JP2004122152A - Method for enhancing fatigue strength of spot welded joint by ultrasonic shock treatment - Google Patents

Method for enhancing fatigue strength of spot welded joint by ultrasonic shock treatment Download PDF

Info

Publication number
JP2004122152A
JP2004122152A JP2002287173A JP2002287173A JP2004122152A JP 2004122152 A JP2004122152 A JP 2004122152A JP 2002287173 A JP2002287173 A JP 2002287173A JP 2002287173 A JP2002287173 A JP 2002287173A JP 2004122152 A JP2004122152 A JP 2004122152A
Authority
JP
Japan
Prior art keywords
welded joint
fatigue strength
welding
strength
ultrasonic impact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002287173A
Other languages
Japanese (ja)
Other versions
JP3944046B2 (en
Inventor
Hatsuhiko Oikawa
及川 初彦
Akihiro Miyasaka
宮坂 明博
Junichi Kobayashi
小林 順一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2002287173A priority Critical patent/JP3944046B2/en
Publication of JP2004122152A publication Critical patent/JP2004122152A/en
Application granted granted Critical
Publication of JP3944046B2 publication Critical patent/JP3944046B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Resistance Welding (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a treating method for enhancing fatigue strength of welded joint while ensuring good workability in a spot welded joint of metal sheet, particularly in the spot welded joint of high strength steel sheet. <P>SOLUTION: In the method for enhancing the fatigue strength of the welded joint formed by spot welding the metal sheet (the high strength steel sheet), ultrasonic shock treatment is applied to one or both of a nugget portion and a portion around the nugget from both surface or one surface of the welded joint. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、スポット溶接で形成させた金属板溶接継手、主に、自動車用部品の取付けおよび車体の組立てなどで使用されるスポット溶接方法で形成させた高強度鋼板溶接継手の疲労強度を向上する方法に関するものである。
【0002】
【従来の技術】
近年、自動車の低燃費化、CO排出量削減および衝突安全性向上等の対策のため、自動車分野では、自動車の車体や部品などに、薄肉の高強度鋼板を使用するニーズが高まっている。
【0003】
自動車の車体の組立てや部品の取付けなどには、スポット溶接方法が主に用いられているが、高強度鋼板をスポット溶接方法で溶接する場合には、以下のような問題がある。
【0004】
スポット溶接部(溶接継手)の品質指標としては、引張強さとともに疲労強度が重要となる。溶接継手の引張強さは鋼板の引張強さとともに増加するが、溶接継手の疲労強度は、鋼板の引張強さが増加してもほとんど増加しない。
【0005】
例えば、引張強さが290MPaの軟鋼板の代わりに、引張強さが590MPaの高強度鋼板を用いれば、スポット溶接継手の引張せん断強さ(溶接継手のせん断方向に引張荷重を負荷した場合の引張強さ)はほぼ2倍になるが、溶接継手のせん断方向に繰り返し荷重を負荷した場合の疲労強度、例えば、応力負荷の回数が2×10回における荷重を疲労強度と定義すると、疲労強度は増加せず軟鋼板の場合とほぼ同じ値を示す。
【0006】
このように、疲労強度が低い値を示す原因としては、従来、報告されているように、スポット溶接部のノッチ形状が考えられる。すなわち、図1で示すように、鋼板1の間に存在するナゲット2の部分がノッチ形状になっているため、引張せん断方向(矢印方向)3に荷重を負荷して疲労試験を行った場合、鋼板の引張強さが高くても、このノッチ効果によって疲労強度が向上しないと考えられる。
【0007】
特に、高強度鋼板を用いた場合には、軟鋼板を用いた場合に比べて、ナゲット部の硬さが増加するので、このノッチ効果は顕著になる。一方、剥離方向(引張せん断方向(矢印方向)3と垂直な方向)に荷重を負荷して疲労試験を行った場合にも、高強度鋼板の溶接継手の疲労強度は増加せず軟鋼と同じである。
【0008】
この場合は、ナゲット周辺部での応力集中が顕著であり、局部の応力負荷が高まり、そこでクラックが発生し易くなるため、引張せん断方向に繰り返し荷重を負荷した場合に比べて、疲労強度は一桁程度低下する。
【0009】
一般に、鋼板の引張強さが増加するほど、下記式で示される炭素当量Ceqの値が高くなる傾向にあり、高強度鋼板のCeqの値は、0.2を超えることが知られている。
Ceq=C+Si/30+Mn/20+2P+4S
式中、C、Si、Mn、P、および、Sは、それぞれ、鋼中の炭素、珪素、マンガン、リン、硫黄の各含有量(質量%)を示す。
【0010】
このように、高強度鋼板の引張強さが増加するとともに、その鋼板の炭素当量Ceqが高くなるため、引張強さが高い高強度鋼板ほどスポット溶接部(ナゲット部)と熱影響部の硬さが高くなり、その結果、靱性が低下して破壊が容易に起こり易くなる。
【0011】
また、高強度鋼板では、軟鋼に比べてスプリングバックが起こり易いため、スポット溶接部には引張の残留応力が発生して疲労強度が低下し易くなったり、また、割れが発生して疲労強度や静的強度が低下し易くなったりする。
【0012】
以上の理由で、高強度鋼板のスポット溶接部の疲労強度は、高強度鋼板の引張強さが増加しても増加せず、軟鋼と同程度になると考えられる。
【0013】
また、スポット溶接中に散り(通電中、鋼板間に生成された溶融部の直径が銅電極の先端直径より大きくなって、鋼板の隙間から溶融金属が飛散する現象)が発生した場合には、鋼板間に生成されたナゲットの端部が鋭い切り欠き形状になり、継手の疲労強度は、散りが発生しない場合に比べて低下する。
【0014】
従来の高強度鋼板のスポット溶接において、溶接継手の疲労強度を向上させる手段としては、スポット溶接の通電が完了した後、一定時間経過後にテンパー通電を行い、スポット溶接部(ナゲット部)と熱影響部を焼鈍して硬さを低下させ、残留応力を変化させる方法が知られている(例えば、非特許文献1参照)。
【0015】
しかし、この方法は、テンパー通電の適正な条件範囲の幅が非常に狭く、また、操業条件の変化により再現性が乏しいという実用上の問題がある。特に、めっき鋼板を連続的に打点してスポット溶接する場合には、打点数の増加とともに、電極先端がめっきとの合金化反応によって劣化し、電極先端径が増大して電流密度が低下し、最適なテンパー通電条件から外れるため、安定的に継手の疲労強度を向上させることが困難となる。
【0016】
スポット溶接部の疲労強度を向上させる方法としては、これ以外にも、疲労強度特性が優れた鋼板を用いてスポット溶接する方法が知られている(例えば、特許文献1〜6、参照)
しかし、これらの方法は、軟鋼板のスポット溶接に関するものであり、高強度鋼板のスポット溶接部の疲労強度を向上させる方法については、未だ報告された例はない。
【特許文献1】
特開昭63−317625号公報
【特許文献2】
特開平2−163323号公報
【特許文献3】
特開平5−263184号公報
【特許文献4】
特開平9−268346号公報
【特許文献5】
特開平10−8187号公報
【特許文献6】
特開平11−279689号公報
【非特許文献1】
「鉄と鋼」第68巻(1982年)第9号第1444〜1451頁
【0017】
【発明が解決しようとする課題】
前述のように、高強度鋼板をスポット溶接した場合の溶接継手の疲労強度は、軟鋼板をスポット溶接した場合の疲労強度と変わらないため、自動車分野において高強度鋼板を用いても、高強度鋼板を用いることによる安全性向上や軽量化による低燃費化、CO排出量削減のメリットを十分に享受することができない。
【0018】
溶接継手の疲労強度を向上させるため、スポット溶接打点数を増やす従来方法を採用することもできるが、この方法は、作業効率の低下、コスト上昇および設計自由度の制約などの問題を抱えている。
【0019】
本発明は、これらの従来技術における問題を解決するために、金属板のスポット溶接、特に、高強度鋼板のスポット溶接において、良好な溶接作業性を確保しつつ溶接継手の疲労強度を向上することができるスポット溶接方法を提供することを目的とする。
【0020】
【課題を解決するための手段】
本発明者は、スポット溶接継手の疲労強度が、ナゲット周辺の残留応力状態やナゲット端部の形状に依存することから、ナゲット周辺の残留応力状態やナゲット端部の形状を何らかの手段で改善すれば、溶接継手の疲労強度を高めることができるとの発想の下に、ナゲット周辺の残留応力状態やナゲット端部の形状を改善する手法について鋭意検討した。
【0021】
その結果、溶接継手の両面または片面から、ナゲット形成部とナゲット周囲の両方または片方に超音波衝撃処理を施せば、溶接継手の疲労強度を効果的に高めることができることを見出した。
本発明は、上記の知見に基づきなされたもので、その要旨は、以下のとおりである。
【0022】
(1) 金属板をスポット溶接して形成させた溶接継手の疲労強度を向上させる方法において、溶接継手の両面または片面から、ナゲット形成部とナゲット周囲の両方または片方に超音波衝撃処理を施すことを特徴とする超音波衝撃処理によるスポット溶接継手の疲労強度向上方法。
【0023】
(2) 前記溶接継手が、電極先端での面圧P(MPa)および溶接後の電極保持時間HT(ms)が下記(1)、(2)式を満たす条件のスポット溶接で形成された溶接継手であることを特徴とする前記(1)記載の超音波衝撃処理によるスポット溶接継手の疲労強度向上方法。
5.752×TS1/2≦P≦8.792×TS1/2            (1)
130−160×t+210×t≦HT              (2)
但し、TS:被溶接材の引張強さ(MPa)
P:溶接時の電極先端での面圧(MPa)
t:被溶接材の厚み(mm)
HT:溶接後の電極保持時間(ms)
【0024】
(3) 前記溶接継手が、電極先端での面圧P(MPa)および溶接後の電極保持時間HT(ms)が下記(1)、(2)式を満たす条件下において、先端径dが下記(3)式を満たす電極を用いて、ナゲット径NDが下記(4)式を満たすスポット溶接で形成された溶接継手であることを特徴とする前記(1)記載の超音波衝撃処理によるスポット溶接継手の静的強度および疲労強度向上方法。
5.752×TS1/2≦P≦8.792×TS1/2            (1)
130−160×t+210×t≦HT              (2)
5.5×t1/2≦d≦7.5×t1/2(mm)             (3)
5.5×t1/2≦ND≦7.5×t1/2(mm)            (4)
但し、TS:被溶接材の引張強さ(MPa)
P:溶接時の電極先端での面圧(MPa)
t:被溶接材の厚み(mm)
HT:溶接後の電極保持時間(ms)
d:電極の先端径(mm)
ND:ナゲット径(mm)
【0025】
(4) 前記溶接継手が、溶接時に散りが発生する条件でスポット溶接された溶接継手であることを特徴とする前記(1)または(2)のいずれかに記載の超音波衝撃処理によるスポット溶接継手の疲労強度向上方法。
【0026】
(5) 前記超音波衝撃処理を、超音波衝撃処理後の超音波衝撃処理部の板厚減少量が0.03mm以上、超音波衝撃処理部の板厚の30%以下になるように施すことを特徴とする前記(1)〜(4)のいずれか1項に記載の超音波衝撃処理によるスポット溶接継手の疲労強度向上方法。
【0027】
(6) 前記金属板が高強度鋼板であることを特徴とする前記(1)〜(5)のいずれかに記載の超音波衝撃処理によるスポット溶接継手の疲労強度向上方法。
【0028】
(7) 前記高強度鋼板が、フェライト中に残留オーステナイトを含有する加工誘起変態型複合組織鋼板であることを特徴とする前記(6)に記載の超音波衝撃処理によるスポット溶接継手の疲労強度向上方法。
【0029】
【発明の実施の形態】
本発明者は、先ず、高強度鋼板のスポット溶接において、溶接継手の疲労強度を向上させる方法として、
(a)溶接金属(ナゲット)端部のノッチ形状を変えて、応力集中が起こり難くする方法、
(b)溶接金属(ナゲット)部とその周辺の熱影響(HAZ)部の硬さを低下させる方法、および、
(c)溶接金属(ナゲット)部周囲に圧縮残留応力を発生させて、相対的に残留引張応力を低減させる方法、
の大きく3つの方法について検討した。
【0030】
(a)の方法については、例えば、非特許文献1に記載されているように、意図的に溶接中に散り(通電中、鋼板間に生成された溶融部の直径が銅電極の先端直径より大きくなって、鋼板の隙間から溶融金属が飛散する現象)を発生させて、溶接金属(ナゲット)部の端部形状を変化させる方法が知られているが、この方法では、溶接金属(ナゲット)部の端部形状がばらつき、実際、疲労強度もかなりばらつくことが知られている。
【0031】
(b)の方法としては、前述のように、溶接終了後に一定時間非通電のまま保持(冷却)した後、再度溶接部に一定時間通電(後通電)して、溶接部をテンパー処理する方法が知られている。
しかし、この方法は、既に述べたように、溶接部をテンパー処理するための最適通電条件範囲が非常に狭く、また、操業条件の変化などにより再現性が乏しいという問題を抱えている。
【0032】
本発明者は、(c)の方法として、電極による溶接部への加圧と溶接金属(ナゲット)部周囲のマルテンサイト変態による体積膨張を利用する方法が有効であると考え、鋭意実験を行った。その結果、被溶接材の厚みと引張強さ、電極先端径に応じた電極加圧力の調整、溶接後の電極保持時間の調整、および、マルテンサイト変態による体積膨張の利用により溶接金属(ナゲット)部周囲に圧縮残留応力を発生させ、溶接継手の疲労強度を向上できることを見出した。
【0033】
そこで、本発明者は、ナゲット形成部周囲に、さらに圧縮残留応力を導入する手法について検討した。その結果、スポット溶接継手の両面または片面から、ナゲット形成部とナゲット形成部周囲の両方または片方に超音波衝撃処理を施せば、ナゲット形成部周囲に圧縮残留応力を導入させて、溶接継手の疲労強度を効果的に向上できることを見出した。
【0034】
本発明は、前述したように上記知見に基づいてなされたものである。以下、詳細に説明する。
【0035】
図2は、スポット溶接を説明するための図であり、また、図3は、本発明の超音波衝撃処理を説明するための図である。まず、スポット溶接では、被接合材である2枚の高強度鋼板1を重ね合わせ、その重ね合わせ部に銅製の溶接電極4を加圧力5で加圧しながら通電し、2枚の高強度鋼板1の間に溶融金属部を形成させる。この溶融金属部は、溶接通電終了後、水冷された電極への抜熱や鋼板への熱伝導により冷却されて凝固し、2枚の高強度鋼板1の間にナゲット2が形成される。
【0036】
高強度鋼板をスポット溶接した場合、溶接後のナゲット形成部とその周辺の熱影響(HAZ)部においては、凝固・冷却過程でマルテンサイト変態が起きる際に体積膨張が起きるが、その後、さらに室温までの冷却過程で熱収縮が起き、最終的に形成されるナゲット部周辺には、引張残留応力が存在した状態になる。
【0037】
この引張残留応力は、ナゲット端部のノッチ形状とともに、高強度鋼板スポット溶接継手の疲労強度を低下せしめる主な原因であると考えられるが、本発明では、図3に示したように、発信機6から超音波を発生させ、溶接継手の両面または片面から、ナゲット形成部とナゲット形成部周囲の両方または片方に、工具6(図3ではピン)を介して衝撃超音波衝撃処理を施し、引張残留応力を消滅せしめるとともに、ナゲット形成部周囲に圧縮残留応力を導入する。この圧縮残留応力によって、疲労試験時の引張荷重が緩和されるため、溶接継手の疲労強度が向上する。
【0038】
疲労強度を向上させるためには、疲労試験時に破壊が起こるナゲット形成部周囲に超音波衝撃処理を施し、その部分に圧縮残留応力を導入すればよいが、ナゲット形成部に超音波衝撃処理を施した場合にも疲労強度は向上する。これは、ナゲット形成部に超音波衝撃処理を施すことによって、ナゲット形成部が変形し、その結果、ナゲット形成部の周囲が圧縮されて、ナゲット形成部周囲に圧縮残留応力が導入されるためと考えられる。
【0039】
したがって、超音波衝撃処理は、ナゲット形成部とナゲット形成部周囲のどちらか一方に施してもよいし、両方に施してもよい。確実にナゲット形成部周囲に圧縮残留応力を導入させるためには、少なくともナゲット形成部周囲には超音波衝撃処理を施した方が望ましい。
【0040】
また、両面に超音波衝撃処理を施せば、鋼板両面のナゲット形成部周囲で破壊が起こりにくくなるため、疲労強度向上の効果は大きいが、片面に超音波衝撃処理を施しただけでも疲労強度向上の効果が認められる。これは、片面に超音波衝撃処理を施しただけでも、逆側の鋼板に間接的に圧縮残留応力が導入されるためと考えられる。
【0041】
一方、フェライト中にマルテンサイトまたはベイナイトを含有した2相複合組織鋼板、あるいはベイナイト組織からなるバーリング鋼板では、特に、引張強さが高い場合には、スポット溶接の場合にも熱影響部(HAZ)で軟化が起こり、疲労強度への悪影響が懸念されるが、ナゲット形成部周囲に超音波衝撃処理を施すことによって軟化した部分にも圧縮残留応力が導入されるため、これによっても疲労強度の向上が期待される。
【0042】
超音波衝撃処理を施す溶接継手は、スポット溶接条件を特に規定するものではないが、以下の条件、すなわち、電極先端での面圧P(MPa)および溶接後の電極保持時間HT(ms)が下記(1)、(2)式を満たす条件でスポット溶接した溶接継手を用いることが望ましい。
5.752×TS1/2≦P≦8.792×TS1/2            (1)
130−160×t+210×t≦HT              (2)
但し、TS:被溶接材の引張強さ(MPa)
P:溶接時の電極先端での面圧(MPa)
t:被溶接材の厚み(mm)
HT:溶接後の電極保持時間(ms)
【0043】
電極先端での面圧を上記(1)式を満たすように設定すると、被溶接材として引張強さTSが430〜1200MPaの鋼板を用いても、ナゲット形成部を変形させることが可能となり、その結果、ナゲット形成部周囲に圧縮残留応力を導入させることが可能となって、溶接継手の疲労強度が向上する。
【0044】
電極先端での面圧Pは、引張強さTSとの関係で上記(1)式に従って設定するが、該(1)式を導出する根拠となった実験結果の一例を図4に示す。図4は、先端径が5mm、先端曲率径が40mmのJIS−CR型電極を用い、板厚1.0mmの高強度鋼板をスポット溶接し、直径5mmのナゲットを形成させた場合における電極先端での面圧Pおよび鋼板の引張強さTSと、溶接継手の疲労強度の評価結果(図中の○印および×印)との関係を示している。
【0045】
図中において、溶接継手の疲労強度が、引張強さTS:290MPaの軟鋼板を溶接した時の疲労強度に対して向上したものを○、向上しなかったものを×で示した。
【0046】
図4から、板厚:1.0mmの高強度鋼板をスポット溶接する際には、電極先端での面圧Pを上記(1)式に従って設定すれば、疲労強度が良好な溶接継手を形成させることが可能だとわかる。
【0047】
本発明の上記(1)式は、電極先端径と高強度鋼板の板厚を変化させて、図4に示すように、電極先端での面圧Pおよび鋼板の引張強さTSと、溶接継手の疲労強度との関係を実験的に確認して求めたものである。
【0048】
スポット溶接時の電極先端での面圧が、上記(1)式の下限値より低い場合には、溶接金属部に十分な圧縮残留応力を導入させることができず、溶接継手の疲労強度向上の効果がほとんど認められない。一方、電極先端での面圧が、上記(1)式の上限値より高い場合は、溶接時に変形抵抗が低下した加圧部表面に大きな圧痕が生じて、金属板の外観形状を悪化させ、また、加圧部の板厚を薄くしてしまい溶接継手の静的強度や疲労強度を低下させるという問題が生じる。
【0049】
本発明では、上記(1)式のように、スポット溶接時の電極先端での面圧を規定することにより、溶接金属部周囲に圧縮残留応力を導入し、溶接継手の疲労強度の向上に寄与することができる。
【0050】
なお、電極形状としては、JIS C 9304に規定されているように、F型、R型、D型、DR型、CF型、CR型、EF型、ER型、P型があり、DR型、CF型、CR型、EF型、ER型、P型では電極先端径を特定できるが、他の電極では特定できないため、その場合には、鋼板との実質的な接触径を電極先端径とすればよい。なお、DR型、CF型、CR型、ER型、P型でも、連続打点とともに電極先端径が増大するため、その場合には、鋼板との実質的な接触径を電極先端径と考えれば良い。
【0051】
電極加圧力以外の溶接条件、例えば、溶接時の溶接電流、溶接時間、などは通常の溶接条件に準ずればよく、特に規定する必要はないが、溶接後の電極保持時間HT(ms)は、上記(2)式に従って規定すると、ナゲット形成部周囲に所要の圧縮残留応力を導入させることができる。
【0052】
溶接電極は水冷されているので、溶接(通電)後の電極保持時間が長くなると、溶接部の冷却速度が速くなって硬さが上昇し、靱性が低下して破壊しやすくなる。この観点から、溶接後の電極保持時間はより短い方がよいが、一方、あまり短く設定すると、溶融金属が凝固しないうち加圧力がなくなるため、散りが発生してナゲット端部のノッチ形状が悪化し疲労強度が低下する。
【0053】
また、ナゲット形成部とその周囲の温度があまり下がらない内に電極による加圧力を除荷すると、ナゲット形成部周囲に十分な圧縮残留応力が導入されないため、疲労強度が向上しない。したがって、溶接後の電極保持時間HTを上記(2)式のように設定し、ナゲット形成部とその周囲の温度がある程度まで下がってから加圧力を除荷することが重要である。
【0054】
それ故、溶接継手の静的強度および疲労強度向上の観点から、溶接後の電極保持時間は、上記(2)式に従って設定するのが好ましい。
【0055】
また、被溶接材の厚みtについても特に規定する必要がない。一般に、自動車用部品や車体などで使われる鋼板の板厚は、0.4〜3.0mmであるが、本発明は、この板厚において充分に効果を奏することができる。
【0056】
本発明は、電極先端での面圧P(MPa)および溶接後の電極保持時間HT(ms)が下記(1)、(2)式を満たす条件下において、先端径dが下記(3)式を満たす電極を用いて、ナゲット径NDが下記(4)式を満たす条件でスポット溶接した溶接継手に適用するのが好ましい。
5.752×TS1/2≦P≦8.792×TS1/2            (1)
130−160×t+210×t≦HT              (2)
5.5×t1/2≦d≦7.5×t1/2(mm)             (3)
5.5×t1/2≦ND≦7.5×t1/2(mm)            (4)
但し、TS:被溶接材の引張強さ(MPa)
P:溶接時の電極先端での面圧(MPa)
t:被溶接材の厚み(mm)
HT:溶接後の電極保持時間(ms)
d:電極の先端径(mm)
ND:ナゲット径(mm)
【0057】
上記(3)式を満たす先端径を有する電極を用いる理由は、上記(4)式を満たすナゲット径NDを安定して得るためには、上記(3)式を満たす電極を使用する必要性があるからである。電極の先端径が上記(3)式の下限値より小さい電極を用いると散りが発生して上記(4)式に示す範囲のナゲット径が安定して得られず、また、上記(3)式の上限値より大きい電極を用いると、電極加圧力が高くなりすぎて、実用に向かないからである。
【0058】
上記(4)式を満たすようにナゲット径を設定する理由は、ナゲット径が(4)式の下限値より小さい場合は疲労強度向上の効果が少なく、また、(4)式の上限値より大きい場合は、疲労強度は向上するものの、上記で述べたように電極先端径も大きく設定しなくてはならないため、電極加圧力が高くなりすぎて、実用に向かないからである。
【0059】
溶接継手の疲労強度を高めるためには、上記(1)、(2)式を満たすように溶接条件を設定し、上記(3)式を満たす先端径の電極を用い、上記(4)式を満たすナゲットを形成させるのが望ましい。なぜなら、溶接金属部の周囲に十分な圧縮残留応力を導入させるため、電極先端での面圧Pは上記(1)式を満たす条件に設定しておく。すなわち、電極加圧力は、電極先端径の増加に伴い、その面積比に比例させて増加させていくことが必要である。
【0060】
また、溶接後の電極保持時間HT(ms)も、上記で述べた理由により、上記(2)式を満たすように設定しておく。このように、溶接継手の疲労強度を上げるためには、ナゲット径を拡大させるとともに、溶接時の電極先端での面圧をある範囲に設定しておくことが重要である。
【0061】
ナゲット径は、溶接時に散りが発生しない範囲で、上記(4)式を満たすことが望ましいが、本発明は、溶接時に散りが発生するような条件でスポット溶接された溶接継手にも適用することができる。散りが発生した場合には、ナゲットの端部がノッチ形状になり、疲労強度が低下することがあるが、ナゲット周囲に超音波衝撃処理を施すことによって、その部分が塑性変形してノッチ形状が改善され、疲労強度が向上する。当然ながら、上記で述べた圧縮残留応力導入の効果も加わるため、この効果によっても疲労強度が向上する。
【0062】
本発明において、超音波衝撃処理は、超音波衝撃処理後の超音波衝撃処理部の板厚減少量が0.03mm以上、超音波衝撃処理部の板厚の30%以下になるように施すことが好ましい。この超音波衝撃処理により、スポット溶接継手の疲労強度を効果的に向上させることができる。
【0063】
上記において、超音波衝撃処理後の超音波衝撃処理部の板厚減少量が0.03mmを下回る場合には、溶接金属部周囲に導入される圧縮残留応力が小さすぎて疲労強度が効果的に向上せず、一方、超音波衝撃処理後の超音波衝撃処理部の板厚減少量が板厚の30%を越える場合には、溶接継手の厚みが減少して疲労強度のみならず静的強度をも低下せしめることにもなる。
【0064】
なお、超音波衝撃処理において用いる超音波の周波数、振幅および発信出力は特に規定する必要はないが、周波数20〜60kHz、振幅20〜40μm、および、発信出力500〜1500Wの超音波を用いて超音波衝撃理を行うのが望ましい。
【0065】
周波数は、これより低いと超音波衝撃処理時の騒音が増加し、これより高いと装置の規模が大きくなりすぎるからである。振幅は、これより低くても高くても圧縮残留応力導入による疲労強度向上の効果が低くなる。
【0066】
発信出力は、これより低いと、特に引張強さが高い鋼板の場合には十分な圧縮残留応力が導入されにくくなり、また、これより高いと超音波衝撃処理を施した部分の板厚が減少しすぎて、疲労強度や静的強度が低下する場合があったり、また、装置の規模が大きくなりすぎる等の問題も生じる。
【0067】
また、超音波衝撃処理において用いる処理部と接する工具(ピン)は、その形状が特に限定されるものではないが、直径2.0〜8.0mm、先端曲率半径10〜100mm、および、ビッカース硬さ500〜900のピンを用いて行うことが望ましい。
【0068】
ピンの直径が2.0mmを下回る場合にはピンが座屈しやすくなり、また、8.0mmを越える場合には、面圧が低くなりすぎて十分な圧縮残留応力が導入されにくくなる。
【0069】
ピンの先端曲率半径が10mmより小さい場合には先端が鋭くなりすぎて損傷しやすく、また、100mmを越える場合には、接触面が平面になりすぎて片当たりの問題が生じる。
【0070】
ピンのビッカース硬さが500を下回る場合にはピンが損傷しやすく、また、900を越える場合にも、靭性が低下してピンが損傷しやすくなる。
【0071】
本発明は金属板に用い得るものであり、その金属板は特に規定されるものではなく、鋼板、アルミ板、などが考えられる。特に、本発明は、高強度鋼板に適用すると、溶接継手の疲労強度の向上が著しい。
【0072】
さらに、鋼板の種類についても特に限定する必要がない。固溶型、析出型(例えば、Ti析出型、Nb析出型)、2相組織型(例えば、フェライト中にマルテンサイトを含む組織、フェライト中にベイナイトを含む組織)、加工誘起変態型(フェライト中に残留オーステナイトを含む組織)など、いずれの型の鋼板にも本発明を適用できる。
【0073】
鋼板の製造方法は、熱間圧延法でも冷間圧延法でも良く、裸鋼板でもめっき鋼板でも良い。被覆するめっきの種類は、導伝性のものならいずれの種類(例えば、Zn、Zn−Fe、Zn−Ni、Zn−Al、Sn−Zn、など)であっても良いが、目付量は両面で100/100g/m以下のものが望ましい。
【0074】
高強度鋼板が、特に、フェライト中に残留オーステナイトを含有する加工誘起変態型複合組織鋼板である場合、溶接継手の疲労強度の向上が著しい。
【0075】
加工誘起変態型複合組織鋼板は、組織中に残留オーステナイトを含有し、鋼板の加工時に残留オーステナイトがマルテンサイトに変態することにより高い伸び特性が得られることが知られている。
【0076】
本発明者は、被溶接材として加工誘起変態型複合組織鋼板を用いた種々の実験結果から、組織中に残留オーステナイトを含有しない他の鋼板に比べて、溶接継手の疲労強度が向上することを明らかにした。
【0077】
この疲労強度向上のメカニズムについては十分には明らかになっていないが、加工誘起変態型複合組織鋼板を用いた場合、スポット溶接部周囲の残留オーステナイトは、超音波衝撃処理によりマルテンサイト変態を起こし、この変態による体積膨張によりナゲット形成部周囲に弾性歪が蓄積され、最終的に高い圧縮残留応力が導入されるのではないかと推定される。
【0078】
通常、ナゲット形成部周囲には、溶接後の収縮によって引張残留応力が導入されるため、せん断方向に繰り返し荷重を負荷する疲労試験の場合には、この部分で疲労破壊が起こり易かったが、本発明では、ナゲット形成部周囲への圧縮残留応力の導入によりこれが緩和され、従来に比べ、溶接継手の疲労強度が向上したものと考えられる。
【0079】
【実施例】
以下に実施例により本発明の効果を説明するが、本発明は、実施例で用いた条件に限定されるものではない。
【0080】
(実施例1)
表1〜表5に示した、板厚1.2、1.6mm、引張強さ290〜1178MPaの鋼板、および、板厚1.0mm、引張強さ197、286MPaのアルミニウム板から、スポット溶接継手の疲れ試験方法(JIS Z3138)に基づいて引張せん断疲労試験片を作製した。
【0081】
鋼板の種類は、軟鋼(記号:290S)、固溶強化型高強度鋼(記号:440S)、2相複合組織型高強度鋼(記号:590D、780D、980D、1180D)、加工誘起変態型複合組織高強度鋼(記号:590T、780T、980T)である。また、アルミニウム板の種類は、Al−Mg合金であるA5052(記号:A5052)、Al−Mg−Si合金であるA6061(記号:A6061)である。
【0082】
これらの試験片を、同鋼種・同板厚の組み合わせで重ね合わせ、表1〜表5の溶接条件でスポット溶接を行って溶接継手を作製した。
【0083】
得られた溶接継手について、スポット溶接継手の疲れ試験方法(JIS Z3138)に基づき、溶接継手のせん断方向に負荷して疲労試験を実施した。表1〜表5にその結果を示す、表1〜表5に示す疲労強度は、疲労試験を応力比:0.05、周波数:30Hzの条件で片振り試験を行った際の2×10回における疲労強度である。
【0084】
(実施例2)
表1に示したように、超音波衝撃処理を施した鋼板の溶接継手(条件No.1〜No.10)、アルミニウム板の溶接継手(条件No.19〜No.20)の疲労強度は、いずれの場合も、超音波衝撃処理を施さなかった鋼板の溶接継手(条件No.11〜No.18)、アルミニウム板の溶接継手(条件No.21〜No.22)に比べて高い値を示した。また、超音波衝撃処理を両面に施した場合(条件No.1、No.4)の疲労強度は、片面に施した場合(条件No.7、No.8)に比べて高い値を示した。
【0085】
【表1】

Figure 2004122152
【0086】
(実施例3)
表2に示したように、溶接時の電極先端での面圧、溶接後の電極保持時間が、請求項2の発明の(1)、(2)式の範囲内にある780D継手(条件No.1)の疲労強度は、比較例である290S継手(条件No.5、No.9)、および溶接時の電極先端での面圧、溶接後の電極保持時間が、請求項1の発明の(1)、(2)式の範囲内にない780D継手(条件No.10〜No.12)に比べて高い値を示した。
【0087】
また、請求項3の発明の(1)、(2)式の条件下で、(3)、(4)式に従いナゲット径を拡大させた780D継手(条件No.2〜No.4)の疲労強度は、比較例である290S継手(条件No.6〜No.8)、ナゲット径が(4)式の範囲内にない780D継手(条件No.1)に比べて高い値を示した。
【0088】
さらに、請求項3の発明の(1)、(2)式の条件下で、(3)、(4)式に従いナゲット径を拡大させた780D継手(条件No.3)の疲労強度も、溶接時の電極先端での面圧、溶接後の電極保持時間が、請求項3の発明の(1)、(2)式の範囲内にない780D継手(条件No.13〜No.15)に比べて高い値を示した。
【0089】
【表2】
Figure 2004122152
【0090】
(実施例4)
表3に示したように、溶接時に散りが発生した溶接継手に超音波衝撃処理を施した場合(条件No.1〜No.7)の疲労強度は、超音波衝撃処理を施さない場合(条件No.8〜No.16)に比べて高い値を示した。
【0091】
【表3】
Figure 2004122152
【0092】
(実施例5)
表4に示したように、超音波衝撃処理を施した場合、超音波衝撃処理後の超音波衝撃処理部の板厚減少量が0.03mm以上、超音波衝撃処理部の板厚の30%以下になるように設定した場合(条件No.1〜No.4)の疲労強度は、その範囲以外に設定した場合(条件No.5〜No.16)に比べて高い値を示した。
【0093】
【表4】
Figure 2004122152
【0094】
(実施例6)
表5に示したように、加工誘起変態型複合組織鋼板を用いた溶接継手(条件No.1〜No.6)の疲労強度は、その他の鋼種を用いた場合(条件No.7〜No.16)に比べて高い値を示した。
【0095】
【表5】
Figure 2004122152
【0096】
【発明の効果】
本発明によれば、金属板のスポット溶接、特に、自動車用部品の取付けおよび車体の組立てなどで用いる高強度鋼板のスポット溶接において、良好な作業性を確保しつつ溶接継手の疲労強度を向上させることができる。したがって、これにより、自動車分野などで高強度鋼板適用による安全性向上や軽量化による低燃料費、CO排出量削減のメリットなどを十分に享受でき、社会的な貢献は多大である。
【図面の簡単な説明】
【図1】スポット溶接部の疲労試験を説明するための断面図である。
【図2】本発明のスポット溶接を説明するための断面図である。
【図3】本発明の超音波衝撃処理を説明するための断面図である。
【図4】高強度鋼板(板厚t:1mm)をスポット溶接した際における電極先端での面圧Pおよび鋼板の引張強さTSと、溶接継手の疲労強度の評価結果(○、×)との関係を示す図である。
【符号の説明】
1…高強度鋼板
2…ナゲット
3…負荷方向
4…溶接電極
5…加圧力
6…超音波発信機
7…超音波衝撃処理を施すための工具(ピン)[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention improves the fatigue strength of a metal plate welded joint formed by spot welding, mainly a high-strength steel plate welded joint formed by a spot welding method used for mounting automotive parts and assembling a vehicle body. It is about the method.
[0002]
[Prior art]
In recent years, low fuel consumption of automobiles, CO 2 In the field of automobiles, there is an increasing need to use thin high-strength steel sheets for automobile bodies and parts in order to reduce emissions and improve collision safety.
[0003]
A spot welding method is mainly used for assembling a vehicle body or attaching parts, but when a high-strength steel plate is welded by a spot welding method, there are the following problems.
[0004]
As a quality index of a spot weld (welded joint), fatigue strength is important together with tensile strength. Although the tensile strength of the welded joint increases with the tensile strength of the steel sheet, the fatigue strength of the welded joint hardly increases even if the tensile strength of the steel sheet increases.
[0005]
For example, if a high-strength steel plate having a tensile strength of 590 MPa is used instead of a mild steel plate having a tensile strength of 290 MPa, the tensile shear strength of the spot welded joint (the tensile strength when a tensile load is applied in the shear direction of the welded joint) Strength) is almost doubled, but the fatigue strength when a load is repeatedly applied in the shear direction of the welded joint, for example, the number of times of stress application is 2 × 10 6 If the load at the time is defined as the fatigue strength, the fatigue strength does not increase and shows almost the same value as in the case of the mild steel sheet.
[0006]
As described above, the cause of the low fatigue strength may be the notch shape of the spot weld as reported in the past. That is, as shown in FIG. 1, since the portion of the nugget 2 existing between the steel plates 1 has a notch shape, when a fatigue test is performed by applying a load in the tensile shear direction (arrow direction) 3, It is considered that the notch effect does not improve the fatigue strength even if the tensile strength of the steel sheet is high.
[0007]
In particular, when a high-strength steel plate is used, the hardness of the nugget portion is increased as compared with the case where a mild steel plate is used, so that the notch effect is remarkable. On the other hand, even when a fatigue test is performed by applying a load in the peeling direction (direction perpendicular to the tensile shear direction (arrow direction) 3), the fatigue strength of the welded joint of the high-strength steel sheet does not increase and is the same as that of mild steel. is there.
[0008]
In this case, the stress concentration around the nugget is remarkable, and the local stress load increases, and cracks are easily generated there.Therefore, the fatigue strength is one time as compared with the case where the load is repeatedly applied in the tensile shear direction. Decrease by about an order of magnitude.
[0009]
Generally, as the tensile strength of a steel sheet increases, the value of the carbon equivalent Ceq represented by the following formula tends to increase, and the value of the Ceq of a high-strength steel sheet is known to exceed 0.2.
Ceq = C + Si / 30 + Mn / 20 + 2P + 4S
In the formula, C, Si, Mn, P, and S indicate the respective contents (% by mass) of carbon, silicon, manganese, phosphorus, and sulfur in the steel.
[0010]
As described above, the tensile strength of a high-strength steel sheet increases, and the carbon equivalent Ceq of the steel sheet increases. Therefore, the higher the strength of a high-strength steel sheet, the higher the hardness of the spot-welded portion (nugget portion) and the hardness of the heat-affected zone. As a result, the toughness is reduced and fracture is easily caused.
[0011]
In addition, since high-strength steel sheets tend to spring back more easily than mild steel, tensile residual stress is generated in spot welds and fatigue strength is liable to decrease. Static strength tends to decrease.
[0012]
For the above reasons, it is considered that the fatigue strength of the spot-welded portion of the high-strength steel sheet does not increase even if the tensile strength of the high-strength steel sheet increases, and is about the same as that of mild steel.
[0013]
In addition, in the case where scattering occurs during spot welding (during energization, the diameter of the molten portion generated between the steel plates becomes larger than the tip diameter of the copper electrode and the molten metal scatters from the gap between the steel plates), The end portion of the nugget formed between the steel plates has a sharp notch shape, and the fatigue strength of the joint is reduced as compared with a case where no scattering occurs.
[0014]
In conventional spot welding of high-strength steel sheets, as a means to improve the fatigue strength of welded joints, after the energization of spot welding is completed, tempering energization is performed after a certain period of time, and the spot weld (nugget) and heat influence There is known a method in which a portion is annealed to reduce hardness and change residual stress (for example, see Non-Patent Document 1).
[0015]
However, this method has a practical problem that the width of a proper condition range of the tempering is very narrow and reproducibility is poor due to a change in operating conditions. In particular, in the case where spot welding is continuously performed on a plated steel sheet, as the number of spots increases, the electrode tip deteriorates due to an alloying reaction with plating, the electrode tip diameter increases, and the current density decreases, Since it is out of the optimal tempering condition, it is difficult to stably improve the fatigue strength of the joint.
[0016]
As a method of improving the fatigue strength of the spot welded portion, in addition to the above, a method of spot welding using a steel sheet having excellent fatigue strength characteristics is known (for example, see Patent Documents 1 to 6).
However, these methods relate to spot welding of mild steel sheets, and there is no report on a method of improving the fatigue strength of a spot welded part of a high strength steel sheet.
[Patent Document 1]
JP-A-63-317625
[Patent Document 2]
JP-A-2-163323
[Patent Document 3]
JP-A-5-263184
[Patent Document 4]
JP-A-9-268346
[Patent Document 5]
JP-A-10-8187
[Patent Document 6]
JP-A-11-279689
[Non-patent document 1]
"Iron and Steel," Vol. 68 (1982) No. 9, pp. 1444-1451
[0017]
[Problems to be solved by the invention]
As described above, the fatigue strength of a welded joint when spot welding a high strength steel sheet is the same as the fatigue strength when spot welding a mild steel sheet. To improve safety and reduce fuel consumption by using lightweight, CO2 2 The benefits of reducing emissions cannot be fully enjoyed.
[0018]
To improve the fatigue strength of welded joints, the conventional method of increasing the number of spot welding spots can be adopted, but this method has problems such as reduced work efficiency, increased cost and limited design flexibility. .
[0019]
The present invention is to improve the fatigue strength of a welded joint while securing good welding workability in spot welding of a metal plate, particularly in spot welding of a high-strength steel plate, in order to solve these problems in the prior art. It is an object of the present invention to provide a spot welding method capable of performing the following.
[0020]
[Means for Solving the Problems]
The inventor of the present invention believes that the fatigue strength of the spot welded joint depends on the residual stress state around the nugget and the shape of the nugget end, so if the residual stress state around the nugget and the shape of the nugget end are improved by some means Based on the idea that the fatigue strength of the welded joint can be increased, a method for improving the residual stress state around the nugget and the shape of the end of the nugget was studied diligently.
[0021]
As a result, it has been found that the fatigue strength of the welded joint can be effectively increased by applying ultrasonic impact treatment to both or one of the nugget-formed portion and the periphery of the nugget from both or one side of the welded joint.
The present invention has been made based on the above findings, and the gist is as follows.
[0022]
(1) In a method for improving the fatigue strength of a welded joint formed by spot welding a metal plate, ultrasonic impact treatment is applied to both or one of the nugget-formed portion and the periphery of the nugget from both or one side of the welded joint. A method for improving the fatigue strength of a spot welded joint by an ultrasonic impact treatment.
[0023]
(2) Welding in which the weld joint is formed by spot welding in which the surface pressure P (MPa) at the electrode tip and the electrode holding time HT (ms) after welding satisfy the following equations (1) and (2). The method for improving the fatigue strength of a spot welded joint by the ultrasonic impact treatment according to the above (1), which is a joint.
5.752 × TS 1/2 ≦ P ≦ 8.792 × TS 1/2 (1)
130-160 × t + 210 × t 2 ≤HT (2)
Where TS is the tensile strength of the material to be welded (MPa)
P: Surface pressure at the electrode tip during welding (MPa)
t: Thickness of material to be welded (mm)
HT: electrode holding time after welding (ms)
[0024]
(3) Under the condition that the surface pressure P (MPa) at the electrode tip and the electrode holding time HT (ms) after welding satisfy the following formulas (1) and (2), the tip diameter d is as follows. Spot welding by ultrasonic impact treatment according to the above (1), characterized in that it is a welded joint formed by spot welding using an electrode satisfying the formula (3) and having a nugget diameter ND satisfying the following formula (4). A method for improving the joint's static strength and fatigue strength.
5.752 × TS 1/2 ≦ P ≦ 8.792 × TS 1/2 (1)
130-160 × t + 210 × t 2 ≤HT (2)
5.5 × t 1/2 ≦ d ≦ 7.5 × t 1/2 (Mm) (3)
5.5 × t 1/2 ≦ ND ≦ 7.5 × t 1/2 (Mm) (4)
Where TS is the tensile strength of the material to be welded (MPa)
P: Surface pressure at the electrode tip during welding (MPa)
t: Thickness of material to be welded (mm)
HT: electrode holding time after welding (ms)
d: electrode tip diameter (mm)
ND: Nugget diameter (mm)
[0025]
(4) The spot welding by the ultrasonic impact treatment according to any one of (1) and (2), wherein the welded joint is a spot welded spot under conditions in which scattering occurs during welding. A method for improving the fatigue strength of joints.
[0026]
(5) The ultrasonic impact treatment is performed so that the reduction in the thickness of the ultrasonic impact treatment portion after the ultrasonic impact treatment is 0.03 mm or more and 30% or less of the thickness of the ultrasonic impact treatment portion. The method for improving the fatigue strength of a spot welded joint by the ultrasonic impact treatment according to any one of the above (1) to (4), characterized in that:
[0027]
(6) The method for improving fatigue strength of a spot welded joint by ultrasonic impact treatment according to any one of (1) to (5), wherein the metal plate is a high-strength steel plate.
[0028]
(7) The fatigue strength improvement of the spot welded joint by the ultrasonic impact treatment according to (6), wherein the high-strength steel sheet is a work-induced transformation-type composite structure steel sheet containing retained austenite in ferrite. Method.
[0029]
BEST MODE FOR CARRYING OUT THE INVENTION
The present inventor firstly spot-welds a high-strength steel sheet, as a method for improving the fatigue strength of a welded joint,
(A) changing the notch shape of the weld metal (nugget) end so that stress concentration hardly occurs;
(B) a method of reducing the hardness of a weld metal (nugget) portion and a heat affected (HAZ) portion around the portion, and
(C) a method of generating a compressive residual stress around the weld metal (nugget) portion to relatively reduce the residual tensile stress,
The following three methods were examined.
[0030]
Regarding the method (a), for example, as described in Non-Patent Document 1, it is intentionally scattered during welding (during energization, the diameter of the fused portion generated between the steel plates is larger than the tip diameter of the copper electrode. It is known to change the shape of the end portion of the weld metal (nugget) portion by causing the metal to become large and causing the molten metal to scatter from the gap between the steel sheets. It is known that the end shape of the part varies, and in fact, the fatigue strength also varies considerably.
[0031]
As the method (b), as described above, after the welding is completed, the current is kept (cooled) for a certain time after the completion of welding, and then the welding is energized again for a certain time (post-energization) to temper the weld. It has been known.
However, this method has a problem that, as described above, the optimum energizing condition range for tempering the weld is very narrow, and the reproducibility is poor due to a change in operating conditions.
[0032]
The present inventor considers that the method of (c) utilizing the pressure applied to the welded portion by the electrode and the volume expansion due to martensitic transformation around the weld metal (nugget) portion is effective, and conducted intensive experiments. Was. As a result, the welding metal (nugget) is adjusted by adjusting the electrode pressing force according to the thickness and tensile strength of the material to be welded, the electrode tip diameter, adjusting the electrode holding time after welding, and utilizing volume expansion due to martensitic transformation. It has been found that a compressive residual stress can be generated around the part to improve the fatigue strength of the welded joint.
[0033]
Then, the present inventor studied a method of further introducing a compressive residual stress around the nugget forming portion. As a result, from both sides or one side of the spot welded joint, if ultrasonic impact treatment is applied to both or one of the nugget forming part and the periphery of the nugget forming part, compressive residual stress is introduced around the nugget forming part, thereby causing fatigue of the welded joint. It has been found that the strength can be effectively improved.
[0034]
The present invention has been made based on the above findings as described above. The details will be described below.
[0035]
FIG. 2 is a diagram for explaining spot welding, and FIG. 3 is a diagram for explaining the ultrasonic impact processing of the present invention. First, in spot welding, two high-strength steel sheets 1 to be joined are overlapped, and a copper welding electrode 4 is applied to the overlapped portion while applying a pressure 5 to apply a current to the two high-strength steel sheets 1. A molten metal part is formed between the two. After the completion of the welding, the molten metal portion is cooled and solidified by heat removal to the water-cooled electrode and heat conduction to the steel sheet, and a nugget 2 is formed between the two high-strength steel sheets 1.
[0036]
When a high-strength steel sheet is spot-welded, volume expansion occurs during martensitic transformation in the solidification / cooling process in the nugget-forming portion and the heat affected zone (HAZ) around the nugget forming portion. During the cooling process, heat shrinkage occurs, and a tensile residual stress exists around the nugget portion finally formed.
[0037]
This tensile residual stress, together with the notch shape at the end of the nugget, is considered to be the main cause of lowering the fatigue strength of the high-strength steel plate spot welded joint. In the present invention, as shown in FIG. 6 from both sides or one side of the welded joint, and both or one of the nugget forming part and the surroundings of the nugget forming part are subjected to an impact ultrasonic impact treatment through a tool 6 (pin in FIG. The residual stress is eliminated, and a compressive residual stress is introduced around the nugget formation portion. Since the tensile load during the fatigue test is reduced by the compressive residual stress, the fatigue strength of the welded joint is improved.
[0038]
In order to improve the fatigue strength, ultrasonic impact treatment may be applied around the nugget forming part where breakage occurs during the fatigue test, and compressive residual stress may be introduced to that part.However, ultrasonic impact treatment is applied to the nugget forming part. In this case, the fatigue strength is improved. This is because the nugget forming section is deformed by performing the ultrasonic impact treatment on the nugget forming section, and as a result, the periphery of the nugget forming section is compressed, and compressive residual stress is introduced around the nugget forming section. Conceivable.
[0039]
Therefore, the ultrasonic impact treatment may be performed on one of the nugget forming portion and the periphery of the nugget forming portion, or may be performed on both. In order to surely introduce the compressive residual stress around the nugget formation portion, it is desirable to perform ultrasonic impact treatment at least around the nugget formation portion.
[0040]
Also, if ultrasonic shock treatment is applied to both sides, the fracture is less likely to occur around the nugget formation part on both sides of the steel sheet, so the effect of improving the fatigue strength is large, but even if only one side is subjected to ultrasonic shock treatment, the fatigue strength can be improved The effect of is recognized. This is presumably because even if only one side was subjected to the ultrasonic impact treatment, the compressive residual stress was indirectly introduced into the steel sheet on the opposite side.
[0041]
On the other hand, in the case of a two-phase composite structure steel sheet containing martensite or bainite in ferrite or a burring steel sheet having a bainite structure, particularly when the tensile strength is high, the heat affected zone (HAZ) is also obtained in the case of spot welding. However, there is a concern that fatigue strength may be adversely affected, but compressive residual stress is also introduced into the softened part by applying ultrasonic impact treatment around the nugget forming part, which also improves fatigue strength There is expected.
[0042]
The welded joint subjected to the ultrasonic impact treatment does not particularly define the spot welding conditions. However, the following conditions, that is, the surface pressure P (MPa) at the electrode tip and the electrode holding time HT (ms) after welding are satisfied. It is desirable to use a welded joint spot-welded under the conditions satisfying the following equations (1) and (2).
5.752 × TS 1/2 ≦ P ≦ 8.792 × TS 1/2 (1)
130-160 × t + 210 × t 2 ≤HT (2)
Where TS is the tensile strength of the material to be welded (MPa)
P: Surface pressure at the electrode tip during welding (MPa)
t: Thickness of material to be welded (mm)
HT: electrode holding time after welding (ms)
[0043]
When the surface pressure at the electrode tip is set so as to satisfy the above expression (1), even if a steel plate having a tensile strength TS of 430 to 1200 MPa is used as the material to be welded, the nugget forming portion can be deformed. As a result, it becomes possible to introduce a compressive residual stress around the nugget forming portion, and the fatigue strength of the welded joint is improved.
[0044]
The surface pressure P at the tip of the electrode is set in accordance with the above equation (1) in relation to the tensile strength TS. FIG. 4 shows an example of an experimental result on which the equation (1) is derived. FIG. 4 shows an electrode tip when a high-strength steel plate having a thickness of 1.0 mm is spot-welded using a JIS-CR type electrode having a tip diameter of 5 mm and a tip curvature diameter of 40 mm to form a nugget having a diameter of 5 mm. Shows the relationship between the surface pressure P and the tensile strength TS of the steel sheet, and the evaluation results of the fatigue strength of the welded joint (indicated by the circles and crosses in the figure).
[0045]
In the figure, ○ indicates that the fatigue strength of the welded joint was improved with respect to the fatigue strength when welding a mild steel sheet having a tensile strength of TS: 290 MPa, and X indicates that the fatigue strength was not improved.
[0046]
From FIG. 4, when spot welding a high-strength steel plate having a thickness of 1.0 mm, if the surface pressure P at the electrode tip is set in accordance with the above equation (1), a welded joint having good fatigue strength is formed. I know it is possible.
[0047]
In the above formula (1) of the present invention, as shown in FIG. 4, the electrode pressure and the tensile strength TS of the steel sheet are changed by changing the electrode tip diameter and the thickness of the high-strength steel sheet. Was determined by experimentally confirming the relationship with the fatigue strength.
[0048]
If the surface pressure at the tip of the electrode during spot welding is lower than the lower limit of the above equation (1), sufficient compressive residual stress cannot be introduced into the weld metal portion, and the fatigue strength of the welded joint is improved. Little effect is observed. On the other hand, if the surface pressure at the tip of the electrode is higher than the upper limit of the above formula (1), large indentations are generated on the surface of the pressurized portion where the deformation resistance is reduced during welding, which deteriorates the external shape of the metal plate, In addition, there is a problem that the plate thickness of the pressurized portion is reduced and the static strength and fatigue strength of the welded joint are reduced.
[0049]
According to the present invention, compressive residual stress is introduced around the weld metal part by defining the surface pressure at the electrode tip during spot welding as in the above equation (1), thereby contributing to the improvement of the fatigue strength of the welded joint. can do.
[0050]
In addition, as the electrode shape, there are F type, R type, D type, DR type, CF type, CR type, EF type, ER type, and P type as defined in JIS C 9304, and DR type, The electrode tip diameter can be specified for CF, CR, EF, ER, and P types, but cannot be specified for other electrodes. In this case, the actual contact diameter with the steel plate is regarded as the electrode tip diameter. Just fine. In addition, even in the DR type, CF type, CR type, ER type, and P type, since the electrode tip diameter increases with the continuous hitting point, in that case, the substantial contact diameter with the steel plate may be considered as the electrode tip diameter. .
[0051]
The welding conditions other than the electrode pressing force, for example, the welding current during welding, welding time, and the like may be in accordance with ordinary welding conditions, and need not be particularly specified, but the electrode holding time HT (ms) after welding is According to the formula (2), a required compressive residual stress can be introduced around the nugget forming portion.
[0052]
Since the welding electrode is water-cooled, if the electrode holding time after welding (energization) is prolonged, the cooling rate of the weld is increased, the hardness is increased, the toughness is reduced, and the weld is easily broken. From this viewpoint, it is better that the electrode holding time after welding is shorter, but if it is set too short, the pressing force disappears before the molten metal is solidified, so that the notch shape at the end of the nugget deteriorates due to scattering. And the fatigue strength decreases.
[0053]
Further, if the pressure applied by the electrodes is unloaded while the temperature of the nugget forming portion and its surroundings does not drop so much, sufficient compressive residual stress is not introduced around the nugget forming portion, so that the fatigue strength is not improved. Therefore, it is important that the electrode holding time HT after welding is set as in the above equation (2), and that the pressing force is unloaded after the temperature of the nugget formation part and its surroundings has dropped to some extent.
[0054]
Therefore, from the viewpoint of improving the static strength and fatigue strength of the welded joint, it is preferable that the electrode holding time after welding is set in accordance with the above equation (2).
[0055]
Further, it is not necessary to particularly define the thickness t of the material to be welded. In general, the thickness of a steel plate used in automobile parts, vehicle bodies, and the like is 0.4 to 3.0 mm. However, the present invention can provide a sufficient effect in this plate thickness.
[0056]
According to the present invention, under the condition that the surface pressure P (MPa) at the electrode tip and the electrode holding time HT (ms) after welding satisfy the following formulas (1) and (2), the tip diameter d becomes the following formula (3). It is preferable to apply the invention to a welded joint spot-welded under the condition that the nugget diameter ND satisfies the following formula (4) using an electrode satisfying the following formula.
5.752 × TS 1/2 ≦ P ≦ 8.792 × TS 1/2 (1)
130-160 × t + 210 × t 2 ≤HT (2)
5.5 × t 1/2 ≦ d ≦ 7.5 × t 1/2 (Mm) (3)
5.5 × t 1/2 ≦ ND ≦ 7.5 × t 1/2 (Mm) (4)
Where TS is the tensile strength of the material to be welded (MPa)
P: Surface pressure at the electrode tip during welding (MPa)
t: Thickness of material to be welded (mm)
HT: electrode holding time after welding (ms)
d: electrode tip diameter (mm)
ND: Nugget diameter (mm)
[0057]
The reason for using an electrode having a tip diameter that satisfies the above equation (3) is that it is necessary to use an electrode that satisfies the above equation (3) in order to stably obtain a nugget diameter ND that satisfies the above equation (4). Because there is. If an electrode having a tip diameter smaller than the lower limit of the above formula (3) is used, scattering occurs and a nugget diameter in the range shown by the above formula (4) cannot be obtained stably, and the above formula (3) If an electrode larger than the upper limit value is used, the electrode pressing force becomes too high, which is not suitable for practical use.
[0058]
The reason for setting the nugget diameter so as to satisfy the above equation (4) is that when the nugget diameter is smaller than the lower limit of the equation (4), the effect of improving fatigue strength is small, and the nugget diameter is larger than the upper limit of the equation (4). In this case, although the fatigue strength is improved, the electrode tip diameter must be set large as described above, and the electrode pressing force becomes too high, which is not suitable for practical use.
[0059]
In order to increase the fatigue strength of the welded joint, welding conditions are set so as to satisfy the above equations (1) and (2), and an electrode having a tip diameter that satisfies the above equation (3) is used. It is desirable to form a filling nugget. Because, in order to introduce a sufficient compressive residual stress around the weld metal part, the surface pressure P at the tip of the electrode is set to a condition satisfying the above equation (1). That is, it is necessary to increase the electrode pressing force in proportion to the area ratio of the electrode as the electrode tip diameter increases.
[0060]
Further, the electrode holding time HT (ms) after welding is also set so as to satisfy the above equation (2) for the reason described above. As described above, in order to increase the fatigue strength of the welded joint, it is important to increase the nugget diameter and set the surface pressure at the electrode tip during welding within a certain range.
[0061]
The nugget diameter desirably satisfies the above expression (4) as long as no spattering occurs during welding. However, the present invention is also applicable to a welded joint spot-welded under such conditions that spattering occurs during welding. Can be. When scattering occurs, the end of the nugget becomes notched and the fatigue strength may decrease.However, by applying ultrasonic impact treatment around the nugget, that part is plastically deformed and the notch shape becomes It is improved and the fatigue strength is improved. Naturally, the effect of introducing the compressive residual stress described above is also added, so that the fatigue strength is also improved by this effect.
[0062]
In the present invention, the ultrasonic impact treatment is performed so that the reduction in the thickness of the ultrasonic impact treatment portion after the ultrasonic impact treatment is 0.03 mm or more and 30% or less of the thickness of the ultrasonic impact treatment portion. Is preferred. This ultrasonic impact treatment can effectively improve the fatigue strength of the spot welded joint.
[0063]
In the above, when the thickness reduction of the ultrasonic impact treated portion after the ultrasonic impact treatment is less than 0.03 mm, the compressive residual stress introduced around the weld metal portion is too small and the fatigue strength is effectively reduced. On the other hand, if the reduction in the thickness of the ultrasonic impact treated portion after the ultrasonic impact treatment exceeds 30% of the plate thickness, the thickness of the welded joint decreases and not only the fatigue strength but also the static strength Is also reduced.
[0064]
The frequency, amplitude, and transmission output of the ultrasonic wave used in the ultrasonic impact processing do not need to be particularly specified, but are determined using ultrasonic waves having a frequency of 20 to 60 kHz, an amplitude of 20 to 40 μm, and a transmission output of 500 to 1500 W. It is desirable to perform sonic impact.
[0065]
If the frequency is lower than this, the noise during the ultrasonic impact treatment increases, and if it is higher than this, the scale of the apparatus becomes too large. If the amplitude is lower or higher than this, the effect of improving the fatigue strength by introducing the compressive residual stress decreases.
[0066]
If the transmission output is lower than this, it is difficult to introduce sufficient compressive residual stress especially in the case of steel sheets with high tensile strength, and if it is higher than this, the thickness of the part subjected to ultrasonic impact treatment decreases. This may cause problems such as reduction in fatigue strength and static strength, and an excessive increase in the scale of the device.
[0067]
The shape of the tool (pin) in contact with the processing unit used in the ultrasonic impact treatment is not particularly limited, but the diameter is 2.0 to 8.0 mm, the tip radius of curvature is 10 to 100 mm, and the Vickers hardness. It is desirable to use a pin having a thickness of 500 to 900.
[0068]
If the diameter of the pin is less than 2.0 mm, the pin is likely to buckle, and if it exceeds 8.0 mm, the surface pressure becomes too low and sufficient compressive residual stress is hardly introduced.
[0069]
If the radius of curvature of the tip of the pin is smaller than 10 mm, the tip becomes too sharp and easily damaged, and if it exceeds 100 mm, the contact surface becomes too flat, causing a problem per piece.
[0070]
If the Vickers hardness of the pin is less than 500, the pin is easily damaged, and if it exceeds 900, the toughness is reduced and the pin is easily damaged.
[0071]
The present invention can be used for a metal plate, and the metal plate is not particularly limited, and may be a steel plate, an aluminum plate, or the like. In particular, when the present invention is applied to a high-strength steel sheet, the fatigue strength of a welded joint is significantly improved.
[0072]
Further, the type of the steel plate does not need to be particularly limited. Solid solution type, precipitation type (for example, Ti precipitation type, Nb precipitation type), two-phase structure type (for example, structure containing martensite in ferrite, structure containing bainite in ferrite), work-induced transformation type (in ferrite) The present invention can be applied to any type of steel sheet, such as a structure containing residual austenite.
[0073]
The method for producing the steel sheet may be a hot rolling method or a cold rolling method, and may be a bare steel sheet or a plated steel sheet. The type of plating to be coated may be any type of conductive material (for example, Zn, Zn-Fe, Zn-Ni, Zn-Al, Sn-Zn, etc.), but the basis weight is double-sided. 100 / 100g / m 2 The following are desirable:
[0074]
In particular, when the high-strength steel sheet is a work-induced transformation-type composite structure steel sheet containing retained austenite in ferrite, the fatigue strength of the welded joint is significantly improved.
[0075]
It is known that a work-induced transformation type composite structure steel sheet contains retained austenite in the structure, and high elongation characteristics can be obtained by transforming the retained austenite into martensite during the processing of the steel sheet.
[0076]
The present inventor has found from various experimental results using a work-induced transformation type composite structure steel sheet as a material to be welded that the fatigue strength of a welded joint is improved as compared with other steel sheets not containing residual austenite in the structure. Revealed.
[0077]
Although the mechanism of this fatigue strength improvement is not fully understood, when a work-induced transformation-type composite structure steel sheet is used, residual austenite around the spot welds undergoes martensitic transformation by ultrasonic impact treatment, It is presumed that elastic deformation is accumulated around the nugget formation portion due to volume expansion due to this transformation, and high compressive residual stress is eventually introduced.
[0078]
Normally, tensile residual stress is introduced around the nugget formation part by shrinkage after welding, so in the case of a fatigue test in which a load is repeatedly applied in the shear direction, fatigue fracture was likely to occur in this part, but In the present invention, it is considered that this is alleviated by the introduction of the compressive residual stress around the nugget forming portion, and the fatigue strength of the welded joint is improved as compared with the conventional case.
[0079]
【Example】
Hereinafter, the effects of the present invention will be described with reference to examples, but the present invention is not limited to the conditions used in the examples.
[0080]
(Example 1)
From the steel plates having a thickness of 1.2 and 1.6 mm and a tensile strength of 290 to 1178 MPa and an aluminum plate having a thickness of 1.0 mm and a tensile strength of 197 and 286 MPa shown in Tables 1 to 5, spot welding joints were used. A tensile shear fatigue test piece was produced based on the fatigue test method (JIS Z3138).
[0081]
The types of steel sheet are mild steel (symbol: 290S), solid solution strengthened high-strength steel (symbol: 440S), two-phase composite structure type high-strength steel (symbols: 590D, 780D, 980D, 1180D), work-induced transformation composite Microstructure high strength steel (symbol: 590T, 780T, 980T). The types of aluminum plates are A5052 (symbol: A5052), which is an Al-Mg alloy, and A6061 (symbol: A6061), which is an Al-Mg-Si alloy.
[0082]
These test pieces were overlapped in a combination of the same steel type and the same plate thickness, and spot welding was performed under the welding conditions of Tables 1 to 5 to produce a welded joint.
[0083]
The obtained welded joint was subjected to a fatigue test by applying a load in the shear direction of the welded joint based on the fatigue test method for spot welded joints (JIS Z3138). The results are shown in Tables 1 to 5. The fatigue strength shown in Tables 1 to 5 was 2 × 10 when the pulsating test was performed in the fatigue test under the conditions of a stress ratio of 0.05 and a frequency of 30 Hz. 6 It is the fatigue strength at times.
[0084]
(Example 2)
As shown in Table 1, the fatigue strengths of the welded joints (conditions No. 1 to No. 10) of the steel plate subjected to the ultrasonic impact treatment and the welded joints (conditions No. 19 to No. 20) of the aluminum plate are as follows. In each case, the welded joints of the steel sheet not subjected to the ultrasonic impact treatment (conditions No. 11 to No. 18) and the welded joints of the aluminum plate (conditions No. 21 to No. 22) show higher values. Was. The fatigue strength when the ultrasonic impact treatment was performed on both surfaces (conditions No. 1 and No. 4) showed a higher value than the fatigue strength when the ultrasonic shock treatment was performed on one surface (conditions No. 7 and No. 8). .
[0085]
[Table 1]
Figure 2004122152
[0086]
(Example 3)
As shown in Table 2, the surface pressure at the electrode tip during welding and the electrode holding time after welding are within the range of the expressions (1) and (2) of the invention of claim 2 (condition No. The fatigue strength of (1) was determined by comparing the 290S joints (conditions No. 5 and No. 9) as comparative examples, the surface pressure at the electrode tip during welding, and the electrode holding time after welding. The values were higher than 780D joints (conditions No. 10 to No. 12) which were not within the range of the expressions (1) and (2).
[0087]
Further, under the conditions of the expressions (1) and (2) of the invention of claim 3, the fatigue of the 780D joint (condition Nos. 2 to 4) whose nugget diameter is enlarged according to the expressions (3) and (4). The strength was higher than that of the 290S joint (condition Nos. 6 to 8) as a comparative example and the 780D joint (condition No. 1) in which the nugget diameter was not within the range of the expression (4).
[0088]
Furthermore, the fatigue strength of the 780D joint (condition No. 3) whose nugget diameter is enlarged according to the expressions (3) and (4) under the conditions of the expressions (1) and (2) of the invention of claim 3 is also welded. The surface pressure at the electrode tip at the time and the electrode holding time after welding are not compared with the 780D joint (condition No. 13 to No. 15) which is not within the range of the formulas (1) and (2) of the invention of claim 3. High values.
[0089]
[Table 2]
Figure 2004122152
[0090]
(Example 4)
As shown in Table 3, the fatigue strength when the ultrasonic impact treatment was applied to the welded joints where scattering occurred during welding (conditions No. 1 to No. 7) was obtained when the ultrasonic impact treatment was not applied (conditions No. 1 to No. 7). No. 8 to No. 16).
[0091]
[Table 3]
Figure 2004122152
[0092]
(Example 5)
As shown in Table 4, when the ultrasonic impact treatment was performed, the reduction in the thickness of the ultrasonic impact treatment portion after the ultrasonic impact treatment was 0.03 mm or more, and 30% of the plate thickness of the ultrasonic impact treatment portion. The fatigue strength when set as follows (conditions No. 1 to No. 4) showed a higher value than the fatigue strength when set outside the range (conditions No. 5 to No. 16).
[0093]
[Table 4]
Figure 2004122152
[0094]
(Example 6)
As shown in Table 5, the fatigue strength of welded joints (conditions No. 1 to No. 6) using the work-induced transformation type composite structure steel sheet was obtained when other steel types were used (conditions No. 7 to No. 6). The value was higher than that of 16).
[0095]
[Table 5]
Figure 2004122152
[0096]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, in the spot welding of a metal plate, especially in the spot welding of the high-strength steel plate used for the attachment of the parts for automobiles and the assembly of the vehicle body, etc., the fatigue strength of the welded joint is improved while ensuring good workability. be able to. Therefore, this will improve safety by applying high-strength steel sheets in the automotive field, etc. 2 The benefits of reducing emissions can be fully enjoyed, and social contribution is enormous.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view for explaining a fatigue test of a spot weld.
FIG. 2 is a sectional view for explaining spot welding according to the present invention.
FIG. 3 is a cross-sectional view for explaining the ultrasonic impact processing of the present invention.
FIG. 4 shows the surface pressure P at the tip of the electrode and the tensile strength TS of the steel sheet when spot welding a high-strength steel sheet (plate thickness t: 1 mm), and the evaluation results (×, ×) of the fatigue strength of the welded joint. FIG.
[Explanation of symbols]
1. High strength steel sheet
2. Nugget
3: Load direction
4: welding electrode
5 ... Pressure
6 ... Ultrasonic transmitter
7 ... Tool (pin) for applying ultrasonic impact treatment

Claims (7)

金属板をスポット溶接して形成させた溶接継手の疲労強度を向上させる方法において、溶接継手の両面または片面から、ナゲット形成部とナゲット周囲の両方または片方に超音波衝撃処理を施すことを特徴とする超音波衝撃処理によるスポット溶接継手の疲労強度向上方法。In a method for improving the fatigue strength of a welded joint formed by spot welding a metal plate, from both sides or one side of the welded joint, both or one of the nugget forming part and the periphery of the nugget are subjected to ultrasonic impact treatment, To improve the fatigue strength of spot welded joints by ultrasonic impact treatment. 前記溶接継手が、電極先端での面圧P(MPa)および溶接後の電極保持時間HT(ms)が下記(1)、(2)式を満たす条件のスポット溶接で形成された溶接継手であることを特徴とする請求項1に記載の超音波衝撃処理によるスポット溶接継手の疲労強度向上方法。
5.752×TS1/2≦P≦8.792×TS1/2            (1)
240×t−160≦HT                     (2)
但し、TS:被溶接材の引張強さ(MPa)
P:溶接時の電極先端での面圧(MPa)
t:被溶接材の厚み(mm)
HT:溶接後の電極保持時間(ms)
The welded joint is a welded joint formed by spot welding in which the surface pressure P (MPa) at the electrode tip and the electrode holding time HT (ms) after welding satisfy the following equations (1) and (2). The method for improving fatigue strength of a spot welded joint by ultrasonic impact treatment according to claim 1.
5.752 × TS 1/2 ≦ P ≦ 8.792 × TS 1/2 (1)
240 × t-160 ≦ HT (2)
Where TS is the tensile strength of the material to be welded (MPa)
P: Surface pressure at the electrode tip during welding (MPa)
t: Thickness of material to be welded (mm)
HT: electrode holding time after welding (ms)
前記溶接継手が、電極先端での面圧P(MPa)および溶接後の電極保持時間HT(ms)が下記(1)、(2)式を満たす条件下において、先端径dが下記(3)式を満たす電極を用いて、ナゲット径NDが下記(4)式を満たすスポット溶接で形成された溶接継手であることを特徴とする請求項1に記載の超音波衝撃処理によるスポット溶接継手の疲労強度向上方法。
5.752×TS1/2≦P≦8.792×TS1/2            (1)
240×t−160≦HT                     (2)
5.5×t1/2≦d≦7.5×t1/2(mm)             (3)
5.5×t1/2≦ND≦7.5×t1/2(mm)            (4)
但し、TS:被溶接材の引張強さ(MPa)
P:溶接時の電極先端での面圧(MPa)
t:被溶接材の厚み(mm)
HT:溶接後の電極保持時間(ms)
d:電極の先端径(mm)
ND:ナゲット径(mm)
Under the condition that the surface pressure P (MPa) at the electrode tip and the electrode holding time HT (ms) after welding satisfy the following equations (1) and (2), the tip diameter d is as follows: The fatigue of a spot welded joint by ultrasonic impact treatment according to claim 1, wherein the welded joint is formed by spot welding having a nugget diameter ND satisfying the following formula (4) using an electrode satisfying the formula (4). Strength improvement method.
5.752 × TS 1/2 ≦ P ≦ 8.792 × TS 1/2 (1)
240 × t-160 ≦ HT (2)
5.5 × t 1/2 ≦ d ≦ 7.5 × t 1/2 (mm) (3)
5.5 × t 1/2 ≦ ND ≦ 7.5 × t 1/2 (mm) (4)
Where TS is the tensile strength of the material to be welded (MPa)
P: Surface pressure at the electrode tip during welding (MPa)
t: Thickness of material to be welded (mm)
HT: electrode holding time after welding (ms)
d: electrode tip diameter (mm)
ND: Nugget diameter (mm)
前記溶接継手が、溶接時に散りが発生する条件でスポット溶接された溶接継手であることを特徴とする請求項1または2のいずれか1項に記載の超音波衝撃処理によるスポット溶接継手の疲労強度向上方法。The fatigue strength of a spot welded joint by ultrasonic impact treatment according to any one of claims 1 and 2, wherein the welded joint is a spot welded spot under a condition in which scattering occurs during welding. How to improve. 前記超音波衝撃処理を、超音波衝撃処理後の超音波衝撃処理部の板厚減少量が0.03mm以上、超音波衝撃処理部の板厚の30%以下になるように施すことを特徴とする請求項1〜4のいずれか1項に記載の超音波衝撃処理によるスポット溶接継手の疲労強度向上方法。The ultrasonic impact treatment is performed so that a reduction in the thickness of the ultrasonic impact treatment unit after the ultrasonic impact treatment is 0.03 mm or more and 30% or less of the thickness of the ultrasonic impact treatment unit. The method for improving the fatigue strength of a spot welded joint by the ultrasonic impact treatment according to any one of claims 1 to 4. 前記金属板が高強度鋼板であることを特徴とする請求項1〜5のいずれか1項に記載の超音波衝撃処理によるスポット溶接継手の疲労強度向上方法。The method for improving fatigue strength of a spot welded joint by ultrasonic impact treatment according to any one of claims 1 to 5, wherein the metal plate is a high-strength steel plate. 前記高強度鋼板が、フェライト中に残留オーステナイトを含有する加工誘起変態型複合組織鋼板であることを特徴とする請求項6に記載の超音波衝撃処理によるスポット溶接継手の疲労強度向上方法。The method for improving fatigue strength of a spot welded joint by ultrasonic impact treatment according to claim 6, wherein the high-strength steel sheet is a work-induced transformation type composite structure steel sheet containing retained austenite in ferrite.
JP2002287173A 2002-09-30 2002-09-30 Fatigue strength improvement method of spot welded joint by ultrasonic impact treatment Expired - Fee Related JP3944046B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002287173A JP3944046B2 (en) 2002-09-30 2002-09-30 Fatigue strength improvement method of spot welded joint by ultrasonic impact treatment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002287173A JP3944046B2 (en) 2002-09-30 2002-09-30 Fatigue strength improvement method of spot welded joint by ultrasonic impact treatment

Publications (2)

Publication Number Publication Date
JP2004122152A true JP2004122152A (en) 2004-04-22
JP3944046B2 JP3944046B2 (en) 2007-07-11

Family

ID=32280049

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002287173A Expired - Fee Related JP3944046B2 (en) 2002-09-30 2002-09-30 Fatigue strength improvement method of spot welded joint by ultrasonic impact treatment

Country Status (1)

Country Link
JP (1) JP3944046B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006057836A2 (en) * 2004-11-23 2006-06-01 U.I.T., L.L.C. Welded joints with new properties and provision of such properties by ultrasonic impact treatment
US7276824B2 (en) 2005-08-19 2007-10-02 U.I.T., L.L.C. Oscillating system and tool for ultrasonic impact treatment
US7301123B2 (en) 2004-04-29 2007-11-27 U.I.T., L.L.C. Method for modifying or producing materials and joints with specific properties by generating and applying adaptive impulses a normalizing energy thereof and pauses therebetween
JP2008000802A (en) * 2006-06-23 2008-01-10 Nippon Steel Corp Method for improving fatigue strength of lap welded metal joint
US7344609B2 (en) 1998-09-03 2008-03-18 U.I.T., L.L.C. Ultrasonic impact methods for treatment of welded structures
US7431779B2 (en) 1998-09-03 2008-10-07 U.I.T., L.L.C. Ultrasonic impact machining of body surfaces to correct defects and strengthen work surfaces
JP2011194411A (en) * 2010-03-17 2011-10-06 Nippon Steel Corp Spot welding method and spot welded joint
CN102581459A (en) * 2012-03-07 2012-07-18 上海交通大学 Electric resistance welding method for variable-thickness ultra-high strength hot formed steel plate and low-carbon steel plate
JP2012206168A (en) * 2011-03-11 2012-10-25 Toyota Central R&D Labs Inc Resistance welding member, and method and device for processing the same
FR3086671A1 (en) 2018-09-27 2020-04-03 Psa Automobiles Sa METHOD FOR THE THERMAL TREATMENT OF ANNEALING OR INCOME OF WELDING POINTS BY INDUCTION HEATING
EP4183510A4 (en) * 2020-07-14 2023-12-20 JFE Steel Corporation Resistance spot welding method and method for manufacturing welded joint

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7431779B2 (en) 1998-09-03 2008-10-07 U.I.T., L.L.C. Ultrasonic impact machining of body surfaces to correct defects and strengthen work surfaces
US7344609B2 (en) 1998-09-03 2008-03-18 U.I.T., L.L.C. Ultrasonic impact methods for treatment of welded structures
US7301123B2 (en) 2004-04-29 2007-11-27 U.I.T., L.L.C. Method for modifying or producing materials and joints with specific properties by generating and applying adaptive impulses a normalizing energy thereof and pauses therebetween
JP2008520443A (en) * 2004-11-23 2008-06-19 ユー.アイ.ティー. リミテッド ライアビリティ カンパニー Providing welded joints with novel properties and ultrasonic shock treatment
WO2006057836A2 (en) * 2004-11-23 2006-06-01 U.I.T., L.L.C. Welded joints with new properties and provision of such properties by ultrasonic impact treatment
WO2006057836A3 (en) * 2004-11-23 2006-11-23 U I T L L C Welded joints with new properties and provision of such properties by ultrasonic impact treatment
US7276824B2 (en) 2005-08-19 2007-10-02 U.I.T., L.L.C. Oscillating system and tool for ultrasonic impact treatment
JP2008000802A (en) * 2006-06-23 2008-01-10 Nippon Steel Corp Method for improving fatigue strength of lap welded metal joint
JP2011194411A (en) * 2010-03-17 2011-10-06 Nippon Steel Corp Spot welding method and spot welded joint
JP2012206168A (en) * 2011-03-11 2012-10-25 Toyota Central R&D Labs Inc Resistance welding member, and method and device for processing the same
CN102581459A (en) * 2012-03-07 2012-07-18 上海交通大学 Electric resistance welding method for variable-thickness ultra-high strength hot formed steel plate and low-carbon steel plate
FR3086671A1 (en) 2018-09-27 2020-04-03 Psa Automobiles Sa METHOD FOR THE THERMAL TREATMENT OF ANNEALING OR INCOME OF WELDING POINTS BY INDUCTION HEATING
EP4183510A4 (en) * 2020-07-14 2023-12-20 JFE Steel Corporation Resistance spot welding method and method for manufacturing welded joint

Also Published As

Publication number Publication date
JP3944046B2 (en) 2007-07-11

Similar Documents

Publication Publication Date Title
JP7299956B2 (en) Method for manufacturing steel plate for press hardening and method for manufacturing laser welded blank for press hardening
Soomro et al. A review of advances in resistance spot welding of automotive sheet steels: emerging methods to improve joint mechanical performance
JP5151615B2 (en) Spot welding method for high strength steel sheet
CN108136535B (en) Spot welded joint and spot welding method
JP4724535B2 (en) Fatigue strength improvement method for high strength steel spot welded joint
JP6384603B2 (en) Spot welding method
JPWO2018038045A1 (en) Automotive parts having resistance welds
US20060163321A1 (en) Liquid phase diffusion welding method for metallic machine part and metallic machine part
JP3944046B2 (en) Fatigue strength improvement method of spot welded joint by ultrasonic impact treatment
JP5429327B2 (en) Spot welding method for high strength steel sheet
JP5168204B2 (en) Spot welding method for steel sheet
KR20230169330A (en) Automotive members and their resistance spot welding method
JP2003103377A (en) Spot welding method for high strength plated steel plate
JP3828855B2 (en) Method for improving tensile strength of spot welded joints by ultrasonic impact treatment
JP2002172469A (en) Spot welding method for high strength steel plate
JP3875878B2 (en) Spot-welding method for high-strength steel sheets with excellent fatigue strength characteristics of welds
JP2005103608A (en) Method of improving corrosion resistance, tensile strength and fatigue strength of joint obtained by applying spot welding to high strength plated steel sheet
Hou Resistance spot welding and in-process heat treatment of hot stamped boron steel
US20230105155A1 (en) Welded member having excellent fatigue strength of welded portion and method for manufacturing same
JP2004122153A (en) The method for enhancing fatigue strength of spot welded joint of high strength steel sheet
Oladele et al. Distinctiveness of welding joints design based on mechanical and corrosion environmental influence on low carbon steel
JP2004136311A (en) Welded joint having high fatigue strength, and method for improving fatigue strength of welded joint
Furusako et al. Assembly Technology of Welding and Joining for Ultra-high Strength Steel Sheets for Automobiles—Spot Welding
JP7435935B1 (en) Welded parts and their manufacturing method
WO2024063010A1 (en) Welded member and method for manufacturing same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061017

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20061107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070327

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070406

R151 Written notification of patent or utility model registration

Ref document number: 3944046

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110413

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120413

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130413

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130413

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130413

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130413

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140413

Year of fee payment: 7

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees