JP2004124200A - Three-dimensional photo-fabrication device and method - Google Patents

Three-dimensional photo-fabrication device and method Download PDF

Info

Publication number
JP2004124200A
JP2004124200A JP2002291963A JP2002291963A JP2004124200A JP 2004124200 A JP2004124200 A JP 2004124200A JP 2002291963 A JP2002291963 A JP 2002291963A JP 2002291963 A JP2002291963 A JP 2002291963A JP 2004124200 A JP2004124200 A JP 2004124200A
Authority
JP
Japan
Prior art keywords
stereolithography
powder supply
shaping
dimensional
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002291963A
Other languages
Japanese (ja)
Inventor
Tsutomu Takaoka
高岡 勉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Matsuura Machinery Corp
Matsuura Kikai Seisakusho KK
Original Assignee
Japan Science and Technology Agency
Matsuura Machinery Corp
Matsuura Kikai Seisakusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency, Matsuura Machinery Corp, Matsuura Kikai Seisakusho KK filed Critical Japan Science and Technology Agency
Priority to JP2002291963A priority Critical patent/JP2004124200A/en
Publication of JP2004124200A publication Critical patent/JP2004124200A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P23/00Machines or arrangements of machines for performing specified combinations of different metal-working operations not covered by a single other subclass
    • B23P23/04Machines or arrangements of machines for performing specified combinations of different metal-working operations not covered by a single other subclass for both machining and other metal-working operations

Abstract

<P>PROBLEM TO BE SOLVED: To provide a three-dimensional photo-fabrication device, in which a laser torch for photo fabrication and a cutting main axis for cutting and shaping are installed in one working head, and which makes an aimed product in one process, with a low cost and short working hours. <P>SOLUTION: A bed B is fixed to an upper part of a frame F, and a gantry 6 is supported by the bed B so as to be able to move back and forth. A working head 4 is supported by a horizontal beam which forms the gantry 6 so as to be able to move right and left and up and down. The laser torch 2 which can move up and down, connected by an optical fiber 3 from a laser oscillator, and a main axis 1 for cutting are installed in the working head 4 parallel in up and down direction. A squeezing blade 5, a photo-fabrication table 7 and a powder supplying table 8 are arranged under the working head 4, and the photo-fabrication table 7 and the powder supplying table 8 are supported going up and down individually to a vertical direction to the frame F, and the squeezing blade 5 is supported so as to be able to move back and forth. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、薄い粉末の層をレ−ザ−ト−チから発せられるレ−ザ−ビ−ムにて任意の形状に焼結することを繰返して、適当な高さに積層したら切削用主軸にて所定の形状に整形し、このレ−ザ−ビ−ムによる積層と切削用主軸による整形を繰返すことにより所要の寸法精度および面粗さの小さい3次元光造形を製作することが出来る3次元光造形加工装置に関するものである。
【0002】
【従来の技術】
従来の3次元光造形装置では、薄い粉末の層をレ−ザ−ビ−ムにて任意の形状に焼結することを繰返して、寸法精度および面粗さの粗い3次元光造形を製作し、この3次元造形物を切削加工装置や放電加工装置にて所要の寸法精度および面粗さに仕上げていた。(例えば、特許文献1参照)
【0003】
【特許文献1】
特開2000−234103号公報(第1頁 図5)
【発明が解決しようとする課題】
しかし、従来の装置は光造形装置、切削加工装置、放電加工装置等とそれぞれの加工装置が必要であり、装置のト−タル費用が高額になる。また、各加工装置の被加工物が渡り歩くことにより、各装置の熟練技能者、段取り作業、工程計画作業等によりト−タルの製作時間が長くなり製作費用も高くつくという問題点があった。
本発明は、前記の如き従来技術の問題点を克服したもので、テ−ブル上に光造形によって焼結した造形物を、光造形の途中においてレ−ザ−ト−チが設置されている同じ加工ヘッドに設置された切削用主軸にて整形しながら完成された造形物を製作することによって、光造形と切削整形を1台の装置で行なえる複合加工装置を提供するものである。
【0004】
【課題を解決するための手段】
このため、本発明が採用した課題解決手段として、工作物を載置するテ−ブルの上方において、前後方向に移動可能であるガントリ−を設け、該ガントリ−に、左右方向および上下方向に別個に移動可能である加工ヘッドを設け、該加工ヘッドに、レ−ザ−発振器から光ファイバ−で接続された上下方向に移動可能なレ−ザ−ト−チと切削用主軸を上下方向に平行に設置されている3次元光造形装置としたことである。
また、テ−ブルは、互いに昇降可能な光造形テ−ブルと粉末供給テ−ブルからなり、粉末供給テ−ブル側には左右方向に移動可能なスキ−ジングブレ−ドを設けた3次元光造形装置としたことである。
また、光造形テ−ブル用サーボモ−タにより上下される光造形テーブルと、粉末供給テーブル用サーボモ−タにより上下される粉末供給テーブルを備え、光造形テーブルを焼結1層分だけ下降し、次に、粉末を搭載した粉末供給テーブルを焼結1層分だけ上昇させて、スキ−ジングブレ−ドを移動することにより、焼結1層分の粉末を粉末供給テーブル8から光造形テーブル7に敷き詰め、次に、光造形テーブルに敷き詰められた粉末にレ−ザ−ビ−ムを照射して所定の形状に焼結して整形し、このレ−ザ−ビ−ムによる積層と切削用主軸による整形を繰返すことにより所要の寸法精度および面粗さの小さい3次元光造形を製作する3次元光造形方法としたことである。
【0005】
【発明の実施形態】
以下、この発明に係る3次元光造形装置の実施例について説明する。図1は3次元光造形装置の正面図、図2は図1の側面図、図3は図1の右側面図、図4は図1のA−A断面図である。図1に示すように、フレ−ムFの上部にはベッドBが固定されており、ベッドBには、ガントリー6が前後方向(第1図における紙面に対して垂直方向をいう)に移動可能に支持されている。
ガントリー6を形成する横ビ−ムには、加工ヘッド4が第1図の紙面の左右及び上下方向に移動可能に支持されている。加工ヘッド4には、レ−ザ−発振器(不図)から光ファイバ−3で接続された上下方向に移動可能なレ−ザ−ト−チ2および切削用主軸1を上下方向に平行に設置されている。
加工ヘッド4の下方には、スキ−ジングブレ−ド5と光造形テ−ブル7と粉末供給テ−ブル8が配置され、光造形テ−ブル7と粉末供給テ−ブル8は、フレ−ムFに対して個別に上下方向に昇降可能に、また、スキ−ジングブレ−ド5は、前後方向に移動可能に支持されている。これらの部材の詳細な関係は図4に示す。図4において、光造形テ−ブル7と粉末供給テ−ブル8の昇降機構は同一の機構なのでその一方についてのみ説明する。
光造形テ−ブル7の下方には、ブラケット14を有する光造形テ−ブル昇降支柱13が固定され、ブラケット14はナット15を有している。このナット15には、光造形テ−ブル用ボ−ルスクリュウ9が螺入され、該ボ−ルスクリュウ9は、その上端はフレ−ムFにに設けた軸受に支持され、下端は光造形テ−ブル用サ−ボモ−タ10の回転軸に連結されている。
したがって、光造形テ−ブル用サ−ボモ−タ10の回転は、ボルト、ナットの関係からナット15が上下動に昇降し、それに伴いブラケット14も昇降し、その結果光造形テ−ブル7も上下動に昇降するものである。
粉末供給テ−ブル8は、光造形のための粉末を載置するテーブルで、粉末供給テ−ブル8上に載置されている粉末を、光造形テ−ブル7に移すのにスキ−ジングブレ−ド5の右方向の移動でもって行なうものである。なお、移動機構は周知であるので説明は省略する。
【0006】
前記したように、本発明による3次元光造形装置は、光造形テ−ブル用サーボモ−タ10により上下される光造形テーブル7と、粉末供給テーブル用サーボモ−タ12により上下される粉末供給テーブル8を備えているので、成形時には、光造形テーブル7を焼結1層分だけ下降させ、次に、粉末を搭載した粉末供給テーブル8を焼結1層分だけ上昇させ、そして、スキ−ジングブレ−ド5を図4において右から左に移動することにより、焼結1層分の粉末を粉末供給テーブル8から光造形テーブル7に敷き詰めるものである。
また、本発明による3次元光造形装置は、図1に示すように、前後方向に移動可能に設置されたガントリ−6に、左右方向および上下方向に別個に移動可能に加工ヘッド4が取り付けられ、更に、該加工ヘッド4にはレ−ザ−発振器から光ファイバ−3で接続された上下方向に移動可能なレ−ザ−ト−チ2および切削用主軸1が上下方向に平行に設置されている。
したがって、光造形時にはレ−ザ−ト−チ2を下に下げて、前後・左右に移動しながら光造形テーブル7に敷き詰められた粉末にレ−ザ−ビ−ムを照射して所定の形状に焼結して行なうものである。
そして、この1層分の焼結作業を繰返して所定の高さに積み上がったら、図1に示す切削整形作業を繰返して、光造形テーブル7の上に所要の造形物を一度も取外し・取り付け作業を行なわずして完成させることが出来るものである。
なお、この発明は前述の実施の形態に限定されることなく、適宜な変更を行うことにより、その他の態様で実施得るものである。
【0007】
【発明の効果】
以上の如き、本発明においては、1個の加工ヘッドに光造形用のレ−ザ−ト−チと切削整形用の切削主軸を設置し、光造形と切削整形を連続して交互に行い、所要の造形物を1工程で完成させることができる。
この為、従来技術の場合のように、各加工装置の間を移動する段取手段及び当該段取手段に関する操作等は一切不要となる。
このように、本発明は、1台の装置によって光造形と切削整形を交互に繰返して、所要の完成された造形物を製作することができるので、装置全体のコスト低下及び作業時間の短縮に充分資ことができる。
また、1台の装置で光造形と整形を交互に連続して行い所要の寸法精度及び面粗さに仕上げてしまうので、従来の方法に比較して製作コストおよび製作時間が半分程度で所要の3次元造形物を製作できる。プラスチックの射出成型用金型産業にとっては、短納期および低コストで金型を製作できるので競争力が向上する。モデルチェンジの激しい家電・IT関連産業にとっては、試作部品を短納期で製作できるので新商品開発競争力が向上する。
【図面の簡単な説明】
【図1】本発明の3次元光造形装置の正面図である。
【図2】本発明の3次元光造形装置の上面図である。
【図3】本発明の3次元光造形装置の右側面図である。
【図4】本発明の3次元光造形装置の正面図の断面A−Aである。
【符号の説明】
1  切削用主軸
2  レ−ザ−ト−チ
3   光ファイバ−
4    加工ヘッド
5    スキ−ジングブレ−ド
6    ガントリ−
7  光造形テ−ブル
8  粉末供給テ−ブル
9  光造形テ−ブル用ボ−ルスクリュウ
10 光造形テ−ブル用サ−ボモ−タ
11 粉末供給テ−ブル用ボ−ルスクリュウ
12 粉末供給テ−ブル用サ−ボモ−タ
13 光造形テ−ブル昇降支柱
14 ブラケット
15 ナット
B  ベッド
F  フレ−ム
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention is directed to a spindle for cutting when a thin layer of powder is repeatedly sintered to an arbitrary shape by a laser beam emitted from a laser torch and laminated at an appropriate height. Then, by repeating the laminating by the laser beam and the shaping by the cutting spindle, it is possible to manufacture a three-dimensional stereolithography with a small required dimensional accuracy and surface roughness. The present invention relates to a three-dimensional stereolithography apparatus.
[0002]
[Prior art]
In a conventional three-dimensional stereolithography apparatus, a thin powder layer is repeatedly sintered to an arbitrary shape by a laser beam to produce a three-dimensional stereolithography having coarse dimensional accuracy and surface roughness. The three-dimensional object is finished to a required dimensional accuracy and surface roughness by a cutting machine or an electric discharge machine. (For example, see Patent Document 1)
[0003]
[Patent Document 1]
JP-A-2000-234103 (FIG. 5 on page 1)
[Problems to be solved by the invention]
However, the conventional apparatus requires an optical shaping apparatus, a cutting apparatus, an electric discharge apparatus, and other respective processing apparatuses, and the total cost of the apparatus becomes high. In addition, since the workpieces of the respective processing apparatuses move around, there is a problem that the total manufacturing time is increased due to the skilled technician of each apparatus, the setup work, the process planning work, and the like, and the manufacturing cost is increased.
The present invention overcomes the problems of the prior art as described above, and a laser torch is installed on a table on a molded object sintered by optical molding on the way of optical molding. An object of the present invention is to provide a combined machining apparatus capable of performing stereolithography and cutting and shaping with a single device by producing a completed model while shaping with a cutting spindle installed on the same machining head.
[0004]
[Means for Solving the Problems]
Therefore, as a means for solving the problems adopted by the present invention, a gantry movable in the front-rear direction is provided above a table on which a workpiece is placed, and the gantry is separately provided in the left-right direction and the up-down direction. A movable machining head, and a vertically movable laser torch connected to an optical fiber from a laser oscillator and a main spindle for cutting are parallel to the machining head. Is a three-dimensional stereolithography apparatus installed in the company.
The table comprises a stereolithography table and a powder supply table which can be moved up and down with respect to each other, and a three-dimensional light provided with a scanning blade movable in the left-right direction on the powder supply table side. That is, it is a molding device.
In addition, an optical molding table which is moved up and down by an optical molding table servomotor and a powder supply table which is moved up and down by a powder supply table servomotor are provided, and the optical molding table is lowered by one sintering layer. Next, the powder supply table on which the powder is mounted is raised by one layer of sintering, and the scanning blade is moved, whereby the powder of one layer of sintering is transferred from the powder supply table 8 to the optical shaping table 7. Laying, then irradiating a laser beam to the powder spread on the optical molding table, sintering it into a predetermined shape, shaping, laminating with this laser beam, and a spindle for cutting. Is a three-dimensional stereolithography method for producing a three-dimensional stereolithography with a small required dimensional accuracy and surface roughness by repeating the shaping according to.
[0005]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the three-dimensional stereolithography apparatus according to the present invention will be described. 1 is a front view of the three-dimensional stereolithography apparatus, FIG. 2 is a side view of FIG. 1, FIG. 3 is a right side view of FIG. 1, and FIG. 4 is a cross-sectional view of FIG. As shown in FIG. 1, a bed B is fixed on an upper portion of the frame F, and a gantry 6 can be moved on the bed B in a front-rear direction (a direction perpendicular to the plane of FIG. 1). It is supported by.
A processing head 4 is supported by the horizontal beam forming the gantry 6 so as to be movable in the left-right and up-down directions on the plane of FIG. A vertically movable laser torch 2 and a cutting spindle 1 connected to a laser oscillator (not shown) by an optical fiber 3 are installed in the processing head 4 in parallel in the vertical direction. Have been.
A scanning blade 5, an optical molding table 7, and a powder supply table 8 are disposed below the processing head 4. The optical molding table 7 and the powder supply table 8 are framed. The sliding blade 5 is supported so as to be able to move up and down individually with respect to F, and movably in the front and rear direction. The detailed relationship between these members is shown in FIG. In FIG. 4, the elevation mechanism of the stereolithography table 7 and the powder supply table 8 are the same, and only one of them will be described.
Below the stereolithography table 7, a stereolithography table lifting column 13 having a bracket 14 is fixed, and the bracket 14 has a nut 15. A ball screw 9 for an optical shaping table is screwed into the nut 15, and the ball screw 9 is supported at its upper end by a bearing provided on the frame F and at its lower end by an optical shaping table. It is connected to the rotating shaft of the servo motor for bull.
Accordingly, the rotation of the optical modeling table servomotor 10 causes the nut 15 to move up and down due to the relationship between the bolts and the nuts, and the bracket 14 also moves up and down accordingly. As a result, the optical modeling table 7 also moves. It moves up and down.
The powder supply table 8 is a table on which a powder for stereolithography is placed, and is used to transfer the powder placed on the powder supply table 8 to the stereolithography table 7. This is performed by moving the C-mode 5 rightward. Since the moving mechanism is well known, the description is omitted.
[0006]
As described above, the three-dimensional optical shaping apparatus according to the present invention comprises an optical shaping table 7 which is moved up and down by a servo motor 10 for an optical shaping table, and a powder supply table which is moved up and down by a servo motor 12 for a powder supply table. 8, at the time of molding, the stereolithography table 7 is lowered by one layer of sintering, and then the powder supply table 8 on which the powder is loaded is raised by one layer of sintering. By moving the cathode 5 from right to left in FIG. 4, the powder for one layer of sintering is spread from the powder supply table 8 to the stereolithography table 7.
In the three-dimensional optical shaping apparatus according to the present invention, as shown in FIG. 1, a processing head 4 is attached to a gantry 6 movably mounted in the front-rear direction so as to be movable in the left-right direction and the up-down direction. Further, a vertically movable laser torch 2 and a cutting spindle 1, which are connected by an optical fiber 3 from a laser oscillator, are installed in the processing head 4 in parallel in the vertical direction. ing.
Therefore, at the time of laser shaping, the laser beam 2 is lowered, and the powder spread on the laser shaping table 7 is irradiated with a laser beam while moving back and forth and right and left to obtain a predetermined shape. Sintering.
Then, when the sintering operation for one layer is repeated to build up to a predetermined height, the cutting and shaping operation shown in FIG. 1 is repeated to remove and mount the required object on the optical molding table 7 once. It can be completed without any work.
The present invention is not limited to the above-described embodiment, but can be embodied in other modes by making appropriate changes.
[0007]
【The invention's effect】
As described above, in the present invention, laser machining for laser shaping and a cutting spindle for shaping are installed in one processing head, and laser shaping and cutting and shaping are continuously and alternately performed. A required model can be completed in one process.
For this reason, as in the case of the prior art, there is no need for any setup means for moving between the processing devices and any operation for the setup means.
As described above, according to the present invention, it is possible to produce a required completed model by alternately repeating the optical shaping and the cutting and shaping by one apparatus, so that the cost of the entire apparatus and the working time can be reduced. Can contribute enough.
In addition, since stereolithography and shaping are alternately and continuously performed by one device to achieve the required dimensional accuracy and surface roughness, the production cost and production time are about half that of the conventional method, and the required 3D objects can be manufactured. For the plastic injection mold industry, the competitiveness is improved because the mold can be manufactured with a short delivery time and low cost. For the consumer electronics and IT-related industries, which undergo rapid model changes, prototype parts can be manufactured in a short delivery time, which will increase the competitiveness of new product development.
[Brief description of the drawings]
FIG. 1 is a front view of a three-dimensional stereolithography apparatus according to the present invention.
FIG. 2 is a top view of the three-dimensional stereolithography apparatus of the present invention.
FIG. 3 is a right side view of the three-dimensional stereolithography apparatus of the present invention.
FIG. 4 is a sectional view AA of a front view of the three-dimensional stereolithography apparatus of the present invention.
[Explanation of symbols]
1 Spindle for Cutting 2 Laser Torch 3 Optical Fiber
4 Machining head 5 Scanning blade 6 Gantry
7 Stereolithography table 8 Powder supply table 9 Ball screw for stereolithography table 10 Servomotor for stereolithography table 11 Ball screw for powder supply table 12 Powder supply table Servo motor 13 Stereolithography table lifting column 14 Bracket 15 Nut B Bed F Frame

Claims (3)

工作物を載置するテ−ブルの上方において、前後方向に移動可能であるガントリ−を設け、該ガントリ−に、左右方向および上下方向に別個に移動可能である加工ヘッドを設け、該加工ヘッドに、レ−ザ−発振器から光ファイバ−で接続された上下方向に移動可能なレ−ザ−ト−チと切削用主軸を上下方向に平行に設置されていることを特徴とする3次元光造形装置。A gantry movable in the front-rear direction is provided above a table on which a workpiece is placed, and a processing head movable separately in the left-right direction and the up-down direction is provided on the gantry. A three-dimensional light having a vertically movable laser torch connected to an optical fiber from a laser oscillator and a cutting main shaft arranged in parallel in the vertical direction. Modeling equipment. テ−ブルは、互いに昇降可能な光造形テ−ブルと粉末供給テ−ブルからなり、粉末供給テ−ブル側には左右方向に移動可能なスキ−ジングブレ−ドを設けたことを特徴とする請求項1記載の3次元光造形装置。
御装置。
The table comprises a stereolithography table and a powder supply table which can be moved up and down with respect to each other, and a scanning blade movable in the left and right direction is provided on the powder supply table side. The three-dimensional stereolithography apparatus according to claim 1.
Control device.
光造形用サーボモ−タにより上下される光造形テーブルと、粉末供給テーブル用サーボモ−タにより上下される粉末供給テーブルを備え、光造形テーブルを焼結1層分だけ下降し、次に、粉末を搭載した粉末供給テーブルを焼結1層分だけ上昇させて、スキ−ジングブレ−ドを移動することにより、焼結1層分の粉末を粉末供給テーブル8から光造形テーブル7に敷き詰め、次に、光造形テーブルに敷き詰められた粉末にレ−ザ−ビ−ムを照射して所定の形状に焼結して整形し、このレ−ザ−ビ−ムによる積層と切削用主軸による整形を繰返すことにより所要の寸法精度および面粗さの小さい3次元光造形を製作することを特徴とする3次元光造形方法。An optical shaping table which is moved up and down by an optical molding servomotor and a powder supply table which is moved up and down by a powder supply table servomotor are provided. The optical molding table is lowered by one sintering layer. The mounted powder supply table is raised by one layer of sintering, and the scanning blade is moved to spread the powder of one layer of sintering from the powder supply table 8 to the stereolithography table 7. Irradiating a laser beam on the powder spread on the optical molding table, sintering it into a predetermined shape, shaping it, and repeating lamination with this laser beam and shaping with a cutting spindle. A three-dimensional stereolithography method for producing a three-dimensional stereolithography having a small required dimensional accuracy and surface roughness by using the method.
JP2002291963A 2002-10-04 2002-10-04 Three-dimensional photo-fabrication device and method Withdrawn JP2004124200A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002291963A JP2004124200A (en) 2002-10-04 2002-10-04 Three-dimensional photo-fabrication device and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002291963A JP2004124200A (en) 2002-10-04 2002-10-04 Three-dimensional photo-fabrication device and method

Publications (1)

Publication Number Publication Date
JP2004124200A true JP2004124200A (en) 2004-04-22

Family

ID=32283370

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002291963A Withdrawn JP2004124200A (en) 2002-10-04 2002-10-04 Three-dimensional photo-fabrication device and method

Country Status (1)

Country Link
JP (1) JP2004124200A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100977836B1 (en) 2008-01-25 2010-08-24 김복인 a carving machine with laser cutter
KR20160128353A (en) 2014-03-31 2016-11-07 미츠비시 쥬고교 가부시키가이샤 Three-dimensional lamination device and three-dimensional lamination method
CN110191774A (en) * 2017-01-13 2019-08-30 通用电气公司 Dynamic antivibration weight coating machine
US11794253B2 (en) 2018-06-20 2023-10-24 Komatsu Ntc Ltd. Three-dimensional shaping method and three-dimensional shaping device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100977836B1 (en) 2008-01-25 2010-08-24 김복인 a carving machine with laser cutter
KR20160128353A (en) 2014-03-31 2016-11-07 미츠비시 쥬고교 가부시키가이샤 Three-dimensional lamination device and three-dimensional lamination method
US10596630B2 (en) 2014-03-31 2020-03-24 Mitsubishi Heavy Industries, Ltd. Three-dimensional deposition device and three-dimensional deposition method
CN110191774A (en) * 2017-01-13 2019-08-30 通用电气公司 Dynamic antivibration weight coating machine
US11794253B2 (en) 2018-06-20 2023-10-24 Komatsu Ntc Ltd. Three-dimensional shaping method and three-dimensional shaping device

Similar Documents

Publication Publication Date Title
CN110315079B (en) Additive manufacturing device and forming method
Lee et al. Development of a hybrid rapid prototyping system using low-cost fused deposition modeling and five-axis machining
JP5777187B1 (en) Additive manufacturing equipment
KR102126243B1 (en) Production method and production device for three-dimensionally shaped molded object
KR101648442B1 (en) Method of manufacturing three-dimensional sculpture
CN101885063B (en) Laser cladding forming device and laser cladding forming method of metal part
CN109202082B (en) Additive, equal-material and subtractive composite metal 3D laser forming device and method thereof
KR20150056661A (en) Production method for three-dimensionally shaped molded object
CN109434109B (en) Selective laser melting forming method based on dynamic powder cylinder
KR20160123386A (en) Method for producing three-dimensionally shaped object
KR20120128171A (en) Multilayer metal powder laser welding method of 3D printing
EP3427870B1 (en) Three-dimensional molded object production method
KR20180021186A (en) Method for manufacturing three dimensional shaped sculpture
JP3911471B2 (en) 3D modeling method and 3D modeling apparatus
CN105880590A (en) Additive manufacturing system capable of achieving continuous formation
KR101692141B1 (en) Forming device for three-dimensional structure and forming method thereof
CN104772565A (en) Multifunctional laser composite material 3D (three-dimensional) printer
JP2015157405A (en) Laminate molding method and laminate molding device
Tuteski et al. Mold Design and Production by Using Additive Manufacturing (AM)–Present Status and Future Perspectives
US20180243987A1 (en) System and method for additively manufacturing an article incorporating materials with a low tear strength
JP2004124200A (en) Three-dimensional photo-fabrication device and method
JP2004122489A (en) Apparatus for manufacturing three-dimensional shaped article and mold manufacturing method using same
JP2010269358A (en) Sequential forming method and device
CN111037919A (en) Laser rapid prototyping machine convenient to remove
CN201817550U (en) Laser cladding and shaping equipment

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040108

A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060110