JP2004121995A - Vacuum evaporation type distillation equipment - Google Patents

Vacuum evaporation type distillation equipment Download PDF

Info

Publication number
JP2004121995A
JP2004121995A JP2002290224A JP2002290224A JP2004121995A JP 2004121995 A JP2004121995 A JP 2004121995A JP 2002290224 A JP2002290224 A JP 2002290224A JP 2002290224 A JP2002290224 A JP 2002290224A JP 2004121995 A JP2004121995 A JP 2004121995A
Authority
JP
Japan
Prior art keywords
water
evaporator
distillation apparatus
raw water
vacuum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002290224A
Other languages
Japanese (ja)
Inventor
Tomoyuki Uchimura
内村 知行
Osayuki Inoue
井上 修行
Kiichi Irie
入江 毅一
Atsushi Aoyama
青山 淳
Noriyuki Nishiyama
西山 教之
Nobuaki Tsukida
槻田 宜朗
Hirotatsu Kameyama
亀山 寛達
Taichi Sumiyoshi
住吉 太一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Tokyo Gas Co Ltd
Original Assignee
Ebara Corp
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp, Tokyo Gas Co Ltd filed Critical Ebara Corp
Priority to JP2002290224A priority Critical patent/JP2004121995A/en
Publication of JP2004121995A publication Critical patent/JP2004121995A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Apparatus For Disinfection Or Sterilisation (AREA)
  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To heat/sterilize the inside of distillation equipment by making good use of a heat source supplied to the distillation equipment. <P>SOLUTION: This vacuum evaporation type distillation equipment is provided with an evaporation unit 11 having a plurality of evaporators which are connected to one another in a multiple effect manner, in the first one of which a heat source and a raw water 25 are supplied and the raw water 25 is heated by the heat source 23 and in each of which evaporation/condensation is repeated successively, a condenser 12 for cooling/condensing the steam evaporated in the final evaporator of the unit 11 and an evacuating means 15 for keeping the inside of the unit 11 below atmospheric pressure. Distilled water 26 and impurity-concentrated water 27 are obtained by repeating evaporation/condensation of the water 25 in the unit 11 decompressed by the means 15. A heating/sterilizing means is arranged for heating/sterilizing this evaporation type distillation equipment by the source 23 by reducing or nulling the amount of cooling water 24 to be supplied to the condenser 12 by a cooling water volume regulating valve 22 to reduce or null the amount of the steam to be condensed in the condenser 12. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、工水、市水、工場排水等を原水として供給し、減圧下で熱源により原水を加熱し、蒸発・凝縮法により、蒸留水と、原水中の不純物が濃縮された濃縮水とを得る真空蒸発式蒸留装置において、簡便にこの真空蒸発式蒸留装置の殺菌が行える手段を設けた真空蒸発式蒸留装置に関するものである。
【0002】
【従来の技術】
従来、真空蒸発式蒸留装置は、機内の圧力を大気圧よりも減圧して沸点温度を低減することで、熱源の温度が比較的低くても(85℃程度)運転が可能なため、このような温度の排熱が多量に得られる場所を中心に使用されることがある。
【0003】
しかし、この種の真空蒸発式蒸留装置においては、運転中の蒸留装置内温度が生菌を死滅させるに十分な温度まで上がらないため、運転と共に機内で生菌が繁殖し、得られる蒸留水中の生菌数、及び死菌が増加するという問題があった。
【0004】
この問題を解消するには、装置内を過酸化水素等の殺菌剤で定期的に洗浄して殺菌する方法を用いたり、別途設置した加熱装置によって蒸留装置を加熱して殺菌する方法を用いたりすればよい。
【0005】
しかし、過酸化水素等の殺菌剤による殺菌方法の場合は、殺菌終了後も長時間に渡り蒸留水中に過酸化水素等の殺菌剤が残留するという問題があり、また加熱装置を別途使用する殺菌方法の場合は、加熱装置の設置スペースが必要になるばかりかコスト増になってしまうという問題があった。
【0006】
【発明が解決しようとする課題】
本発明は上述の点に鑑みてなされたもので、蒸留装置内の加熱殺菌を、蒸留装置に供給されている熱源を利用して行なうことができ、他に殺菌用の特別な設備を必要としない真空蒸発式蒸留装置を提供することを目的とする。
【0007】
【課題を解決するための手段】
上記課題を解決するため請求項1に記載の発明は、多重効用に接続した複数の蒸発器を有し、第一段の蒸発器に熱源と原水とを供給してこの熱源により原水を加熱し、順次各段の蒸発器で蒸発・凝縮を繰り返させる蒸発装置と、前記蒸発装置の最終段の蒸発器で蒸発した水蒸気を冷却して凝縮する凝縮器と、前記蒸発装置内を大気圧以下に保つ真空手段とを具備し、前記真空手段で減圧された蒸発装置内で原水の蒸発・凝縮を繰り返すことで蒸留水と不純物が濃縮された濃縮水とを製造する真空蒸発式蒸留装置であって、前記凝縮器における水蒸気の冷却量を減少又は零とすることで前記熱源により真空蒸発式蒸留装置を加熱して殺菌する加熱殺菌手段を有することを特徴とする真空蒸発式蒸留装置である。ここで加熱殺菌手段は、凝縮器における水蒸気の冷却量を調整する冷却量調整手段によって構成される。冷却量調整手段は具体的には水冷式凝縮器にあっては冷却水量調整弁等であり、空冷式凝縮器にあってはファン等である。
【0008】
上記のように凝縮器における水蒸気の冷却量を減少又は零とすれば、通常運転時に蒸留装置に供給されている熱源、原水を供給するだけで、真空蒸発式蒸留装置を加熱して殺菌することが可能となり、殺菌剤を用いなくて済むばかりか、別途加熱殺菌用の設備を設ける必要もなくなる。
【0009】
請求項2に記載の発明は、多重効用に接続した複数の蒸発器を有し、第一段の蒸発器に熱源と原水とを供給してこの熱源により原水を加熱し、順次各段の蒸発器で蒸発・凝縮を繰り返させる蒸発装置と、前記蒸発装置の最終段の蒸発器で蒸発した水蒸気を冷却して凝縮する凝縮器と、前記蒸発装置内を大気圧以下に保つ真空手段とを具備し、前記真空手段で減圧された蒸発装置内で原水の蒸発・凝縮を繰り返すことで蒸留水と不純物が濃縮された濃縮水とを製造する真空蒸発式蒸留装置であって、前記凝縮器における水蒸気の冷却量を減少又は零とするとともに、蒸発装置に投入する原水の流量を通常運転時よりも減少又は零とすることで、前記熱源により真空蒸発式蒸留装置を加熱して殺菌する加熱殺菌手段を有することを特徴とする真空蒸発式蒸留装置である。ここで加熱殺菌手段は、凝縮器における水蒸気の冷却量を調整する冷却量調整手段と、蒸発装置に投入する原水の流量を調整する原水量調整手段とによって構成される。冷却量調整手段は具体的には水冷式凝縮器にあっては冷却水量調整弁等であり、空冷式凝縮器にあってはファン等である。原水量調整手段は具体的には原水流量調整弁等である。
【0010】
上記のように凝縮器における水蒸気の冷却量を減少又は零とするとともに、原水の流量を通常運転時よりも減少又は零とすれば、請求項1に示す発明の場合よりもさらに真空蒸発式蒸留装置の温度を高くすることができ、加熱殺菌効果を高めることができる。
【0011】
請求項3に記載の発明は、請求項2記載の真空蒸発式蒸留装置において、前記加熱殺菌手段は、凝縮器における冷却量を減少又は零として熱源をして真空蒸発式蒸留装置を加熱するとともに、真空蒸発式蒸留装置の温度上昇に伴って蒸発装置に投入する原水の流量を通常運転時の流量よりも減少させる手段であることを特徴とする真空蒸発式蒸留装置である。
【0012】
上記のように真空蒸発式蒸留装置の温度上昇に伴って徐々に原水の流量を減少させていけば、真空蒸発式蒸留装置の温度が低い状態からでも、最上段の蒸発器(その上段に脱気室を設置した場合は脱気室)内に投入した原水が全量蒸発することなしに、真空蒸発式蒸留装置を十分に加熱することができる。
【0013】
そして上記請求項1,2,3に記載の発明にかかる加熱殺菌を定期的に行うことで、蒸留水系に混入した生菌を殺菌することが可能となり、通常運転中に得られる蒸留水中の生菌、微生物数を、加熱殺菌を行わない場合に比べて、大幅に低減することができる。
【0014】
【発明の実施の形態】
以下、本発明の実施の形態例を図面に基づいて説明する。図1は本発明にかかる真空蒸発式蒸留装置(以下単に「蒸留装置」という)の一構成例を示す図である。図1において、11は減圧下で原水25を加熱し、蒸留水を製造する複数の蒸発器が多重効用に接続された蒸発装置である。蒸発装置11中の各蒸発器は熱交換器を有しており、一段目(最上段)の蒸発器には、原水25と熱源23とが投入されている。熱源流路29により投入された熱源23により原水25が加熱され、これによって蒸発した水蒸気は、二段目の蒸発器の熱交換器に送られ、最上段の蒸発器で蒸発しなかった原水が供給された二段目の蒸発器で再び原水を加熱・蒸発させると共に、自らは二段目の蒸発器の原水によって冷却され、凝縮し、蒸留水となる。このようにして順次蒸発・凝縮を繰り返し、最終的には最終段(最下段)の蒸発器から発生した水蒸気と、各蒸発器で凝縮した蒸留水とが得られる。原水25は、原水流量計18で流量が測定され、その流量が予め設定された設定値になるように原水流量調整弁(原水流量調整手段)19で流量調整された後、原水供給流路31から蒸発装置11の最上段の蒸発器に供給される。
【0015】
次に本構成例では、凝縮器12の冷却源として冷却水24を用い、冷却水流路30で凝縮器12に供給される。蒸発装置11からの蒸留水は蒸留水流路36を経由して凝縮器12へ移動し、一方蒸発装置11の最終段の蒸発器で発生した水蒸気は、原水中に含まれていた溶存ガス成分、揮発性不純物と共に蒸気流路35を経由して凝縮器12へ移動する。
【0016】
蒸発装置11の最終段の蒸発器で発生した水蒸気は、凝縮器12で凝縮した後、蒸留水流路36を経由して凝縮器12へ移動した蒸留水と共に蒸留水タンク13に貯留される。蒸留水タンク13内の水位は、例えば水位計41等によって検知される。蒸留水タンク13内の蒸留水がある程度溜まると、蒸留水ポンプ16が起動し、蒸留水ポンプ16、蒸留水供給流路32、蒸留水供給弁20を通り、外部に蒸留水26として供給される。ここで蒸留装置内は減圧されているため、蒸留水ポンプ16が起動した後に蒸留水供給弁20を開いて、外部に蒸留水26を供給するように操作される。
【0017】
また原水25中の不純物が濃縮した濃縮水27は、蒸発装置11の最終段の蒸発器から濃縮水タンク14に貯留される。濃縮水タンク14内の水位は、例えば水位計42等によって検知される。濃縮水タンク14内に濃縮水がある程度溜まると、濃縮水ポンプ17が起動し、濃縮水ポンプ17、濃縮水排水流路33、濃縮水排水弁21を通り、機外に排水される。ここで蒸留装置内は減圧されているため、濃縮水ポンプ17が起動した後に濃縮水排水弁21を開いて、機外に濃縮水27を排出するように操作される。
【0018】
なお上記例では、蒸留水ポンプ16及び蒸留水供給弁20の操作順、濃縮水ポンプ17及び濃縮水排水弁21の操作順により、内部が減圧されている蒸留装置内に外気等が流入するのを阻止する例を示したが、その代わりに蒸留水タンク13、濃縮水タンク14から下流側の適当な位置に、逆止弁等の適当な逆流防止機構を設けることで外気等の流入を阻止しても良い。
【0019】
一方蒸発装置11からの蒸気流路35中を水蒸気と共に凝縮器12に搬送された原水25中の溶存ガス、揮発性不純物は、遮断弁40及び排気流路34を経由して、真空手段15から排気28として機外に排出される。
【0020】
このようにして通常の運転時は、蒸留装置は熱源23、原水25、冷却水24を供給されることにより、連続的に蒸留を行い、蒸留水26を外部に供給することが可能となる。
【0021】
なお図1に示す蒸留装置においては、凝縮器12として水冷凝縮器を用い、冷却源として凝縮器12に冷却水24を投入しているが、本発明の凝縮器は水冷式の凝縮器に限定されるものではなく、他の冷却方式を用いた凝縮器や、冷却源として冷却水以外の流体(例えば空気)を用いたものであっても良い。また蒸発装置11内を減圧下に保つ真空手段15としては、真空ポンプ、エゼクタ等、蒸発装置11内を所定の減圧下に保てる機能を有するものであればどのようなものでも良い。
【0022】
以上の図1に示す蒸留装置において、本発明(請求項1に記載の発明)においては、冷却水流路30中に冷却水量調整弁22等の冷却量調整手段を設け、蒸留装置内の加熱殺菌を行う際は、冷却水量調整弁22によって凝縮器12に供給する冷却水流量を減少若しくは零とする。このような操作を行うことにより、凝縮器12における水蒸気の冷却量を減少若しくは零とし、この状態で熱源23を供給し続ければ、蒸留装置内の原水25が加熱され蒸発すると共に、蒸留装置内の蒸気圧が上昇するため、蒸留装置の加熱を行うことが可能となり、蒸留装置内の微生物・細菌類を加熱殺菌することができる。その際冷却水24の流量を零とすれば、加熱による温度上昇は最も早くなるが、一方で通常運転時よりも冷却水24の流量を減少させて加熱すればその冷却量に相当するだけ蒸留水が得られ外部に排出されるので、加熱殺菌によって死んだ微生物・細菌類をこの蒸留装置の外に排出する目的で、冷却量を減少させて加熱殺菌運転を行う場合もある。
【0023】
なお図1に示す蒸留装置の構成例においては、蒸発装置11内を減圧下に保つために必要な真空手段15として真空ポンプを使用しているので、上記加熱時には真空ポンプの保護のため、真空手段15への流路を遮断する遮断弁40を閉とする。一方真空手段15としてエゼクタ等を使用する場合は、装置保護の観点では蒸発装置11からの抽気を停止する必要は特にないため、蒸発装置11からの抽気は行っても行わなくてもかまわない。
【0024】
また図1に示す蒸留装置の構成例においては、凝縮器12として冷却水24を用いた水冷凝縮器を用いているため冷却量調整手段として冷却水調整弁22を設けているが、凝縮器12として空冷式凝縮器を用いた場合は、空気を送るファン(これを減速又は停止すること)が冷却量調整手段になる等、凝縮器12の種類・構造に応じて凝縮器12における水蒸気の冷却量を減少又は零にして蒸留装置を加熱して殺菌する加熱殺菌手段は相違する。
【0025】
次に図1に示す蒸留装置において、本願の別の発明(請求項2に記載の発明)においては、上記のように冷却水24の流量を減少若しくは零とすると同時に、この蒸留装置に供給する原水25の流量を通常運転時よりも減少若しくは零とする。原水25の流量の調整は前記原水流量調整弁19等の原水量調整手段によって行う。これによって原水25を加熱する熱量を低減できるため、さらに蒸留装置の温度を高くすることが可能となり、より効果的に蒸留装置内の微生物・細菌類を加熱殺菌することができる。供給する原水25の流量を零とすれば、その効果は最大となる。
【0026】
ところで図1に示す蒸留装置が暖まっていない状態で原水25の流量を通常運転時よりも減少若しくは零として加熱殺菌を行うと、蒸留装置内の蒸気圧力がまだ低いため、加熱と共に熱源23を投入している蒸発装置11中の最上段の蒸発器内の原水25が全量蒸発してしまい、加熱による伝熱が悪化し、その結果、蒸発装置11の温度が十分に上昇しなくなる。例えば蒸留装置が暖まっていない状態でいきなり原水25の供給量を零とすると、蒸発装置11の最上段の蒸発器が干上がり(原水25が全量蒸発する)、後段の蒸発器の温度がそれほど上昇しなくなる(例えば最下段の蒸発器の温度で65℃)。このため本願の別の発明(請求項3に記載の発明)においては、上記図1に示す蒸留装置において、冷却水24の流量を減少若しくは零とすることで蒸留装置を加熱すると共に、蒸留装置の温度及び蒸気圧が上昇するに伴い、徐々に原水25の供給量を通常運転時の供給量から減少させる制御手段(例えば冷却水量調整弁22によって冷却水24の流量を減少若しくは零としてから所定時間経過した後に、原水流量調整弁19を徐々に閉じて原水25の供給量を減少させるように制御するコンピュータやその他の電気回路等からなる制御手段)を設けることで、蒸留装置全体を十分に加熱することを可能とした。例えば通常運転時の原水25の定格流量6.3(L/min)で冷却水24の流量を減少若しくは零とすることで蒸留装置をある時間加熱した後に、原水25の供給量を3(L/min)、0(L/min)と減少させて加熱するように制御することで、効果的に加熱を行うことができる。そして原水25の供給量を最終的に零とすることで、その効果は最大となる。
【0027】
ここで図1に示す蒸留装置の構成例において、原水流量調整弁19、蒸留水供給弁20、濃縮水排水弁21、冷却水量調整弁22、遮断弁40の各弁は、手動弁、電動弁、電磁弁等、流量調整/遮断が可能なものならば、特に形式を制限しない。
【0028】
図2は本発明にかかる蒸留装置の他の構成例を示す図である。図2において、図1と同一符号を付した部分は同一又は相当部分を示している。図2に示す蒸留装置において図1に示す蒸留装置と相違する点は、蒸発装置11の上段に原水25中の溶存ガス、揮発性不純物を蒸発装置11に供給する前に分離する脱気室10を設けている点である。
【0029】
脱気室10には少なくとも熱源23の一部を投入し、原水供給流路31から供給される原水25を加熱し、溶存ガス、揮発性不純物を分離し、分離されたこれらのガス成分は、減圧機構43を有する第二の排気流路34´を経由して凝縮器12に導入される。凝縮器12にてガス成分と共に蒸発した水蒸気は凝縮し蒸留水として蒸留水タンク13に移動すると共に、ガス成分は蒸発装置11の最終段蒸発器より水蒸気と共に蒸気流路35を経由して凝縮器12に導入される残存ガス成分と共に排気流路34を通り、真空手段15によって排気28として機外に排出される。脱気室10にて脱気処理された原水は、脱気原水流路44を通り蒸発装置11中の最上段蒸発器に導入される。このように構成することにより、通常運転時においては、蒸発装置11に導入される脱気原水中のガス成分が減少しているため、蒸発装置11中の熱伝達率が高まり、蒸留効率が向上する他、加熱殺菌時においては、脱気室10にて加熱・蒸発したガス成分及び水蒸気が凝縮器12に移動するため、凝縮器12を含む蒸留装置を早く加熱することが可能となる。
【0030】
【実施例】
次に実施例をあげて本発明を更に具体的に説明する。
本実施例では、以下の仕様の蒸留装置を図2に示す構成で使用した。
原水:藤沢市水 水温25℃ 流量6.3(L/min)
熱源:85℃温水 流量100(L/min)
冷却水:32℃冷水 流量84(L/min)
蒸留水量:4.7(L/min)
【0031】
上記条件で一ヶ月間通常運転をした後に原水、蒸留水中の微生物数を計測(比較例)し、加熱殺菌を行った後、定常状態に戻し、8時間ほど運転をして、再度蒸留水の微生物数を計測した(実施例)。その分析結果を表1に示す。
【表1】

Figure 2004121995
【0032】
加熱殺菌は、冷却水流量を零として蒸留装置に熱源を供給し、原水流量を6.3(L/min)(30分保持)→3.0(L/min)(30分保持)→0(L/min)(1時間保持)と変化させていった。この加熱によって蒸留装置は、原水流量が6.3(L/min)の時に最終段の蒸発器の温度は60℃、3.0(L/min)で約65℃、0(L/min)で約80℃まで昇温され、殺菌効果が得られた。
【0033】
【発明の効果】
以上、説明したように、各請求項に記載の発明によれば、下記のような優れた効果が得られる。
請求項1に記載の発明によれば、凝縮器における水蒸気の冷却量を減少又は零とし、通常運転時に蒸留装置に供給されている熱源、原水を供給するだけで、蒸留装置の加熱殺菌を行うことが可能となり、別途加熱殺菌用の設備を設ける必要がなくなる。
【0034】
請求項2に記載の発明によれば、原水の流量を通常の運転時よりも低減、若しくは零とすることにより、請求項1に示す発明の場合よりも蒸留装置の温度を高くすることができ、加熱殺菌効果を高めることが可能となる。
【0035】
請求項3に記載の発明によれば、徐々に原水の流量を減少させることで、蒸留装置の温度が低い状態からでも、最上段の蒸発器(その上段に脱気室を設置した場合は脱気室)内の原水が全量蒸発することなく、蒸留装置を十分に加熱することが可能となる。
【0036】
そして請求項1,2,3に記載の発明にかかる加熱殺菌を定期的に行うことで、蒸留水系に混入した生菌を殺菌することが可能となり、通常運転中に得られる蒸留水中の生菌、微生物数を、加熱殺菌を行わない場合に比べて、大幅に低減することが可能となる。
【図面の簡単な説明】
【図1】本発明にかかる真空蒸発式蒸留装置の一構成例を示す図である。
【図2】本発明にかかる真空蒸発式蒸留装置の他の構成例を示す図である。
【符号の説明】
10 脱気室
11 蒸発装置
12 凝縮器
13 蒸留水タンク
14 濃縮水タンク
15 真空手段
16 蒸留水ポンプ
17 濃縮水ポンプ
18 原水流量計
19 原水流量調整弁(原水流量調整手段)
20 蒸留水供給弁
21 濃縮水排水弁
22 冷却水量調整弁(冷却量調整手段)
23 熱源
24 冷却水
25 原水
26 蒸留水
27 濃縮水
28 排気
29 熱源流路
30 冷却水流路
31 原水供給流路
32 蒸留水供給流路
33 濃縮水排水流路
34 排気流路
34´ 第二の排気流路
35 蒸気流路
36 蒸留水流路
40 遮断弁
41 水位計
42 水位計
43 減圧機構
44 脱気原水流路[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention provides industrial water, city water, factory wastewater and the like as raw water, heats the raw water by a heat source under reduced pressure, by evaporation and condensation method, distilled water, and concentrated water in which impurities in the raw water are concentrated. The present invention relates to a vacuum evaporation type distillation apparatus provided with means for easily sterilizing the vacuum evaporation type distillation apparatus.
[0002]
[Prior art]
Conventionally, a vacuum evaporative distillation apparatus can be operated even when the temperature of a heat source is relatively low (about 85 ° C.) by reducing the internal pressure of the apparatus to lower than the atmospheric pressure to reduce the boiling point temperature. It is sometimes used mainly in places where a large amount of exhaust heat at a high temperature is obtained.
[0003]
However, in this type of vacuum evaporative distillation apparatus, since the temperature inside the distillation apparatus during operation does not rise to a temperature sufficient to kill the viable bacteria, the viable bacteria propagate in the apparatus with the operation, and the resulting distilled water There was a problem that the number of viable bacteria and the dead bacteria increased.
[0004]
To solve this problem, a method of periodically cleaning and sterilizing the inside of the apparatus with a disinfectant such as hydrogen peroxide, or a method of sterilizing the distillation apparatus by heating the distillation apparatus with a separately installed heating apparatus may be used. do it.
[0005]
However, in the case of a disinfection method using a disinfectant such as hydrogen peroxide, there is a problem that a disinfectant such as hydrogen peroxide remains in distilled water for a long time even after the disinfection is completed, and disinfection using a heating device separately is also required. In the case of the method, there is a problem that not only the installation space for the heating device is required but also the cost increases.
[0006]
[Problems to be solved by the invention]
The present invention has been made in view of the above points, and can perform heat sterilization in a distillation apparatus by using a heat source supplied to the distillation apparatus, and requires special equipment for sterilization. It is an object of the present invention to provide a vacuum evaporative distillation apparatus that does not have a vacuum.
[0007]
[Means for Solving the Problems]
In order to solve the above problem, the invention according to claim 1 has a plurality of evaporators connected in a multiple effect, supplies a heat source and raw water to a first-stage evaporator, and heats the raw water by the heat source. An evaporator that sequentially repeats evaporation / condensation in each stage evaporator; a condenser that cools and condenses water vapor evaporated in the last stage evaporator of the evaporator; A vacuum evaporating distillation apparatus comprising: a vacuum means for maintaining the water; and repeating the evaporation and condensation of the raw water in the evaporator depressurized by the vacuum means to produce distilled water and concentrated water in which impurities are concentrated. And a heat disinfection means for heating and sterilizing the vacuum evaporative distillation apparatus with the heat source by reducing or eliminating the cooling amount of steam in the condenser. Here, the heat sterilizing means is constituted by a cooling amount adjusting means for adjusting a cooling amount of steam in the condenser. The cooling amount adjusting means is specifically a cooling water amount adjusting valve or the like in a water-cooled condenser, and a fan or the like in an air-cooled condenser.
[0008]
If the cooling amount of steam in the condenser is reduced or set to zero as described above, the heat source and raw water supplied to the distillation apparatus during normal operation are supplied, and the vacuum evaporation type distillation apparatus is heated and sterilized. Not only does not require the use of a disinfectant, but also eliminates the need to provide a separate facility for heat disinfection.
[0009]
The invention according to claim 2 has a plurality of evaporators connected in a multiple effect manner, supplies a heat source and raw water to the first-stage evaporator, heats the raw water with the heat source, and sequentially evaporates each stage. An evaporator for repeating evaporation / condensation in an evaporator, a condenser for cooling and condensing water vapor evaporated in an evaporator at the last stage of the evaporator, and vacuum means for keeping the inside of the evaporator at atmospheric pressure or lower. A vacuum evaporating distillation apparatus for producing distilled water and concentrated water in which impurities are concentrated by repeatedly evaporating and condensing raw water in an evaporator reduced in pressure by the vacuum means, wherein the steam in the condenser is Heat sterilization means for heating or sterilizing the vacuum evaporative distillation apparatus by the heat source by reducing or reducing the cooling amount of the raw water to zero or reducing the flow rate of the raw water to be supplied to the evaporator from that at the time of normal operation. Vacuum characterized by having It is a Hatsushiki distillation apparatus. Here, the heat sterilizing means is constituted by a cooling amount adjusting means for adjusting a cooling amount of steam in the condenser and a raw water amount adjusting means for adjusting a flow rate of the raw water to be supplied to the evaporator. The cooling amount adjusting means is specifically a cooling water amount adjusting valve or the like in a water-cooled condenser, and a fan or the like in an air-cooled condenser. The raw water amount adjusting means is specifically a raw water flow rate adjusting valve or the like.
[0010]
As described above, if the cooling amount of steam in the condenser is reduced or set to zero and the flow rate of the raw water is set to be reduced or set to zero as compared with the time of normal operation, vacuum evaporation distillation is further performed as compared with the case of the invention shown in claim 1. The temperature of the device can be increased, and the heat sterilization effect can be enhanced.
[0011]
According to a third aspect of the present invention, in the vacuum evaporative distillation apparatus according to the second aspect, the heat sterilizing means heats the vacuum evaporative distillation apparatus by reducing the amount of cooling in the condenser or setting the cooling amount to zero and using a heat source. A vacuum evaporative distillation apparatus characterized in that it is means for reducing the flow rate of raw water supplied to the evaporator as the temperature of the vacuum evaporative distillation apparatus rises from a flow rate during normal operation.
[0012]
As described above, if the flow rate of the raw water is gradually reduced as the temperature of the vacuum evaporative distillation apparatus rises, the uppermost evaporator (the upper evaporator is removed even if the temperature of the vacuum evaporative distillation apparatus is low). (If an air chamber is provided, the vacuum evaporation type distillation apparatus can be sufficiently heated without the entire amount of the raw water charged into the degassing chamber being evaporated).
[0013]
By periodically performing the heat sterilization according to the first, second, and third aspects of the present invention, it becomes possible to sterilize live bacteria mixed in the distilled water system, and the live bacteria in the distilled water obtained during normal operation can be sterilized. The number of bacteria and microorganisms can be significantly reduced as compared with the case where heat sterilization is not performed.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a diagram showing one configuration example of a vacuum evaporation type distillation apparatus (hereinafter, simply referred to as “distillation apparatus”) according to the present invention. In FIG. 1, reference numeral 11 denotes an evaporator in which a plurality of evaporators for heating raw water 25 under reduced pressure to produce distilled water are connected for multiple effects. Each evaporator in the evaporator 11 has a heat exchanger, and raw water 25 and a heat source 23 are supplied to the first (uppermost) evaporator. The raw water 25 is heated by the heat source 23 supplied through the heat source flow path 29, and the water vapor evaporated thereby is sent to the heat exchanger of the second-stage evaporator. The supplied second-stage evaporator heats and evaporates the raw water again, and cools itself by the raw water of the second-stage evaporator, condenses, and becomes distilled water. In this manner, the evaporation / condensation is sequentially repeated, and finally, the steam generated from the last (lowest) evaporator and the distilled water condensed in each evaporator are obtained. The flow rate of the raw water 25 is measured by the raw water flow meter 18, and the flow rate of the raw water 25 is adjusted by a raw water flow rate regulating valve (raw water flow rate adjusting means) 19 so that the flow rate becomes a preset value. Is supplied to the uppermost evaporator of the evaporator 11.
[0015]
Next, in the present configuration example, the cooling water 24 is used as a cooling source of the condenser 12, and is supplied to the condenser 12 through the cooling water passage 30. The distilled water from the evaporator 11 moves to the condenser 12 via the distilled water flow path 36, while the water vapor generated in the last evaporator of the evaporator 11 contains dissolved gas components contained in the raw water, It moves to the condenser 12 via the vapor passage 35 together with the volatile impurities.
[0016]
The water vapor generated in the last-stage evaporator of the evaporator 11 is condensed in the condenser 12 and stored in the distilled water tank 13 together with the distilled water moved to the condenser 12 via the distilled water flow path 36. The water level in the distilled water tank 13 is detected by, for example, a water level meter 41 or the like. When the distilled water in the distilled water tank 13 accumulates to some extent, the distilled water pump 16 is activated, and the distilled water is supplied to the outside as distilled water 26 through the distilled water pump 16, the distilled water supply passage 32, and the distilled water supply valve 20. . Here, since the pressure in the distillation apparatus is reduced, the distilled water supply valve 20 is opened after the distilled water pump 16 is started, and the distilled water 26 is supplied to the outside.
[0017]
The concentrated water 27 in which impurities in the raw water 25 are concentrated is stored in the concentrated water tank 14 from the evaporator at the last stage of the evaporator 11. The water level in the concentrated water tank 14 is detected by, for example, a water level meter 42 or the like. When the concentrated water is accumulated in the concentrated water tank 14 to some extent, the concentrated water pump 17 is started, and the concentrated water is discharged to the outside through the concentrated water pump 17, the concentrated water drain passage 33, and the concentrated water drain valve 21. Here, since the pressure in the distillation apparatus is reduced, the concentrated water drain valve 21 is opened after the concentrated water pump 17 is started, and the concentrated water 27 is discharged outside the apparatus.
[0018]
In the above example, outside air or the like flows into the distillation apparatus whose internal pressure is reduced according to the operation order of the distilled water pump 16 and the distilled water supply valve 20 and the operation order of the concentrated water pump 17 and the concentrated water drain valve 21. However, an appropriate backflow prevention mechanism such as a check valve is provided at an appropriate position downstream of the distilled water tank 13 and the concentrated water tank 14 to prevent the inflow of outside air or the like. You may.
[0019]
On the other hand, the dissolved gas and the volatile impurities in the raw water 25 conveyed to the condenser 12 together with the water vapor in the vapor passage 35 from the evaporator 11 pass through the shut-off valve 40 and the exhaust passage 34 from the vacuum means 15. The exhaust gas is exhausted outside the machine.
[0020]
In this way, during normal operation, the distillation apparatus is continuously supplied with the heat source 23, the raw water 25, and the cooling water 24, thereby performing continuous distillation and supplying the distilled water 26 to the outside.
[0021]
In the distillation apparatus shown in FIG. 1, a water-cooled condenser is used as the condenser 12, and cooling water 24 is supplied to the condenser 12 as a cooling source. However, the condenser of the present invention is limited to a water-cooled condenser. Instead, a condenser using another cooling method or a fluid (for example, air) other than cooling water may be used as a cooling source. As the vacuum means 15 for keeping the inside of the evaporator 11 under reduced pressure, any means such as a vacuum pump or an ejector may be used as long as it has a function of keeping the inside of the evaporator 11 under a predetermined reduced pressure.
[0022]
In the distillation apparatus shown in FIG. 1 described above, in the present invention (the invention according to claim 1), cooling amount adjusting means such as a cooling water amount adjusting valve 22 is provided in the cooling water flow path 30, and heat sterilization in the distillation apparatus is performed. Is performed, the flow rate of the cooling water supplied to the condenser 12 by the cooling water amount adjustment valve 22 is reduced or set to zero. By performing such an operation, the cooling amount of steam in the condenser 12 is reduced or set to zero, and if the heat source 23 is continuously supplied in this state, the raw water 25 in the distillation apparatus is heated and evaporated, and the water in the distillation apparatus is evaporated. Since the vapor pressure of the distillation apparatus rises, the distillation apparatus can be heated, and the microorganisms and bacteria in the distillation apparatus can be heated and sterilized. At that time, if the flow rate of the cooling water 24 is set to zero, the temperature rise due to the heating becomes the fastest. Since water is obtained and discharged to the outside, the heat sterilization operation may be performed with a reduced cooling amount in order to discharge microorganisms and bacteria dead by heat sterilization to the outside of the distillation apparatus.
[0023]
In the configuration example of the distillation apparatus shown in FIG. 1, a vacuum pump is used as the vacuum means 15 necessary for keeping the inside of the evaporator 11 under reduced pressure. The shutoff valve 40 that shuts off the flow path to the means 15 is closed. On the other hand, when an ejector or the like is used as the vacuum means 15, it is not particularly necessary to stop the bleeding from the evaporator 11 from the viewpoint of protection of the device, and thus the bleeding from the evaporator 11 may or may not be performed.
[0024]
In the configuration example of the distillation apparatus shown in FIG. 1, a water-cooled condenser using cooling water 24 is used as the condenser 12, so that the cooling water regulating valve 22 is provided as cooling amount regulating means. In the case where an air-cooled condenser is used, cooling of steam in the condenser 12 is performed according to the type and structure of the condenser 12 such as a fan for sending air (deceleration or stoppage of the fan) serving as cooling amount adjusting means. The heat sterilization means for sterilizing the distillation apparatus by heating the distillation apparatus with the amount reduced or eliminated is different.
[0025]
Next, in the distillation apparatus shown in FIG. 1, in another invention of the present application (the invention described in claim 2), as described above, the flow rate of the cooling water 24 is reduced or set to zero, and at the same time, supplied to the distillation apparatus. The flow rate of the raw water 25 is reduced or set to zero as compared with the normal operation. Adjustment of the flow rate of the raw water 25 is performed by raw water amount adjusting means such as the raw water flow control valve 19. As a result, since the amount of heat for heating the raw water 25 can be reduced, the temperature of the distillation apparatus can be further increased, and the microorganisms and bacteria in the distillation apparatus can be more effectively heated and sterilized. If the flow rate of the supplied raw water 25 is set to zero, the effect is maximized.
[0026]
By the way, if the distillation apparatus shown in FIG. 1 is not heated and the heat sterilization is performed by reducing the flow rate of the raw water 25 to zero or lower than that during the normal operation, the steam pressure in the distillation apparatus is still low. All of the raw water 25 in the uppermost evaporator in the evaporator 11 is evaporated, and the heat transfer by heating is deteriorated. As a result, the temperature of the evaporator 11 does not rise sufficiently. For example, if the supply amount of the raw water 25 is suddenly reduced to zero in a state where the distillation apparatus is not warmed, the evaporator at the uppermost stage of the evaporator 11 dries (all the raw water 25 evaporates), and the temperature of the evaporator at the subsequent stage rises so much. (Eg, 65 ° C. at the bottom evaporator temperature). Therefore, in another invention of the present application (invention of claim 3), in the distillation apparatus shown in FIG. 1, the flow rate of the cooling water 24 is reduced or set to zero to heat the distillation apparatus, Control means for gradually decreasing the supply amount of the raw water 25 from the supply amount during the normal operation as the temperature and the vapor pressure increase (for example, the flow rate of the cooling water 24 is reduced or set to zero by the cooling water amount adjusting valve 22 and then the predetermined amount is reduced). After a lapse of time, a control means including a computer and other electric circuits for controlling the raw water flow control valve 19 to gradually close and reduce the supply amount of the raw water 25) is provided, so that the entire distillation apparatus can be sufficiently provided. It made it possible to heat. For example, after the distillation apparatus is heated for a certain period of time by reducing or setting the flow rate of the cooling water 24 at the rated flow rate of the raw water 25 to 6.3 (L / min) during normal operation, the supply amount of the raw water 25 is reduced to 3 (L). / Min) and 0 (L / min) to control heating so that heating can be performed effectively. The effect is maximized by finally setting the supply amount of the raw water 25 to zero.
[0027]
Here, in the configuration example of the distillation apparatus shown in FIG. 1, each of the raw water flow control valve 19, the distilled water supply valve 20, the concentrated water drain valve 21, the cooling water amount control valve 22, and the shutoff valve 40 is a manual valve, an electric valve. The type is not particularly limited as long as the flow rate can be adjusted / interrupted, such as a solenoid valve.
[0028]
FIG. 2 is a diagram showing another configuration example of the distillation apparatus according to the present invention. In FIG. 2, portions denoted by the same reference numerals as those in FIG. 1 indicate the same or corresponding portions. The difference between the distillation apparatus shown in FIG. 2 and the distillation apparatus shown in FIG. 1 is that a degassing chamber 10 for separating dissolved gas and volatile impurities in raw water 25 before supplying the same to the evaporator 11 at the upper stage of the evaporator 11. Is provided.
[0029]
At least a part of the heat source 23 is supplied to the degassing chamber 10 to heat the raw water 25 supplied from the raw water supply flow path 31 to separate dissolved gas and volatile impurities. These separated gas components are The gas is introduced into the condenser 12 via the second exhaust passage 34 ′ having the pressure reducing mechanism 43. The water vapor evaporated together with the gas components in the condenser 12 is condensed and moves to the distilled water tank 13 as distilled water, and the gas components are condensed from the final stage evaporator of the evaporator 11 together with the water vapor through the vapor passage 35 to the condenser. The residual gas component introduced into the fuel cell 12 passes through the exhaust passage 34 together with the residual gas component, and is exhausted out of the apparatus as the exhaust gas 28 by the vacuum means 15. The raw water deaerated in the deaeration chamber 10 is introduced into the uppermost evaporator in the evaporator 11 through the deaerated raw water flow path 44. With this configuration, during normal operation, since the gas component in the degassed raw water introduced into the evaporator 11 is reduced, the heat transfer coefficient in the evaporator 11 is increased, and the distillation efficiency is improved. In addition, at the time of heat sterilization, the gas components and steam heated and evaporated in the degassing chamber 10 move to the condenser 12, so that the distillation apparatus including the condenser 12 can be heated quickly.
[0030]
【Example】
Next, the present invention will be described more specifically with reference to examples.
In this example, a distillation apparatus having the following specifications was used in the configuration shown in FIG.
Raw water: Fujisawa city water temperature 25 ° C, flow rate 6.3 (L / min)
Heat source: 85 ° C hot water Flow rate 100 (L / min)
Cooling water: 32 ° C cold water Flow rate 84 (L / min)
Distilled water amount: 4.7 (L / min)
[0031]
After normal operation for one month under the above conditions, the numbers of microorganisms in the raw water and distilled water were measured (comparative example), sterilized by heat, returned to a steady state, operated for about 8 hours, and again distilled water. The number of microorganisms was counted (Example). Table 1 shows the results of the analysis.
[Table 1]
Figure 2004121995
[0032]
In the heat sterilization, the heat source is supplied to the distillation apparatus with the cooling water flow rate set to zero, and the raw water flow rate is set to 6.3 (L / min) (hold for 30 minutes) → 3.0 (L / min) (held for 30 minutes) → 0. (L / min) (1 hour hold). Due to this heating, the distillation apparatus has a final stage evaporator temperature of 60 ° C when the raw water flow rate is 6.3 (L / min), about 65 ° C at 3.0 (L / min), and 0 (L / min). The temperature was raised to about 80 ° C. to obtain a bactericidal effect.
[0033]
【The invention's effect】
As described above, according to the invention described in each claim, the following excellent effects can be obtained.
According to the first aspect of the present invention, the heat sterilization of the distillation apparatus is performed only by supplying the heat source and the raw water supplied to the distillation apparatus during the normal operation by reducing or reducing the cooling amount of the steam in the condenser. This makes it unnecessary to provide a separate facility for heat sterilization.
[0034]
According to the second aspect of the present invention, the temperature of the distillation apparatus can be made higher than in the case of the first aspect of the present invention by reducing the flow rate of the raw water as compared with that during the normal operation, or by setting it to zero. Thus, the heat sterilization effect can be enhanced.
[0035]
According to the third aspect of the present invention, by gradually decreasing the flow rate of the raw water, even when the temperature of the distillation apparatus is low, the evaporator at the uppermost stage (when the degassing chamber is installed at the upper stage, the degassing is performed). The distillation apparatus can be sufficiently heated without the entire amount of the raw water in the (gas chamber) evaporating.
[0036]
By periodically performing the heat sterilization according to the invention as set forth in claims 1, 2, and 3, it becomes possible to sterilize live bacteria mixed in the distilled water system, and live bacteria in distilled water obtained during normal operation. In addition, the number of microorganisms can be significantly reduced as compared with the case where heat sterilization is not performed.
[Brief description of the drawings]
FIG. 1 is a diagram showing one configuration example of a vacuum evaporation type distillation apparatus according to the present invention.
FIG. 2 is a diagram showing another configuration example of the vacuum evaporation type distillation apparatus according to the present invention.
[Explanation of symbols]
Reference Signs List 10 Deaeration chamber 11 Evaporator 12 Condenser 13 Distilled water tank 14 Concentrated water tank 15 Vacuum means 16 Distilled water pump 17 Concentrated water pump 18 Raw water flow meter 19 Raw water flow control valve (raw water flow adjusting means)
20 Distilled water supply valve 21 Concentrated water drain valve 22 Cooling water amount adjusting valve (cooling amount adjusting means)
23 heat source 24 cooling water 25 raw water 26 distilled water 27 concentrated water 28 exhaust 29 heat source flow path 30 cooling water flow path 31 raw water supply flow path 32 distilled water supply flow path 33 concentrated water drain flow path 34 exhaust flow path 34 'second exhaust Flow path 35 Steam flow path 36 Distilled water flow path 40 Shut-off valve 41 Water level gauge 42 Water level gauge 43 Pressure reducing mechanism 44 Deaerated raw water flow path

Claims (3)

多重効用に接続した複数の蒸発器を有し、第一段の蒸発器に熱源と原水とを供給してこの熱源により原水を加熱し、順次各段の蒸発器で蒸発・凝縮を繰り返させる蒸発装置と、
前記蒸発装置の最終段の蒸発器で蒸発した水蒸気を冷却して凝縮する凝縮器と、
前記蒸発装置内を大気圧以下に保つ真空手段とを具備し、
前記真空手段で減圧された蒸発装置内で原水の蒸発・凝縮を繰り返すことで蒸留水と不純物が濃縮された濃縮水とを製造する真空蒸発式蒸留装置であって、
前記凝縮器における水蒸気の冷却量を減少又は零とすることで前記熱源により真空蒸発式蒸留装置を加熱して殺菌する加熱殺菌手段を有することを特徴とする真空蒸発式蒸留装置。
Evaporation that has multiple evaporators connected in multiple effects, supplies a heat source and raw water to the first stage evaporator, heats the raw water with this heat source, and repeats evaporation and condensation in each stage evaporator sequentially Equipment and
A condenser that cools and condenses the water vapor evaporated in the last-stage evaporator of the evaporator,
Vacuum means for keeping the inside of the evaporator at or below atmospheric pressure,
A vacuum evaporative distillation apparatus for producing distilled water and concentrated water in which impurities are concentrated by repeating evaporation and condensation of raw water in an evaporator reduced in pressure by the vacuum means,
A vacuum evaporative distillation apparatus comprising a heat sterilizing means for sterilizing the condenser by heating or sterilizing the vacuum evaporative distillation apparatus by reducing the cooling amount of steam in the condenser to zero.
多重効用に接続した複数の蒸発器を有し、第一段の蒸発器に熱源と原水とを供給してこの熱源により原水を加熱し、順次各段の蒸発器で蒸発・凝縮を繰り返させる蒸発装置と、
前記蒸発装置の最終段の蒸発器で蒸発した水蒸気を冷却して凝縮する凝縮器と、
前記蒸発装置内を大気圧以下に保つ真空手段とを具備し、
前記真空手段で減圧された蒸発装置内で原水の蒸発・凝縮を繰り返すことで蒸留水と不純物が濃縮された濃縮水とを製造する真空蒸発式蒸留装置であって、
前記凝縮器における水蒸気の冷却量を減少又は零とするとともに、蒸発装置に投入する原水の流量を通常運転時よりも減少又は零とすることで、前記熱源により真空蒸発式蒸留装置を加熱して殺菌する加熱殺菌手段を有することを特徴とする真空蒸発式蒸留装置。
Evaporation that has multiple evaporators connected in multiple effects, supplies a heat source and raw water to the first stage evaporator, heats the raw water with this heat source, and repeats evaporation and condensation in each stage evaporator sequentially Equipment and
A condenser that cools and condenses the water vapor evaporated in the last-stage evaporator of the evaporator,
Vacuum means for keeping the inside of the evaporator at or below atmospheric pressure,
A vacuum evaporative distillation apparatus for producing distilled water and concentrated water in which impurities are concentrated by repeating evaporation and condensation of raw water in an evaporator reduced in pressure by the vacuum means,
The amount of cooling water vapor in the condenser is reduced or set to zero, and the flow rate of raw water supplied to the evaporator is reduced or set to zero or less than during normal operation, thereby heating the vacuum evaporative distillation apparatus by the heat source. A vacuum evaporation type distillation apparatus having a heat sterilizing means for sterilizing.
請求項2記載の真空蒸発式蒸留装置において、
前記加熱殺菌手段は、凝縮器における冷却量を減少又は零として熱源をして真空蒸発式蒸留装置を加熱するとともに、真空蒸発式蒸留装置の温度上昇に伴って蒸発装置に投入する原水の流量を通常運転時の流量よりも減少させる手段であることを特徴とする真空蒸発式蒸留装置。
The vacuum evaporative distillation apparatus according to claim 2,
The heat sterilizing means reduces the amount of cooling in the condenser or heats the vacuum evaporative distillation apparatus with a heat source as zero, and adjusts the flow rate of raw water to be supplied to the evaporator with the temperature rise of the vacuum evaporative distillation apparatus. A vacuum evaporation type distillation apparatus characterized in that it is a means for reducing the flow rate during normal operation.
JP2002290224A 2002-10-02 2002-10-02 Vacuum evaporation type distillation equipment Pending JP2004121995A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002290224A JP2004121995A (en) 2002-10-02 2002-10-02 Vacuum evaporation type distillation equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002290224A JP2004121995A (en) 2002-10-02 2002-10-02 Vacuum evaporation type distillation equipment

Publications (1)

Publication Number Publication Date
JP2004121995A true JP2004121995A (en) 2004-04-22

Family

ID=32282174

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002290224A Pending JP2004121995A (en) 2002-10-02 2002-10-02 Vacuum evaporation type distillation equipment

Country Status (1)

Country Link
JP (1) JP2004121995A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010016173A1 (en) * 2008-08-08 2010-02-11 株式会社日立製作所 Desalination device and system for re-utilizing oil-contaminated water
CN102001718A (en) * 2010-11-29 2011-04-06 昆明理工大学 Low-pressure water-saving efficient water distiller
CN103357188A (en) * 2012-03-26 2013-10-23 郭朝军 Method and equipment for concentrating brackish water
CN105617700A (en) * 2015-12-25 2016-06-01 河北工业大学 Method for evaporating and concentrating high-boiling-point salt-containing solutions

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010016173A1 (en) * 2008-08-08 2010-02-11 株式会社日立製作所 Desalination device and system for re-utilizing oil-contaminated water
CN102001718A (en) * 2010-11-29 2011-04-06 昆明理工大学 Low-pressure water-saving efficient water distiller
CN103357188A (en) * 2012-03-26 2013-10-23 郭朝军 Method and equipment for concentrating brackish water
CN105617700A (en) * 2015-12-25 2016-06-01 河北工业大学 Method for evaporating and concentrating high-boiling-point salt-containing solutions

Similar Documents

Publication Publication Date Title
KR100271115B1 (en) A water distillation system
JP5918110B2 (en) Water intake device and water intake method
JP5959135B2 (en) Water intake device and water intake method
US20190151489A1 (en) Vacuum exhaust system of sterilizer
KR100894398B1 (en) Hermetic air Cleaner
KR101632252B1 (en) Pure liquid production device
JP2004121995A (en) Vacuum evaporation type distillation equipment
JP5676464B2 (en) Distilled water generation system
JP5036480B2 (en) Concentration apparatus and concentration method
JP2004121994A (en) Vacuum evaporation type distillation equipment
JP2008224148A (en) Steam supply system
EP1424084B1 (en) Device and process for steam sterilisation
JP2006122859A (en) Apparatus for treating sewage
JP5687036B2 (en) Hot spring water supply system and hot spring water supply method
JP5808045B2 (en) Operation method of pure steam generator
JP2004113948A (en) Vacuum evaporation type distillation apparatus
JP5105796B2 (en) Multi-stage flash water generator
JP2004113949A (en) Vacuum evaporation type distillation apparatus
JP5600048B2 (en) Solvent recovery device
JP6595855B2 (en) Distillation equipment with distillation tower
WO2018029764A1 (en) Pure water-producing apparatus
JP2020067209A (en) Boiler water treatment device and treatment method
CN216062019U (en) Steam circulation heat supply evaporation equipment
JP6930729B2 (en) Evaporative heat exchanger
JP4231794B2 (en) Oil / water separator

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050223

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050223

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070213

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070703