JP2004124833A - Axial compressor - Google Patents

Axial compressor Download PDF

Info

Publication number
JP2004124833A
JP2004124833A JP2002290682A JP2002290682A JP2004124833A JP 2004124833 A JP2004124833 A JP 2004124833A JP 2002290682 A JP2002290682 A JP 2002290682A JP 2002290682 A JP2002290682 A JP 2002290682A JP 2004124833 A JP2004124833 A JP 2004124833A
Authority
JP
Japan
Prior art keywords
moving blade
sectional area
blade row
flow
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002290682A
Other languages
Japanese (ja)
Other versions
JP3743415B2 (en
Inventor
Takeshi Murooka
室岡 武
Hidekazu Kodama
児玉 秀和
Masahiko Yamamoto
山本 政彦
Kenichi Shinohara
篠原 健一
Akira Takahashi
高橋 晃
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2002290682A priority Critical patent/JP3743415B2/en
Publication of JP2004124833A publication Critical patent/JP2004124833A/en
Application granted granted Critical
Publication of JP3743415B2 publication Critical patent/JP3743415B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To restrain a stall from occurring and restrain surging phenomenon by reducing a chip clearance flow flowing from a positive pressure surface to a negative pressure surface of a moving blade even when the blade is in a high load state. <P>SOLUTION: A moving blade cascade 10 is provided which decelerates an axial speed and has an outlet sectional area larger than an inlet sectional area so as to reduce a pressure difference between the positive pressure surface and the negative pressure surface. A stationary blade cascade 11 is arranged to a downstream side of the moving blade cascade 10. An outlet sectional area of the stationary blade cascade 11 is smaller than the inlet sectional area of the moving blade cascade 10. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【産業上の利用分野】
本発明は、チップクリアランス損失を低減しストールを抑制できる軸流圧縮機に関する。
【0002】
【従来の技術】
図5はターボジェットエンジンの模式的構成図であり、空気取入口1、圧縮機2、燃焼器3、ガスタービン4、アフターバーナ5、ジェットノズル6、等を備えている。かかるターボジェットエンジンでは、空気を空気取入口1から導入し、圧縮機2でこの空気を圧縮し、燃焼器3内で燃料を燃焼させて高温の燃焼ガスを発生させ、発生した燃焼ガスでガスタービン4を駆動し、このガスタービン4で圧縮機2を駆動し、アフターバーナ5でタービンを出た排ガスにより燃料を再度燃焼させ、高温の燃焼排ガスをジェットノズル6で膨張させて後方に噴出し、推力を発生するようになっている。この基本構成は、ターボジェットエンジン以外のジェットエンジンでも概ね同様である。
【0003】
上述したジェットエンジンやその他のガスタービン、或いは圧縮機単体において、圧縮機を構成する動翼の先端(チップ)とケーシング内面との隙間を一般にチップクリアランスと呼ぶ。チップクリアランスは、圧縮機の圧縮効率を高める上で、常に小さい程好ましいが、実際の運転においては、(1)動翼の遠心力による伸び、(2)動翼の熱膨張、(3)ケーシングの熱膨張、等の影響を受けるため、運転状態により種々に変動する。
【0004】
図6は、起動時のチップクリアランスの変化を模式的に示す図である。圧縮機の停止状態では、動翼、動翼が取り付けられたローター、ケーシング等がすべて常温(例えば20〜30℃)であり、チップクリアランスは最大(ポイントA)となっている。圧縮機を起動し、動翼が回転を始めると、遠心力により動翼が伸びチップクリアランスが小さくなる(B)。次いで空気の断熱圧縮により圧縮空気が温度上昇し、これにより熱容量の小さい動翼が先ず熱膨張してチップクリアランスが最小(C)まで小さくなる。次いで、熱容量が大きいケーシング及びローターが熱膨張し、チップクリアランスが徐々に増大し、定常状態ではほぼ一定の設計範囲(D)となる。
【0005】
上述したチップクリアランスを最適状態に保つために、例えば、[特許文献1]が既に出願されている。
【0006】
【特許文献1】
特開平06−317184号公報
【0007】
[特許文献1]の「チップクリアランス制御装置」は、図7に示すように、ケーシング13に取り付けた温度検出器14aと、一端が圧縮機部16に接続され且つ他端が大気圧開放され、また中間部が温度検出器14aの近傍に位置するようにケーシング13に取り付けられた冷却管15aと、該冷却管15aに設けた流量調整弁17aと、ケーシング13の内側部に対する動翼12の先端部のチップクリアランスCとケーシング13の温度検出器14aが取り付けられている部分の温度との関係を熱変形データ信号19としてメモリする熱変形データ記憶器18と、温度検出器14aより出力される温度検出信号21aと熱変形データ信号19とに基づき流量調整弁17aに対して流量調整信号22を出力する熱変形制御器20とを備えたものであり、冷却管15aに圧縮機部16から空気を流通させて、ケーシング13を局所的に冷却するようになっている。
【0008】
なお、翼列を通る流れに関しては、例えば、非特許文献1、非特許文献2、非特許文献3に開示されている。
【0009】
【非特許文献1】
谷田好通、長島利夫、ガスタービンエンジン、朝倉書店p.41
【非特許文献2】
Horlock, Axial Flow Compressor, Butterworths Publications Limited
【非特許文献3】
AERODYNAMIC DESIGN OF AXIAL−FLOW COMPRESSORS, NASA SP−36
【0010】
【発明が解決しようとする課題】
図6に示したように、チップクリアランスは起動時から定常状態までに種々に変化する。そのため、[特許文献1]の「チップクリアランス制御装置」は、チップクリアランスが大きい場合しか有効でなかった。
そのため、ポイントCにおいて、動翼の先端(チップ)がケーシング内面と接触しないように、最小チップクリアランスが設定されている。従って、従来の圧縮機において、チップクリアランスを常に最小に保持することは事実上不可能である。
【0011】
上述したように、チップクリアランスは、圧縮機の運転状態(回転速度、圧縮比、外気温度、等)により変動し、運転状態によっては、チップクリアランスが過大となって圧縮効率が低下するばかりでなく、動翼のチップ端と外側通路の間のチップクリアランス部で動翼の正圧面から負圧面に流れ(チップクリアランス流れと呼ぶ)が生じる。このチップクリアランス流れは、翼を高負荷化した際に安定作動を阻むストールを引き起こす要因であり、圧縮機の作動限界であるサージング現象の主要因である。
【0012】
本発明は上述した問題点を解決するために創案されたものである。すなわち、本発明は、翼を高負荷化した場合でも、動翼の正圧面から負圧面に流れるチップクリアランス流れを低減することができ、これによりストールの発生とサージング現象を抑制することができる軸流圧縮機を提供することにある。
【0013】
【課題を解決するための手段】
本発明によれば、軸方向速度を減速させ、正圧面と負圧面の圧力差を低減するように入口断面積よりも出口断面積が大きく形成されている動翼列(10)を備える、ことを特徴とする軸流圧縮機が提供される。
【0014】
上記本発明の構成によれば、動翼列(10)の入口断面積よりも出口断面積が大きく形成され、それに対して適切な通路長を持っているので、この動翼列内において流れの軸方向速度が減速される。
従って、動翼の速度三角形を考えると、翼で流れを大きく曲げなくても、軸方向速度を減速させることでも動翼の仕事を得られることがわかる。同じ圧力比を得る場合、通路を広げると、翼で流れを曲げる量は少なくてすむため、翼の正圧面と負圧面の圧力差が小さくなり、チップクリアランス流れを減少させることができ、チップクリアランス流れの減少により、高圧力比で広い安定作動範囲をもつ動翼を得ることができる。
【0015】
本発明の好ましい実施形態によれば、前記動翼列(10)の下流側に静翼列(11)を備え、該静翼列(11)の出口断面積は、前記動翼列の入口断面積よりも小さく構成されている。
この構成により、静翼列(11)における流れは減速の小さい流れとなり、剥離のおそれが少なく、スムースに減速し圧力を調整することができる。
【0016】
また、前記動翼列(10)は、流入部における動翼相対速度の向きと流出部における動翼相対速度の向きとの差が小さくなるように、動翼での流れの転向角が15度以下に設定されている。
この構成により、動翼列(10)の反りが小さいので、翼の正圧面と負圧面の圧力差が小さくなり、チップクリアランス流れを減少させることができ、従来翼よりも高圧力比で広い安定作動範囲を持つ動翼を得ることができる。
【0017】
【発明の実施の形態】
以下、本発明の好ましい実施形態を図面を参照して説明する。なお、各図において共通する部分には同一の符号を付して使用する。
【0018】
図2は、従来の軸流圧縮機の模式図である。この図において、(A)は、子午線形状、(B)は動翼列の側面図、(C)は動翼列の平面図である。
図2(A)に示すように、従来の軸流圧縮機では、上流側から静翼列7、動翼列8、静翼列9の順で通常、流路断面積が順次小さくなる。また、図2(C)に示すように、動翼列8を構成する各動翼は、大きな反りを有し、翼を曲げることで正圧を上昇するようになっている。
このような、従来の動翼列8の場合、動翼の正圧面と負圧面の圧力差が大きくなるため、チップクリアランス流れが大きくなり、ストールやサージング現象が発生する要因となる。
【0019】
図1は、本発明の軸流圧縮機の模式図である。この図において、(A)は、子午線形状、(B)は動翼列の側面図、(C)は動翼列の平面図である。
図1(A)に示すように、本発明の軸流圧縮機は、従来と異なる子午線形状の動翼列10と静翼列11を備える。
本発明の動翼列10は、図1(B)に示すように、入口断面積よりも出口断面積が大きく形成され、適切な通路長さを持って流れの軸方向速度を減速させ、正圧面と負圧面の圧力差を低減するように構成されている。
また、動翼列10の下流側に位置する静翼列11は、その出口断面積が、動翼列10の入口断面積よりも小さく構成されている。
更に、本発明の例では、動翼列10は、流入部における動翼相対速度の向きと流出部における動翼相対速度の向きとがほぼ一致するように、反りが0に設定されている。
【0020】
なお、本発明はこの構成に限定されず、動翼列10は、流入部における動翼相対速度の向きと流出部における動翼相対速度の向きとの差が小さくなるように、動翼での流れの転向角が15度以下に設定するのがよい。ここで、「流れの転向角」とは動翼入口と動翼出口の相対流れベクトルのなす角度を意味する。
【0021】
図3は、速度三角形の本発明(A)と従来(B)の具体例である。
この例において、本発明(A)と従来例(B)の両方とも、動翼回転速度Uは362.6m/s、入口側の周方向速度u1は42.5m/s、出口側の周方向速度u2は188.7m/s、動翼仕事はU(u2−  u1)=362.6×(188.7−42.5)=53012Jである。従って、下流側の流体は同一のエネルギーを保有しているといえる。
【0022】
図3(B)の従来例では、動翼列8の後の流路面積を小さく調整することで、軸方向成分は上流側と下流側で同一の200m/sになっている。従って、この例では出口絶対速度が約273m/sになっており、その運動エネルギーを下流側の静翼列で圧力上昇に変換するようになっている。
また従来の軸流圧縮機では、図3(B)の速度三角形を実現するために動翼列8を構成する各動翼が大きな反りを有している。この反りにより、流入部における動翼相対速度の向き(軸線に対して58度)と流出部における動翼相対速度の向き(軸線に対して41度)とが大きく相違する。
この結果、従来の動翼列8の場合、動翼の正圧面と負圧面の圧力差が大きくなるため、チップクリアランス流れが大きくなる。
【0023】
図3(A)の本発明では、動翼列10の入口断面積よりも出口断面積が大きく形成され、軸方向成分は上流側で200m/s、下流側で109m/sとほぼ半分になっている。従って、この例では上流側に比べ下流側の静圧が高くなるととともに、絶対速度も約218m/sに上がっている。
また本発明では、図3(A)の速度三角形を実現するために動翼の反りは不要であり、流入部における動翼相対速度の向きと流出部における動翼相対速度の向きとがほぼ一致するように、反りが0に設定されている。
さらに下流側の静翼列11ではその出口断面積が、動翼列10の入口断面積よりも小さく構成されているので、流れは減速の小さい流れとなり、剥離のおそれが少なく、スムースに減速し圧力を調整するようになっている。
【0024】
図4は、動翼面の圧力分布の解析結果である。この図において、×印は従来の動翼面の圧力分布であり、○印は本発明の動翼面の圧力分布である。また図中Aは従来の最大圧力差、Bは本発明の最大圧力差である。
この図から、従来の動翼面では、負圧面の圧力低下が大きく、最大圧力差Aが大きくなることがわかる。これに対して、本発明の動翼面では、負圧面の圧力低下が小さく、最大圧力差Bが従来に比べて半分以下まで小さくなることがわかる。
【0025】
上述したように、本発明の構成によれば、動翼列10の入口断面積よりも出口断面積が大きく形成されているので、この動翼列内において流れの軸方向速度が減速される。
従って、動翼の速度三角形を考えると、翼で流れを大きく曲げなくても、軸方向速度を減速させることで同一の動翼仕事を得られる。同じ圧力比を得る場合、通路を広げると、翼で流れを曲げる量は少なくてすむため、翼の正圧面と負圧面の圧力差が小さくなり、チップクリアランス流れを減少させることができ、チップクリアランス流れの減少により、高圧力比で広い安定作動範囲をもつ動翼を得ることができる。
【0026】
また、静翼列11の出口断面積が、動翼列の入口断面積よりも小さい構成により、静翼列11における流れが減速の小さい流れとなり、剥離のおそれが少なく、スムースに減速し圧力を調整することができる。
【0027】
さらに、動翼列10の反りを小さく設定する構成により、翼の正圧面と負圧面の圧力差が小さくなり、チップクリアランス流れを減少させることができ、従来翼よりも高圧力比で広い安定作動範囲を持つ動翼を得ることができる。
【0028】
なお、本発明は上述した実施形態に限定されず、本発明の要旨を逸脱しない範囲で種々変更できることは勿論である。
【0029】
【発明の効果】
上述したように、本発明の軸流圧縮機は、翼を高負荷化した場合でも、動翼の正圧面から負圧面に流れるチップクリアランス流れを低減することができ、これによりストールの発生とサージング現象を抑制することができる、等の優れた効果を有する。
【図面の簡単な説明】
【図1】本発明の軸流圧縮機の模式図である。
【図2】従来の軸流圧縮機の模式図である。
【図3】速度三角形の本発明と従来の具体例である。
【図4】動翼面の圧力分布の解析結果である。
【図5】ターボジェットエンジンの模式的構成図である。
【図6】従来のチップクリアランスの変動を示す模式図である。
【図7】従来のチップクリアランス制御装置の模式図である。
【符号の説明】
1 空気取入口、2 圧縮機、3 燃焼器、4 ガスタービン、
5 アフターバーナ、6 ジェットノズル、
7 静翼列、8 動翼列、9 静翼列、
10 動翼列、11 静翼列、
12 動翼、13 ケーシング、14a 温度検出器、
15a 冷却管、16 圧縮機部、17a 流量調整弁、
18 熱変形データ記憶器、19 熱変形データ信号、
20 熱変形制御器、21a 温度検出信号、
22 流量調整信号
[0001]
[Industrial application fields]
The present invention relates to an axial compressor that can reduce tip clearance loss and suppress stall.
[0002]
[Prior art]
FIG. 5 is a schematic configuration diagram of a turbojet engine, which includes an air intake 1, a compressor 2, a combustor 3, a gas turbine 4, an after burner 5, a jet nozzle 6, and the like. In such a turbojet engine, air is introduced from the air intake 1, the air is compressed by the compressor 2, the fuel is combusted in the combustor 3 to generate high-temperature combustion gas, and the generated combustion gas is used as a gas. The turbine 4 is driven, the compressor 2 is driven by the gas turbine 4, the fuel is burned again by the exhaust gas discharged from the turbine by the afterburner 5, and the high-temperature combustion exhaust gas is expanded by the jet nozzle 6 and ejected backward. , To generate thrust. This basic configuration is generally the same for jet engines other than turbojet engines.
[0003]
In the above-described jet engine, other gas turbine, or a single compressor, a gap between the tip (tip) of a moving blade constituting the compressor and the inner surface of the casing is generally called a tip clearance. In order to increase the compression efficiency of the compressor, the tip clearance is preferably as small as possible. However, in actual operation, (1) elongation due to centrifugal force of the moving blade, (2) thermal expansion of the moving blade, (3) casing Because of the influence of thermal expansion, etc., it varies depending on the operating condition.
[0004]
FIG. 6 is a diagram schematically showing a change in the tip clearance at the time of activation. When the compressor is stopped, the moving blade, the rotor to which the moving blade is attached, the casing, and the like are all at room temperature (for example, 20 to 30 ° C.), and the tip clearance is maximum (point A). When the compressor is started and the rotor blades start to rotate, the rotor blades extend due to centrifugal force, and the tip clearance becomes smaller (B). Next, the temperature of the compressed air rises due to adiabatic compression of the air, so that the rotor blade having a small heat capacity is first thermally expanded to reduce the tip clearance to the minimum (C). Next, the casing and the rotor having a large heat capacity are thermally expanded, the chip clearance is gradually increased, and the design range (D) is almost constant in the steady state.
[0005]
In order to keep the above-described tip clearance in an optimum state, for example, [Patent Document 1] has already been filed.
[0006]
[Patent Document 1]
Japanese Patent Application Laid-Open No. 06-317184
As shown in FIG. 7, the “chip clearance control device” of [Patent Document 1] includes a temperature detector 14a attached to the casing 13, one end connected to the compressor unit 16, and the other end opened to atmospheric pressure. Further, the cooling pipe 15a attached to the casing 13 so that the intermediate part is positioned in the vicinity of the temperature detector 14a, the flow rate adjusting valve 17a provided in the cooling pipe 15a, and the tip of the rotor blade 12 with respect to the inner part of the casing 13 Temperature deformation data storage 18 for storing the relationship between the tip clearance C of the portion and the temperature of the portion of the casing 13 where the temperature detector 14a is attached as a heat deformation data signal 19, and the temperature output from the temperature detector 14a A thermal deformation controller 20 that outputs a flow rate adjustment signal 22 to the flow rate adjustment valve 17a based on the detection signal 21a and the thermal deformation data signal 19 is provided. And than, from the compressor section 16 to the cooling pipe 15a by circulating air, so as to locally cool the casing 13.
[0008]
For example, Non-Patent Document 1, Non-Patent Document 2, and Non-Patent Document 3 disclose the flow through the blade row.
[0009]
[Non-Patent Document 1]
Yoshimichi Yada, Toshio Nagashima, Gas Turbine Engine, Asakura Shoten p. 41
[Non-Patent Document 2]
Horlock, Axial Flow Compressor, Butterworths Publications Limited
[Non-Patent Document 3]
AERODYNAMIC DESIGN OF AXIAL-FLOW COMPRESSORS, NASA SP-36
[0010]
[Problems to be solved by the invention]
As shown in FIG. 6, the tip clearance varies in various ways from the starting time to the steady state. Therefore, the “chip clearance control device” in [Patent Document 1] is effective only when the chip clearance is large.
Therefore, at point C, the minimum tip clearance is set so that the tip (tip) of the rotor blade does not contact the inner surface of the casing. Therefore, in the conventional compressor, it is practically impossible to always keep the tip clearance to a minimum.
[0011]
As described above, the tip clearance varies depending on the operation state of the compressor (rotation speed, compression ratio, outside air temperature, etc.), and depending on the operation state, the tip clearance becomes excessive and the compression efficiency decreases. In the tip clearance portion between the tip end of the rotor blade and the outer passage, a flow (referred to as tip clearance flow) occurs from the pressure surface to the suction surface of the rotor blade. This tip clearance flow is a factor that causes a stall that prevents stable operation when the blades are heavily loaded, and is a main factor of the surging phenomenon that is the operation limit of the compressor.
[0012]
The present invention has been developed to solve the above-described problems. That is, the present invention is capable of reducing the tip clearance flow flowing from the pressure surface to the suction surface of the moving blade even when the blade has a high load, thereby preventing the occurrence of stall and the surging phenomenon. It is to provide a flow compressor.
[0013]
[Means for Solving the Problems]
According to the present invention, the rotor blade row (10) having an outlet sectional area larger than an inlet sectional area so as to reduce the axial speed and reduce the pressure difference between the pressure surface and the suction surface is provided. An axial compressor characterized by the above is provided.
[0014]
According to the above configuration of the present invention, the outlet cross-sectional area is formed larger than the inlet cross-sectional area of the rotor blade row (10), and the passage has an appropriate passage length. Axial speed is reduced.
Therefore, considering the speed triangle of the moving blade, it can be seen that the work of the moving blade can be obtained by reducing the axial speed without greatly bending the flow with the blade. When the same pressure ratio is obtained, if the passage is widened, the amount of bending of the flow by the blades can be reduced, so the pressure difference between the pressure surface and the suction surface of the blade is reduced, and the tip clearance flow can be reduced. By reducing the flow, it is possible to obtain a moving blade having a wide stable operating range at a high pressure ratio.
[0015]
According to a preferred embodiment of the present invention, a stationary blade row (11) is provided on the downstream side of the moving blade row (10), and an outlet cross-sectional area of the stationary blade row (11) has an inlet section of the moving blade row. It is configured to be smaller than the area.
With this configuration, the flow in the stationary blade row (11) is a flow with small deceleration, and there is little possibility of separation, and the pressure can be adjusted smoothly by reducing the flow smoothly.
[0016]
The moving blade row (10) has a flow turning angle of 15 degrees so that the difference between the moving blade relative speed direction at the inflow portion and the moving blade relative speed direction at the outflow portion becomes small. It is set as follows.
With this configuration, since the warpage of the moving blade row (10) is small, the pressure difference between the pressure surface and the suction surface of the blade can be reduced, the tip clearance flow can be reduced, and a wider stability with a higher pressure ratio than the conventional blade. A moving blade having an operating range can be obtained.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. In addition, the same code | symbol is attached | subjected and used for the common part in each figure.
[0018]
FIG. 2 is a schematic diagram of a conventional axial compressor. In this figure, (A) is a meridian shape, (B) is a side view of a moving blade row, and (C) is a plan view of the moving blade row.
As shown in FIG. 2A, in the conventional axial compressor, the flow passage cross-sectional area usually decreases in order of the stationary blade row 7, the moving blade row 8, and the stationary blade row 9 from the upstream side. Further, as shown in FIG. 2C, each moving blade constituting the moving blade row 8 has a large warp, and the positive pressure is increased by bending the blade.
In the case of the conventional moving blade row 8 as described above, the pressure difference between the pressure surface and the suction surface of the moving blade is increased, so that the tip clearance flow is increased, which causes a stall and a surging phenomenon.
[0019]
FIG. 1 is a schematic view of an axial compressor according to the present invention. In this figure, (A) is a meridian shape, (B) is a side view of a moving blade row, and (C) is a plan view of the moving blade row.
As shown in FIG. 1 (A), the axial compressor of the present invention includes a moving blade row 10 and a stationary blade row 11 having a meridian shape different from the conventional one.
As shown in FIG. 1 (B), the moving blade row 10 of the present invention has an outlet cross-sectional area larger than the inlet cross-sectional area, reduces the axial velocity of the flow with an appropriate passage length, The pressure difference between the pressure surface and the suction surface is configured to be reduced.
Further, the stationary blade row 11 located on the downstream side of the moving blade row 10 is configured such that its outlet cross-sectional area is smaller than the inlet cross-sectional area of the moving blade row 10.
Further, in the example of the present invention, the warp row 10 is set to have a warpage of 0 so that the direction of the relative speed of the moving blades at the inflow portion and the direction of the relative speed of the moving blades at the outflow portion substantially coincide.
[0020]
Note that the present invention is not limited to this configuration, and the moving blade row 10 is used in the moving blades so that the difference between the moving blade relative speed direction in the inflow portion and the moving blade relative speed direction in the outflow portion becomes small. The flow turning angle is preferably set to 15 degrees or less. Here, the “flow turning angle” means an angle formed by the relative flow vectors of the moving blade inlet and the moving blade outlet.
[0021]
FIG. 3 is a specific example of the present invention (A) and the prior art (B) of a speed triangle.
In this example, in both the present invention (A) and the conventional example (B), the rotor blade rotational speed U is 362.6 m / s, the inlet-side circumferential speed u1 is 42.5 m / s, and the outlet-side circumferential direction. The speed u2 is 188.7 m / s, and the blade work is U (u2-u1) = 362.6 × (188.7-42.5) = 53012J. Therefore, it can be said that the downstream fluid has the same energy.
[0022]
In the conventional example of FIG. 3B, the axial direction component is the same 200 m / s on the upstream side and the downstream side by adjusting the flow path area behind the rotor blade row 8 to be small. Therefore, in this example, the absolute velocity of the outlet is about 273 m / s, and the kinetic energy is converted into a pressure increase by the downstream stationary blade row.
In the conventional axial flow compressor, each moving blade constituting the moving blade row 8 has a large warp in order to realize the velocity triangle shown in FIG. Due to this warpage, the direction of the moving blade relative speed in the inflow portion (58 degrees with respect to the axis) and the direction of the moving blade relative speed in the outflow portion (41 degrees with respect to the axis) greatly differ.
As a result, in the case of the conventional moving blade row 8, the pressure difference between the pressure surface and the suction surface of the moving blade is increased, and the tip clearance flow is increased.
[0023]
In the present invention shown in FIG. 3A, the outlet cross-sectional area is formed larger than the inlet cross-sectional area of the rotor blade row 10, and the axial component is almost halved at 200 m / s on the upstream side and 109 m / s on the downstream side. ing. Accordingly, in this example, the static pressure on the downstream side is higher than that on the upstream side, and the absolute speed is increased to about 218 m / s.
Further, in the present invention, the warpage of the moving blade is not necessary to realize the velocity triangle of FIG. 3A, and the direction of the moving blade relative speed in the inflow portion and the direction of the moving blade relative speed in the outflow portion are almost the same. As shown, the warpage is set to zero.
Furthermore, since the outlet cross-sectional area of the stationary blade row 11 on the downstream side is smaller than the inlet cross-sectional area of the moving blade row 10, the flow becomes a small flow of deceleration, and there is little possibility of separation, and the flow is reduced smoothly. The pressure is adjusted.
[0024]
FIG. 4 shows the analysis result of the pressure distribution on the blade surface. In this figure, the x mark is the pressure distribution on the conventional blade surface, and the ◯ is the pressure distribution on the blade surface of the present invention. In the figure, A is the conventional maximum pressure difference, and B is the maximum pressure difference of the present invention.
From this figure, it can be seen that in the conventional rotor blade surface, the pressure drop on the suction surface is large and the maximum pressure difference A is large. On the other hand, in the rotor blade surface of the present invention, the pressure drop on the suction surface is small, and it can be seen that the maximum pressure difference B is reduced to half or less compared to the conventional one.
[0025]
As described above, according to the configuration of the present invention, the outlet cross-sectional area is formed larger than the inlet cross-sectional area of the moving blade row 10, so that the axial velocity of the flow is reduced in this moving blade row.
Therefore, considering the speed triangle of the moving blade, the same moving blade work can be obtained by reducing the axial speed without greatly bending the flow with the blade. When the same pressure ratio is obtained, if the passage is widened, the amount of bending of the flow by the blades can be reduced. By reducing the flow, it is possible to obtain a moving blade having a wide stable operating range at a high pressure ratio.
[0026]
Further, the configuration in which the outlet cross-sectional area of the stationary blade row 11 is smaller than the inlet cross-sectional area of the moving blade row causes the flow in the stationary blade row 11 to be a flow with a small amount of deceleration, and there is less risk of separation, and the pressure is reduced smoothly and pressure is reduced Can be adjusted.
[0027]
Furthermore, the configuration in which the warp of the moving blade row 10 is set to be small reduces the pressure difference between the pressure surface and the suction surface of the blade, and can reduce the tip clearance flow, and can operate stably at a higher pressure ratio than the conventional blade. A moving blade with a range can be obtained.
[0028]
In addition, this invention is not limited to embodiment mentioned above, Of course, it can change variously in the range which does not deviate from the summary of this invention.
[0029]
【The invention's effect】
As described above, the axial flow compressor according to the present invention can reduce the tip clearance flow flowing from the pressure surface to the suction surface of the moving blade even when the blade has a high load. It has excellent effects such as being able to suppress the phenomenon.
[Brief description of the drawings]
FIG. 1 is a schematic view of an axial compressor according to the present invention.
FIG. 2 is a schematic view of a conventional axial compressor.
FIG. 3 is an embodiment of the present invention and a conventional example of a speed triangle.
FIG. 4 is an analysis result of pressure distribution on the blade surface.
FIG. 5 is a schematic configuration diagram of a turbojet engine.
FIG. 6 is a schematic diagram showing fluctuation of a conventional chip clearance.
FIG. 7 is a schematic diagram of a conventional chip clearance control device.
[Explanation of symbols]
1 air intake, 2 compressor, 3 combustor, 4 gas turbine,
5 after burner, 6 jet nozzle,
7 stator blade row, 8 rotor blade row, 9 stator blade row,
10 moving blade rows, 11 stationary blade rows,
12 blades, 13 casing, 14a temperature detector,
15a cooling pipe, 16 compressor section, 17a flow control valve,
18 heat deformation data storage, 19 heat deformation data signal,
20 thermal deformation controller, 21a temperature detection signal,
22 Flow rate adjustment signal

Claims (3)

軸方向速度を減速させ、正圧面と負圧面の圧力差を低減するように入口断面積よりも出口断面積が大きく形成されている動翼列(10)を備える、ことを特徴とする軸流圧縮機。An axial flow comprising a moving blade row (10) having an outlet cross-sectional area larger than an inlet cross-sectional area so as to decelerate an axial speed and reduce a pressure difference between a pressure surface and a suction surface Compressor. 前記動翼列(10)の下流側に静翼列(11)を備え、該静翼列(11)の出口断面積は、前記動翼列の入口断面積よりも小さく構成されている、ことを特徴とする請求項1に記載の軸流圧縮機。A stationary blade row (11) is provided downstream of the moving blade row (10), and an outlet cross-sectional area of the stationary blade row (11) is configured to be smaller than an inlet cross-sectional area of the moving blade row. The axial flow compressor according to claim 1. 前記動翼列(10)は、流入部における動翼相対速度の向きと流出部における動翼相対速度の向きとの差が小さくなるように、動翼での流れの転向角が15度以下に設定されている、ことを特徴とする請求項1に記載の軸流圧縮機。In the moving blade row (10), the turning angle of the flow at the moving blade is 15 degrees or less so that the difference between the moving blade relative speed direction at the inflow portion and the moving blade relative speed direction at the outflow portion is small. The axial flow compressor according to claim 1, wherein the axial flow compressor is set.
JP2002290682A 2002-10-03 2002-10-03 Axial flow compressor Expired - Lifetime JP3743415B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002290682A JP3743415B2 (en) 2002-10-03 2002-10-03 Axial flow compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002290682A JP3743415B2 (en) 2002-10-03 2002-10-03 Axial flow compressor

Publications (2)

Publication Number Publication Date
JP2004124833A true JP2004124833A (en) 2004-04-22
JP3743415B2 JP3743415B2 (en) 2006-02-08

Family

ID=32282471

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002290682A Expired - Lifetime JP3743415B2 (en) 2002-10-03 2002-10-03 Axial flow compressor

Country Status (1)

Country Link
JP (1) JP3743415B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011190714A (en) * 2010-03-12 2011-09-29 Ihi Corp Axial flow compressor and gas turbine engine
WO2015047449A1 (en) * 2013-09-30 2015-04-02 United Technologies Corporation Compressor area splits for geared turbofan

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5736650B2 (en) * 2010-03-08 2015-06-17 株式会社Ihi Axial compressor and gas turbine engine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011190714A (en) * 2010-03-12 2011-09-29 Ihi Corp Axial flow compressor and gas turbine engine
WO2015047449A1 (en) * 2013-09-30 2015-04-02 United Technologies Corporation Compressor area splits for geared turbofan

Also Published As

Publication number Publication date
JP3743415B2 (en) 2006-02-08

Similar Documents

Publication Publication Date Title
US20200277862A1 (en) Airfoil for a turbine engine
JP6938610B2 (en) Clearance control ring assembly
US8061146B2 (en) Heat transfer augmentation in a compact heat exchanger pedestal array
JP2017141829A (en) Impingement holes for turbine engine component
JP2017141825A (en) Airfoil for gas turbine engine
US7341425B2 (en) Axial flow compressor
JP3743415B2 (en) Axial flow compressor
US20150167488A1 (en) Adjustable clearance control system for airfoil tip in gas turbine engine
JP2003254091A (en) Apparatus and method for controlling tip clearance of compressor
JP3665007B2 (en) Plate fin structure of gas turbine combustor and gas turbine combustor
JPH04284136A (en) High pressure compressor flow passage bleeding valve extraction slot
EP3584407B1 (en) Trip strips for augmented boundary layer mixing
CA2502517C (en) Axial flow compressor
JP2004036514A (en) Gas turbine
US11746661B2 (en) Turbine blade and turbine including the same
US11873733B2 (en) Turbine blade in gas turbine engine
KR102584495B1 (en) Turbine blade and turbine including the same
US11927115B2 (en) Guide vanes in a gas turbine engine
EP3974619A1 (en) Turbine blade
US20240011398A1 (en) Turbine component having platform cooling circuit
US20240076993A1 (en) Turbine vane in gas turbine engine
US10794212B2 (en) Rotor having improved structure, and turbine and gas turbine including the same
JP2001342803A (en) Variable air flow apparatus of gas turbine
WO2024035537A1 (en) Gas turbine engine with turbine vane carrier cooling flow path
WO2022051760A1 (en) Guide vane in gas turbine engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041214

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20050720

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20050822

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051020

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051025

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051107

R151 Written notification of patent or utility model registration

Ref document number: 3743415

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081125

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091125

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091125

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101125

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111125

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121125

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131125

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term