

Country Link
JP (1) JP4110908B2 (en)
KR (1) KR20040030352A (en)
CN (1) CN1234053C (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010217072A (en) * 2009-03-18 2010-09-30 Panasonic Corp Flow measuring device
JP2010217073A (en) * 2009-03-18 2010-09-30 Panasonic Corp Flow measuring device
JP2013251279A (en) * 2013-09-18 2013-12-12 Jx Nippon Oil & Energy Corp Fuel cell system
CN107703843A (en) * 2017-09-01 2018-02-16 珠海格力电器股份有限公司 Blast control method, device, storage medium and the unit of a kind of unit
WO2019188317A1 (en) * 2018-03-30 2019-10-03 パナソニックIpマネジメント株式会社 Gas safety device

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2098833B1 (en) * 2006-12-28 2016-04-13 Panasonic Corporation Flowmeter and gas supply system
JP4492648B2 (en) * 2007-07-12 2010-06-30 パナソニック株式会社 Gas shut-off device
JP5194754B2 (en) * 2007-12-10 2013-05-08 パナソニック株式会社 Gas meter device and gas supply system using this device
EP2251652B1 (en) * 2008-03-07 2019-05-15 Panasonic Corporation Gas meter and gas safety system
JP5334286B2 (en) * 2008-05-20 2013-11-06 パナソニック株式会社 Instrument monitoring device
WO2010087185A1 (en) * 2009-01-29 2010-08-05 パナソニック株式会社 Gas shutoff device
JP5630075B2 (en) * 2010-06-03 2014-11-26 パナソニック株式会社 Gas shut-off device
JP2013156075A (en) * 2012-01-27 2013-08-15 Aichi Tokei Denki Co Ltd Ultrasonic flowmeter
JP2019074429A (en) * 2017-10-17 2019-05-16 株式会社ジェイ・エム・エス Ultrasonic flowmeter and blood purifying device
WO2020010531A1 (en) * 2018-07-10 2020-01-16 北京中电普华信息技术有限公司 Fault detection method and device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010217072A (en) * 2009-03-18 2010-09-30 Panasonic Corp Flow measuring device
JP2010217073A (en) * 2009-03-18 2010-09-30 Panasonic Corp Flow measuring device
JP2013251279A (en) * 2013-09-18 2013-12-12 Jx Nippon Oil & Energy Corp Fuel cell system
CN107703843A (en) * 2017-09-01 2018-02-16 珠海格力电器股份有限公司 Blast control method, device, storage medium and the unit of a kind of unit
WO2019188317A1 (en) * 2018-03-30 2019-10-03 パナソニックIpマネジメント株式会社 Gas safety device
JP2019178916A (en) * 2018-03-30 2019-10-17 パナソニックIpマネジメント株式会社 Gas safety device
US11480493B2 (en) 2018-03-30 2022-10-25 Panasonic Intellectual Property Management Co., Ltd. Gas safety device

Also Published As

Publication number Publication date
KR20040030352A (en) 2004-04-09
CN1497401A (en) 2004-05-19
CN1234053C (en) 2005-12-28
JP4110908B2 (en) 2008-07-02

Similar Documents

Publication Publication Date Title
JP4110908B2 (en) Gas shut-off device
US8166999B2 (en) Gas block device and gas block method
US8386084B2 (en) Gas shutoff device
JP5186760B2 (en) Gas shut-off device
KR101073239B1 (en) Gas interrupting device
JP4163168B2 (en) Gas shut-off device
JP4024110B2 (en) Ultrasonic flow measuring device
JP5125077B2 (en) Gas shut-off device
JP4813650B2 (en) Gas shut-off device
JP4813649B2 (en) Gas shut-off device
JP4794831B2 (en) Gas meter
JP4178625B2 (en) Gas shut-off device
JP2001330493A (en) Gas cutting-off apparatus
JP4197218B2 (en) Gas shut-off device
JP4580506B2 (en) Gas shut-off device
JP4294834B2 (en) Gas shut-off device
JP4538134B2 (en) Gas shut-off device
JP2000146658A (en) Gas-flow breaking device
JP4638574B2 (en) Gas shut-off device
JP3433447B2 (en) LP gas meter
JP4590065B2 (en) Gas shut-off device
JP4449424B2 (en) Gas shut-off device
JP2006017508A (en) Gas meter
JP2002090254A (en) Flow rate-type very-small-leakage detecting method and gas metering device
JP2005265530A (en) Gas-blast circuit breaker

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050929

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20051013

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080312

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080318

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080331

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110418

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120418

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130418

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130418

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140418

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees