【0001】
【発明の属する技術分野】
本発明は、ゴム−カーボンナノチューブ複合体及びその製造方法に関し、特に、熱伝導性の高いゴム−カーボンナノチューブ複合体に関する。
【0002】
【従来の技術】
ゴム等の弾性体は、繰り返し変形すると発熱することが知られている。そのため、作動により変形の繰り返される機械部品や転動により変形の繰り返されるタイヤとしてゴム等の弾性体を用いると、該機械部品やタイヤは大きく発熱する。ゴムは一般に熱伝導率の低い材料であるため、発生した熱を蓄え、ゴム自体が高温になる。ゴムは高温になるに従い劣化が促進されるため、発生した熱を速やかに除く必要がある。
【0003】
これに対し、ゴム成分に該ゴム成分よりも熱伝導率の高い充填材等を配合することにより、熱伝導性を向上させることが行われているが、充分な効果を得るには配合量をかなり増やす必要があり、結果として充填材の分散が不均一になったり、力学物性が低下する等の問題があった。
【0004】
【特許文献1】
特開平7−324146号公報
【特許文献2】
特開2002−20549号公報
【特許文献3】
特開2002−47009号公報
【0005】
【発明が解決しようとする課題】
そこで、本発明の目的は、多量の充填材を配合することなく、熱伝導性を著しく向上させたゴム複合体を提供することにある。また、本発明の他の目的は、かかるゴム複合体の製造方法を提供することにある。
【0006】
【課題を解決するための手段】
本発明者らは、上記課題を達成するために鋭意検討した結果、ゴム成分に熱伝導の高いカーボンナノチューブを配合し、更に該カーボンナノチューブを一方向に配向させ、且つカーボンナノチューブ同士を接触させることにより、熱伝導性が大きく向上することを見出し、本発明を完成させるに至った。
【0007】
即ち、本発明のゴム−カーボンナノチューブ複合体は、ゴム成分と複数のカーボンナノチューブとを含んでなり、該カーボンナノチューブが前記複合体中で所定の方向に配向すると共に、少なくとも一部のカーボンナノチューブが互いに接触し、配向方向に直交する二平面で区切られる両端間で一端から他端まで連続していることを特徴とする。
【0008】
本発明のゴム−カーボンナノチューブ複合体の好適例においては、前記カーボンナノチューブは、長さが0.1〜30μmで、直径が10〜300nmである。
【0009】
本発明のゴム−カーボンナノチューブ複合体の他の好適例においては、前記カーボンナノチューブの配合量は、ゴム成分100質量部に対して5〜100質量部である。
【0010】
本発明のゴム−カーボンナノチューブ複合体の他の好適例においては、前記ゴム成分はブチルゴムである。
【0011】
本発明のゴム−カーボンナノチューブ複合体の他の好適例においては、前記ゴム−カーボンナノチューブ複合体は、カーボンナノチューブの配向方向の熱伝導率が0.15W/m・K以上である。
【0012】
また、本発明のゴム−カーボンナノチューブ複合体の製造方法は、ゴム成分とカーボンナノチューブとを混練し、該混練物を押出機から押し出し、該押出物を押出速度より速い延伸速度で延伸することを特徴とする。
【0013】
【発明の実施の形態】
以下に、本発明を詳細に説明する。本発明のゴム−カーボンナノチューブ複合体においては、複数の熱伝導率の高いカーボンナノチューブが所定の方向に配向すると共に、少なくとも一部が互いに接触し、配向方向に直交する二平面で区切られる両端間で一端から他端まで連続しているため、該複合体は熱伝導性が著しく高い。
【0014】
本発明のゴム−カーボンナノチューブ複合体を構成するゴム成分としては、天然ゴム;乳化重合スチレン−ブタジエンゴム、溶液重合スチレン−ブタジエンゴム、高シス−1,4ポリブタジエンゴム、低シス−1,4ポリブタジエンゴム、高シス−1,4ポリイソプレンゴム等の汎用合成ゴム;ニトリルゴム、水添ニトリルゴム、クロロプレンゴム等のジエン系特殊ゴム;エチレン−プロピレンゴム、ブチルゴム、ハロゲン化ブチルゴム、アクリルゴム、クロロスルホン化ポリエチレン等のオレフィン系特殊ゴム;ヒドリンゴム、フッ素ゴム、多硫化ゴム、ウレタンゴム等の他の特殊ゴム等が挙げられる。この中でも、コストと性能のバランスの観点から天然ゴム及び汎用合成ゴムが好ましく、引張強力が低く練り易い、ガス透過性が低い、耐透過性で磁粉の耐食に有利、粘度が低く混練りし易い等の観点からブチルゴムが好ましい。
【0015】
本発明のゴム−カーボンナノチューブ複合体を構成するカーボンナノチューブ(CNT)は、直径数nm〜数百nm程度の炭素原子からなる構造体であり、通常のカーボンファイバー(CF)(平均直径5μm以上、長さ100μm程度)の10−3倍のオーダーの極微細なチューブ状構造を有する。カーボンナノチューブ自体の熱伝導率は、測定方法が確立していないため正確な数値が明らかではないが、その構造から理論的に推定され、非常に高いことが知られている。
【0016】
本発明に用いるカーボンナノチューブは、長さが0.1〜30μmのものが好ましく、0.1〜10μmのものがより好ましい。0.1μmより短いものは、カーボンナノチューブ自体の熱伝導長が短いため端部が多く、カーボンナノチューブ同士を接触させ連続させるのが困難であり、30μmより長いものは、カーボンナノチューブがもつれて配向し難く、混練りも困難である。
【0017】
また、カーボンナノチューブは、直径が10〜300nmのものが好ましく、100〜250nmのものがより好ましい。10nmより小さいものは、製造時の歩止まりが悪く生産性が悪いため高コストで汎用品としての使用が困難であり、300nmより大きいものは、表面積が小さく熱伝導性が悪い。
【0018】
上記カーボンナノチューブは、プラズマCVD(化学気相成長)法、熱CVD法、表面分解法、流動気相合成法、アーク放電法等により合成されるものが好ましい。この中でも、量産性の観点から、流動気相合成法により合成されるものが特に好ましい。
【0019】
本発明のゴム−カーボンナノチューブ複合体には、単層ナノチューブ及び多層ナノチューブの何れでも用いることができる。単層ナノチューブは束(バンドル)構造をとるが、1バンドル当りのチューブ数は特に制限されない。また、多層ナノチューブにおけるチューブ層数も特に制限されない。
【0020】
本発明においては、市販品のカーボンナノチューブを適宜使用することができ、例えば、昭和電工社製気相法炭素繊維VGCF(登録商標)、米国マテリアルズテクノロジーズリサーチ(Materials, Technologies, Research(MTR))社製のカーボンナノチューブを用いることができる。
【0021】
上記カーボンナノチューブの配合量は、前記ゴム成分100質量部に対して5〜100質量部が好ましい。5質量部未満では、カーボンナノチューブ同士の接触が少ないため熱伝導性の向上効果が低く、100質量部を超えると、混合や成形等における作業性が低下する。
【0022】
本発明のゴム−カーボンナノチューブ複合体には、上述したゴム成分及びカーボンナノチューブの他、ゴム業界で通常使用される配合剤、例えば、充填材、加硫剤、加硫促進剤、補強材、老化防止剤、軟化剤を適宜配合することができる。
【0023】
本発明のゴム−カーボンナノチューブ複合体においては、熱伝導率の高いカーボンナノチューブが前述のように所定の方向に配向し、配向方向に直交する二平面で区切られる複合体の両端間で一端から他端まで互いに接触しながら連続しているので、熱が主にこれらカーボンナノチューブを通して複合体の一端から他端に効率的に熱移動するため、配向方向への熱伝導性は、配向方向に垂直な方向への熱伝導性よりも著しく高い。ここで、本発明の複合体は、カーボンナノチューブの配向方向の熱伝導率が0.15W/m・K以上、より好適には0.5W/m・K以上である。
【0024】
本発明のゴム−カーボンナノチューブ複合体は、例えば、以下のようにして製造することができる。まず、ゴム成分とカーボンナノチューブとを混練する。ここで、ゴム業界で通常使用される配合剤を適宜配合して混練することができる。
【0025】
次に、上記混練物を加熱して粘性を低下させた後、押出機から低温側へ押し出すと共に、該押出物に張力を掛けて延伸させ、低温側で固化させる。ここで、押出速度(単位時間当りの押出物の長さ)より速い延伸速度(単位時間当りの延伸物の長さ)に相当する張力を押出物にかけることにより、カーボンナノチューブが長手方向に配向される。張力の上限は、延伸された押出物の切断が防止される程度のものである。
【0026】
以下に、図を参照しながら、本発明の複合体を更に詳細に説明する。図1は、本発明のゴム−カーボンナノチューブ複合体よりなる棒状部材の一例を示す略線斜視図である。図2は、カーボンナノチューブ同士が接触する部分の一例を示す略線側面図である。
【0027】
図1において、ゴム−カーボンナノチューブ複合体よりなる棒状部材1は、ゴム成分2中にその軸線方向に沿って配向された複数のカーボンナノチューブ3を有し、これらのカーボンナノチューブ3の少なくとも一部は互いに接触し、棒状部材1の一方の端面4Aからもう一方の端面4Bまで連続して延在している。
【0028】
互いに隣接するカーボンナノチューブ3は、例えば図2に示すように、L1、L2及びL3で外周面同士が接触している。該接触により、高熱伝導性の物質であるカーボンナノチューブによる熱伝達経路が形成される。
【0029】
【実施例】
以下に、実施例を挙げて本発明を更に詳しく説明するが、 本発明は下記の実施例に何ら限定されるものではない。
【0030】
(実施例1〜12)
表1に示す配合内容を有する種々のゴム組成物を調製した。次に、該ゴム組成物夫々を混練後、押出機から押出速度10m/分で押出すと同時に、0〜200N/mm2の張力を掛け延伸速度15m/分で延伸し、続いて加硫してカーボンナノチューブが配向した直径1mmの糸状ゴム−カーボンナノチューブ複合体を製造した。
【0031】
(従来例1〜3)
カーボンナノチューブを配合しない以外、実施例1、5又は9と同様のゴム組成物を混練後、張力を掛けることなく押出し、加硫して糸状加硫ゴムを製造した。
【0032】
(比較例1〜3)
実施例1、5又は9と同じ配合のゴム組成物を調製し、混練後、張力をかけることなく押出機より押出し、加硫して糸状ゴム−カーボンナノチューブ複合体を製造した。
【0033】
上記実施例及び比較例で得られたゴム−カーボンナノチューブ複合体、並びに従来例で得られた加硫ゴムの熱伝導率を、京都電子(株)製迅速熱伝導率計QTM−500を用いて測定して、表1に示す結果を得た。
【0034】
【表1】
【0035】
【発明の効果】
本発明によれば、カーボンナノチューブが所定の方向に配向すると共に、少なくとも一部のカーボンナノチューブが互いに接触し、配向方向に直交する二平面で区切られる両端間で一端から他端まで連続しているゴム−カーボンナノチューブ複合体が提供でき、該複合体は、カーボンナノチューブの配向方向の熱伝導率が著しく高い。従って、該複合体を、変形の繰り返しにより熱が発生し易いゴム部材に適用することにより、発生した熱が速やかに放熱され、ゴム部材が高温になり劣化するのを防止することができる。
【図面の簡単な説明】
【図1】本発明のゴム−カーボンナノチューブ複合体よりなる棒状部材の一例を示す略線斜視図である。
【図2】カーボンナノチューブ同士が接触する部分の一例を示す略線側面図である。
【符号の説明】
1 棒状部材
2 ゴム成分
3 カーボンナノチューブ
4A、4B 棒状部材の端面
L1、L2、L3 カーボンナノチューブ同士の接触部分[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a rubber-carbon nanotube composite and a method for producing the same, and more particularly to a rubber-carbon nanotube composite having high thermal conductivity.
[0002]
[Prior art]
It is known that elastic bodies such as rubber generate heat when repeatedly deformed. Therefore, when an elastic body such as rubber is used as a mechanical component that is repeatedly deformed by operation or a tire that is repeatedly deformed by rolling, the mechanical component and the tire generate large heat. Since rubber is generally a material having low thermal conductivity, the generated heat is stored and the rubber itself becomes high in temperature. Since the deterioration of rubber is accelerated as the temperature becomes higher, it is necessary to quickly remove the generated heat.
[0003]
On the other hand, the thermal conductivity has been improved by blending a filler or the like having a higher thermal conductivity than the rubber component into the rubber component. However, in order to obtain a sufficient effect, the blending amount is required. It is necessary to increase considerably, and as a result, there were problems such as uneven dispersion of the filler and deterioration of mechanical properties.
[0004]
[Patent Document 1]
JP-A-7-324146 [Patent Document 2]
JP 2002-20549 A [Patent Document 3]
JP, 2002-47009, A
[Problems to be solved by the invention]
Therefore, an object of the present invention is to provide a rubber composite having significantly improved thermal conductivity without blending a large amount of filler. Another object of the present invention is to provide a method for producing such a rubber composite.
[0006]
[Means for Solving the Problems]
The present inventors have conducted intensive studies to achieve the above object, and as a result, blending carbon nanotubes having high thermal conductivity into the rubber component, further orienting the carbon nanotubes in one direction, and bringing the carbon nanotubes into contact with each other. As a result, it has been found that the thermal conductivity is greatly improved, and the present invention has been completed.
[0007]
That is, the rubber-carbon nanotube composite of the present invention comprises a rubber component and a plurality of carbon nanotubes, and the carbon nanotubes are oriented in a predetermined direction in the composite, and at least a part of the carbon nanotube is It is in contact with each other, and is continuous from one end to the other end between two ends separated by two planes orthogonal to the orientation direction.
[0008]
In a preferred example of the rubber-carbon nanotube composite of the present invention, the carbon nanotube has a length of 0.1 to 30 μm and a diameter of 10 to 300 nm.
[0009]
In another preferred embodiment of the rubber-carbon nanotube composite of the present invention, the compounding amount of the carbon nanotube is 5 to 100 parts by mass with respect to 100 parts by mass of the rubber component.
[0010]
In another preferred embodiment of the rubber-carbon nanotube composite of the present invention, the rubber component is butyl rubber.
[0011]
In another preferred embodiment of the rubber-carbon nanotube composite of the present invention, the rubber-carbon nanotube composite has a thermal conductivity of 0.15 W / m · K or more in a carbon nanotube orientation direction.
[0012]
Further, the method for producing a rubber-carbon nanotube composite of the present invention comprises kneading a rubber component and carbon nanotubes, extruding the kneaded product from an extruder, and stretching the extruded product at a stretching speed higher than the extrusion speed. Features.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail. In the rubber-carbon nanotube composite of the present invention, a plurality of carbon nanotubes having a high thermal conductivity are oriented in a predetermined direction, and at least a part thereof is in contact with each other, and between both ends divided by two planes orthogonal to the orientation direction. , The composite has extremely high thermal conductivity.
[0014]
The rubber component constituting the rubber-carbon nanotube composite of the present invention includes natural rubber; emulsion-polymerized styrene-butadiene rubber, solution-polymerized styrene-butadiene rubber, high cis-1,4 polybutadiene rubber, low cis-1,4 polybutadiene. General-purpose synthetic rubber such as rubber, high cis-1,4 polyisoprene rubber; diene-based special rubber such as nitrile rubber, hydrogenated nitrile rubber, chloroprene rubber; ethylene-propylene rubber, butyl rubber, halogenated butyl rubber, acrylic rubber, chlorosulfone Other special rubbers such as olefin rubber such as fluorinated rubber, fluorinated rubber, polysulfide rubber and urethane rubber. Among them, natural rubber and general-purpose synthetic rubber are preferable from the viewpoint of the balance between cost and performance, and have low tensile strength and are easy to knead, have low gas permeability, are resistant to corrosion of magnetic powder due to permeability, and have low viscosity and are easy to knead. Butyl rubber is preferred from the viewpoint of the above.
[0015]
The carbon nanotube (CNT) constituting the rubber-carbon nanotube composite of the present invention is a structure composed of carbon atoms having a diameter of about several nm to several hundreds of nm, and is formed of ordinary carbon fiber (CF) (average diameter of 5 μm or more, It has an extremely fine tube-like structure of the order of 10 −3 times (length about 100 μm). The exact value of the thermal conductivity of the carbon nanotube itself is not clear because a measurement method has not been established, but it is theoretically estimated from its structure and is known to be extremely high.
[0016]
The carbon nanotube used in the present invention preferably has a length of 0.1 to 30 μm, more preferably 0.1 to 10 μm. If the length is shorter than 0.1 μm, the heat conduction length of the carbon nanotube itself is short, so there are many edges, and it is difficult to contact and continue the carbon nanotubes. Difficult to mix and knead.
[0017]
Further, the carbon nanotube preferably has a diameter of 10 to 300 nm, more preferably 100 to 250 nm. Those with a thickness of less than 10 nm are difficult to use as general-purpose products at high cost due to poor yield at the time of production and poor productivity, and those with a thickness of more than 300 nm have a small surface area and poor thermal conductivity.
[0018]
The carbon nanotube is preferably synthesized by a plasma CVD (chemical vapor deposition) method, a thermal CVD method, a surface decomposition method, a fluidized gas phase synthesis method, an arc discharge method, or the like. Among them, those synthesized by the fluidized gas phase synthesis method are particularly preferable from the viewpoint of mass productivity.
[0019]
Either single-walled nanotubes or multi-walled nanotubes can be used for the rubber-carbon nanotube composite of the present invention. Single-walled nanotubes have a bundle structure, but the number of tubes per bundle is not particularly limited. Further, the number of tube layers in the multi-walled nanotube is not particularly limited.
[0020]
In the present invention, commercially available carbon nanotubes can be appropriately used. For example, vapor-grown carbon fiber VGCF (registered trademark) manufactured by Showa Denko KK, Materials Technologies Research (MTRs), USA (Materials, Technologies, Research). A carbon nanotube manufactured by the company can be used.
[0021]
The compounding amount of the carbon nanotube is preferably 5 to 100 parts by mass with respect to 100 parts by mass of the rubber component. If the amount is less than 5 parts by mass, there is little contact between the carbon nanotubes, and the effect of improving thermal conductivity is low.
[0022]
In the rubber-carbon nanotube composite of the present invention, in addition to the above-mentioned rubber component and carbon nanotube, compounding agents usually used in the rubber industry, for example, filler, vulcanizing agent, vulcanization accelerator, reinforcing material, aging Inhibitors and softeners can be appropriately compounded.
[0023]
In the rubber-carbon nanotube composite of the present invention, the carbon nanotubes having high thermal conductivity are oriented in a predetermined direction as described above, and the carbon nanotubes having a high thermal conductivity are separated from two ends by two planes orthogonal to the orientation direction. Since the heat is transferred from one end of the composite to the other end efficiently through the carbon nanotubes, heat conductivity in the alignment direction is perpendicular to the alignment direction. Significantly higher than the thermal conductivity in the direction. Here, the composite of the present invention has a thermal conductivity of 0.15 W / m · K or more, more preferably 0.5 W / m · K or more in the orientation direction of the carbon nanotube.
[0024]
The rubber-carbon nanotube composite of the present invention can be produced, for example, as follows. First, a rubber component and carbon nanotubes are kneaded. Here, compounding agents usually used in the rubber industry can be appropriately compounded and kneaded.
[0025]
Next, the kneaded material is heated to reduce the viscosity, and then extruded from the extruder to the low temperature side, and the extruded material is stretched by applying tension to the solidified material at the low temperature side. Here, the carbon nanotubes are oriented in the longitudinal direction by applying a tension corresponding to a stretching speed (length of the extruded material per unit time) higher than the extrusion speed (length of the extruded product per unit time) to the extruded material. Is done. The upper limit of the tension is such that cutting of the stretched extrudate is prevented.
[0026]
Hereinafter, the complex of the present invention will be described in more detail with reference to the drawings. FIG. 1 is a schematic perspective view showing an example of a rod-shaped member made of the rubber-carbon nanotube composite of the present invention. FIG. 2 is a schematic side view showing an example of a portion where carbon nanotubes are in contact with each other.
[0027]
In FIG. 1, a rod-shaped member 1 made of a rubber-carbon nanotube composite has a plurality of carbon nanotubes 3 oriented along its axial direction in a rubber component 2, and at least a part of these carbon nanotubes 3 The rod-shaped members 1 are in contact with each other and extend continuously from one end face 4A to the other end face 4B.
[0028]
As shown in FIG. 2, for example, the outer peripheral surfaces of the adjacent carbon nanotubes 3 are in contact with each other at L1, L2 and L3. Due to the contact, a heat transfer path is formed by the carbon nanotube which is a substance having high thermal conductivity.
[0029]
【Example】
Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to the following Examples.
[0030]
(Examples 1 to 12)
Various rubber compositions having the compounding contents shown in Table 1 were prepared. Next, after kneading each of the rubber compositions, they were extruded from an extruder at an extrusion speed of 10 m / min, and simultaneously stretched under a tension of 0 to 200 N / mm 2 at a stretching speed of 15 m / min, followed by vulcanization. Thus, a thread-like rubber-carbon nanotube composite having a diameter of 1 mm in which carbon nanotubes were oriented was produced.
[0031]
(Conventional examples 1 to 3)
After kneading the same rubber composition as in Example 1, 5 or 9, except that no carbon nanotube was blended, the mixture was extruded without applying tension and vulcanized to produce a vulcanized rubber thread.
[0032]
(Comparative Examples 1 to 3)
A rubber composition having the same composition as in Example 1, 5, or 9 was prepared, kneaded, extruded from an extruder without applying tension, and vulcanized to produce a thread-like rubber-carbon nanotube composite.
[0033]
The thermal conductivity of the rubber-carbon nanotube composite obtained in the above Examples and Comparative Examples and the vulcanized rubber obtained in the conventional example were measured using a rapid thermal conductivity meter QTM-500 manufactured by Kyoto Electronics Co., Ltd. The measurement showed the results shown in Table 1.
[0034]
[Table 1]
[0035]
【The invention's effect】
According to the present invention, while the carbon nanotubes are oriented in a predetermined direction, at least some of the carbon nanotubes are in contact with each other, and are continuous from one end to the other end between both ends separated by two planes orthogonal to the orientation direction. A rubber-carbon nanotube composite can be provided, and the composite has a significantly high thermal conductivity in the orientation direction of the carbon nanotube. Therefore, by applying the composite to a rubber member that easily generates heat due to repeated deformation, the generated heat is quickly dissipated, and the rubber member can be prevented from becoming hot and deteriorating.
[Brief description of the drawings]
FIG. 1 is a schematic perspective view showing an example of a rod-shaped member made of a rubber-carbon nanotube composite of the present invention.
FIG. 2 is a schematic side view showing an example of a portion where carbon nanotubes are in contact with each other.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Rod-like member 2 Rubber component 3 Carbon nanotubes 4A, 4B End faces L1, L2, L3 of rod-like members Contact portion between carbon nanotubes