JP2004124582A - Sewage transit pump facility and its operating method - Google Patents

Sewage transit pump facility and its operating method Download PDF

Info

Publication number
JP2004124582A
JP2004124582A JP2002292119A JP2002292119A JP2004124582A JP 2004124582 A JP2004124582 A JP 2004124582A JP 2002292119 A JP2002292119 A JP 2002292119A JP 2002292119 A JP2002292119 A JP 2002292119A JP 2004124582 A JP2004124582 A JP 2004124582A
Authority
JP
Japan
Prior art keywords
sewage
pipe
bypass pipe
pump
storage tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002292119A
Other languages
Japanese (ja)
Other versions
JP3983641B2 (en
Inventor
Yoshitami Muraki
村木 良民
Naotake Takagaki
高垣 尚武
Sounosuke Muraki
村木 荘之助
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Torishima Pump Manufacturing Co Ltd
Original Assignee
Torishima Pump Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Torishima Pump Manufacturing Co Ltd filed Critical Torishima Pump Manufacturing Co Ltd
Priority to JP2002292119A priority Critical patent/JP3983641B2/en
Publication of JP2004124582A publication Critical patent/JP2004124582A/en
Application granted granted Critical
Publication of JP3983641B2 publication Critical patent/JP3983641B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Sewage (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To make a sewage flow into a storage tank from a separation tank through a connecting pipe, to which a sewage pump is installed, even when the sewage pump is removed in a sewage transit pump facility. <P>SOLUTION: A bypass pipe 25 connecting the separation tank 1A and 1B inner sides of inflow sluice valves 19A and 19B for the connecting pipes 15A and 15B, in which the sewage pumps 13A and 13B are interposed, is installed. A branch pipe 27 in which one end is connected to the bypass pipe 25 and the other end is connected to the storage tank 5 is mounted. Totally-enclosed bypass sluice valves 29A and 29B are set to the bypass pipe 25. The sluice valve 19A is closed when the sewage pump 13A is removed, and the sluice valve 29A is opened. Sewage is made to flow into the storage tank 5 from the separation tank 1A through a flow path reaching the storage tank 5 through the connecting pipe 15A, the bypass pipe 25 and the branch pipe 27. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は下水道において汚水を送水するための汚水中継ポンプ設備に関する。
【0002】
【従来の技術】
従来、流入ゲート、粉砕機、スクリーン等をなくして小型化したいわゆるソリッドセパレーションタイプの汚水中継ポンプ設備が知られている。(例えば、特許文献1及び特許文献2参照)。
【0003】
図13及び図14に示すように、このソリッドセパレーションタイプの汚水中継ポンプ設備は、分離槽101A,101Bと貯留槽105を備えている。分離槽101Aには上流側から汚水を流入させるための流入管102A,102Bと、下流側に汚水を送るための送水管103A,103Bが接続されている。各分離槽101A,101Bと貯留槽105とを接続する接続管115A,115Bが設けられ、これらの接続管115A,115Bには汚水ポンプ113A,113Bが介設されている。分離槽101A,101B内で開口する接続管115A,115Bの端部には汚水からし渣を分離するためのセパレーション弁117A,117Bが取り付けられている。また、各接続管115A,115Bには汚水ポンプ103A,103Bの前後に常開の流入仕切弁119A,119B,121A,121Bが設けられている。
【0004】
汚水ポンプ113A,113Bの停止時には、図14において細線の矢印で示すように、流入管102A,102Bから分離槽101A,101B内に流入した汚水はセパレーション弁117A,117Bによりし渣が除去された後、接続管115A,115Bを経て貯留槽105内に流入する。分離槽101A,101B内には汚水から分離されたし渣が蓄積する。
【0005】
水位計106の検出水位により貯留槽105内の汚水が所定水位まで上昇したことを検出すると、コントローラ131は汚水ポンプ113A,113Bを起動する。汚水ポンプ113A,113Bの作動時には、図14において太線の矢印で示すように、貯留槽105に貯留された汚水が汚水ポンプ113A,113Bによって接続管115A,115Bを介して分離槽101A,101B内に圧送される。その結果、分離槽101A,101B内に蓄積されたし渣と共に汚水が送水管3A,3Bから下流側に送出される。分離槽113A,113B内には汚水上に浮くボール107が収容されている。図14において二点鎖線で示すように、汚水ポンプ113A,113Bによる汚水の圧送時にはボール107によって分離槽101A,101Bの流入管102A,102Bの接続部分が閉鎖され、流入管102A,102Bへの汚水の逆流が防止される。
【0006】
故障発生時や、保守点検等のために2台の汚水ポンプ103A,103Bのいずれか一方を接続管から取り外す場合には、対応する流入仕切弁19A〜21Bを閉弁して分離槽101A,101Bから貯留槽105への汚水の流入を遮断する。他方の汚水ポンプは前述のように貯留槽105内の水位に応じて停止と作動を繰り返す。例えば、汚水ポンプ103Aを取り外す場合には、この汚水ポンプ103Aが設けられている接続管115Aの流入仕切弁119A,121Aを閉弁する一方、汚水ポンプ103Bは水位計106により検出される貯留槽105内の水位に応じて停止と作動を繰り返す。
【0007】
【特許文献1】
ドイツ特許第29505028U1号
【特許文献2】
欧州特許第07445041B1号
【0008】
【発明が解決しようとする課題】
一方の汚水ポンプ103Aを取り外す際には、接続管115Aが遮断されるので、対応する流入管102Aから分離槽101Aへ汚水を流入させることができない。また、他方の汚水ポンプ103Bを作動させると、前述のようにボール107によって流入管2Bと貯留槽101Bの接続が遮断される。従って、一方の汚水ポンプ103Aを取り外した状態では、他方の汚水ポンプ103Bの起動中はいずれの分離槽101A,101Bに対しても汚水を流入させることができず、その間は流入管102A,102B中にし渣を含む汚水を貯留させなければない。そのため、汚水の流入量が多いと流入管102A,102Bで流入渋滞が発生し、上流側の管路や施設に障害が発生する可能性がある。
【0009】
そこで、本発明は、汚水ポンプを取り外した場合にも、その汚水ポンプが設けられている接続管を介した分離槽から貯留槽への汚水の流入を可能とし、流入渋滞を防止することを課題としている。
【0010】
【課題を解決するための手段】
本明細書において「汚水」とは、家庭、工場等からの排水、雨水、及び排水と雨水が合流した後の下水を含む。また、「管」及び「管路」とは、狭義の管、すなわちその内部に流路が形成された筒状の部材及びそれによって構成される流路のみでなく、機器のケーシング等の内部に穿設された流路等も含む。
【0011】
前記課題を解決するために、本発明の第1の態様は、複数台の汚水ポンプと、分離槽と貯留槽とを接続し、かつ前記汚水ポンプのうちの1台が介設されている複数の接続管と、前記分離槽から前記接続管へ流入する汚水からし渣を除去するし渣分離手段とを備え、前記汚水ポンプの停止時には、前記分離槽内に流入した汚水が前記し渣分離手段によりし渣が分離された後、前記接続管を経て貯留槽に流入し、前記汚水ポンプの作動時には、前記貯留槽に貯留された汚水が前記接続管を介して前記分離槽内に圧送され、前記分離槽内に蓄積されたし渣と共に送出される汚水中継ポンプ設備において、前記接続管の前記汚水ポンプよりも前記分離槽側に設けられ、常開であってその接続管に介設された汚水ポンプの取り外し時に閉弁される流入仕切弁と、一端が前記流入仕切弁よりも分離槽側で前記接続管に接続され、他端が前記貯留槽に接続された汚水ポンプ迂回管路と、前記汚水ポンプ迂回管路に設けられ、常閉であって対応する汚水ポンプの取り外し時に開放される汚水ポンプ迂回管路仕切機構とを備えることを特徴とする、汚水中継ポンプ設備を提供する。
【0012】
本発明の汚水中継ポンプ設備では、流入仕切弁を閉弁すると共に迂回管路仕切機構を閉鎖すれば、汚水ポンプを経ずに分離槽から貯留槽に至る流路が形成される。すなわち、分離槽から接続管及び汚水ポンプ迂回管路を経て貯留槽に至る流路が形成される。従って、複数台の汚水ポンプのうち1台を故障発生時や、保守点検時に取り外す場合であっても、流入仕切弁を閉弁すると共に迂回管路仕切機構を開放すれば、その汚水ポンプが介設されている接続管を介して分離槽から貯留槽へ汚水が流入する。
【0013】
具体的には、汚水中継ポンプ設備は、第1及び第2の汚水ポンプを備え、前記汚水ポンプ迂回管路は、前記第1の汚水ポンプが介設された第1の前記接続管の前記流入仕切弁よりも前記分離槽側と、前記第2の汚水ポンプが介設された第2の前記接続管の前記流入仕切弁よりも前記分離槽側とを接続するバイパス管と、一端が前記バイパス管に接続され、他端が前記貯留槽に接続された分岐管とを備え、前記汚水ポンプ迂回管路仕切機構は、前記第1の接続管と前記バイパス管の接続位置と、前記バイパス管と前記分岐管との接続位置との間に設けられ、常閉であって前記第1の汚水ポンプの取り外し時に開弁される第1のバイパス管仕切弁と、前記第2の接続管と前記バイパス管の接続位置と、前記バイパス管と前記分岐管との接続位置との間に設けられ、常閉であって前記第2の汚水ポンプの取り外し時に開弁される第2のバイパス管仕切弁とを備える。
【0014】
例えば、第1の汚水ポンプの取り外し時には第1の接続管の流入仕切弁が閉弁され、第1のバイパス管仕切弁が開弁される。従って、分離槽から第1の接続管、バイパス管、及び分岐管を経て貯留槽に至る流路が形成され、この流路を介して分離槽から貯留槽へ汚水が流入する。
【0015】
汚水中継ポンプ設備は、前記バイパス管の接続位置よりも分離槽側の前記第1の接続管に設けられた常開の第1の洗浄用仕切弁と、前記バイパス管の接続位置よりも分離槽側の前記第2の接続管に設けられた常開の第2の洗浄用仕切弁とをさらに備え、かつ前記し渣分離手段は、第1及び第2の接続管の分離槽側の先端に取り付けられたセパレーション弁であってもよい。
【0016】
例えば、第1の汚水ポンプの取り外し時には第1の接続管の流入仕切弁が閉弁され、第1のバイパス管仕切弁が開弁される。この状態で、第2の洗浄用仕切弁を閉弁する一方、第1の洗浄用仕切弁を開弁状態で保持し、かつ第2のバイパス管仕切弁を開弁して第2の汚水ポンプを作動させると、貯留槽に蓄積された汚水が第2の接続管からバイパス管及び第1の接続管を介して分離槽へ圧送されるので、第1の接続管に取り付けられたセパレーション弁が圧送された汚水により洗浄される。
【0017】
あるいは、汚水中継ポンプ設備は、第1及び第2の汚水ポンプを備え、前記汚水ポンプ迂回管路は、一端が前記第1の汚水ポンプが介設された第1の前記接続管の前記流入仕切弁よりも前記分離槽側に接続され、他端が前記貯留槽に接続された第1の迂回管と、一端が前記第2の汚水ポンプが介設された第2の前記接続管の前記流入仕切弁よりも前記分離槽側に接続され、他端が前記貯留槽に接続された第2の迂回管とを備え、前記汚水ポンプ迂回管路仕切機構は、前記第1の迂回管に設けられ、常閉であって前記第1の汚水ポンプの取り外し時に開弁される第1の迂回管仕切弁と、前記第2の迂回管に設けられ、常閉であって前記第2の汚水ポンプの取り外し時に開弁される第2の迂回管仕切弁とを備えていてもよい。
【0018】
例えば、第1の汚水ポンプの取り外し時には第1の接続管の流入仕切弁が閉弁され、第1の迂回管仕切弁が開弁される。従って、分離槽から第1の接続管及び第1の迂回管を経て貯留槽に至る流路が形成され、この流路を介して分離槽から貯留槽へ汚水が流入する。
【0019】
前記接続管の一方の端部は前記貯留槽の底面付近で下向きに開口し、前記貯留槽の底面は前記接続管の端部に向けて下向きに傾斜していることが好ましい。接続管の端部は貯留槽の底面付近で開口しているので、貯留槽内の汚水の水位が底面近傍付近に低下するまで、汚水ポンプを作動させて貯留槽内の汚水を分離槽に圧送することができる。そのため、貯留槽内の汚水の水面に浮遊するスカム等の浮遊物を確実に汚水と共に貯留槽から分離槽に圧送することができる。また、貯留槽の底面が接続管の端部に向けて下向きに傾斜しているので、汚水ポンプを作動すると貯留内の堆積物は確実に汚水と共に接続管に吸い込まれ、分離槽に圧送される。
【0020】
本発明の第2の態様は、複数台の汚水ポンプと、分離槽と貯留槽とを接続し、かつ前記汚水ポンプのうちの1台が介設されている複数の接続管と、前記分離槽から前記接続管へ流入する汚水からし渣を除去するし渣分離手段と、前記汚水ポンプの停止時には、前記分離槽内に流入した汚水は前記し渣分離手段によりし渣が分離された後、前記接続管を経て貯留槽に流入し、前記汚水ポンプの作動時には、前記貯留槽に貯留された汚水が前記汚水ポンプによって前記接続管を介して前記分離槽内に圧送され、前記分離槽内に蓄積されたし渣と共に送出される汚水中継ポンプ設備の運転方法であって、前記接続管に設けられた常開の流入仕切弁と、一端が前記流入仕切弁よりも分離槽側で前記接続管に接続され、他端が前記貯留槽に接続された汚水ポンプ迂回管路と、前記汚水ポンプ迂回管路に設けられ、常閉の迂回管路仕切機構とを設け、前記汚水ポンプの取り外し時には、前記流入仕切弁を閉弁すると共に、前記汚水ポンプ迂回管路仕切機構を開放し、前記分離槽から前記接続管及び迂回管路を経て貯留槽に汚水を流入させる、汚水中継ポンプ設備の運転方法を提供する。
【0021】
【発明の実施の形態】
次に、図面に示す本発明の実施形態について詳細に説明する。
【0022】
(第1実施形態)
図1及び図2を参照すると、汚水中継ポンプ設備は、汚水から除去されたし渣を蓄積するための2つの分離槽1A,1Bと、し渣を除去済みの汚水を貯留するための貯留槽5とを備えている。本実施形態では、分離槽1A,1Bは円筒状で、貯留槽5は直方体状である。
【0023】
分離槽1A,1Bの上端には流入管2A,2Bが接続されており、この流入管2A,2Bを介して上流側からの汚水が分離槽1A,1Bに流入する。分離槽1A,1B内には汚水に浮くボール7が配置されている。流入管2Aが接続された分離槽1A,1Bの上端付近は円錐状であり、ボール7により流入管2A,2Bの接続部分が閉鎖されるようになっている。また、分離槽1A,1Bの下端付近には送水管3A,3Bが接続されており、貯留槽5内の汚水は分離槽1A,1B内に蓄積されたし渣と共に送水管3A,3Bから下流側に送出される。送水管3A,3Bには、逆止弁9A,9Bと手動式の送水管仕切弁11A,11Bとが設けられている。分離槽1A,1B、逆止弁9A,9B、及び送水管仕切弁11A,11Bは設備の小型化のために貯留槽5の内部に配置されている。
【0024】
汚水中継ポンプ設備は、2つの分離槽1A,1Bに対応して2台の汚水ポンプ13A,13Bを備えている。また、各分離槽1A,1Bと貯留槽5とを接続し、それぞれ汚水ポンプ13A,13Bが介設された2系統の接続管15A,15Bが設けられている。各接続管15A,15Bの一端は分岐しており分離槽1A,1Bの上端側と下端側で開口している。各接続管15A,15Bの開口部分にはセパレーション弁(し渣分離手段)17A,17Bが設けられている。図3に示すように、セパレーション弁17A,17Bは接続管15A,15Bの長手方向に形成された複数のスリット17aと、軸17bを中心に矢印方向に回動可能な弁体17cとを備えている。スリット17aの寸法は、汚水に含まれるし渣は通過させないが、汚水自体は通過できるように設定されている。弁体17cは接続管15A,15Bの開口端を閉鎖して汚水の流入を阻止するが、接続管15A,15Bから流出する汚水によって開弁し、接続管15A,15Bの開口端からの汚水の流出を許可する。
【0025】
接続管15A,15Bの汚水ポンプ13A,13Bよりも分離槽1A,1B側には手動式の流入仕切弁19A,19Bが設けられている。この流入仕切弁19A,19Bは、常開であり、後述するように対応する汚水ポンプ13A,13Bの取り外し時にのみ閉弁される。
【0026】
接続管15A,15Bの汚水ポンプ13A,13Bよりも貯留槽5側には手動式であって常開の補助流入仕切弁21A,21Bが設けられている。
【0027】
貯留槽5内には、例えば投げ込み式水位計である水位計6が配置されている。この水位計6の検出水位に基づいて、図1にのみ図示するコントローラ31が汚水ポンプ13A,13Bの停止と作動を制御する。
【0028】
図2及び図4(A)に示すように、接続管15A,15Bの他端は貯留槽5内での底面23付近に下向きに開口している。底面23は凹部23aが形成され、この凹部23a内に接続管15A,15Bの端部が配置されている。また、底面23には4つの平坦面23b〜23eにより構成されており、各平坦面23b〜23eは図4(A)において矢印で示すように凹部23aに向けて下向きに傾斜している。なお、図4(B)に示すように、貯留槽5が円筒状の場合には、底面23を矢印で示すように凹部23aに向けて下向きに傾斜する偏心した円錐面としてもよい。また、貯留槽5が直方体であっても底面23を凹部23aに向けて下向きに傾斜する偏心した円錐面状としてもよい。
【0029】
汚水ポンプ13Aが介設された接続管15Aの流入仕切弁19Aよりも分離槽1A側の位置と、汚水ポンプ13Bが介設された接続管15Bの流入仕切弁19Bよりも分離槽1B側の位置とを接続するバイパス管25が設けられている。また、一端がバイパス管25に接続され、他端が貯留槽5に接続された分岐管27が設けられている。これらバイパス管25及び分岐管27が本発明における汚水ポンプ迂回管路を構成している。
【0030】
また、接続管15Aとバイパス管25の接続位置と、バイパス管25と分岐管27との接続位置との間に手動式のバイパス管仕切弁29Aが設けられている。同様に、接続管15Bとバイパス管25の接続位置と、バイパス管25と分岐管27との接続位置との間に手動式のバイパス管仕切弁29Bが設けられている。これらバイパス管仕切弁29A,29Bは常閉であって、後述するように対応する汚水ポンプ13A,13Bの取り外し時に閉弁される。
【0031】
次に、図5及び図6を参照して、2台の汚水ポンプ13A,13Bを両方とも作動させる場合の汚水中継ポンプ設備の運転状態について説明する。上流側からの汚水が流入する前は、両方の汚水ポンプ13A,13Bが停止している。図5(A)に示すように、流入管2A,2Bから各分離槽1A,1Bに汚水した汚水は、セパレーション弁17A,17Bによりし渣が除去された後、接続管15A,15Bを介して貯留槽5に流入する。詳細には、接続管15A,15Bに流入した汚水は、開弁状態の流入仕切弁19A,19B、停止状態の汚水ポンプ13A,13B、及び開弁状態の補助流入仕切弁21A,21Bを介して貯留槽5に流入する。一方、セパレーション弁17A,17Bにより汚水から分離されたし渣は分離槽1A,1B内に堆積する。
【0032】
貯留槽5内の汚水の水位が図5(B)に示す所定水位まで上昇したことを水位計6の検出水位から検知すると、コントローラ31(図1参照)は汚水ポンプ13A,13Bを起動する。汚水ポンプ13A,13Bが作動すると、図6(A)に示すように、貯留槽5内に貯留されている汚水が接続管15A,15Bを経て分離槽1A,1Bに圧送される。詳細には、貯留槽5から接続管15A,15Bに吸い込まれた汚水は、開弁状態の補助流入仕切弁21A,21B、作動状態の汚水ポンプ13A,13B、及び開弁状態の流入仕切弁19A,19Bを介して分離槽1A,1B内に圧送される。分離槽1A,1Bに圧送された汚水は分離槽1A,1B内に堆積しているし渣と共に送水管3A,3Bから下流側に送られる。汚水ポンプ13A,13Bにより圧送される汚水によりボール7が分離槽1A,1Bの上端の流入管2A,2Bの接続部分を遮断するので、汚水やし渣は流入管2A,2Bを逆流しない。図6(B)に示すように、貯留槽5内の汚水がなくなると、コントローラ31は汚水ポンプ13A,13Bを停止させる。
【0033】
接続管15A,15Bの端部は貯留槽5の底面23付近で開口しているので、貯留槽5内の汚水の水位が底面23近傍付近に低下するまで、汚水ポンプ13A,13Bを作動させて貯留槽5内の汚水を分離槽1A,1Bに圧送することができる。そのため、貯留槽5内の汚水の水面に浮遊するスカム等の浮遊物を確実に汚水と共に貯留槽5から分離槽1A,1Bに圧送することができる。また、貯留槽5の底面23を接続管15A,15Bの端部に向けて下向きに傾斜しているので、汚水ポンプ13A,13Bを作動すると貯留槽5内の堆積物は確実に汚水と共に接続管15A,15Bに吸い込まれ、分離槽1A,1Bに圧送される。このように貯留槽5内のスカム等の浮遊物や堆積物を確実に分離槽1A,1Bに送ることができるので、貯留槽5内の汚水の貯留量を確保でき、堆積物による水位計6の誤作動も防止することができる。また、スカム等の浮遊物を回収することにより、貯留槽5内での腐敗臭や硫化水素の発生を抑制して貯留槽内を衛生的に保持することができる。さらに、貯留槽5内の堆積物やスカム等の浮遊物の残留を防止できるので、貯留槽5の清掃頻度を低減して維持管理費用を低減することができる。
【0034】
1台の汚水ポンプを故障発生時や保守点検時に取り外す場合の汚水中継ポンプ設備の運転について説明する。例えば、汚水ポンプ13Aを取り外す場合、この汚水ポンプ13Aが介設されている接続管15Aの流入仕切弁19Aと補助仕切弁21Aを閉弁し、バイパス仕切弁29Aを開弁する。他方の汚水ポンプ13Bと対応する接続管15Bの流入仕切弁19Bと補助仕切弁21Bは開弁状態を維持し、バイパス仕切弁29Bは閉弁状態を維持する。流入仕切弁19A,19B、補助仕切弁21A,21B、及びバイパス仕切弁29A,29Bの開閉状態をこのように設定すると、図7において矢印で示すように、汚水ポンプ13Aに対応する分離槽1Aから接続管15A、バイパス管25、及び分岐管27を経て貯留槽5に至る流路が形成される。従って、汚水ポンプ13Aを取り外した状態でも汚水ポンプ13Aが介設されている接続管15Aを介して分離槽1Aから貯留槽5への汚水の流入が続行する。他方の汚水ポンプ13Bは、図5及び図6を参照して説明したように貯留槽5内の汚水の水位に応じて停止と作動を繰り返す。従って、汚水ポンプ13Aを取り外している間も、分離槽1Bから貯留槽5への汚水の流入と、汚水ポンプ13Aによる貯留槽5内の汚水及び分離槽1B内に蓄積されたし渣の送水管3Bへの圧送とが繰り返される。
【0035】
逆に、汚水ポンプ13Bを取り外す場合には、この汚水ポンプ13Bと対応する接続管15Bの流入仕切弁19Bと補助仕切弁21Bを閉弁し、バイパス仕切弁29Bを開弁する一方、汚水ポンプ13Aと対応する接続管15Aの流入仕切19Aと補助仕切弁21Aは開弁状態を維持し、バイパス仕切弁29Aは閉弁状態を維持する。これによって汚水ポンプ13Bに対応する分離槽1Bから接続管15B、バイパス管25、及び分岐管27を経て貯留槽5に至る流路が形成される。従って、汚水ポンプ13Bを取り外した状態でも接続管15Bを介して分離槽1Bから貯留槽5への汚水の流入が続行する。汚水ポンプ13Bを取り外している間も、汚水ポンプ13Aは貯留槽5内の汚水の水位に応じて停止と作動を繰り返す。
【0036】
以上のように、本実施形態の汚水中継ポンプ設備では、2台の汚水ポンプ13A,13Bのうち1台を故障発生時や、保守点検時に取り外した場合であっても、その汚水ポンプ(例えば汚水ポンプ1A)が介設されている接続管(接続管1A)を介して分離槽(分離槽1A)から貯留槽5への汚水の流入が続行される。従って、2台の汚水ポンプ13A,13Bのいずれかを取り外した際に分離槽1A,1Bに流入する汚水が流入渋滞を起こし、流入管2A,2Bの上流側の管路や施設に障害が発生するのを防止することができる。
【0037】
(第2実施形態)
図8及び図9に示す本発明の第2実施形態では、バイパス管25の接続位置よりも分離槽1A側の接続管15Aに常開の洗浄用仕切弁33Aが設けられている。また、バイパス管25の接続位置よりも分離槽1B側の接続管15Bにも常開の洗浄用仕切弁33Bが設けられている。さらに、分岐管27にも常開の洗浄用仕切弁33Cが設けられている。
【0038】
汚水ポンプ13Aの取り外し時には接続管15Aの流入仕切弁19A及び補助流入仕切弁21Aが閉弁され、バイパス管仕切弁29Aが開弁されている。この状態で、洗浄用仕切弁33B,33Cを閉弁する一方、洗浄用仕切弁33Aを開弁状態で保持する。次に、バイパス管仕切弁29Bを開弁して汚水ポンプ13Bを作動させると、図8において矢印で示すように、貯留槽5に蓄積された汚水が接続管15Bからバイパス管25及び接続管15Aを介して分離槽1Aへ圧送され、接続管15Aに取り付けられたセパレーション弁17A,17Bが圧送された汚水により洗浄される。
【0039】
汚水ポンプ13Bの取り外し時に、洗浄用仕切弁33A,33Cを閉弁する一方、洗浄用仕切弁33Bを開弁状態で保持する。次に、バイパス管仕切弁29Aを開弁して汚水ポンプ13Aを作動させると、貯留槽5に蓄積された汚水が接続管15Aからバイパス管25及び接続管15Bを介して分離槽1Bへ圧送され、接続管15Bに取り付けられたセパレーション弁17BA,17Bが圧送された汚水により洗浄される。
【0040】
このように洗浄用仕切弁33A,33Bを設けることにより、取り外した汚水ポンプ(例えば汚水ポンプ13A)に対応するセパレーション弁17A,17Bを他方の汚水ポンプ(汚水ポンプ13B)により圧送される汚水で洗浄し、それによってセパレーション弁17A,17Bのスリット17aの目詰まり等の不具合の発生を未然に防止することができる。このセパレーション弁17A,17Bの洗浄は、例えば汚水ポンプ13A,13Bのうち一方を取り外している間に所定時間間隔毎に実行すればよい。
【0041】
第2実施形態のその他の構成及び作用は、前記第1実施形態と同様であるので、同一の要素には同一の符号を付して説明を省略する。
【0042】
(第3実施形態)
図10に示す本発明の第3実施形態では、第1実施形態のバイパス仕切弁29A,29Bに代えて、バイパス管25と分岐管27の接続位置に流路切換機構35を設けている。この流路切換機構35は本発明の汚水ポンプ迂回管路仕切機構を構成し、第1実施形態ではバイパス仕切弁29A,29Bの開閉により実現される接続管15A,15Bと分岐管27の連通及び遮断を単独で実現する。詳細には、流路切換機構35は接続管15A及び接続管15Bと分岐管27の連通を遮断する状態、接続管15Aと分岐管27の連通を遮断するが接続管15Bと分岐管27とを連通させる状態、並びに接続管15Aと分岐管27を連通させて接続管15Bと分岐管27の連通を遮断する状態のいずれかに切り換えることができる。
【0043】
第3実施形態のその他の構成及び作用は、前記第1実施形態と同様であるので、同一の要素には同一の符号を付して説明を省略する。
【0044】
(第4実施形態)
図11に示す本発明の第4実施形態では、第1実施形態のバイパス管25及び分岐管27に代えて、迂回管37A,37Bを設けている。これらの迂回管37A,37Bは本発明の汚水ポンプ迂回管路を構成する。一方の迂回管37Aは、一端が汚水ポンプ13Aが介設された接続管15Aの流入仕切弁19Aよりも分離槽1A側に接続され、他端が貯留槽5に接続されている。他方の迂回管37Bは、一端が汚水ポンプ13Bが介設された接続管15Bの流入仕切弁19Bよりも分離槽1B側に接続され、他端が貯留槽5に接続されている。また、迂回管37A,37Bには、それぞれ常開の迂回管仕切弁39A,39Bが介設されている。これらの迂回管仕切弁19A,19Bは本発明の汚水ポンプ迂回管路仕切機構を構成する。
【0045】
汚水ポンプ13Aを取り外す場合には、流入仕切弁19A及び補助流入仕切弁21Aを閉弁し、迂回管仕切弁39Aを開弁する。これによって分離槽1Aから接続管15A及び迂回管37Aを介して貯留槽5に達する流路が形成される。従って、汚水ポンプ13Aを取り外した場合でも、この流路を通って分離槽1Aから貯留槽5への汚水の流入が続行する。逆に、汚水ポンプ13Bを取り外す場合には、流入仕切弁19B及び補助流入仕切弁21Bを閉弁し、迂回管仕切弁39Bを開弁すればよい。
【0046】
第4実施形態のその他の構成及び作用は、前記第1実施形態と同様であるので、同一の要素には同一の符号を付して説明を省略する。
【0047】
本発明は、前記実施形態に限定されず、種々の変形が可能である。
例えば、セパレーション弁17A,17Bに代えて、分離槽1A,1Bから接続管1A,1Bに流入する汚水からし渣を除去し、かつ接続管1A,1Bから分離槽1A,1Bへ汚水の流入を許可する他の機構を設けてもよい。このような機構は必ずしも接続管1A,1Bの先端に設ける必要はなく、接続管1A,1Bの先端よりも汚水ポンプ13A,13B側や、分離槽1A,1Bに設けてもよい。
【0048】
また、流入仕切弁19A,19B、補助流入仕切弁21A,21B、バイパス管仕切弁29A,29B、洗浄用切換弁33A,33B、流路切換機構35、迂回管仕切弁39A,39Bを手動式ではなく、電気的に制御可能な構成(例えば電磁弁)とし、コントローラ31からの指令により開閉等の動作を制御してもよい。
【0049】
さらに、図12に示すように、汚水ポンプ13A,13B及び接続管15A,15B毎に分離槽1A,1Bを設けるのではなく、単独の分離槽1としてもよい。
【0050】
さらにまた、汚水ポンプの台数が3台以上の場合であっても本発明を適用することができる。
【0051】
【発明の効果】
以上の説明から明らかなように、本発明では、接続管の汚水ポンプよりも分離槽側に設けられた流入仕切弁を閉弁すると共に迂回管路仕切機構を閉鎖すれば、分離槽から接続管及び汚水ポンプ迂回管路を経て貯留槽に至る流路が形成される。よって、複数台の汚水ポンプのうち1台を故障発生時や、保守点検時に取り外す場合であっても、流入仕切弁を閉弁すると共に迂回管路仕切機構を開放すれば、その汚水ポンプが介設されている接続管と汚水ポンプ迂回管路を介して分離槽から貯留槽への汚水の流入が続行される。従って、複数台の汚水ポンプのいずれかを取り外した際に分離槽に流入する汚水が流入渋滞を起こし、上流側の管路や施設に障害が発生するのを防止することができる。
【0052】
また、接続管の一方の端部を貯留槽の底面付近で下向きに開口させ、かつ貯留槽の底面を接続管の端部に向けて下向きに傾斜させておけば、貯留槽内の堆積物や貯留槽内の汚水の水面に浮遊するスカム等の浮遊物を確実に汚水と共に貯留槽から分離槽に圧送することができる。従って、貯留槽内の汚水の貯留量を確保でき、堆積物による水位計の誤作動も防止することができる。また、スカム等の浮遊物を回収することにより、貯留槽内での腐敗臭や硫化水素の発生を抑制して貯留槽内を衛生的に保持することができる。さらに、貯留槽内の堆積物やスカム等の浮遊物の残留を防止できるので、貯留槽の清掃頻度を低減して維持管理費用を低減することができる。
【図面の簡単な説明】
【図1】本発明の第1実施形態の汚水中継ポンプ設備を示す概略平面図である。
【図2】図1のII−II線での概略断面図である。
【図3】セパレーション弁を示す斜視図である。
【図4】(A)は貯留槽の底面を示す概略平面図、(B)は貯留槽の底面の他の例を示す概略平面図である。
【図5】(A)及び(B)は汚水中継ポンプ設備の動作を説明するための概略断面図である。
【図6】(A)及び(B)は汚水中継ポンプ設備の動作を説明するための概略断面図である。
【図7】一方の汚水ポンプを取り外している際の貯留槽への汚水の流入経路を示す概略平面図である。
【図8】本発明の第2実施形態の汚水中継ポンプ設備を示す概略平面図である。
【図9】図8のIV−IV線での概略断面図である。
【図10】本発明の第3実施形態の汚水中継ポンプ設備を示す概略平面図である。
【図11】本発明の第4実施形態の汚水中継ポンプ設備を示す概略平面図である。
【図12】分離槽が1個である場合の汚水中継ポンプ設備を示す概略平面図である。
【図13】従来の汚水中継ポンプ設備を示す概略平面図である。
【図14】図12のXIV−XIV線での概略断面図である。
【符号の説明】
1A,1B 分離槽
2A,2B 流入管
3A,3B 送水管
5 貯留槽
6 水位計
7 ボール
9A,9B 逆止弁
11A,11B 送水管仕切弁
13A,13B 汚水ポンプ
15A,15B 接続管
17A,17B セパレーション弁
17a スリット
17b 軸
17c 弁体
19A,19B 流入仕切弁
21A,21B 補助流入仕切弁
23 底面
23a 凹部
25 バイパス管
27 分岐管
29A,29B バイパス管仕切弁
31 コントローラ
33A,33B 洗浄用切換弁
35 流路切換機構
37A,37B 迂回管
39A,39B 迂回管仕切弁
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a sewage relay pumping facility for sending sewage in a sewer.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, a so-called solid separation type sewage relay pump equipment which is reduced in size without an inflow gate, a crusher, a screen, and the like is known. (See, for example, Patent Documents 1 and 2).
[0003]
As shown in FIGS. 13 and 14, the solid separation type sewage relay pump equipment includes separation tanks 101A and 101B and a storage tank 105. The separation tank 101A is connected to inflow pipes 102A and 102B for flowing sewage from the upstream side and water supply pipes 103A and 103B for sending sewage to the downstream side. Connection pipes 115A and 115B for connecting the separation tanks 101A and 101B and the storage tank 105 are provided, and sewage pumps 113A and 113B are interposed in these connection pipes 115A and 115B. Separation valves 117A and 117B for separating waste water from sewage are attached to ends of connection pipes 115A and 115B opened in the separation tanks 101A and 101B. The connection pipes 115A and 115B are provided with normally open inflow gate valves 119A, 119B, 121A and 121B before and after the sewage pumps 103A and 103B.
[0004]
When the sewage pumps 113A and 113B are stopped, the sewage flowing into the separation tanks 101A and 101B from the inflow pipes 102A and 102B is removed by the separation valves 117A and 117B as shown by thin arrows in FIG. Flows into the storage tank 105 via the connection pipes 115A and 115B. The sediment separated from the wastewater accumulates in the separation tanks 101A and 101B.
[0005]
When detecting that the sewage in the storage tank 105 has risen to a predetermined water level based on the detected water level of the water level meter 106, the controller 131 activates the sewage pumps 113A and 113B. When the sewage pumps 113A and 113B are operated, the sewage stored in the storage tank 105 is transferred into the separation tanks 101A and 101B by the sewage pumps 113A and 113B via the connection pipes 115A and 115B, as indicated by thick arrows in FIG. Pumped. As a result, the sewage is sent to the downstream side from the water pipes 3A and 3B together with the residue accumulated in the separation tanks 101A and 101B. The balls 107 floating on the sewage are accommodated in the separation tanks 113A and 113B. As shown by a two-dot chain line in FIG. 14, at the time of sewage pumping by the sewage pumps 113A and 113B, the connection part of the inflow pipes 102A and 102B of the separation tanks 101A and 101B is closed by the ball 107, and the sewage to the inflow pipes 102A and 102B. Backflow is prevented.
[0006]
When any one of the two sewage pumps 103A, 103B is removed from the connection pipe at the time of occurrence of a failure or for maintenance and inspection, the corresponding inflow gate valves 19A to 21B are closed to separate the separation tanks 101A, 101B. From the wastewater into the storage tank 105. The other sewage pump repeatedly stops and operates according to the water level in the storage tank 105 as described above. For example, when removing the sewage pump 103A, the inflow gate valves 119A and 121A of the connection pipe 115A provided with the sewage pump 103A are closed, while the sewage pump 103B is connected to the storage tank 105 detected by the water level meter 106. Stopping and operation are repeated according to the water level inside.
[0007]
[Patent Document 1]
German Patent No. 29505028U1
[Patent Document 2]
European Patent No. 074445041B1
[0008]
[Problems to be solved by the invention]
When one of the sewage pumps 103A is removed, the connection pipe 115A is shut off, so that sewage cannot flow into the separation tank 101A from the corresponding inflow pipe 102A. When the other sewage pump 103B is operated, the connection between the inflow pipe 2B and the storage tank 101B is cut off by the ball 107 as described above. Therefore, in a state where one of the sewage pumps 103A is removed, the sewage cannot flow into any of the separation tanks 101A and 101B while the other sewage pump 103B is being activated. The sewage containing the residue must be stored. For this reason, if the amount of inflow of sewage is large, inflow congestion occurs in the inflow pipes 102A and 102B, and there is a possibility that a failure may occur in an upstream pipeline or facility.
[0009]
In view of the above, an object of the present invention is to enable inflow of sewage from a separation tank to a storage tank via a connection pipe provided with the sewage pump even when the sewage pump is removed, thereby preventing inflow congestion. And
[0010]
[Means for Solving the Problems]
As used herein, the term “sewage” includes drainage from homes, factories, and the like, rainwater, and sewage after drainage and rainwater are combined. In addition, “pipe” and “pipe” are not limited to a pipe in a narrow sense, that is, not only a tubular member having a flow path formed therein and a flow path formed by the pipe, but also a casing or the like of a device. It also includes perforated channels and the like.
[0011]
In order to solve the above-mentioned problem, a first aspect of the present invention relates to a plurality of sewage pumps, a plurality of sewage pumps connected to a separation tank and a storage tank, and one of the sewage pumps interposed therebetween. And a sediment separation means for removing sewage from sewage flowing into the connection pipe from the separation tank, and when the sewage pump is stopped, the sewage flowing into the separation tank is subjected to the sewage separation. After the residue is separated by the means, it flows into the storage tank via the connection pipe, and when the sewage pump is operated, the sewage stored in the storage tank is pumped into the separation tank via the connection pipe. In the sewage relay pump equipment which is sent out together with the residue accumulated in the separation tank, the connection pipe is provided on the separation tank side of the connection pipe with respect to the sewage pump, is normally open, and is interposed in the connection pipe. Inflow that is closed when the wastewater pump is A valve, one end of which is connected to the connection pipe closer to the separation tank than the inflow gate valve and the other end of which is provided in the sewage pump bypass pipe connected to the storage tank and the sewage pump bypass pipe, A sewage pump bypass pipe partition mechanism that is closed and opened when the corresponding sewage pump is removed.
[0012]
In the sewage relay pump equipment of the present invention, when the inflow gate valve is closed and the bypass pipe partition mechanism is closed, a flow path from the separation tank to the storage tank is formed without passing through the sewage pump. That is, a flow path from the separation tank to the storage tank via the connection pipe and the sewage pump bypass pipe is formed. Therefore, even when one of a plurality of sewage pumps is to be removed at the time of failure or maintenance and inspection, if the inflow gate valve is closed and the bypass pipe partitioning mechanism is opened, the sewage pump will be interrupted. Sewage flows into the storage tank from the separation tank via the connecting pipe provided.
[0013]
Specifically, the sewage relay pump equipment includes first and second sewage pumps, and the sewage pump bypass pipe is connected to the first sewage pump through which the inflow of the first connection pipe is interposed. A bypass pipe that connects the separation tank side of the gate valve with the separation tank side of the inflow gate valve of the second connection pipe in which the second sewage pump is interposed; A branch pipe connected to the pipe, the other end of which is connected to the storage tank, wherein the sewage pump bypass pipe partitioning mechanism includes a connection position between the first connection pipe and the bypass pipe, and the bypass pipe. A first bypass pipe isolation valve that is provided between the connection point with the branch pipe, is normally closed, and is opened when the first sewage pump is removed, the second connection pipe, and the bypass; Connection position of the pipe, connection position between the bypass pipe and the branch pipe, It provided between, and a second bypass pipe gate valve which is opened upon removal of said second sewage pump a normally closed.
[0014]
For example, when the first sewage pump is removed, the inflow gate valve of the first connection pipe is closed, and the first bypass pipe gate valve is opened. Therefore, a flow path from the separation tank to the storage tank via the first connection pipe, the bypass pipe, and the branch pipe is formed, and sewage flows from the separation tank to the storage tank via this flow path.
[0015]
The sewage relay pumping equipment is provided with a normally open first cleaning gate valve provided on the first connection pipe closer to the separation tank than a connection position of the bypass pipe, and a separation tank more than a connection position of the bypass pipe. A normally-open second cleaning gate valve provided on the second connection pipe on the side of the first and second connection pipes, and the residue separation means is provided at a tip of the first and second connection pipes on the separation tank side. An attached separation valve may be used.
[0016]
For example, when the first sewage pump is removed, the inflow gate valve of the first connection pipe is closed, and the first bypass pipe gate valve is opened. In this state, the second cleaning gate valve is closed, the first cleaning gate valve is kept open, and the second bypass pipe gate valve is opened to open the second sewage pump. When is operated, the wastewater accumulated in the storage tank is pressure-fed from the second connection pipe to the separation tank via the bypass pipe and the first connection pipe, so that the separation valve attached to the first connection pipe is Washed by the pumped sewage.
[0017]
Alternatively, the sewage relay pump equipment includes first and second sewage pumps, and the sewage pump bypass pipe has an inflow partition of the first connection pipe having one end provided with the first sewage pump. A first bypass pipe connected to the separation tank side with respect to a valve and the other end connected to the storage tank, and an inflow of the second connection pipe having one end provided with the second sewage pump. A second bypass pipe connected to the separation tank side with respect to the gate valve and the other end connected to the storage tank; and the sewage pump bypass pipe partition mechanism is provided in the first bypass pipe. A first bypass pipe partition valve that is normally closed and is opened when the first sewage pump is removed, and a first bypass pipe isolation valve that is provided on the second bypass pipe and is normally closed and that is provided with the second sewage pump. And a second bypass pipe gate valve that is opened when detached.
[0018]
For example, when removing the first sewage pump, the inflow gate valve of the first connection pipe is closed, and the first bypass pipe gate valve is opened. Therefore, a flow path from the separation tank to the storage tank via the first connection pipe and the first bypass pipe is formed, and sewage flows from the separation tank to the storage tank via this flow path.
[0019]
It is preferable that one end of the connection pipe opens downward near the bottom of the storage tank, and the bottom of the storage tank is inclined downward toward the end of the connection pipe. Since the end of the connection pipe is open near the bottom of the storage tank, the wastewater pump is operated to pump the wastewater in the storage tank to the separation tank until the water level of the wastewater in the storage tank drops near the bottom. can do. Therefore, the suspended matter such as scum floating on the surface of the sewage in the storage tank can be reliably pumped from the storage tank to the separation tank together with the sewage. In addition, since the bottom of the storage tank is inclined downward toward the end of the connection pipe, when the sewage pump is operated, the sediment in the storage is surely sucked into the connection pipe together with the sewage and is pumped to the separation tank. .
[0020]
According to a second aspect of the present invention, a plurality of connection pipes connecting a plurality of sewage pumps, a separation tank and a storage tank, and one of the sewage pumps is provided, From the sewage flowing into the connecting pipe, the sewage separation means for removing sewage from the sewage, and when the sewage pump is stopped, the sewage flowing into the separation tank is separated by the sewage separation means by the sewage separation means, It flows into the storage tank via the connection pipe, and when the sewage pump is operated, the sewage stored in the storage tank is pressure-fed into the separation tank via the connection pipe by the sewage pump, and into the separation tank. A method for operating a sewage relay pumping facility that is sent out together with accumulated residue, wherein the normally open inflow gate valve provided in the connection pipe and the one end of the connection pipe closer to the separation tank than the inflow gate valve. And the other end connected to the storage tank. A pump bypass pipe, and a normally closed bypass pipe partition mechanism provided in the sewage pump bypass pipe. When the sewage pump is removed, the inflow partition valve is closed and the sewage pump bypass pipe is closed. A method for operating a sewage relay pumping facility, in which a path partitioning mechanism is opened and sewage flows from the separation tank to the storage tank via the connection pipe and the bypass pipe, is provided.
[0021]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, embodiments of the present invention shown in the drawings will be described in detail.
[0022]
(1st Embodiment)
Referring to FIG. 1 and FIG. 2, the sewage relay pump equipment includes two separation tanks 1A and 1B for accumulating sewage removed from sewage, and a storage tank for storing sewage from which sewage has been removed. 5 is provided. In the present embodiment, the separation tanks 1A and 1B have a cylindrical shape, and the storage tank 5 has a rectangular parallelepiped shape.
[0023]
Inflow pipes 2A and 2B are connected to upper ends of the separation tanks 1A and 1B, respectively, and sewage from an upstream side flows into the separation tanks 1A and 1B via the inflow pipes 2A and 2B. In the separation tanks 1A and 1B, balls 7 floating on sewage are arranged. The vicinity of the upper ends of the separation tanks 1A and 1B to which the inflow pipes 2A are connected has a conical shape, and the ball 7 closes the connection between the inflow pipes 2A and 2B. Water pipes 3A, 3B are connected near the lower ends of the separation tanks 1A, 1B, and the wastewater in the storage tank 5 is downstream from the water pipes 3A, 3B together with the residue accumulated in the separation tanks 1A, 1B. Sent to the side. The water pipes 3A, 3B are provided with check valves 9A, 9B and a manual water pipe separation valve 11A, 11B. The separation tanks 1A and 1B, the check valves 9A and 9B, and the water pipe separation valves 11A and 11B are arranged inside the storage tank 5 for downsizing of the equipment.
[0024]
The sewage relay pump equipment is provided with two sewage pumps 13A and 13B corresponding to the two separation tanks 1A and 1B. In addition, two connection pipes 15A and 15B are provided to connect the respective separation tanks 1A and 1B and the storage tank 5 and to interpose sewage pumps 13A and 13B, respectively. One end of each of the connection pipes 15A, 15B is branched and opened at the upper and lower ends of the separation tanks 1A, 1B. Separation valves (residue separating means) 17A, 17B are provided at the opening portions of the connection pipes 15A, 15B. As shown in FIG. 3, the separation valves 17A and 17B include a plurality of slits 17a formed in the longitudinal direction of the connection pipes 15A and 15B, and a valve body 17c that is rotatable in the direction of an arrow about a shaft 17b. I have. The dimensions of the slit 17a are set so that the waste contained in the sewage is not allowed to pass, but the sewage itself is allowed to pass. The valve element 17c closes the open ends of the connection pipes 15A and 15B to prevent the inflow of sewage, but is opened by the sewage flowing out of the connection pipes 15A and 15B, and the sewage from the open ends of the connection pipes 15A and 15B. Allow spill.
[0025]
Manual inflow gate valves 19A and 19B are provided on the separation pipes 1A and 1B side of the connection pipes 15A and 15B with respect to the sewage pumps 13A and 13B. The inflow gate valves 19A, 19B are normally open, and are closed only when the corresponding sewage pumps 13A, 13B are removed as described later.
[0026]
On the storage tank 5 side of the connection pipes 15A, 15B with respect to the sewage pumps 13A, 13B, auxiliary inflow gate valves 21A, 21B which are manually operated and are normally open are provided.
[0027]
In the storage tank 5, a water level gauge 6 which is, for example, a throw-in type water level meter is arranged. Based on the water level detected by the water level gauge 6, the controller 31 shown only in FIG. 1 controls the stop and operation of the sewage pumps 13A and 13B.
[0028]
As shown in FIGS. 2 and 4A, the other ends of the connection pipes 15A and 15B open downward near the bottom surface 23 in the storage tank 5. A concave portion 23a is formed in the bottom surface 23, and the ends of the connection pipes 15A and 15B are arranged in the concave portion 23a. Further, the bottom surface 23 is constituted by four flat surfaces 23b to 23e, and each of the flat surfaces 23b to 23e is inclined downward toward the concave portion 23a as shown by an arrow in FIG. In addition, as shown in FIG. 4 (B), when the storage tank 5 is cylindrical, the bottom surface 23 may be formed as an eccentric conical surface inclined downward toward the concave portion 23a as shown by an arrow. Further, even if the storage tank 5 is a rectangular parallelepiped, the bottom surface 23 may have an eccentric conical surface inclined downward toward the concave portion 23a.
[0029]
A position on the separation tank 1A side of the inflow gate valve 19A of the connection pipe 15A in which the sewage pump 13A is interposed, and a position on the separation tank 1B side of the inflow gate valve 19B of the connection pipe 15B in which the sewage pump 13B is interposed. Is provided with a bypass pipe 25 for connection between Further, a branch pipe 27 having one end connected to the bypass pipe 25 and the other end connected to the storage tank 5 is provided. The bypass pipe 25 and the branch pipe 27 constitute a sewage pump bypass pipe in the present invention.
[0030]
A manual bypass pipe isolation valve 29A is provided between the connection position between the connection pipe 15A and the bypass pipe 25 and the connection position between the bypass pipe 25 and the branch pipe 27. Similarly, a manual bypass pipe isolation valve 29B is provided between a connection position between the connection pipe 15B and the bypass pipe 25 and a connection position between the bypass pipe 25 and the branch pipe 27. These bypass pipe isolation valves 29A and 29B are normally closed, and are closed when the corresponding sewage pumps 13A and 13B are removed as described later.
[0031]
Next, with reference to FIG. 5 and FIG. 6, an operation state of the wastewater relay pump equipment when both the two wastewater pumps 13A and 13B are operated will be described. Before the sewage flows from the upstream side, both sewage pumps 13A and 13B are stopped. As shown in FIG. 5 (A), the sewage sewage from the inflow pipes 2A, 2B to the respective separation tanks 1A, 1B is removed through the connection valves 15A, 15B after the residue is removed by the separation valves 17A, 17B. It flows into the storage tank 5. In detail, the sewage flowing into the connection pipes 15A and 15B passes through the inflow gate valves 19A and 19B in the open state, the sewage pumps 13A and 13B in the stopped state, and the auxiliary inflow gate valves 21A and 21B in the open state. It flows into the storage tank 5. On the other hand, the residue separated from the wastewater by the separation valves 17A and 17B accumulates in the separation tanks 1A and 1B.
[0032]
When detecting that the water level of the sewage in the storage tank 5 has risen to the predetermined water level shown in FIG. 5B from the water level detected by the water level gauge 6, the controller 31 (see FIG. 1) activates the sewage pumps 13A and 13B. When the sewage pumps 13A and 13B operate, the sewage stored in the storage tank 5 is pumped to the separation tanks 1A and 1B via the connection pipes 15A and 15B, as shown in FIG. In detail, the sewage sucked into the connection pipes 15A and 15B from the storage tank 5 is supplied to the auxiliary inflow gate valves 21A and 21B in the open state, the sewage pumps 13A and 13B in the operating state, and the inflow gate valve 19A in the open state. , 19B into the separation tanks 1A, 1B. The sewage pumped to the separation tanks 1A, 1B is accumulated in the separation tanks 1A, 1B and is sent downstream from the water pipes 3A, 3B together with the residue. The ball 7 blocks the connection between the inflow pipes 2A and 2B at the upper ends of the separation tanks 1A and 1B by the sewage pumped by the sewage pumps 13A and 13B, so that the sewage and the residue do not flow backward through the inflow pipes 2A and 2B. As shown in FIG. 6B, when the waste water in the storage tank 5 runs out, the controller 31 stops the waste water pumps 13A and 13B.
[0033]
Since the ends of the connection pipes 15A and 15B are open near the bottom surface 23 of the storage tank 5, the sewage pumps 13A and 13B are operated until the water level of the sewage in the storage tank 5 decreases to near the bottom surface 23. The sewage in the storage tank 5 can be pumped to the separation tanks 1A and 1B. Therefore, the suspended matter such as scum floating on the surface of the sewage in the storage tank 5 can be reliably pumped from the storage tank 5 to the separation tanks 1A and 1B together with the sewage. In addition, since the bottom surface 23 of the storage tank 5 is inclined downward toward the ends of the connection pipes 15A and 15B, when the sewage pumps 13A and 13B are operated, the sediment in the storage tank 5 is reliably connected to the connection pipe with the sewage. It is sucked into 15A, 15B, and is pressure-fed to separation tank 1A, 1B. As described above, the suspended matter such as the scum and the sediment in the storage tank 5 can be reliably sent to the separation tanks 1A and 1B. Can also be prevented from malfunctioning. Further, by collecting suspended matters such as scum, it is possible to suppress the generation of putrefaction odor and hydrogen sulfide in the storage tank 5 and to maintain the storage tank in a sanitary manner. Furthermore, since the suspended matter such as sediment and scum in the storage tank 5 can be prevented from remaining, the frequency of cleaning the storage tank 5 can be reduced, and the maintenance cost can be reduced.
[0034]
The operation of the sewage relay pump equipment when one sewage pump is removed at the time of failure or maintenance and inspection will be described. For example, when removing the sewage pump 13A, the inflow gate valve 19A and the auxiliary gate valve 21A of the connection pipe 15A in which the sewage pump 13A is interposed are closed, and the bypass gate valve 29A is opened. The inflow gate valve 19B and the auxiliary gate valve 21B of the connection pipe 15B corresponding to the other sewage pump 13B maintain the open state, and the bypass gate valve 29B maintains the closed state. When the open / close states of the inflow gate valves 19A, 19B, the auxiliary gate valves 21A, 21B, and the bypass gate valves 29A, 29B are set in this manner, as shown by arrows in FIG. 7, the separation tank 1A corresponding to the sewage pump 13A is opened. A flow path that reaches the storage tank 5 via the connection pipe 15A, the bypass pipe 25, and the branch pipe 27 is formed. Therefore, even when the sewage pump 13A is detached, the inflow of sewage from the separation tank 1A to the storage tank 5 continues through the connection pipe 15A in which the sewage pump 13A is interposed. The other sewage pump 13B repeatedly stops and operates according to the level of the sewage in the storage tank 5 as described with reference to FIGS. Therefore, even while the sewage pump 13A is removed, the inflow of sewage from the separation tank 1B to the storage tank 5 and the water pipe for the sewage in the storage tank 5 and the sediment accumulated in the separation tank 1B by the sewage pump 13A. Pumping to 3B is repeated.
[0035]
Conversely, when removing the sewage pump 13B, the inflow gate valve 19B and the auxiliary gate valve 21B of the connection pipe 15B corresponding to the sewage pump 13B are closed, the bypass gate valve 29B is opened, and the sewage pump 13A is opened. The inflow gate 19A and the auxiliary gate valve 21A of the connecting pipe 15A corresponding to the above state maintain the valve open state, and the bypass gate valve 29A maintains the valve closed state. Thereby, a flow path from the separation tank 1B corresponding to the sewage pump 13B to the storage tank 5 via the connection pipe 15B, the bypass pipe 25, and the branch pipe 27 is formed. Therefore, even when the sewage pump 13B is removed, the inflow of sewage from the separation tank 1B to the storage tank 5 via the connection pipe 15B continues. While the sewage pump 13B is removed, the sewage pump 13A repeatedly stops and operates according to the level of the sewage in the storage tank 5.
[0036]
As described above, in the sewage relay pump equipment of the present embodiment, even if one of the two sewage pumps 13A and 13B is removed at the time of failure or during maintenance and inspection, the sewage pump (for example, sewage pump) The inflow of sewage from the separation tank (separation tank 1A) to the storage tank 5 is continued via the connection pipe (connection pipe 1A) provided with the pump 1A). Therefore, when one of the two sewage pumps 13A, 13B is removed, sewage flowing into the separation tanks 1A, 1B causes inflow congestion, and failures occur in pipes and facilities upstream of the inflow pipes 2A, 2B. Can be prevented.
[0037]
(2nd Embodiment)
In the second embodiment of the present invention shown in FIGS. 8 and 9, a normally-open cleaning gate valve 33 </ b> A is provided in the connection pipe 15 </ b> A on the separation tank 1 </ b> A side from the connection position of the bypass pipe 25. A normally open cleaning gate valve 33B is also provided on the connection pipe 15B closer to the separation tank 1B than the connection position of the bypass pipe 25. Further, the branch pipe 27 is also provided with a normally-open cleaning gate valve 33C.
[0038]
When the sewage pump 13A is removed, the inflow gate valve 19A and the auxiliary inflow gate valve 21A of the connection pipe 15A are closed, and the bypass pipe gate valve 29A is opened. In this state, the cleaning gate valves 33B and 33C are closed, while the cleaning gate valve 33A is kept open. Next, when the sewage pump 13B is operated by opening the bypass pipe isolation valve 29B, the sewage accumulated in the storage tank 5 is transferred from the connection pipe 15B to the bypass pipe 25 and the connection pipe 15A as shown by arrows in FIG. , And the separation valves 17A and 17B attached to the connection pipe 15A are washed with the sewage pumped.
[0039]
When the sewage pump 13B is removed, the cleaning gate valves 33A and 33C are closed, while the cleaning gate valve 33B is kept open. Next, when the sewage pump 13A is operated by opening the bypass pipe isolation valve 29A, the sewage accumulated in the storage tank 5 is pumped from the connection pipe 15A to the separation tank 1B via the bypass pipe 25 and the connection pipe 15B. Then, the separation valves 17BA, 17B attached to the connection pipe 15B are washed by the sewage pumped.
[0040]
By providing the cleaning gate valves 33A and 33B in this manner, the separation valves 17A and 17B corresponding to the removed sewage pump (for example, the sewage pump 13A) are washed with the sewage pumped by the other sewage pump (the sewage pump 13B). However, this makes it possible to prevent problems such as clogging of the slits 17a of the separation valves 17A and 17B. The cleaning of the separation valves 17A and 17B may be executed at predetermined time intervals while one of the sewage pumps 13A and 13B is removed, for example.
[0041]
Other configurations and operations of the second embodiment are the same as those of the first embodiment, and therefore, the same elements are denoted by the same reference numerals and description thereof will be omitted.
[0042]
(Third embodiment)
In the third embodiment of the present invention shown in FIG. 10, a flow path switching mechanism 35 is provided at a connection position between the bypass pipe 25 and the branch pipe 27 instead of the bypass gate valves 29A and 29B of the first embodiment. The flow path switching mechanism 35 constitutes a sewage pump bypass pipe partitioning mechanism of the present invention. In the first embodiment, communication between the connection pipes 15A and 15B and the branch pipe 27 realized by opening and closing of the bypass separation valves 29A and 29B is performed. Realize the isolation alone. More specifically, the flow path switching mechanism 35 disconnects the communication between the connection pipes 15A and 15B and the branch pipe 27, and cuts off the communication between the connection pipes 15A and the branch pipe 27. The state can be switched to any of a state in which the connection pipe 15A communicates with the branch pipe 27 and a state in which the communication between the connection pipe 15B and the branch pipe 27 is interrupted.
[0043]
Other configurations and operations of the third embodiment are the same as those of the first embodiment, and therefore, the same elements are denoted by the same reference numerals and description thereof will be omitted.
[0044]
(Fourth embodiment)
In the fourth embodiment of the present invention shown in FIG. 11, bypass pipes 37A and 37B are provided instead of the bypass pipe 25 and the branch pipe 27 of the first embodiment. These bypass pipes 37A and 37B constitute a wastewater pump bypass pipe of the present invention. One of the bypass pipes 37A has one end connected to the separation tank 1A side of the inflow gate valve 19A of the connection pipe 15A in which the sewage pump 13A is interposed, and the other end connected to the storage tank 5. One end of the other bypass pipe 37B is connected to the separation tank 1B side from the inflow gate valve 19B of the connection pipe 15B in which the sewage pump 13B is interposed, and the other end is connected to the storage tank 5. The bypass pipes 37A and 37B are provided with normally open bypass pipe isolation valves 39A and 39B, respectively. These bypass pipe partition valves 19A and 19B constitute a sewage pump bypass pipe partition mechanism of the present invention.
[0045]
When removing the sewage pump 13A, the inflow gate valve 19A and the auxiliary inflow gate valve 21A are closed, and the bypass pipe gate valve 39A is opened. Thus, a flow path from the separation tank 1A to the storage tank 5 via the connection pipe 15A and the bypass pipe 37A is formed. Therefore, even when the sewage pump 13A is removed, the inflow of sewage from the separation tank 1A to the storage tank 5 through this flow path continues. Conversely, when removing the sewage pump 13B, the inflow gate valve 19B and the auxiliary inflow gate valve 21B may be closed, and the bypass pipe gate valve 39B may be opened.
[0046]
Other configurations and operations of the fourth embodiment are the same as those of the first embodiment, and therefore, the same elements will be denoted by the same reference characters and description thereof will be omitted.
[0047]
The present invention is not limited to the above embodiment, and various modifications are possible.
For example, in place of the separation valves 17A and 17B, the sediment is removed from the sewage flowing into the connection pipes 1A and 1B from the separation tanks 1A and 1B, and the inflow of the sewage into the separation tanks 1A and 1B from the connection pipes 1A and 1B. Other mechanisms for permitting may be provided. Such a mechanism does not necessarily need to be provided at the distal ends of the connection pipes 1A, 1B, and may be provided at the sewage pumps 13A, 13B side or the separation tanks 1A, 1B beyond the distal ends of the connection pipes 1A, 1B.
[0048]
Further, the inflow gate valves 19A and 19B, the auxiliary inflow gate valves 21A and 21B, the bypass pipe gate valves 29A and 29B, the cleaning switching valves 33A and 33B, the flow path switching mechanism 35, and the bypass pipe gate valves 39A and 39B are manually operated. Instead, an electrically controllable configuration (for example, a solenoid valve) may be used, and operations such as opening and closing may be controlled by a command from the controller 31.
[0049]
Further, as shown in FIG. 12, instead of providing the separation tanks 1A and 1B for each of the sewage pumps 13A and 13B and the connection pipes 15A and 15B, a single separation tank 1 may be used.
[0050]
Furthermore, the present invention can be applied even when the number of sewage pumps is three or more.
[0051]
【The invention's effect】
As is clear from the above description, in the present invention, if the inflow gate valve provided on the separation tank side of the connection pipe with respect to the sewage pump is closed and the bypass pipe separation mechanism is closed, the connection pipe can be separated from the separation tank. And a flow path to the storage tank via the sewage pump bypass pipe is formed. Therefore, even when one of the plurality of sewage pumps is out of order at the time of failure or during maintenance and inspection, if the inflow gate valve is closed and the bypass pipe partitioning mechanism is opened, the sewage pump is interposed. The inflow of sewage from the separation tank to the storage tank is continued through the provided connection pipe and the sewage pump bypass pipe. Therefore, it is possible to prevent the sewage flowing into the separation tank when any one of the plurality of sewage pumps is detached from causing a congestion of the sewage and causing troubles in the upstream pipelines and facilities.
[0052]
Also, if one end of the connection pipe is opened downward near the bottom of the storage tank and the bottom of the storage tank is inclined downward toward the end of the connection pipe, sediment in the storage tank can be reduced. Suspended matter such as scum floating on the surface of the sewage in the storage tank can be reliably pumped from the storage tank to the separation tank together with the sewage. Therefore, the storage amount of the wastewater in the storage tank can be secured, and the malfunction of the water level gauge due to the sediment can be prevented. In addition, by collecting suspended matter such as scum, it is possible to suppress the generation of putrefaction odor and hydrogen sulfide in the storage tank and to maintain the storage tank in a sanitary manner. Furthermore, since the suspended matter such as sediment and scum in the storage tank can be prevented from remaining, the frequency of cleaning the storage tank can be reduced, and the maintenance cost can be reduced.
[Brief description of the drawings]
FIG. 1 is a schematic plan view showing sewage relay pump equipment according to a first embodiment of the present invention.
FIG. 2 is a schematic sectional view taken along line II-II in FIG.
FIG. 3 is a perspective view showing a separation valve.
FIG. 4A is a schematic plan view showing a bottom surface of a storage tank, and FIG. 4B is a schematic plan view showing another example of the bottom surface of the storage tank.
FIGS. 5A and 5B are schematic cross-sectional views for explaining the operation of the wastewater relay pump equipment.
FIGS. 6A and 6B are schematic cross-sectional views for explaining the operation of the wastewater relay pump equipment.
FIG. 7 is a schematic plan view showing an inflow path of sewage into a storage tank when one sewage pump is removed.
FIG. 8 is a schematic plan view showing sewage relay pump equipment according to a second embodiment of the present invention.
FIG. 9 is a schematic sectional view taken along line IV-IV in FIG. 8;
FIG. 10 is a schematic plan view showing sewage relay pump equipment according to a third embodiment of the present invention.
FIG. 11 is a schematic plan view showing a sewage relay pump equipment according to a fourth embodiment of the present invention.
FIG. 12 is a schematic plan view showing the sewage relay pump equipment when there is one separation tank.
FIG. 13 is a schematic plan view showing a conventional sewage relay pump facility.
FIG. 14 is a schematic sectional view taken along line XIV-XIV in FIG. 12;
[Explanation of symbols]
1A, 1B separation tank
2A, 2B Inflow pipe
3A, 3B water pipe
5 Storage tank
6 Water level gauge
7 ball
9A, 9B check valve
11A, 11B water pipe isolation valve
13A, 13B Sewage pump
15A, 15B connection pipe
17A, 17B Separation valve
17a slit
17b axis
17c valve body
19A, 19B Inflow gate valve
21A, 21B Auxiliary inflow gate valve
23 bottom
23a recess
25 Bypass pipe
27 Branch pipe
29A, 29B Bypass pipe gate valve
31 Controller
33A, 33B Switching valve for cleaning
35 Channel switching mechanism
37A, 37B bypass pipe
39A, 39B bypass pipe gate valve

Claims (6)

複数台の汚水ポンプと、
分離槽と貯留槽とを接続し、かつ前記汚水ポンプのうちの1台が介設されている複数の接続管と、
前記分離槽から前記接続管へ流入する汚水からし渣を除去するし渣分離手段とを備え、
前記汚水ポンプの停止時には、前記分離槽内に流入した汚水が前記し渣分離手段によりし渣が分離された後、前記接続管を経て貯留槽に流入し、
前記汚水ポンプの作動時には、前記貯留槽に貯留された汚水が前記接続管を介して前記分離槽内に圧送され、前記分離槽内に蓄積されたし渣と共に送出される汚水中継ポンプ設備において、
前記接続管の前記汚水ポンプよりも前記分離槽側に設けられ、常開であってその接続管に介設された汚水ポンプの取り外し時に閉弁される流入仕切弁と、
一端が前記流入仕切弁よりも分離槽側で前記接続管に接続され、他端が前記貯留槽に接続された汚水ポンプ迂回管路と、
前記汚水ポンプ迂回管路に設けられ、常閉であって対応する汚水ポンプの取り外し時に開放される汚水ポンプ迂回管路仕切機構と
を備えることを特徴とする、汚水中継ポンプ設備。
Multiple sewage pumps,
A plurality of connection pipes connecting the separation tank and the storage tank, and one of the sewage pumps is interposed;
And a waste separation means for removing waste waste from the wastewater flowing into the connection pipe from the separation tank,
When the sewage pump is stopped, sewage flowing into the separation tank is separated into sewage by the sewage separation means, and then flows into the storage tank via the connection pipe,
During operation of the sewage pump, sewage stored in the storage tank is pressure-fed into the separation tank via the connection pipe, and the sewage relay pump equipment that is sent out together with the residue accumulated in the separation tank,
An inflow gate valve that is provided on the separation tank side of the connection pipe with respect to the sewage pump, is normally open, and is closed when a sewage pump provided in the connection pipe is removed.
A sewage pump bypass pipe having one end connected to the connection pipe on the separation tank side of the inflow gate valve and the other end connected to the storage tank;
A sewage pump bypass pipe partition mechanism that is provided in the sewage pump bypass pipe and is normally closed and opened when the corresponding sewage pump is removed.
第1及び第2の汚水ポンプを備え、
前記汚水ポンプ迂回管路は、
前記第1の汚水ポンプが介設された第1の前記接続管の前記流入仕切弁よりも前記分離槽側と、前記第2の汚水ポンプが介設された第2の前記接続管の前記流入仕切弁よりも前記分離槽側とを接続するバイパス管と、
一端が前記バイパス管に接続され、他端が前記貯留槽に接続された分岐管と
を備え、
前記汚水ポンプ迂回管路仕切機構は、
前記第1の接続管と前記バイパス管の接続位置と、前記バイパス管と前記分岐管との接続位置との間に設けられ、常閉であって前記第1の汚水ポンプの取り外し時に開弁される第1のバイパス管仕切弁と、
前記第2の接続管と前記バイパス管の接続位置と、前記バイパス管と前記分岐管との接続位置との間に設けられ、常閉であって前記第2の汚水ポンプの取り外し時に開弁される第2のバイパス管仕切弁と
を備えることを特徴とする、請求項1に記載の汚水中継ポンプ設備。
First and second sewage pumps,
The sewage pump bypass pipe,
The separation tank closer to the separation tank than the inflow gate valve of the first connection pipe in which the first sewage pump is provided, and the inflow of the second connection pipe in which the second sewage pump is provided. A bypass pipe connecting the separation tank side with respect to the gate valve,
A branch pipe having one end connected to the bypass pipe and the other end connected to the storage tank;
The sewage pump bypass pipe partition mechanism,
It is provided between a connection position of the first connection pipe and the bypass pipe and a connection position of the bypass pipe and the branch pipe, and is normally closed and opened when the first sewage pump is removed. A first bypass pipe gate valve;
It is provided between a connection position of the second connection pipe and the bypass pipe and a connection position of the bypass pipe and the branch pipe, and is normally closed and opened when the second sewage pump is removed. The sewage relay pump equipment according to claim 1, further comprising a second bypass pipe gate valve.
前記バイパス管の接続位置よりも分離槽側の前記第1の接続管に設けられた常開の第1の洗浄用仕切弁と、
前記バイパス管の接続位置よりも分離槽側の前記第2の接続管に設けられた常開の第2の洗浄用仕切弁とをさらに備え、かつ
前記し渣分離手段は、第1及び第2の接続管の分離槽側の先端に取り付けられたセパレーション弁であることを特徴とする、請求項2に記載の汚水中継ポンプ設備。
A normally-open first cleaning gate valve provided on the first connection pipe closer to the separation tank than the connection position of the bypass pipe;
A normally open second cleaning gate valve provided on the second connection pipe closer to the separation tank than a connection position of the bypass pipe, and wherein the residue separation means includes first and second cleaning valves. The sewage relay pump equipment according to claim 2, characterized in that the separation pipe is a separation valve attached to the end of the connection pipe on the separation tank side.
第1及び第2の汚水ポンプを備え、
前記汚水ポンプ迂回管路は、
一端が前記第1の汚水ポンプが介設された第1の前記接続管の前記流入仕切弁よりも前記分離槽側に接続され、他端が前記貯留槽に接続された第1の迂回管と、
一端が前記第2の汚水ポンプが介設された第2の前記接続管の前記流入仕切弁よりも前記分離槽側に接続され、他端が前記貯留槽に接続された第2の迂回管と
を備え、
前記汚水ポンプ迂回管路仕切機構は、
前記第1の迂回管に設けられ、常閉であって前記第1の汚水ポンプの取り外し時に開弁される第1の迂回管仕切弁と、
前記第2の迂回管に設けられ、常閉であって前記第2の汚水ポンプの取り外し時に開弁される第2の迂回管仕切弁と
を備える、請求項1に記載の汚水中継ポンプ設備。
First and second sewage pumps,
The sewage pump bypass pipe,
A first bypass pipe having one end connected to the separation tank side of the inflow gate valve of the first connection pipe in which the first sewage pump is interposed, and the other end connected to the storage tank; ,
A second bypass pipe having one end connected to the separation tank side of the inflow gate valve of the second connection pipe in which the second sewage pump is interposed, and the other end connected to the storage tank; With
The sewage pump bypass pipe partition mechanism,
A first bypass pipe isolation valve that is provided in the first bypass pipe, is normally closed, and is opened when the first sewage pump is removed;
The sewage relay pump equipment according to claim 1, further comprising: a second bypass pipe partition valve that is provided in the second bypass pipe, is normally closed, and is opened when the second sewage pump is removed.
前記接続管の一方の端部は前記貯留槽の底面付近で下向きに開口し、前記貯留槽の底面は前記接続管の端部に向けて下向きに傾斜している、請求項1から請求項4のいずれか1項に記載の汚水中継ポンプ設備。The one end of the connection pipe is opened downward near the bottom of the storage tank, and the bottom of the storage tank is inclined downward toward the end of the connection pipe. The sewage relay pump equipment according to any one of the above. 複数台の汚水ポンプと、
分離槽と貯留槽とを接続し、かつ前記汚水ポンプのうちの1台が介設されている複数の接続管と、
前記分離槽から前記接続管へ流入する汚水からし渣を除去するし渣分離手段と、
前記汚水ポンプの停止時には、前記分離槽内に流入した汚水は前記し渣分離手段によりし渣が分離された後、前記接続管を経て貯留槽に流入し、
前記汚水ポンプの作動時には、前記貯留槽に貯留された汚水が前記汚水ポンプによって前記接続管を介して前記分離槽内に圧送され、前記分離槽内に蓄積されたし渣と共に送出される汚水中継ポンプ設備の運転方法であって、
前記接続管に設けられた常開の流入仕切弁と、
一端が前記流入仕切弁よりも分離槽側で前記接続管に接続され、他端が前記貯留槽に接続された汚水ポンプ迂回管路と、
前記汚水ポンプ迂回管路に設けられ、常閉の迂回管路仕切機構とを設け、
前記汚水ポンプの取り外し時には、前記流入仕切弁を閉弁すると共に、前記汚水ポンプ迂回管路仕切機構を開放し、前記分離槽から前記接続管及び迂回管路を経て貯留槽に汚水を流入させる、汚水中継ポンプ設備の運転方法。
Multiple sewage pumps,
A plurality of connection pipes connecting the separation tank and the storage tank, and one of the sewage pumps is interposed;
A sewage separation means for removing sewage from sewage flowing into the connection pipe from the separation tank;
When the sewage pump is stopped, the sewage flowing into the separation tank flows into the storage tank via the connection pipe after the sewage is separated by the sewage separation means,
During operation of the sewage pump, sewage stored in the storage tank is pressure-fed into the separation tank by the sewage pump via the connection pipe, and is sent together with sewage accumulated in the separation tank. Operating method of the pump equipment,
A normally open inflow gate valve provided in the connection pipe,
A sewage pump bypass pipe having one end connected to the connection pipe on the separation tank side of the inflow gate valve and the other end connected to the storage tank;
Provided in the sewage pump bypass pipe, provided with a normally closed bypass pipe partition mechanism,
When the sewage pump is removed, the inflow gate valve is closed, the sewage pump bypass pipe partition mechanism is opened, and sewage flows from the separation tank into the storage tank via the connection pipe and the bypass pipe. Operation method of sewage relay pump equipment.
JP2002292119A 2002-10-04 2002-10-04 Sewage relay pump equipment and operation method thereof Expired - Fee Related JP3983641B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002292119A JP3983641B2 (en) 2002-10-04 2002-10-04 Sewage relay pump equipment and operation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002292119A JP3983641B2 (en) 2002-10-04 2002-10-04 Sewage relay pump equipment and operation method thereof

Publications (2)

Publication Number Publication Date
JP2004124582A true JP2004124582A (en) 2004-04-22
JP3983641B2 JP3983641B2 (en) 2007-09-26

Family

ID=32283476

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002292119A Expired - Fee Related JP3983641B2 (en) 2002-10-04 2002-10-04 Sewage relay pump equipment and operation method thereof

Country Status (1)

Country Link
JP (1) JP3983641B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006328817A (en) * 2005-05-26 2006-12-07 Torishima Pump Mfg Co Ltd Sewage relay pump installation
CN105612296A (en) * 2013-10-17 2016-05-25 Ksb股份公司 Method for setting up wastewater pumping station in wastewater shaft, and associated wastewater pumping station
CN105849340A (en) * 2013-10-17 2016-08-10 Ksb 股份公司 Wastewater-lifting system
CN117142663A (en) * 2023-11-01 2023-12-01 湖南科技大学 Sewage organic waste treatment device for carbon neutralization

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006328817A (en) * 2005-05-26 2006-12-07 Torishima Pump Mfg Co Ltd Sewage relay pump installation
CN105612296A (en) * 2013-10-17 2016-05-25 Ksb股份公司 Method for setting up wastewater pumping station in wastewater shaft, and associated wastewater pumping station
CN105849340A (en) * 2013-10-17 2016-08-10 Ksb 股份公司 Wastewater-lifting system
US9995033B2 (en) 2013-10-17 2018-06-12 Ksb Aktiengesellschaft Wastewater-lifting system
US10392793B2 (en) 2013-10-17 2019-08-27 Ksb Aktiengesellschaft Method for setting up a wastewater pumping station in a wastewater shaft, and associated wastewater pumping station
CN117142663A (en) * 2023-11-01 2023-12-01 湖南科技大学 Sewage organic waste treatment device for carbon neutralization
CN117142663B (en) * 2023-11-01 2023-12-26 湖南科技大学 Sewage organic waste treatment device for carbon neutralization

Also Published As

Publication number Publication date
JP3983641B2 (en) 2007-09-26

Similar Documents

Publication Publication Date Title
US9701410B2 (en) Two-stage flush and grey water flush systems and devices
KR101479791B1 (en) Vacuum sewage system
EP2231936B9 (en) Plumbing sealing arrangement
RU180330U1 (en) TOILET DEVICE WITH REVERSE RINSING FUNCTION FOR PARTICLE FILTER
EP2873583B1 (en) System for storing and dispensing water for a compact toilet
JP2004124582A (en) Sewage transit pump facility and its operating method
CZ20004686A3 (en) Sewage lifting plant
JP3713621B2 (en) Horizontal shaft pump
KR101724292B1 (en) Vacuum Sewage Treatment Plant
JP2019148140A (en) Piping installation for temporary toilet
JP4395101B2 (en) Sewage relay pump equipment
JP2005264585A (en) Manhole device
AU2001273702C1 (en) Liquids dumping device
JP6086711B2 (en) Water tank with outflow control means
KR200489496Y1 (en) Vacuum toilet system
JP2016130433A (en) Sewage transfer system
JP4158294B2 (en) Water softener
CN112041515B (en) Method for operating a waste water lifting system
JP4855338B2 (en) Building water tank facility and draining method thereof
JP2003278204A (en) Pumping drainage device
JP2022051591A (en) Transfer method of fluid transfer apparatus and fluid transfer apparatus
JP2004218589A (en) Pumping apparatus
JP2005023829A (en) Pump device
JP2018059306A (en) Toilet device
JP3038477B1 (en) Drain treatment method and drain treatment device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070306

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070605

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070704

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100713

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110713

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110713

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120713

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees