JP2004125304A - Wind volume control device of air conditioner - Google Patents

Wind volume control device of air conditioner Download PDF

Info

Publication number
JP2004125304A
JP2004125304A JP2002291345A JP2002291345A JP2004125304A JP 2004125304 A JP2004125304 A JP 2004125304A JP 2002291345 A JP2002291345 A JP 2002291345A JP 2002291345 A JP2002291345 A JP 2002291345A JP 2004125304 A JP2004125304 A JP 2004125304A
Authority
JP
Japan
Prior art keywords
air
outside
volume
damper
wind volume
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002291345A
Other languages
Japanese (ja)
Other versions
JP4346295B2 (en
Inventor
Isamu Suzuki
鈴木 勇
Masabumi Terawaki
寺脇 正文
Hiroichi Tashiro
田代 博一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanki Engineering Co Ltd
Original Assignee
Sanki Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanki Engineering Co Ltd filed Critical Sanki Engineering Co Ltd
Priority to JP2002291345A priority Critical patent/JP4346295B2/en
Publication of JP2004125304A publication Critical patent/JP2004125304A/en
Application granted granted Critical
Publication of JP4346295B2 publication Critical patent/JP4346295B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a wind volume control device of an air conditioner allowing a set fresh air rate to be actually led therein and wind volume flowing through zones to be accurately and rapidly kept in balanced with each other. <P>SOLUTION: In this air conditioning control device, air conditioned by a wind volume varying device is fed to a controlled area, the air in the controlled area is circulated by an air circulation device, and a part or all of the circulation air is led into an air conditioner and the remaining is exhausted to the outside for circulating the air. At the same time, fresh air is led into the air conditioner, the led air is air-conditioned by the air conditioner, and the air-conditioned air is fed to the wind volume varying device by an air supply device. The wind volume of the air led into the air conditioner for circulation is determined based on the wind volume of the air taken from the atmospheric air and the wind volume fed by the air supply device. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
この発明は、空調機の制御装置の技術分野に属する。更に詳しくは、空調機における風量を制御する技術分野に属する。
【0002】
【従来の技術】
従来から、大規模な建築物においては、空間を仕切っていくつかの部屋(被制御エリア)を設け、各部屋には空調機より給気ダクトを介して可変給気量調節ユニット(以下、VAVユニットという)により各部屋に設けられた給気吹出口から空調された空気を送風し、還気吸込口から室内の空気を空調機に戻して循環させる。一方、室内の空気中に炭酸ガス(CO2)等の濃度が高い場合には循環させる空気の一部を外部に排出すると共に外部から新鮮な空気を取り入れて空調処理を行うという方式が採用されている。
【0003】
このような従来の空調装置においては空気を誘導するためのダクトを配管すると共にその空気通路にダンパ(蝶弁)を設けてダンパの角度を調節することによりダクト内を流れる空気の風量を調節するという方式が採用されている。このような空調制御システムとしては、例えば公開特許公報、平11−344252号に開示されているものがある。図5はこの空調システムの全体構成の概略図を示し、図7はダンパ角度を決定する制御方法を示す。以下、この空調システムを従来装置1という。
【0004】
図5において、50は被制御エリアで、60は空調機本体の概略図を示す。80はダンパ制御装置(又は外気取り入れ制御装置)を示す。被制御エリア50には空調機本体60の給気ダクト61から空調された空気が矢印方向(図の右向き矢印)に給気ファン62によって供給される。なお、被制御エリアの各部屋には図示省略のVAVユニットによって所定風量の給気が送風される。また、室内の空気が還気ファン64により還気ダクト63を通って還気される。65は熱交換機で、66は外気取入量を制御する外気ダンパであり、風速センサ69によって外気の流速が計測される。67は還気された空気を外部に排出する風量を制御する排気ダンパであり、68は還気された空気を空調機(図示省略)に戻す風量を制御する還気ダンパである。
【0005】
風速演算部81は風速センサ69の出力に基づいて風速V1を求め、風量演算部82により実風量Q1がQ1=V1・A1により算出される。なお、A1はダクト断面積である。83は実風量比率演算部で実風量比率PV1はPV1=(Q1/空調機定格風量)x100%により算出される。記号「x」は乗算を示す。94はダンパ制御部で、外気ダンパ開度66の開度θ1、排気ダンパ67の開度θ2、還気ダンパ68の開度θ3を後述する方法で決定する。92〜94は外気取入風量設定値を決定する決定部で、決定部92は外気取入風量の最小値S1を決定し、決定部93は炭酸ガスの設定値と計測値の差から外気取入風量S2を決定し、決定部94は給気温度設定値と給気温度計測値の差から外気取入風量S3を決定する。なお、給気温度計測値は給気温度センサ51によって求める。セレクタ95は外気取入風量S1〜S3から最大風量SP1を決定する。補正部96は決定されたダンパ開度θ1〜θ3を制御量θ1’〜θ3’ に変換する。この変換により制御量量θ1’〜θ3’ と風量の関係が線形化される。
【0006】
図6(A)、(B)は決定部93と決定部94による外気取入風量の設定値S2、S3の決定方法を示す。図7は外気取入風量設定値SP1に基づいてダンパ開度θ1〜θ3を決定するテーブルを示す。まず、決定部93は、図6(B)に示すように炭酸ガスの設定値と計測値の偏差に比例して外気取入風量S2(%)を決定する。次いで、決定部94は、図6(A)に示すように給気温度設定値(又はロードリセット値)と給気温度計測値の偏差に比例して外気取入風量S2(%)を決定する。ダンパ制御部94はセレクタ95によって外気取入風量の設定値S1(%)〜S3(%)から最大風量SP1(%)を決定し、これを制御信号出力として図7に示したダンパ開度決定テーブルからダンパ開度θ1〜θ3を決定する。
【0007】
このダンパ開度決定テーブルでは外気ダンパ開度θ1と排気ダンパ開度θ2を同一開度に設定している。図7に示すように、ダンパ開度θ1(θ2=θ1)と還気ダンパ開度θ3は一方のダンパ開度が中間開度又は全閉のときは他方のダンパ開度は全開を維持するように決定する。即ち、制御信号出力が50%以下ではダンパ開度θ3は全開にしながらダンパ開度θ1(θ2)を制御信号出力の増加に従って0〜100%と大きくして行き、ダンパ開度θ1(θ2)が全開に達したならばダンパ開度θ3を制御信号出力の増加に従って100〜0%へと小さくする。
上記した従来装置1ではダンパ開度θ1〜θ3が外気取入風量(%)によって決定されるようになっている。なお、この従来装置1ではダンパ開度が低開度になると圧力損失が大きくなると云う理由から、θ1(又はθ2)+θ3=100% は成立しなくともよいとしている。
【0008】
また別に従来装置(以下、従来装置2という)では通風量はダンパ開度に比例すると仮定して、還気ダンパ開度θ3を外気ダンパの開度θ2の逆動作として決定している。即ち、θ3=100−θ2(又はθ1)とする。
【0009】
【発明が解決しようとする課題】
上記した従来装置(従来装置1及び従来装置2)では、炭酸ガス濃度の偏差や給気温度の偏差等から必要な外気の取入風量比を求め、これから直接にダンパ開度を求めるようにしているために、給気風量が少ない時に実際に設定した外気風量を導入できない場合が生じたり、或いは外気風量と排気風量が上手くバランスしないという事態が生じた。特に従来装置1では外気から設定した風量を導入できない事態が生じやすい。本願はかかる課題を解決するためになされた発明である。
【0010】
【課題を解決するための手段】
上記課題を解決するために本発明は以下の手段を採用している。即ち、
請求項1記載の発明は、被制御エリアに変風量装置により空調した空気を送風し、該被制御エリアの空気を還気装置により還気させて、該還気空気の一部又は全部を循環させるために空調機に導入して残りを外部に排出し、同時に外気を空調機に導入して、これら導入した空気を該空調機により空調処理をして、該空調された空気を給気装置によって前記変風量装置へ送風するようにした空調制御装置において、循環させるために空調機に導入する空気の風量を外気取入空気の風量と給気装置による送風風量とから決定するようにしたことを特徴としている。即ち、請求項1記載の発明は循環させる還気風量と排気風量を給気装置による供給風量と外気取入空気の風量とを基準にして決定していることを主な特徴としている。
【0011】
請求項2に記載の発明は、請求項1の発明において、前記外気取入空気の風量を外気取入ダクトに設けた変風量装置の風量値に基づいて制御することを特徴としている。
即ち、請求項2記載の発明は変風量装置により外気の導入風量を制御したことを主な特徴としている。
【0012】
請求項3記載の発明は、請求項1に記載の発明において、前記外気取入空気の風量を外気取入ダクトに設けた外気ダンパの開度に基づいて制御することを特徴としている。
【0013】
請求項4記載の発明は、請求項1〜請求項3に記載の発明において、前記給気風量を前記給気装置の駆動インバータの周波数に基づいて制御することを特徴としている。
即ち、請求項4記載の発明はインバータ装置により供給風量を正確かつ、迅速に可能にしたことを主な特徴としている。
【0014】
【発明の実施形態】
図1は本発明を実施した実施形態の装置の概略構成を示す。図2はメインコントローラの機能ブロック図を示す。図3はインバータ周波数と風量の関係を示す。図4は風量の関係を示す。以下これらの図に基づいて本実施形態を説明する。図1〜図4において、空調する被制御エリア10は部屋10a、10bから構成されている。部屋10a、10bには可変給気流量調節ユニット(以下、VAVユニットという)11a、11bが給気吹出口に設けられている。VAVユニット11a、11bは給気ダクト12に接続されており、給気ファン13より空調された給気が送風される。また、部屋10a、10bには還気吸込口14a、14bが設けられており、還気ダクト15を通って還気ファン17により還気が行われる。
【0015】
VAVユニット11a、11bには風量を設定する局所コントローラ15a、15bが設けられており、部屋10a、10bに設けられている温度センサ16a、16b(現在の室温)と設定室温との偏差により所用の風量v1,v2が決定される。またVAVコントローラ15a、15bはゾーンコントローラ20に接続されており、風量v1,v2とVAVユニット11a、11bの内部に設けられているダンパ開度β1、β2等のデータがゾーンコントローラ20に入力される。ゾーンコントローラ20は総要求風量Vと最大開度βmを求め、コントローラ25に送出する。なお、V=v1+v2、βm=max(β1,β2)である。
【0016】
空調装置本体30は給気路31,還気路32、外気路33の風路に仕切られており、給気路31には、冷却コイル、加熱コイル等からなる空調機34と給気ファン13とが設けられている。また、還気路32には還気ファン16が設けられており、その下流は排気ダクト36に接続されると共に、給気路31との境界に通気口37が設けられている。排気ダクト36及び通気口37にはそれぞれ風量を制限する外気ダンパ38、還気ダンパ39が設けられている。外気路33は外気取入れダクト40に接続され、外気取入れダクト40には外気取入れ用のVAVユニット41(及び、必要なら外気ファン42)が設けられている。
【0017】
また、給気ダクト12には温度センサ43が設けられており、その出力はメインコントローラ25の入力側に接続されている。同様に、還気ダクト15には温度センサ44と炭酸ガス(CO2)濃度センサ45が設けられており、その出力は何れもメインコントローラ25の入力側に接続されている。コントローラ25の出力側には給気ファン13のインバータ13a(インバータ制御された駆動モータ)、還気ファン17のインバータ17aの他に、外気ダンパ38の開度を制御するアクチュエータ38a、還気ダンパ39の開度を制御するアクチュエータ39a、外気VAVユニット41の風量を制御する制御部41aに接続されている。
【0018】
図2を利用して、メインコントローラ25を説明する。ゾーンコントローラ20は前述したように(図1)、被制御エリアの各部屋10a、10bに設けたVAVユニット11a、11bから、給気風量(実風量にほぼ等しい)v1・・・vnとダンパ開度β1・・・βnの信号を受け、全給気風量Vと最大開度βmを求めて、演算結果をメインコントローラ25に出力する。なお、部屋数は図1ではn=2としたが、これに限定されるものではない。給気インバータ周波数決定部46は最大開度βmを考慮して給気風量Vaを決定する。即ち、最大開度βmが100%の場合は給気風量Vaを全給気風量Vより多くして、最大開度βnを100%以下に下げるようにする。結果として、最大開度βmが100%以下(例えば、90%)になるようにする。給気風量Vaとインバータ周波数との関係は図3(A)に示すように直線関係にあるから、これを利用してインバータ周波数N1を決定する。
【0019】
次に、還気インバータ周波数決定部47は還気ファン16のインバータ周波数を決定する。還気インバータ周波数は還気風量と給気風量がある割合になるように、図3(B)に示すように、インバータ周波数N2を決定する。外気冷房時の外気取入風量決定部26は運転モード並びに還気温度と外気温度の差を考慮して外気取入風量w1を決定する。即ち、外気冷房許可モードの場合において、外気温度が還気温度より低い場合に冷房効率等を考慮して決定する。炭酸ガス濃度による外気取入風量決定部27は還気中に含まれている炭酸ガス濃度が高い場合に所定の基準値以下に濃度を下げるように外気取入風量w2を決定する。
【0020】
セレクタ部28は外気取入風量決定部26、27によって決定された外気取入風量w1,w2の内から最大風量Wmを求める。外気VAVユニット41の風量は最大風量Wmとなるように設定する。外気要求風量比率決定部29は給気ファン13の定格風量を100%とし、これを基準にして比率(=Wmx100%/定格風量x100%)を求める。排気ダンパ開度決定部49は外気取入風量Wmと排気風量とが等しくなるように排気ダンパ38の開度を決定する。還気ダンパ開度決定部は還気風量Vkが給気風量Vaと外気取入風量Wmとの差、即ち Vk=Va−Wm となるように還気ダンパ39の開度を決定する。なお、風量とダンパの開度との関係は従来技術と同様に実験結果又はカタログ等のデータにより決定できる。なお、排気風量比は外気要求風量比と同じ(即ちθ1=θ2)とする。或いはa、bをパラメータとして、θ3=a−bx外気要求風量比 としてもよい。例えば、設計給気風量に対する最大外気風量比が0.35の場合は、給気要求風量比が50%ならば、還気ダンパの開度θ3はθ3=100−0.35・50%=87.5%となる。
【0021】
図4は給気風量、還気風量、外気取入風量、排気風量、還気ダンパの通過風量との関係を示しており、ここで各風量は給気ファン13の定格風量を100%として、比率で表している。例えば、図4(A)は給気風量を定格風量と同一の場合で100%である。還気風量も100%で外気取入風量、排気風量は35%で還気ダンパの通過風量は65%である。図4(B)は給気風量、還気風量が共に50%で、外気取入風量、排気風量は35%で還気ダンパの通過風量は15%の場合である。図4(C)は給気風量、還気風量が共に35%で、外気取入風量、排気風量は35%で還気ダンパの通過風量は0%の場合である。
【0022】
本実施形態は上記の様に構成されており、以下のような機能、作用効果を有する。即ち、被制御エリアに供給する風量は実際に被制御エリアの各部屋に供給されている風量と各部屋に設けられているVAVユニットのダンパの最大開度を考慮して決定しており、供給風量が定格風量よりも小さい場合には制御範囲に余裕が生じる。また、供給風量はインバータによって制御されており、正確な風量が供給可能になっている。また、外気から導入する風量は要求される基準(炭酸ガス濃度等)を満たすために正確な風量を導入する必要があるが、VAVユニット41によって行っているために正確な風量を導入できる。これらの正確な風量に基づいて還気ダンパ39、排気ダンパ38の開度を決定しているために、全体としても各風路(給気路31,還気路32、外気路33)を流れる風量も正確になる。更に、インバータやVAVユニットは強制的に風量を決定するアクティブな構成要素であり、各ゾーンを流れる流量はバランスするように決定されているので、設定値等の変更に対しても速やかに定常状態に達することが可能である。
【0023】
以上、この発明の実施形態、実施例を図面により詳述してきたが、具体的な構成はこの実施例に限られるものではなく、この発明の要旨を逸脱しない範囲の設計の変更等があってもこの発明に含まれる。例えば、外気の導入風量を制御するVAVの代わりにダンパを設けてダンパの開度を制御するようにしてもよい。
【0024】
【発明の効果】
以上説明したように、この発明の構成によれば、請求項1記載の発明は循環させる還気風量と排気風量を給気装置による供給風量と外気取入空気の風量とを基準にして決定しているので、各部を流れる風量が設計値と近い値になるという効果が得られる。従って、適切な空調が可能になるという効果が得られる。また、要求される外気取入空気の風量が制御通りの風量の導入が可能になることから、空調システムが高品質になるという効果が得られる。
【図面の簡単な説明】
【図1】本発明を実施した実施形態の装置の概略構成を示す。
【図2】本実施形態のメインコントローラの機能ブロック図を示す。
【図3】インバータ周波数と風量の関係を示す。
【図4】各ゾーンの風量の関係を示す。
【図5】従来装置の構成図を示す。
【図6】従来装置の外気取入風量の設定を示す。
【図7】従来装置のダンパ開度の決定テーブルを示す。
【符号の説明】
10(10a、10b)     被制御ゾーン
11(11a、11b)     VAVユニット
13(13a)         給気装置
16(16a)         還気装置
20      ゾーンコントローラ
25      メインコントローラ
28      セレクタ
38      排気ダンパ
39      還気ダンパ
41      外気取入れ用VAVユニット
43,44   温度センサ
45      炭酸ガス濃度センサ
46      給気インバータ周波数決定部
47      還気インバータ周波数決定部
48            還気ダンパ開度決定部
49      排気ダンパ開度決定部
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention belongs to the technical field of an air conditioner control device. More specifically, it belongs to the technical field of controlling the air volume in an air conditioner.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, in a large-scale building, several rooms (controlled areas) are provided by partitioning a space, and each room is provided with a variable air supply amount adjustment unit (hereinafter, VAV) through an air supply duct from an air conditioner. The air-conditioned air is blown from a supply air outlet provided in each room by the unit, and the indoor air is returned to the air conditioner from the return air inlet and circulated. On the other hand, when the concentration of carbon dioxide (CO2) or the like in the indoor air is high, a method of discharging part of the circulated air to the outside and taking in fresh air from the outside to perform air conditioning is adopted. I have.
[0003]
In such a conventional air conditioner, a duct for guiding air is provided, and a damper (butterfly valve) is provided in the air passage to adjust the angle of the damper, thereby adjusting the amount of air flowing through the duct. Is adopted. An example of such an air conditioning control system is disclosed in Japanese Patent Laid-Open Publication No. Hei 11-344252. FIG. 5 is a schematic diagram of the overall configuration of the air conditioning system, and FIG. 7 shows a control method for determining a damper angle. Hereinafter, this air conditioning system is referred to as a conventional device 1.
[0004]
In FIG. 5, 50 is a controlled area, and 60 is a schematic diagram of the air conditioner main body. Reference numeral 80 denotes a damper control device (or an outside air intake control device). Air conditioned from the air supply duct 61 of the air conditioner main body 60 is supplied to the controlled area 50 by the air supply fan 62 in the direction of the arrow (the right arrow in the figure). A predetermined amount of air is supplied to each room in the controlled area by a VAV unit (not shown). Further, the indoor air is returned by the return air fan 64 through the return air duct 63. 65 is a heat exchanger, 66 is an outside air damper for controlling the amount of outside air intake, and the flow rate of outside air is measured by a wind speed sensor 69. 67 is an exhaust damper that controls the amount of air that discharges the returned air to the outside, and 68 is a return air damper that controls the amount of air that returns the returned air to an air conditioner (not shown).
[0005]
The wind speed calculation unit 81 obtains the wind speed V1 based on the output of the wind speed sensor 69, and the air volume calculation unit 82 calculates the actual air volume Q1 by Q1 = V1 · A1. A1 is the duct cross-sectional area. Reference numeral 83 denotes an actual air volume ratio calculation unit, and the actual air volume ratio PV1 is calculated by PV1 = (Q1 / air conditioner rated air volume) × 100%. The symbol "x" indicates multiplication. A damper control unit 94 determines an opening θ1 of the outside air damper opening 66, an opening θ2 of the exhaust damper 67, and an opening θ3 of the return air damper 68 by a method described later. Determining units 92 to 94 determine the outside air intake air flow set value. The determination unit 92 determines the minimum value S1 of the outside air intake air flow, and the determination unit 93 determines the external air intake air flow from the difference between the set value of the carbon dioxide gas and the measured value. The intake air amount S2 is determined, and the determination unit 94 determines the outside air intake air amount S3 from the difference between the supply air temperature setting value and the supply air temperature measurement value. Note that the supply air temperature measurement value is obtained by the supply air temperature sensor 51. The selector 95 determines the maximum air volume SP1 from the external air intake air volumes S1 to S3. The correction unit 96 converts the determined damper opening degrees θ1 to θ3 into control amounts θ1 ′ to θ3 ′. By this conversion, the relationship between the control amounts θ1 ′ to θ3 ′ and the air flow is linearized.
[0006]
FIGS. 6A and 6B show a method of determining the set values S2 and S3 of the outside air intake air volume by the determining unit 93 and the determining unit 94. FIG. 7 shows a table for determining the damper openings θ1 to θ3 based on the outside air intake air flow set value SP1. First, the determining unit 93 determines the outside air intake air flow rate S2 (%) in proportion to the deviation between the set value of the carbon dioxide gas and the measured value, as shown in FIG. Next, as shown in FIG. 6A, the determination unit 94 determines the outside air intake air flow rate S2 (%) in proportion to the difference between the supply air temperature setting value (or load reset value) and the supply air temperature measurement value. . The damper control unit 94 determines the maximum air volume SP1 (%) from the set values S1 (%) to S3 (%) of the external air intake air volume by the selector 95, and uses this as a control signal output to determine the damper opening shown in FIG. The damper opening degrees θ1 to θ3 are determined from the table.
[0007]
In this damper opening determination table, the outside air damper opening θ1 and the exhaust damper opening θ2 are set to the same opening. As shown in FIG. 7, the damper opening θ1 (θ2 = θ1) and the return air damper opening θ3 are such that when one damper opening is an intermediate opening or fully closed, the other damper opening is kept fully open. To decide. That is, when the control signal output is 50% or less, the damper opening θ1 (θ2) is increased from 0 to 100% as the control signal output increases while the damper opening θ3 is fully opened, and the damper opening θ1 (θ2) is increased. When the full opening is reached, the damper opening θ3 is reduced to 100 to 0% as the control signal output increases.
In the above-described conventional device 1, the damper openings θ1 to θ3 are determined by the outside air intake air amount (%). It should be noted that, in the conventional device 1, it is not necessary to satisfy θ1 (or θ2) + θ3 = 100% because the pressure loss increases as the damper opening decreases.
[0008]
Further, in a conventional device (hereinafter, referred to as a conventional device 2), the ventilation amount is assumed to be proportional to the damper opening, and the return air damper opening θ3 is determined as an operation reverse to the opening θ2 of the outside air damper. That is, θ3 = 100−θ2 (or θ1).
[0009]
[Problems to be solved by the invention]
In the above-described conventional apparatus (conventional apparatus 1 and conventional apparatus 2), the required outside air intake air ratio is determined from the deviation of the carbon dioxide concentration and the deviation of the supply air temperature, and the damper opening is directly determined from this. Therefore, when the supply air flow rate is small, the actual air flow rate that is actually set cannot be introduced, or the external air flow rate and the exhaust air flow rate do not balance well. In particular, in the conventional device 1, a situation in which the set air volume cannot be introduced from the outside air is likely to occur. The present application is an invention made to solve such a problem.
[0010]
[Means for Solving the Problems]
In order to solve the above problems, the present invention employs the following solutions. That is,
According to the first aspect of the present invention, the air conditioned by the variable air amount device is blown into the controlled area, the air in the controlled area is returned by the return air device, and part or all of the return air is circulated. Air to the air conditioner to discharge the rest to the outside, at the same time to introduce outside air to the air conditioner, air-treat the introduced air by the air conditioner, and supply the air-conditioned air to the air supply device In the air-conditioning control device configured to send air to the variable air volume device, the amount of air introduced into the air conditioner for circulation is determined from the amount of outside air intake air and the amount of air blown by the air supply device. It is characterized by. That is, the invention of claim 1 is characterized mainly in that the return air volume and the exhaust air volume to be circulated are determined based on the air volume supplied by the air supply device and the air volume of the outside air intake air.
[0011]
According to a second aspect of the present invention, in the first aspect of the present invention, the air volume of the outside air intake air is controlled based on an air volume value of a variable air volume device provided in the outside air intake duct.
That is, the invention according to claim 2 is characterized mainly in that the amount of external air introduced is controlled by the variable air volume device.
[0012]
According to a third aspect of the present invention, in the first aspect of the present invention, the amount of the outside air intake air is controlled based on an opening degree of an outside air damper provided in the outside air intake duct.
[0013]
According to a fourth aspect of the present invention, in the first to third aspects of the present invention, the air supply amount is controlled based on a frequency of a drive inverter of the air supply device.
That is, the invention of claim 4 is characterized mainly in that the supply air volume can be accurately and quickly made possible by the inverter device.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 shows a schematic configuration of an apparatus according to an embodiment of the present invention. FIG. 2 shows a functional block diagram of the main controller. FIG. 3 shows the relationship between the inverter frequency and the air flow. FIG. 4 shows the relationship between the air volumes. Hereinafter, the present embodiment will be described with reference to these drawings. 1 to 4, the controlled area 10 to be air-conditioned includes rooms 10a and 10b. In the rooms 10a and 10b, variable air supply flow control units (hereinafter, referred to as VAV units) 11a and 11b are provided at air supply outlets. The VAV units 11a and 11b are connected to an air supply duct 12, and air-conditioned air is supplied from an air supply fan 13. The rooms 10a and 10b are provided with return air inlets 14a and 14b, respectively, and return air is returned by a return air fan 17 through a return air duct 15.
[0015]
The VAV units 11a and 11b are provided with local controllers 15a and 15b for setting the air volume. The local controllers 15a and 15b provided in the rooms 10a and 10b are provided with a difference between the temperature sensors 16a and 16b (current room temperature) and the set room temperature. Air volumes v1 and v2 are determined. The VAV controllers 15a and 15b are connected to the zone controller 20, and data such as air volumes v1 and v2 and damper opening degrees β1 and β2 provided inside the VAV units 11a and 11b are input to the zone controller 20. . The zone controller 20 calculates the total required air volume V and the maximum opening degree βm, and sends them to the controller 25. Note that V = v1 + v2 and βm = max (β1, β2).
[0016]
The air conditioner main body 30 is partitioned into air paths such as an air supply path 31, a return air path 32, and an external air path 33. Are provided. Further, the return air passage 32 is provided with the return air fan 16, the downstream of which is connected to the exhaust duct 36, and the ventilation hole 37 is provided at the boundary with the air supply passage 31. An outside air damper 38 and a return air damper 39 for limiting the air volume are provided in the exhaust duct 36 and the vent 37, respectively. The outside air passage 33 is connected to an outside air intake duct 40, and the outside air intake duct 40 is provided with a VAV unit 41 (and, if necessary, an outside air fan 42) for taking in outside air.
[0017]
Further, a temperature sensor 43 is provided in the air supply duct 12, and an output thereof is connected to an input side of the main controller 25. Similarly, the return air duct 15 is provided with a temperature sensor 44 and a carbon dioxide (CO 2) concentration sensor 45, and the outputs thereof are all connected to the input side of the main controller 25. On the output side of the controller 25, in addition to the inverter 13a (drive motor controlled by inverter) of the air supply fan 13 and the inverter 17a of the return air fan 17, an actuator 38a for controlling the opening degree of the outside air damper 38, a return air damper 39 The actuator 39a for controlling the opening of the air conditioner is connected to a controller 41a for controlling the air volume of the outside air VAV unit 41.
[0018]
The main controller 25 will be described with reference to FIG. As described above (FIG. 1), the zone controller 20 supplies the air supply air volume (substantially equal to the actual air volume) v1... Vn and the damper opening from the VAV units 11a and 11b provided in the respective rooms 10a and 10b of the controlled area. The signals of the degrees β1... Βn are received, the total supply air volume V and the maximum opening degree βm are obtained, and the calculation result is output to the main controller 25. Although the number of rooms is n = 2 in FIG. 1, it is not limited to this. The air supply inverter frequency determination unit 46 determines the air supply air volume Va in consideration of the maximum opening degree βm. That is, when the maximum opening βm is 100%, the supply air volume Va is made larger than the total supply air volume V, and the maximum opening βn is reduced to 100% or less. As a result, the maximum opening degree βm is set to 100% or less (for example, 90%). Since the relationship between the supply air volume Va and the inverter frequency has a linear relationship as shown in FIG. 3A, the inverter frequency N1 is determined using this relationship.
[0019]
Next, the return air inverter frequency determination unit 47 determines the inverter frequency of the return air fan 16. As shown in FIG. 3B, the inverter frequency N2 is determined so that the return air inverter frequency has a certain ratio between the return air volume and the supply air volume. The outdoor air intake air flow rate determination unit 26 during outdoor air cooling determines the outdoor air intake air flow w1 in consideration of the operation mode and the difference between the return air temperature and the outdoor air temperature. That is, in the case of the outside air cooling permission mode, when the outside air temperature is lower than the return air temperature, the determination is made in consideration of the cooling efficiency and the like. The outside air intake air volume determining unit 27 based on the carbon dioxide gas concentration determines the outside air intake air volume w2 such that when the concentration of carbon dioxide gas contained in the return air is high, the concentration is reduced to a predetermined reference value or less.
[0020]
The selector unit 28 obtains the maximum air volume Wm from the external air intake air volumes w1 and w2 determined by the external air intake air volume determination units 26 and 27. The air volume of the outside air VAV unit 41 is set to be the maximum air volume Wm. The outside air required air volume ratio determining unit 29 sets the rated air volume of the air supply fan 13 to 100%, and obtains a ratio (= Wmx100% / rated air volume x100%) based on this. The exhaust damper opening determining unit 49 determines the opening of the exhaust damper 38 so that the outside air intake air flow Wm and the exhaust air flow are equal. The return air damper opening determination unit determines the opening of the return air damper 39 so that the return air flow Vk is equal to the difference between the supply air flow Va and the outside air intake flow Wm, that is, Vk = Va−Wm. The relationship between the air volume and the degree of opening of the damper can be determined based on experimental results or data in a catalog or the like as in the related art. Note that the exhaust air volume ratio is the same as the external air required air volume ratio (that is, θ1 = θ2). Alternatively, a3 and a3 may be used as parameters, and θ3 = a−bx required outside air flow rate ratio. For example, if the maximum outside air flow ratio to the design supply air flow is 0.35, and if the required air supply flow ratio is 50%, the opening degree θ3 of the return air damper is θ3 = 100−0.35 · 50% = 87. 0.5%.
[0021]
FIG. 4 shows the relationship among the supply air volume, the return air volume, the outside air intake air volume, the exhaust air volume, and the air volume passing through the return air damper, where each air volume is defined as 100% of the rated air volume of the air supply fan 13. Expressed as a ratio. For example, FIG. 4A shows 100% when the supply air volume is the same as the rated air volume. The return air volume is also 100%, the outside air intake air volume, the exhaust air volume is 35%, and the air volume passing through the return air damper is 65%. FIG. 4B shows a case where the supply air volume and the return air volume are both 50%, the outside air intake air volume and the exhaust air volume are 35%, and the air volume passing through the return air damper is 15%. FIG. 4C shows a case where the supply air volume and the return air volume are both 35%, the outside air intake air volume and the exhaust air volume are 35%, and the air volume passing through the return air damper is 0%.
[0022]
The present embodiment is configured as described above, and has the following functions and effects. That is, the amount of air supplied to the controlled area is determined in consideration of the amount of air actually supplied to each room in the controlled area and the maximum opening of the damper of the VAV unit provided in each room. When the air volume is smaller than the rated air volume, there is a margin in the control range. Further, the supplied air volume is controlled by an inverter, so that an accurate air volume can be supplied. In addition, it is necessary to introduce an accurate air flow for the air flow introduced from the outside air in order to satisfy a required standard (carbon dioxide concentration or the like). However, since the air flow is performed by the VAV unit 41, an accurate air flow can be introduced. Since the opening degrees of the return air damper 39 and the exhaust damper 38 are determined based on these accurate air volumes, the air flows (the air supply path 31, the return air path 32, and the external air path 33) as a whole. The air volume is also accurate. Further, the inverter and the VAV unit are active components for forcibly determining the air volume, and the flow rates flowing through the respective zones are determined so as to be balanced. It is possible to reach.
[0023]
As described above, the embodiments and examples of the present invention have been described in detail with reference to the drawings. However, the specific configuration is not limited to the examples, and there are design changes and the like without departing from the gist of the present invention. Is also included in the present invention. For example, a damper may be provided instead of the VAV for controlling the amount of outside air introduced, and the opening of the damper may be controlled.
[0024]
【The invention's effect】
As described above, according to the configuration of the present invention, the invention according to claim 1 determines the amount of circulated return air and the amount of exhaust air based on the amount of air supplied by the air supply device and the amount of external air intake air. Therefore, the effect that the air volume flowing through each part is close to the design value can be obtained. Therefore, an effect that appropriate air conditioning becomes possible is obtained. Further, since the required flow rate of the outside air intake air can be introduced as controlled, the effect of improving the quality of the air conditioning system can be obtained.
[Brief description of the drawings]
FIG. 1 shows a schematic configuration of an apparatus according to an embodiment of the present invention.
FIG. 2 is a functional block diagram of a main controller according to the embodiment.
FIG. 3 shows a relationship between an inverter frequency and an air volume.
FIG. 4 shows a relationship between air volumes in each zone.
FIG. 5 shows a configuration diagram of a conventional device.
FIG. 6 shows the setting of the outside air intake air volume of the conventional apparatus.
FIG. 7 shows a table for determining a damper opening of the conventional device.
[Explanation of symbols]
10 (10a, 10b) Controlled zone 11 (11a, 11b) VAV unit 13 (13a) Supply device 16 (16a) Return device 20 Zone controller 25 Main controller 28 Selector 38 Exhaust damper 39 Return air damper 41 For intake of outside air VAV units 43 and 44 Temperature sensor 45 Carbon dioxide concentration sensor 46 Air supply inverter frequency determination unit 47 Return air inverter frequency determination unit 48 Return air damper opening degree determination unit 49 Exhaust damper opening degree determination unit

Claims (4)

被制御エリアに変風量装置により空調した空気を送風し、該被制御エリアの空気を還気装置により還気させて、該還気空気の一部又は全部を循環させるために空調機に導入して残りを外部に排出し、同時に外気を空調機に導入して、これら導入した空気を該空調機により空調処理をして、該空調された空気を給気装置によって前記変風量装置へ送風するようにした空調制御装置において、循環させるために空調機に導入する空気の風量を外気取入空気の風量と給気装置による送風風量とから決定するようにしたことを特徴とする空調機の風量制御装置。The air conditioned by the variable air volume device is blown into the controlled area, the air in the controlled area is returned by the return air device, and introduced into the air conditioner to circulate a part or all of the return air. The remaining air is discharged to the outside, and at the same time, outside air is introduced into the air conditioner. In the air conditioning control device, the air volume of the air introduced into the air conditioner for circulation is determined from the air volume of the outside air intake air and the air volume of the air supply device. Control device. 前記外気取入空気の風量を外気取入ダクトに設けた変風量装置の風量値に基づいて制御することを特徴とする請求項1に記載の空調機の空気風量制御装置。The air flow control device for an air conditioner according to claim 1, wherein the air flow of the outside air intake air is controlled based on the air flow value of a variable air flow device provided in the outside air intake duct. 前記外気取入空気の風量を外気取入ダクトに設けた外気ダンパの開度に基づいて制御することを特徴とする請求項1に記載の空調機の空気風量制御装置。2. The air flow control device for an air conditioner according to claim 1, wherein the air flow of the outside air intake air is controlled based on an opening degree of an outside air damper provided in the outside air intake duct. 3. 前記給気風量を前記給気装置の駆動インバータの周波数に基づいて制御することを特徴とする請求項1に記載の空調機の風量制御装置。The air volume control device for an air conditioner according to claim 1, wherein the air volume is controlled based on a frequency of a drive inverter of the air supply device.
JP2002291345A 2002-10-03 2002-10-03 Air volume control device for air conditioner Expired - Lifetime JP4346295B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002291345A JP4346295B2 (en) 2002-10-03 2002-10-03 Air volume control device for air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002291345A JP4346295B2 (en) 2002-10-03 2002-10-03 Air volume control device for air conditioner

Publications (2)

Publication Number Publication Date
JP2004125304A true JP2004125304A (en) 2004-04-22
JP4346295B2 JP4346295B2 (en) 2009-10-21

Family

ID=32282966

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002291345A Expired - Lifetime JP4346295B2 (en) 2002-10-03 2002-10-03 Air volume control device for air conditioner

Country Status (1)

Country Link
JP (1) JP4346295B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013047579A (en) * 2011-08-29 2013-03-07 Toshiba Corp Air-conditioning control system and air-conditioning control method
CN106091291A (en) * 2016-07-21 2016-11-09 广东美的制冷设备有限公司 A kind of air-conditioning air volume self compensation control method, control system and air-conditioning

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013047579A (en) * 2011-08-29 2013-03-07 Toshiba Corp Air-conditioning control system and air-conditioning control method
CN106091291A (en) * 2016-07-21 2016-11-09 广东美的制冷设备有限公司 A kind of air-conditioning air volume self compensation control method, control system and air-conditioning
CN106091291B (en) * 2016-07-21 2019-04-30 广东美的制冷设备有限公司 A kind of air-conditioning air volume self compensation control method, control system and air-conditioning

Also Published As

Publication number Publication date
JP4346295B2 (en) 2009-10-21

Similar Documents

Publication Publication Date Title
US11187429B2 (en) Integrated heat and energy recovery ventilator system
US4754919A (en) Air conditioning apparatus
CN109556219B (en) Variable air volume air conditioning unit and control method thereof
KR101497698B1 (en) Air conditioning system
JPH10318593A (en) Control method for air-conditioning device and air-conditioning device
WO2018056191A1 (en) Heat exchange-type ventilation device
KR20190114466A (en) Air conditoiner and control method thereof
JP2019011884A (en) Room Pressure Control System
JP5241760B2 (en) Temperature control system for direct expansion air conditioner
CN104515207A (en) Multi-cross-flow air conditioner and control method thereof
JP2734280B2 (en) Air conditioner
JP4346295B2 (en) Air volume control device for air conditioner
JPS6064145A (en) Supplying and discharging air control system for keeping plurality of chambers in same air system in specified indoor pressures respectively
JP2004003866A (en) Ventilation air conditioning system
JP2636514B2 (en) Air conditioner
CN110594871A (en) Air conditioning system
JPH0842909A (en) Air conditioning system
WO2021028964A1 (en) Heat exchange type ventilation device
JP2005274103A (en) Air conditioning system
JP6614190B2 (en) Air volume control system for direct expansion air conditioner
JPH0914737A (en) Air-conditioning controller
JP7437552B2 (en) Ventilation systems and methods
JP6958657B2 (en) Air conditioning system
JPH06313582A (en) Air conditioning system
JP2679418B2 (en) Air conditioner

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20021004

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080502

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080513

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080714

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080714

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081209

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090707

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090714

R150 Certificate of patent or registration of utility model

Ref document number: 4346295

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120724

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120724

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130724

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130724

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130724

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140724

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term