JP2004121835A - Follow-up control method for interested area, image diagnosing system using the method, and follow-up control program for interested area - Google Patents

Follow-up control method for interested area, image diagnosing system using the method, and follow-up control program for interested area Download PDF

Info

Publication number
JP2004121835A
JP2004121835A JP2003311409A JP2003311409A JP2004121835A JP 2004121835 A JP2004121835 A JP 2004121835A JP 2003311409 A JP2003311409 A JP 2003311409A JP 2003311409 A JP2003311409 A JP 2003311409A JP 2004121835 A JP2004121835 A JP 2004121835A
Authority
JP
Japan
Prior art keywords
image
interest
region
cut
reference point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003311409A
Other languages
Japanese (ja)
Other versions
JP4389081B2 (en
Inventor
Hirotaka Baba
馬場 博隆
Osamu Mori
森 修
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Healthcare Manufacturing Ltd
Original Assignee
Hitachi Medical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Medical Corp filed Critical Hitachi Medical Corp
Priority to JP2003311409A priority Critical patent/JP4389081B2/en
Priority to US10/527,744 priority patent/US8167802B2/en
Priority to EP03795425.2A priority patent/EP1543773B1/en
Priority to PCT/JP2003/011701 priority patent/WO2004024003A1/en
Priority to CNB038213168A priority patent/CN100393283C/en
Publication of JP2004121835A publication Critical patent/JP2004121835A/en
Application granted granted Critical
Publication of JP4389081B2 publication Critical patent/JP4389081B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Ultra Sonic Daignosis Equipment (AREA)
  • Apparatus For Radiation Diagnosis (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To enable an interested region on a diagnosing image to be followed while adjusting to the movement of a biological tissue. <P>SOLUTION: One frame image of a motion picture which is formed by picking up a tomographic image of a patient is displayed (S2). A mark which specifies the interested region is displayed by being superposed on the biological tissue of the displayed one frame image, and a reference point is determined by corresponding to the interested region. A sliced image of a size for including the reference point is set on the one frame image (S3 and S4). At the same time, a local image of the same size wherein the matching rate of the local image with the sliced image is highest is extracted by searching other frame images of the motion picture (S5). Moving destination coordinates of the reference point are obtained based on a difference in coordinates between the local image the matching rate of which is highest and the sliced image (S6). From the moving destination coordinates of the reference point, moving destination coordinates of the mark specifying the interested region are obtained and are displayed by being superposed with the other frame image of the motion picture (S7 and S8). Thus, the interested region is made to follow the motion of the biological tissue. <P>COPYRIGHT: (C)2004,JPO

Description

 本発明は、超音波診断画像、磁気共鳴画像又はX線CT画像の動きのある生体組織に設定される関心領域の追従制御方法、その方法を用いた画像診断装置及び関心領域の追従制御プラグラムの技術に属する。 The present invention relates to a method for controlling the tracking of a region of interest set in a living tissue having movement of an ultrasonic diagnostic image, a magnetic resonance image, or an X-ray CT image, an image diagnostic apparatus using the method, and a tracking control program for the region of interest. Belongs to technology.

 超音波診断装置、磁気共鳴イメージング(MRI)装置、及びX線CT装置等の画像診断装置は、いずれも被検体の検査部位に係る断層像などをモニタに表示して診断に供するものである。例えば、心臓や血管等の循環器系及びその他の動きのある臓器の場合、それらを構成する生体組織(以下、組織と総称する)の動きを断層像により観察して、それら臓器等の機能を診断することが行なわれている。 (2) Image diagnostic apparatuses such as an ultrasonic diagnostic apparatus, a magnetic resonance imaging (MRI) apparatus, and an X-ray CT apparatus all display on a monitor a tomographic image or the like of an examination part of a subject and provide the diagnosis. For example, in the case of a circulatory system and other moving organs such as the heart and blood vessels, the movements of living tissues (hereinafter, collectively referred to as “tissues”) constituting the organs are observed with a tomographic image, and the functions of the organs and the like are evaluated. Diagnosis is being performed.

 特に、心臓などの機能を定量的に評価できれば、診断の精度が一層向上することが期待されている。例えば、従来、超音波診断装置により得られた画像から心壁の輪郭を抽出し、その心壁輪郭に基づいて心室等の面積、体積、それらの変化率等から心機能(心臓ポンプ機能)を評価したり、局所の壁運動を評価して診断することが試みられている(特許文献1)。また、ドプラ信号等の計測信号に基づいて組織の変位を計測して、例えば局所的収縮又は弛緩の分布を撮像し、これに基づいて心室の運動が活性化している場所を正確に決定したり、あるいは収縮期の心臓壁の厚さを計測する等、定量的に測定する方法が提案されている(特許文献2)。さらに、時々刻々変化する心房や心室の輪郭を抽出して、その輪郭を画像に重ねて表示するとともに、これに基づいて心室等の容量を求める技術が提案されている(特許文献3)。 Especially, if functions such as the heart can be quantitatively evaluated, the accuracy of diagnosis is expected to be further improved. For example, in the related art, a contour of a heart wall is extracted from an image obtained by an ultrasonic diagnostic apparatus, and a heart function (heart pump function) is determined based on an area, a volume, a change rate, and the like of a ventricle based on the heart wall contour. Attempts have been made to evaluate and evaluate local wall motion for diagnosis (Patent Document 1). In addition, by measuring the displacement of the tissue based on a measurement signal such as a Doppler signal, for example, imaging the distribution of local contraction or relaxation, based on this, to accurately determine the location where ventricular movement is activated or Alternatively, a method of quantitatively measuring the thickness of the heart wall during the systole has been proposed (Patent Document 2). Furthermore, a technique has been proposed in which the contours of the atria and ventricles that change every moment are extracted, the contours are superimposed on the image and displayed, and the capacity of the ventricles and the like is obtained based on the contours (Patent Document 3).

特開平9−13145号公報JP-A-9-13145 特表2001−518342号公報JP 2001-518342 A 米国特許第5322067号公報(USP5,322,067)US Patent No. 5,322,067 (USP 5,322,067)

 ところで、心臓の心筋内の血流量や冠血流を計測して心筋梗塞等を正確かつ的確に診断する方法が望まれている。例えば、被検体に造影剤を投与した後、心臓の心筋の画面上で観測すべき範囲である関心領域を指定し、指定した関心領域内の画素値に基づいて輝度、輝度平均、輝度変化などの計測情報を取得する。取得した計測情報から心筋内の血流量や冠血流を定量的に算出し、算出した血流量に基づいて心筋梗塞などを正確かつ的確に診断する試みがなされている。 方法 By the way, there is a demand for a method of measuring blood flow and coronary blood flow in the myocardium of the heart to accurately and accurately diagnose myocardial infarction and the like. For example, after administering a contrast agent to a subject, a region of interest, which is a range to be observed on the screen of the myocardium of the heart, is designated, and luminance, luminance average, luminance change, and the like are determined based on pixel values in the designated region of interest. Get measurement information of Attempts have been made to quantitatively calculate the blood flow and coronary blood flow in the myocardium from the acquired measurement information and to accurately and accurately diagnose myocardial infarction and the like based on the calculated blood flow.

 しかしながら、例えば、心筋の動きにより心筋と関心領域との相対位置が変化して、心筋の全部又は一部が関心領域外に外れることがある。その結果、関心領域において計測された輝度、輝度平均、輝度変化という評価指標の信頼性が損なわれ、有効な評価指標にならないという問題がある。 However, for example, the relative position between the myocardium and the region of interest changes due to the movement of the myocardium, and all or part of the myocardium may fall outside the region of interest. As a result, there is a problem that the reliability of the evaluation index such as the luminance, the luminance average, and the luminance change measured in the region of interest is impaired, and the evaluation index does not become an effective evaluation index.

 本発明の課題は、生体組織の動きに合わせて関心領域を追従させることを課題とする。 課題 An object of the present invention is to make a region of interest follow a movement of a living tissue.

 本発明は、次に述べる手段により、上記課題を解決するものである。 The present invention solves the above-mentioned problems by means described below.

 本発明の画像診断装置は、被検体の断層像を撮像する撮像手段と、前記撮像手段により得られる動画像を表示する表示部とを備えた画像診断装置において、前記断層像に関心領域を指定する操作部と、前記関心領域の少なくとも一部に対応する前記断層像の動き追跡して前記関心領域を前記断層像の動きに追従させる追従手段を備えることを特徴とする。この場合において、撮像手段を切り離して設けるようにすることができる。また、追従手段は、画像部位の動きを追跡して関心領域の表示位置を移動させるようにすることができる。また、追従手段は、関心領域に1又は複数の基準点を設定し、この基準点に対応する1又は複数の画像部位を抽出してその画像部位の動きを追跡する追跡手段と、その画像部位に対応する基準点の動きに合せて表示部に表示される関心領域を追従表示させる制御手段とを備えて成るものとすることができる。 An image diagnostic apparatus according to the present invention is an image diagnostic apparatus including an imaging unit that captures a tomographic image of a subject and a display unit that displays a moving image obtained by the imaging unit, wherein a region of interest is specified in the tomographic image. And a tracking unit that tracks the motion of the tomographic image corresponding to at least a part of the region of interest and causes the region of interest to follow the motion of the tomographic image. In this case, the imaging means can be provided separately. Further, the tracking means can move the display position of the region of interest by tracking the movement of the image part. The tracking means sets one or a plurality of reference points in the region of interest, extracts one or a plurality of image parts corresponding to the reference points, and tracks the movement of the image parts. And control means for following and displaying the region of interest displayed on the display unit in accordance with the movement of the reference point corresponding to the above.

 また、本発明の関心領域の追従制御方法は、被検体を撮影してなる動画像に重ねて表示される関心領域を前記動画像上の生体組織の動きに合せて追従させる制御方法であって、前記動画像の一のフレーム画像を表示する第1ステップと、該表示された前記一のフレーム画像の生体組織に関心領域を規定する目印を重ねて表示させる指令を入力する第2ステップと、前記関心領域に対応させて基準点を定め、該基準点を含むサイズの切出し画像を前記一のフレーム画像に設定する第3ステップと、前記動画像の他のフレーム画像を検索して前記切出し画像と画像の一致度が最も高い同一サイズの局所画像を抽出する第4ステップと、該一致度が最も高い局所画像と前記切出し画像の座票差に基づいて前記基準点の移動先座標を求めて記憶する第5ステップと、該記憶された前記基準点の移動先座標に基づいて前記関心領域を規定する前記目印の移動先座標を求めて前記動画像の他のフレーム画像に重ねて表示する第6ステップとを含んでなることを特徴とする。 Further, the tracking control method for a region of interest according to the present invention is a control method for following a region of interest displayed superimposed on a moving image obtained by imaging a subject in accordance with the movement of a living tissue on the moving image. A first step of displaying one frame image of the moving image, and a second step of inputting a command to overlap and display a mark defining a region of interest on the living tissue of the displayed one frame image; A third step of determining a reference point corresponding to the region of interest and setting a cut-out image having a size including the reference point as the one frame image; and searching for another frame image of the moving image to obtain the cut-out image. And extracting a local image of the same size having the highest degree of coincidence between the images and obtaining the destination coordinates of the reference point based on the vote difference between the local image having the highest degree of coincidence and the cut-out image. Remember A step of obtaining the destination coordinates of the mark defining the region of interest based on the stored destination coordinates of the reference point, and displaying the obtained destination coordinates overlaid on another frame image of the moving image. Is characterized by the following.

 すなわち、動きのある生体組織に関心領域を設定する場合、動画像の一のフレーム画像(静止画像)上に、マウス等の入力手段を操作して、関心領域を規定する目印を重ねて表示させることにより設定する。この場合の目印は、例えば、矩形、円形、楕円形などの枠体、あるいは対向する2本の線体などが一般に適用される。しかし、本発明はこれらに限られるものではない。 That is, when a region of interest is set in a moving biological tissue, a mark that defines the region of interest is superimposed and displayed on one frame image (still image) of a moving image by operating input means such as a mouse. Set by In this case, as a mark, for example, a frame such as a rectangle, a circle, and an ellipse, or two opposing lines are generally applied. However, the present invention is not limited to these.

 次に、関心領域に対応させて定める基準点は、関心領域の重心、中心、あるいは目印上の少なくとも1点、又は複数点を設定できる。そして、各基準点を含む予め定めたサイズの切出し画像を一のフレーム画像に自動的に、又はその静止画像上において枠を入力することにより設定する。この切出し画像が続くフレーム画像のどこに移動したかを、切出し画像と画像の一致度が最も高い同一サイズの局所画像を検索する、いわゆるブロックマッチング法等の画像相関処理によって追跡する。これによって、画像の一致度が最も高い局所画像の位置を、切出し画像の移動先として追跡できる。この移動前後の切出し画像の座標差が、基準点の移動前後の座標差に相当するから、基準点の移動方向及び移動量、つまり関心領域の移動方向及び移動量を計測することができる。 Next, at least one point or a plurality of points on the center of gravity, center, or landmark of the region of interest can be set as the reference point determined in correspondence with the region of interest. Then, a cut-out image of a predetermined size including each reference point is set as one frame image automatically or by inputting a frame on the still image. The position to which the cut image has moved in the subsequent frame image is tracked by image correlation processing such as a so-called block matching method for searching for a local image having the same degree of matching between the cut image and the image. Thus, the position of the local image having the highest image matching degree can be tracked as the destination of the cut-out image. Since the coordinate difference between the cut images before and after the movement corresponds to the coordinate difference before and after the movement of the reference point, the movement direction and the movement amount of the reference point, that is, the movement direction and the movement amount of the region of interest can be measured.

 このような追跡処理を、検索により抽出された画像の一致度が最も高い局所画像局所画像を新たな切出し画像として、動画像のさらに他のフレーム画像に対して画像相関法を適用することにより、関心領域の基準点の移動先座標を順次求めることができる。そして、基準点の移動先座標を記憶しておき、その移動先の座標位置に関心領域の目印を動画像に重ねて表示することにより、生体組織の動きに合せて関心領域を追従させることができる。その結果、動きを伴う生体組織を関心領域の範囲内に常に位置させることができるので、信頼性の高い生体組織に関する計測情報を得ることができる。 Such a tracking process is performed by applying the image correlation method to still another frame image of the moving image, using the local image having the highest matching degree of the image extracted by the search as a new cutout image, The destination coordinates of the reference point of the region of interest can be sequentially obtained. Then, by storing the destination coordinates of the reference point and displaying the mark of the region of interest on the moving image at the coordinate position of the destination, the region of interest can be made to follow the movement of the living tissue. it can. As a result, the moving living tissue can be always positioned within the range of the region of interest, so that highly reliable measurement information on the living tissue can be obtained.

 例えば、被検体に造影剤を投与した後の心筋内の血流を観察する場合、心筋内に関心領域を設定して、その関心領域内の画素値から評価指標である輝度、輝度平均、輝度変化等を計測することが行なわれる。この場合、本発明によれば、心筋の動きに追従して関心領域が移動するため、心筋と関心領域の相対位置が変化しない。その結果、関心領域内の画素値から算出される評価指標である輝度、輝度平均、輝度変化等の計測値の信頼性が高いことから、その評価指標に基づいて心筋の血流量を定量的に把握することにより、心筋梗塞の程度などを的確に診断することができる。さらに、これらの計測情報の変化例えば輝度変化を線図で表示部に表示させることにより、観者は、輝度変化の割合を視覚的に把握することができるため、一層診断の精度を向上させることができる。 For example, when observing blood flow in the myocardium after administration of a contrast agent to a subject, a region of interest is set in the myocardium, and luminance, luminance average, and luminance as evaluation indices are determined from pixel values in the region of interest. A change or the like is measured. In this case, according to the present invention, since the region of interest moves following the movement of the myocardium, the relative position between the myocardium and the region of interest does not change. As a result, since the reliability of the measurement values such as the luminance, the luminance average, and the luminance change, which are the evaluation indexes calculated from the pixel values in the region of interest, is high, the blood flow of the myocardium is quantitatively determined based on the evaluation indexes. By grasping, the degree of myocardial infarction can be accurately diagnosed. Further, by displaying the change of the measurement information, for example, the luminance change on the display unit in a diagram, the viewer can visually grasp the rate of the luminance change, thereby further improving the accuracy of diagnosis. Can be.

 このような生体組織の動きに関心領域を追従させる処理は、検索により抽出された画像の一致度が最も高い局所画像局所画像を新たな切出し画像として、動画像のさらに他のフレーム画像に対して画像相関法を適用することにより、関心領域の指定部位の移動先座標を順次求めることができる。そして、指定部位の移動先座標から関心領域の移動先座標を算出することができる。これにより、動画像の生体組織の動きに合わせて関心領域を追従制御することができる。 Such a process of causing the region of interest to follow the movement of the living tissue is performed by using the local image having the highest degree of coincidence of the image extracted by the search as a new cutout image with respect to still another frame image of the moving image. By applying the image correlation method, it is possible to sequentially obtain the destination coordinates of the designated region of the region of interest. Then, the destination coordinates of the region of interest can be calculated from the destination coordinates of the designated part. Thereby, the tracking control of the region of interest can be performed in accordance with the movement of the living tissue in the moving image.

 また、生体組織に関心領域を少なくとも2つ設定し、その2つの関心領域の移動先領域を記憶しておき、その2つの関心領域における輝度、輝度平均、輝度変化などの計測情報をそれぞれ求めることにより、2つの関心領域の計測情報を相対的に把握することができる。したがって、例えば、心臓の心筋に2ヶ所の関心領域を設定し、設定した関心領域において輝度、輝度平均、輝度変化をそれぞれ求めることにより、その2つの関心領域内の心筋内血流量を相対的に把握することができる。この場合において、それらの心臓に係る計測値の線図と心電波形とを時間軸を関連させて表示することにより、心機能に対比して心筋の血流量を把握することができる。 In addition, at least two regions of interest are set in the living tissue, destination regions of the two regions of interest are stored, and measurement information such as luminance, average luminance, and change in luminance in the two regions of interest are obtained. Thus, the measurement information of the two regions of interest can be relatively grasped. Therefore, for example, by setting two regions of interest in the myocardium of the heart and calculating the luminance, the luminance average, and the luminance change in the set regions of interest, the blood flow in the myocardium in the two regions of interest is relatively determined. I can figure it out. In this case, by displaying the diagram of the measured values related to the heart and the electrocardiographic waveform in association with the time axis, it is possible to grasp the blood flow of the myocardium in comparison with the cardiac function.

 ここで、画像の追跡処理の精度をさらに向上させるため、動画像が超音波撮影法により撮影したものである場合は、動画像に対応するRF信号を記憶しておいて、RF信号による補正を加えることができる。この場合、上述した一致度が最も高い局所画像と切出し画像の座標差に基づいて指定部位の移動先座標を求め、この移動先座標の周辺に対応する複数の前記RF信号を抽出し、該抽出した複数のRF信号の相互相関をとり、該相互相関の最大値の位置に応じて前記移動先座標を補正する。 Here, in order to further improve the accuracy of the image tracking process, when the moving image is captured by an ultrasonic imaging method, an RF signal corresponding to the moving image is stored, and correction using the RF signal is performed. Can be added. In this case, the destination coordinates of the designated part are obtained based on the coordinate difference between the local image having the highest matching degree and the cut-out image, and a plurality of the RF signals corresponding to the periphery of the destination coordinates are extracted. The cross-correlation of the plurality of RF signals thus obtained is obtained, and the destination coordinates are corrected according to the position of the maximum value of the cross-correlation.

 さらに、切出し画像と画像の一致度が最も高い同一サイズの局所画像を抽出する処理時間を短縮するため、その検索範囲を切出し画像よりも設定画素数(例えば、上下左右に例えば3~10画素)大きい領域に設定することが好ましい。すなわち、生体組織の動きの範囲は、一般に、狭い領域に限られるからである。 Furthermore, in order to reduce the processing time for extracting a local image of the same size having the highest degree of coincidence between the cut image and the image, the search range is set to a set number of pixels (for example, 3 to 10 pixels vertically, horizontally, and so on) more than the cut image. It is preferable to set a large area. That is, the range of movement of the living tissue is generally limited to a narrow area.

 一方、上述の場合において、切出し画像のサイズは、基準点の生体組織とは異なる生体組織を含む大きさの領域に設定することが好ましい。切出し画像のサイズが小さすぎると一致する局所画像が多く出現し、真の移動先を特定できない場合が生じたり、逆に大きすぎると動画像の画像領域からはみ出して計測できない場合が生ずるからである。 On the other hand, in the above-described case, it is preferable that the size of the cut-out image is set to an area having a size including a living tissue different from the living tissue at the reference point. If the size of the cut-out image is too small, many matching local images appear, and a true destination may not be specified. Conversely, if the size of the cut-out image is too large, it may run out of the image area of the moving image and cannot be measured. .

 本発明の画像診断装置は、被検体の断層像を撮影してなる動画像が格納される記憶部と、前記動画像を表示可能な表示部と、指令を入力する操作部と、前記表示部に表示される前記動画像の生体組織の動きを追従する自動追従部と、前記記憶部と前記表示部と前記操作部と前記自動追従部とを接続してなる信号伝送路とを有してなり、前記操作部は、前記記憶部に格納された前記動画像の一のフレーム画像を前記表示部に表示させる指令と、該指令に応じて表示された前記一のフレーム画像の生体組織に関心領域を規定する目印を重ねて表示させる指令を入力する手段を備え、前記自動追従部は、前記表示部に表示された前記一のフレーム画像の前記目印に対応させて基準点を定め、該基準点を含むサイズの切出し画像を前記一のフレーム画像に設定する切出し画像設定手段と、前記記憶部から前記動画像の他のフレーム画像を読み出して、前記切出し画像と画像の一致度が最も高い同一サイズの局所画像を抽出する切出し画像追跡手段と、該一致度が最も高い局所画像と前記切出し画像の座標差を求める移動量演算手段と、該座票差に基づいて前記基準点の移動先座標を求めて記憶する移動追跡手段と、該記憶された前記基準点の移動先座標に基づいて前記関心領域を規定する前記目印の移動先座標を求めて前記動画像の他のフレーム画像に重ねて表示する表示制御手段とを備えて構成することができる。 The image diagnostic apparatus of the present invention includes a storage unit that stores a moving image obtained by capturing a tomographic image of a subject, a display unit that can display the moving image, an operation unit that inputs a command, and the display unit. An automatic tracking unit that tracks the movement of the living tissue of the moving image displayed on the moving image, and a signal transmission path that connects the storage unit, the display unit, the operation unit, and the automatic tracking unit. An instruction to display one frame image of the moving image stored in the storage unit on the display unit; and an interest in a living tissue of the one frame image displayed according to the instruction. Means for inputting a command to superimpose and display a mark that defines an area, wherein the automatic following section sets a reference point corresponding to the mark of the one frame image displayed on the display section, The extracted image of the size including the point is A cutout image setting means for setting an image, a cutout image tracking means for reading another frame image of the moving image from the storage unit, and extracting a local image of the same size having the highest degree of coincidence between the cutout image and the image, Moving amount calculating means for calculating a coordinate difference between the local image having the highest degree of coincidence and the cut-out image; moving tracking means for calculating and storing destination coordinates of the reference point based on the ticket difference; Display control means for obtaining destination coordinates of the mark defining the region of interest based on the destination coordinates of the reference point, and displaying the destination coordinates on another frame image of the moving image. Can be.

 また、本発明の関心領域の追従制御プラグラムは、操作卓からの指令に応じて記憶部から被検体の断層像を撮影してなる動画像の一のフレーム画像を読み出して表示部に表示させる第1ステップと、該表示された前記一のフレーム画像の生体組織に関心領域を規定する目印を重ねて表示させる指令の入力を要求する第2ステップと、該要求に応じて操作卓から入力設定された前記目印に対応する生体組織の関心領域に関連させて基準点を定める第3ステップと、前記基準点を含むサイズの切出し画像を前記一のフレーム画像に設定する第3ステップと、前記動画像の他のフレーム画像を検索して前記切出し画像と画像の一致度が最も高い同一サイズの局所画像を抽出する第4ステップと、該一致度が最も高い局所画像と前記切出し画像の座票差に基づいて前記基準点の移動先座標を求めて記憶する第5ステップと、該記憶された前記基準点の移動先座標に基づいて前記関心領域を規定する前記目印の移動先座標を求めて前記動画像の他のフレーム画像に重ねて表示させる第6ステップとを含んでなることを特徴とする。 Further, the tracking control program for the region of interest according to the present invention reads out one frame image of a moving image obtained by capturing a tomographic image of the subject from the storage unit in response to a command from the console and displays the frame image on the display unit. One step, a second step of requesting input of a command to superimpose and display a mark defining a region of interest on the living tissue of the displayed one frame image, and input setting from the console according to the request. A third step of determining a reference point in association with a region of interest of the living tissue corresponding to the mark, a third step of setting a cut-out image having a size including the reference point in the one frame image, and A fourth step of retrieving another frame image and extracting a local image of the same size having the highest matching degree between the cut-out image and the image; A fifth step of obtaining and storing the destination coordinates of the reference point based on the difference; and obtaining the destination coordinates of the mark defining the region of interest based on the stored destination coordinates of the reference point. And a sixth step of superimposing and displaying the moving image on another frame image.

 本発明によれば、生体組織の動きに合わせて関心領域を追従させることができる。 According to the present invention, the region of interest can be made to follow the movement of the living tissue.

(実施の形態1)
 本発明の関心領域の追従制御方法を適用してなる一実施の形態の画像診断装置について、図1〜図4を用いて説明する。図1は本実施形態の関心領域の追従制御方法における手順を示し、図2は図1の関心領域の追従制御方法を適用してなる画像診断装置のブロック構成図である。図2に示すように、画像診断装置は、被検体の断層像を撮影してなる動画像が格納される画像記憶部1と、動画像を表示可能な表示部2と、関心領域を画成する指令を入力する操作卓3と、表示部2に表示される動画像の生体組織の動きに関心領域を追従させる自動追従部4と、自動追従部4により追従させる関心領域の各種の計測情報例えば画素の輝度、輝度平均、輝度変化を算出する関心領域計測情報算出部5と、これらを接続してなる信号伝送路6を含んで構成されている。画像記憶部1には、破線で示した診断画像撮像装置7から被検体の断層像を撮影してなる動画像がオンライン又はオフラインで格納されるようになっている。診断画像撮像装置7としては、超音波診断装置、磁気共鳴イメージング(MRI)装置及びX線CT装置等の診断装置が適用可能である。
(Embodiment 1)
An image diagnostic apparatus according to an embodiment to which the tracking control method for a region of interest according to the present invention is applied will be described with reference to FIGS. FIG. 1 shows a procedure in a tracking control method for a region of interest according to the present embodiment, and FIG. 2 is a block diagram of an image diagnostic apparatus to which the tracking control method for a region of interest shown in FIG. 1 is applied. As shown in FIG. 2, the image diagnostic apparatus includes an image storage unit 1 that stores a moving image obtained by capturing a tomographic image of a subject, a display unit 2 that can display a moving image, and a region of interest. Console 3 for inputting a command to perform, automatic follow-up unit 4 for following the region of interest with the movement of the living tissue of the moving image displayed on display unit 2, and various measurement information of the region of interest to be followed by automatic follow-up unit 4. For example, it is configured to include a region-of-interest measurement information calculation unit 5 for calculating the brightness, average brightness, and change in brightness of a pixel, and a signal transmission path 6 connecting these. The image storage unit 1 stores, on-line or off-line, a moving image obtained by capturing a tomographic image of a subject from the diagnostic imaging device 7 indicated by a broken line. As the diagnostic image capturing device 7, a diagnostic device such as an ultrasonic diagnostic device, a magnetic resonance imaging (MRI) device, and an X-ray CT device can be applied.

 操作卓3は、画像記憶部1に格納された動画像の一のフレーム画像を表示部2に表示させる指令を入力可能に形成されている。 The operation console 3 is formed so that an instruction to display one frame image of a moving image stored in the image storage unit 1 on the display unit 2 can be input.

 自動追従部4は、画像診断装置全体を制御する制御手段8と、表示部2に表示された一のフレーム画像の前記関心領域の基準点を含むサイズの切出し画像を設定する切出し画像設定手段9と、画像記憶部1から動画像の他のフレーム画像を読み出して、切出し画像と画像の一致度が最も高い同一サイズの局所画像を抽出する切出し画像追跡手段10と、一致度が最も高い局所画像と切出し画像の座標差を求める移動量演算手段11と、その座標差に基づいて関心領域23の基準点23aの移動先座標を求める移動追跡手段12と、その基準点の移動先座標に基づいて求められた関心領域を動画像の他のフレーム画像に重ねて表示する表示制御手段14とを備えている。 The automatic follow-up unit 4 includes a control unit 8 that controls the entire image diagnostic apparatus, and a cut-out image setting unit 9 that sets a cut-out image of a size including the reference point of the region of interest of one frame image displayed on the display unit 2. A cut-out image tracking unit 10 for reading another frame image of the moving image from the image storage unit 1 and extracting a local image of the same size having the highest matching degree between the cut-out image and the image; a local image having the highest matching degree Moving amount calculating means 11 for calculating a coordinate difference between the image and the cut-out image, moving tracking means 12 for calculating a moving destination coordinate of the reference point 23a of the region of interest 23 based on the coordinate difference, and A display control unit for displaying the obtained region of interest on another frame image of the moving image.

 関心領域計測情報算出部5は、自動追従部4により移動された関心領域において、計測情報例えば関心領域内の画素値に基づいて輝度、輝度平均、輝度変化等を定量的に求めるとともに、これらの計測情報を線図で表示部2に表示させる機能を有して構成されている。 The region-of-interest measurement information calculation unit 5 quantitatively obtains the luminance, the average luminance, the luminance change, and the like based on the measurement information, for example, the pixel value in the region of interest, in the region of interest moved by the automatic tracking unit 4. It has a function of displaying measurement information on the display unit 2 in a diagram.

 次に、本実施形態の画像診断装置の詳細な機能構成について、図1に示した処理手順に従って動作とともに説明する。まず、関心領域の追従制御方法は、操作卓3から組織の動き追従モードを選択する指令が入力されることによって開始する(S1)。自動追従部4の制御手段8は、画像記憶部1から動画像の最初のフレーム画像ft(t=0)を読み出して表示部2に表示させる(S2)。例えば、最初のフレーム画像f0として図3に示す心臓の心室21の断層像が表示されたものとする。図3において、操作者が観察したい生体組織の関心領域23として、心筋22の特定の範囲を選択する。このとき、操作者は操作部3のマウスなどを操作してフレーム画像f0上に例えば円形、矩形、楕円形の関心領域23を描出する指令を入力する。その指令に基づいて表示された一のフレーム画像において生体組織の関心領域する目印(マーク)を重畳表示する。そして、画像上の関心領域に対応する基準点23aを定める。このとき、基準点23aとして、関心領域の重心、中心、又は目印上の少なくとも1点、又は複数点、あるいは関心領域から所定の距離を離れた点等を手動設定又は自動設定させる。なお、図3において、符号24は僧帽弁である。 Next, a detailed functional configuration of the diagnostic imaging apparatus according to the present embodiment will be described along with an operation according to the processing procedure illustrated in FIG. First, the tracking control method for a region of interest is started when a command for selecting a tissue movement tracking mode is input from the console 3 (S1). The control means 8 of the automatic following unit 4 reads the first frame image ft (t = 0) of the moving image from the image storage unit 1 and causes the display unit 2 to display the first frame image ft (t = 0) (S2). For example, it is assumed that the tomographic image of the ventricle 21 of the heart shown in FIG. 3 is displayed as the first frame image f0. In FIG. 3, a specific range of the myocardium 22 is selected as the region of interest 23 of the living tissue that the operator wants to observe. At this time, the operator operates the mouse or the like of the operation unit 3 to input a command to draw a circular, rectangular, or elliptical region of interest 23 on the frame image f0. In one frame image displayed based on the instruction, a mark (mark) as a region of interest of the living tissue is superimposed and displayed. Then, a reference point 23a corresponding to the region of interest on the image is determined. At this time, at least one point or a plurality of points on the center of gravity, center, or landmark of the region of interest, a point separated from the region of interest by a predetermined distance, or the like is manually or automatically set as the reference point 23a. In FIG. 3, reference numeral 24 denotes a mitral valve.

 関心領域23の基準点23aが設定されると、制御手段8はフレーム画像f0上の基準点23aの座標を取込み、切出し画像設定手段9に送る(S3)。切出し画像設定手段9は、図4(a)に示す様に、基準点23aの画像を中心として、縦横2(A+1)画素(但しAは自然数)のサイズの矩形領域を切出し画像25として設定する(S4)。ここで、切出し画像25のサイズは、基準点23aの生体組織とは異なる生体組織を含む大きさの領域に設定することが好ましい。例えば、これは、切出し画像25のサイズが小さすぎると一致する局所画像が多く出現し、真の移動先を特定できない場合が生じたり、逆に大きすぎるとフレーム画像f0の画像領域からはみ出して計測できない場合が生ずるからである。 When the reference point 23a of the region of interest 23 is set, the control means 8 takes in the coordinates of the reference point 23a on the frame image f0 and sends it to the cut-out image setting means 9 (S3). As shown in FIG. 4A, the cut-out image setting means 9 sets a rectangular area having a size of 2 (A + 1) pixels (where A is a natural number) in the vertical and horizontal directions around the image of the reference point 23a as the cut-out image 25. It is set (S4). Here, it is preferable that the size of the cut-out image 25 be set to an area having a size including a living tissue different from the living tissue at the reference point 23a. For example, this is because if the size of the cut-out image 25 is too small, many matching local images appear, and the true destination cannot be specified. Conversely, if the size is too large, the cut-out image 25 runs out of the image area of the frame image f0 and is measured. This is because there are cases where it is not possible.

 切出し画像追跡手段10は、画像記憶部1から動画像の次のフレーム画像f1を読み出し、切出し画像25と画像の一致度が最も高い同一サイズの局所画像を抽出する(S5)。この抽出処理は、いわゆるブロックマッチング法と称される画像相関法を適用する。この抽出処理をフレーム画像f1の全領域について行なうと、処理時間がかかり過ぎる。そこで、抽出処理時間を短縮するため、本実施形態では、フレーム画像f1よりも十分に小さい、図4(b)に示す検索領域26について行なうようにしている。つまり、検索領域26は、切出し画像25に対して上下左右に一定の振り幅の画素数Bを付加した矩形領域とする。この画素数Bは、関心領域内の組織の移動量よりも大きく、例えば3〜10画素に設定する。これは、心臓などの循環器系の動く範囲は、通常の視野において、狭い領域に限られるからである。このようにして、検索領域26内の同一サイズの局所画像27を順次ずらして切出し画像25との画像の一致度を求める。 The cut-out image tracking means 10 reads the next frame image f1 of the moving image from the image storage unit 1, and extracts a local image of the same size having the highest degree of matching between the cut-out image 25 and the image (S5). This extraction process applies an image correlation method called a so-called block matching method. If this extraction processing is performed for the entire area of the frame image f1, the processing time will be too long. Therefore, in order to shorten the extraction processing time, in the present embodiment, the search is performed on the search area 26 shown in FIG. 4B, which is sufficiently smaller than the frame image f1. That is, the search area 26 is a rectangular area in which the number B of pixels having a fixed swing width is added to the cut-out image 25 vertically and horizontally. The number B of pixels is larger than the movement amount of the tissue in the region of interest, and is set to, for example, 3 to 10 pixels. This is because the range of movement of the circulatory system such as the heart is limited to a small area in a normal visual field. In this way, the local images 27 of the same size in the search area 26 are sequentially shifted to determine the degree of coincidence of the image with the cut-out image 25.

 次に、検索した複数の局所画像27の内で画像の一致度が最も高い局所画像27maxを抽出し、局所画像27maxを切出し画像25の移動先とし、局所画像27maxの座標を求める(S6)。これらの画像の座標は、中心画素の座標、あるいは矩形領域の何れかの角の座標で代表する。そして、局所画像27maxと切出し画像25の座標差から基準点23aの移動先座標を求め、これに基づいて基準点23aの移動先座標を求めて記憶するとともに、その基準点23aの移動先座標に基づいて関心領域23を表示制御手段14により移動操作して所望の生体組織の部位に重畳表示する(S7)。なお、局所画像27maxと切出し画像25における基準点23aの相対位置は変化しないものとして扱っている。 Next, a local image 27max having the highest degree of image matching is extracted from the plurality of searched local images 27, and the local image 27max is set as a destination of the cut-out image 25, and the coordinates of the local image 27max are obtained (S6). The coordinates of these images are represented by the coordinates of the center pixel or the coordinates of any corner of the rectangular area. Then, the destination coordinates of the reference point 23a are obtained from the coordinate difference between the local image 27max and the cut-out image 25, and the destination coordinates of the reference point 23a are obtained and stored based on the coordinates. The display control means 14 moves and moves the region of interest 23 on the basis of the desired region of the living tissue based on the displayed region (S7). It is assumed that the relative position between the local image 27max and the reference point 23a in the cut-out image 25 does not change.

 そして、S7で求められた基準点23aの移動先座標に基づいて移動された関心領域23において、各種の計測情報例えば関心領域23内の画素値の輝度、輝度平均、輝度変化を関心領域計測情報算出部5により算出させる(S8)。すなわち、移動前後の関心領域23内の輝度平均に計測させることにより、動きを伴う心筋内の血流量を正確かつ定量的に計測することができる。また、診断画像上の関心領域内の画素値から、輝度、輝度平均、輝度変化等に関する物理量である計測情報を定量的に求めることができる。 Then, in the region of interest 23 moved based on the destination coordinates of the reference point 23a obtained in S7, various measurement information such as the luminance, average luminance, and luminance change of the pixel value in the region of interest 23 are calculated as the region of interest measurement information. The calculation is performed by the calculation unit 5 (S8). That is, by making the luminance average in the region of interest 23 before and after the movement, the blood flow in the myocardium with movement can be measured accurately and quantitatively. Further, measurement information, which is a physical quantity related to luminance, luminance average, luminance change, and the like, can be quantitatively obtained from the pixel values in the region of interest on the diagnostic image.

 このようにして求めた計測情報に基づいて、さらに関心領域計測情報算出部5は、関心領域23内の画素値の輝度、輝度平均、輝度変化等をグラフで表示部2に表示させる(S9)。これにより、観者は、関心領域23内の生体組織例えば心筋に流れる血流量を視覚的かつ定量的に把握することができる。 Based on the measurement information thus obtained, the region-of-interest measurement information calculation unit 5 further displays the luminance, average luminance, change in luminance, and the like of the pixel values in the region of interest 23 on the display unit 2 in a graph (S9). . Thus, the viewer can visually and quantitatively grasp the blood flow flowing through the living tissue in the region of interest 23, for example, the myocardium.

 次に、ステップS10に進み、動画像の全てのフレーム画像について関心領域23の追従が終了したか否か判断し、未処理のフレーム画像があれば、ステップS5に戻ってS5~S10の処理を繰り返す。全てのフレーム画像について関心領域23の追従が終了した場合は、追従処理動作を終了する。 Next, the process proceeds to step S10, where it is determined whether or not the follow-up of the region of interest 23 has been completed for all the frame images of the moving image. If there is an unprocessed frame image, the process returns to step S5 to perform the processes of S5 to S10. repeat. When the tracking of the region of interest 23 has been completed for all the frame images, the tracking processing operation ends.

 上述したように、本実施形態によれば、画像相関法を適用することにより、生体組織の動きに関心領域23の基準点23aの移動先の座標を順次求めることができるから、関心領域23を生体組織の動きに追従させて表示することができる。その結果、診断画像上の関心領域23の目印と生体組織との相対位置が変化することを回避できるから、計測すべき生体組織を確実に関心領域23の目印内に確実に位置させることができるので、関心領域23において計測される評価指標の信頼性が向上する。 As described above, according to this embodiment, by applying the image correlation method, the coordinates of the movement destination of the reference point 23a of the region of interest 23 can be sequentially obtained for the movement of the living tissue. The display can be made to follow the movement of the living tissue. As a result, a change in the relative position between the mark of the region of interest 23 and the biological tissue on the diagnostic image can be avoided, so that the biological tissue to be measured can be reliably positioned within the mark of the region of interest 23. Therefore, the reliability of the evaluation index measured in the region of interest 23 is improved.

 ここで、上記実施形態を用いて、生体組織の指定部位の動きを計測してなる具体例について図5〜図7を用いて説明する。図5(a)は図3に示した関心領域23を心筋の画像に1つ重畳表示させた画像例であり、同図(b)は被検体に造影剤を投与した後、診断画像上の関心領域23内の画素値に基づいて輝度平均差をグラフで表した画像例である。グラフの横軸は時間を、縦軸は輝度平均差を表しており、輝度平均差の算出方法は、時間輝度曲線など公知の方法を用いている。このグラフを参照することにより、関心領域23内の心筋内の血流量を視覚的かつ定量的に把握することができ、心筋梗塞などの診断を的確に行うことができる。 Here, a specific example of measuring the movement of the designated portion of the living tissue using the above embodiment will be described with reference to FIGS. FIG. 5A is an example of an image in which one region of interest 23 shown in FIG. 3 is superimposed and displayed on a myocardial image, and FIG. 5B shows an image on a diagnostic image after a contrast agent is administered to a subject. 9 is an image example in which a luminance average difference is represented in a graph based on a pixel value in a region of interest 23. The horizontal axis of the graph represents time, and the vertical axis represents the average luminance difference. The method of calculating the average luminance difference uses a known method such as a time luminance curve. By referring to this graph, the blood flow in the myocardium in the region of interest 23 can be visually and quantitatively grasped, and a diagnosis of myocardial infarction or the like can be accurately made.

 一方、図6(a)は図3に示した関心領域23を心筋22の心壁を挟んで2つ重畳表示させた画像例であり、同図(b)は被検体に造影剤を投与した後、関心領域23内の画素値に基づいて輝度平均差をそれぞれグラフで表した画像例である。グラフの横軸は時間を、縦軸は輝度平均差を現しており、輝度平均差の算出方法は、時間輝度曲線など公知の方法を用いている。このグラフを参照することにより、例えば心筋内の血流量を他の部位の血流量と比較することで相対的に把握することができるので、心筋梗塞の発症場所などを的確に把握できる可能性が高まる。この場合において、それらの心臓に係る計測値のグラフと、ECG波形、心音波形、などの情報を表示部2に時間軸を関連させて表示することも好ましい。これにより、心機能に対比しながら心筋の血流量を把握することができる。 On the other hand, FIG. 6A is an image example in which two regions of interest 23 shown in FIG. 3 are superimposed and displayed with the heart wall of the myocardium 22 interposed therebetween, and FIG. 6B is a diagram in which a contrast agent is administered to the subject. Thereafter, it is an image example in which the average luminance difference is represented by a graph based on the pixel value in the region of interest 23. The horizontal axis of the graph represents time, and the vertical axis represents the average luminance difference. The method of calculating the average luminance difference uses a known method such as a time luminance curve. By referring to this graph, for example, since the blood flow in the myocardium can be relatively grasped by comparing it with the blood flow in other parts, there is a possibility that the onset of myocardial infarction and the like can be accurately grasped. Increase. In this case, it is also preferable to display a graph of the measurement values related to the heart and information such as an ECG waveform and a heart sound waveform on the display unit 2 in association with the time axis. Thereby, the blood flow rate of the myocardium can be grasped while comparing with the cardiac function.

 また、図7は、図1で関心領域の表示態様例を示している。同図(a)は楕円形の枠体で関心領域23Aを画成した表示態様例であり、同図(b)は円形の枠体で関心領域23Bを画成した表示態様例であり、また同図(c)は矩形の枠体で関心領域23Cを画成した表示態様例であり、さらに同図(d)は対向する2本の線体により関心領域23Dを画成した表示態様例である。これらの関心領域23A〜23Dはそれぞれ操作卓3のマウス等からの指令に基づいて表示部2に重畳表示させる。この場合において、目印の表示態様はこれらに限られるものではなく、任意の表示態様を設定することができる。
(実施形態2)
 図1の実施形態では、1つのフレーム画像についての関心領域23の基準点23aの追従が終了する度に(S7)、その基準点23aの移動に基づいて関心領域23を画面上に移動させ、移動した関心領域23に規定される組織に関する各種情報を算出させるとともに(S8)、それらの情報を表示部に表示させる(S9)ようにした例を説明した。本発明はこれに限らず、図8に示すように、図1のステップS10をステップS7の後に配置し、全てのフレーム画像についての基準点23aの追跡が終了した後に、ステップS8、9の処理を実行するようにしてもよい。
FIG. 7 shows an example of a display mode of the region of interest in FIG. FIG. 7A is a display example in which the region of interest 23A is defined by an elliptical frame, and FIG. 8B is a display example in which the region of interest 23B is defined by a circular frame. FIG. 14C is a display example in which the region of interest 23C is defined by a rectangular frame, and FIG. 14D is a display example in which the region of interest 23D is defined by two opposing lines. is there. These regions of interest 23A to 23D are superimposed and displayed on the display unit 2 based on commands from a mouse or the like of the console 3, respectively. In this case, the display mode of the mark is not limited to these, and an arbitrary display mode can be set.
(Embodiment 2)
In the embodiment of FIG. 1, each time the tracking of the reference point 23a of the region of interest 23 for one frame image ends (S7), the region of interest 23 is moved on the screen based on the movement of the reference point 23a. An example has been described in which various types of information relating to the tissue defined in the moved region of interest 23 are calculated (S8), and the information is displayed on the display unit (S9). The present invention is not limited to this. As shown in FIG. 8, after the step S10 of FIG. 1 is arranged after the step S7 and the tracking of the reference point 23a is completed for all the frame images, the processing of the steps S8 and 9 is performed. May be executed.

 ここで、画像相関法による画像追跡処理の具体例を、図9を用いて説明する。図示例は、説明を簡単にするために、切出し画像25のサイズを矩形の9画素領域とし、検索領域26についても矩形の25画素領域として説明する。つまり、同図(a)に示す切出し画像25は、基準点23aの画素を中心としてA=1画素に設定した例であり、同図(b)に示す検索領域26はB=1画素に設定した例である。これによれば、同図(b)に示す様に、9個の局所領域27について相関値を求め、相関が最も大きい位置が移動先座標に相当することになる。
(実施形態3)
 本実施形態は、超音波撮影法により撮影して得られる動画像による生体組織の追跡処理に適用できるものである。特に、動画像に対応するRF信号を記憶しておき、画像相関法により求めた画像の一致度が最も高い局所画像の位置を、RF信号を用いて補正することにより、生体組織の動きを追従する関心領域23の基準点23aの移動先を一層精度よく求めることができる。
Here, a specific example of the image tracking processing by the image correlation method will be described with reference to FIG. In the illustrated example, for simplicity of description, the size of the cut-out image 25 is described as a rectangular 9-pixel area, and the search area 26 is also described as a rectangular 25-pixel area. That is, the cut-out image 25 shown in FIG. 7A is an example in which A = 1 pixel is set with the pixel at the reference point 23a as the center, and the search area 26 shown in FIG. This is an example. According to this, as shown in FIG. 7B, the correlation values are obtained for the nine local regions 27, and the position having the largest correlation corresponds to the destination coordinates.
(Embodiment 3)
The present embodiment can be applied to tracking processing of a living tissue using a moving image obtained by imaging by an ultrasonic imaging method. In particular, the RF signal corresponding to the moving image is stored, and the position of the local image having the highest matching degree of the image obtained by the image correlation method is corrected using the RF signal to follow the movement of the living tissue. The destination of the reference point 23a of the region of interest 23 to be moved can be obtained with higher accuracy.

 図10に示すように、超音波診断装置17から動画像、及びその動画像の再構成に用いたRF信号(超音波エコー信号を受信処理した信号)が、それぞれオンライン又は記録媒体を介して画像記憶部1及びRF信号記憶部18に格納されるようになっている。RF信号記憶部18は、信号伝送路6を介して自動追従部4に接続されている。また、自動追従部4に移動量補正部13が設けられている。 As shown in FIG. 10, a moving image from the ultrasonic diagnostic apparatus 17 and an RF signal (a signal obtained by receiving and processing an ultrasonic echo signal) used for reconstructing the moving image are imaged online or via a recording medium, respectively. It is stored in the storage unit 1 and the RF signal storage unit 18. The RF signal storage unit 18 is connected to the automatic following unit 4 via the signal transmission path 6. Further, the automatic follow-up unit 4 is provided with a movement amount correction unit 13.

 図11に、本実施形態の主要部の処理手順を示す。本実施形態の追跡処理の基本は、図8のステップS6で求めた切出し画像の移動先座標を取込み、基準点23aの移動先座標を算出する(S21)。次に、切出し画像25の基準点23aの座標と、一致度が最も高い局所画像27maxの基準点23aの座標の周辺の画像に係るRF信号をRF信号記憶部18から抽出する(S22)。つまり、移動前後の関心領域23の基準点23aの周辺画像のRF信号を抽出する。そして、移動前後のRF信号の相互相関をとり、その相関値を求める(S23)。この場合、まず、移動前後の何れかのRF信号を画像相関法で求めた移動量(画素数)に対応する分だけ時間軸をずらし、両者の相互相関(例えば、積和演算)をとりながら、移動前後の何れかのRF信号をずらす。そして、求めた相互相関値が最大値となるずれ量τが、RF信号による移動量の補正値として求められる(S24)。そして、先に画像相関法で求めた基準点23aの移動量に、RF信号を用いて求めた基準点23aの移動量を加算して、基準点23aの移動量を補正する(S25)。 FIG. 11 shows a processing procedure of a main part of the present embodiment. The basis of the tracking processing of the present embodiment is to capture the destination coordinates of the cut-out image obtained in step S6 of FIG. 8 and calculate the destination coordinates of the reference point 23a (S21). Next, the RF signal related to the image around the coordinates of the reference point 23a of the cut-out image 25 and the coordinates of the reference point 23a of the local image 27max having the highest matching degree is extracted from the RF signal storage unit 18 (S22). That is, the RF signal of the peripheral image of the reference point 23a of the region of interest 23 before and after the movement is extracted. Then, the cross-correlation between the RF signals before and after the movement is obtained, and the correlation value is obtained (S23). In this case, first, any one of the RF signals before and after the movement is shifted on the time axis by an amount corresponding to the movement amount (the number of pixels) obtained by the image correlation method, and the cross-correlation (for example, a product-sum operation) between the two is taken. , Any one of the RF signals before and after the movement. Then, the shift amount τ at which the obtained cross-correlation value becomes the maximum value is obtained as a correction value of the movement amount by the RF signal (S24). Then, the movement amount of the reference point 23a obtained by using the RF signal is added to the movement amount of the reference point 23a previously obtained by the image correlation method to correct the movement amount of the reference point 23a (S25).

 ここで、移動前後のRF信号の相互相関値の最大値が、基準点23aの移動量の相関すること、及びそれにより基準点23aの移動量を補正することにより、位置の計測精度が向上する理由を、図12を用いて説明する。なお、図12(a)においては、移動前の基準点周辺のRF信号41と、移動後の基準点周辺のRF信号42の時間軸を、画像相関法で求めた移動量に基づいてずらした状態で示している。そして、例えば、RF信号41の時間軸を正負何れかの方向にずらしながらRF信号42との相互相関を計算すると、同図(b)に示す最大値を示す相互相関値43が得られる。このRF信号41とRF信号42のずらした位相差をτとすると、この移動量τが画像相関法の移動量に加えて補正すべき移動量に相当する。これにより、画像相関法の移動量の計測精度を向上できる。 Here, the maximum value of the cross-correlation value of the RF signal before and after the movement is correlated with the movement amount of the reference point 23a, and by correcting the movement amount of the reference point 23a, the position measurement accuracy is improved. The reason will be described with reference to FIG. In FIG. 12A, the time axes of the RF signal 41 around the reference point before the movement and the RF signal 42 around the reference point after the movement are shifted based on the movement amount obtained by the image correlation method. The state is shown. Then, for example, when the cross-correlation with the RF signal 42 is calculated while shifting the time axis of the RF signal 41 in either the positive or negative direction, a cross-correlation value 43 indicating the maximum value shown in FIG. If the shifted phase difference between the RF signal 41 and the RF signal 42 is τ, the moving amount τ corresponds to the moving amount to be corrected in addition to the moving amount in the image correlation method. Thereby, the measurement accuracy of the movement amount of the image correlation method can be improved.

 以上説明したように、本発明の各実施形態によれば、診断画像上の関心領域を生体組織に動きに精度よく追従させることができるので、生体組織の動きにより生体組織と関心領域との相対位置が変化することを回避できる。すなわち、動きを伴う生体組織を関心領域内に常に位置させることができので、その関心領域において計測される計測情報の信頼性が向上する。 As described above, according to each embodiment of the present invention, the region of interest on the diagnostic image can be made to follow the movement of the living tissue with high accuracy, and the relative movement between the living tissue and the region of interest can be determined by the movement of the living tissue. The position can be prevented from changing. That is, since the living tissue with movement can always be located in the region of interest, the reliability of the measurement information measured in the region of interest is improved.

 例えば、心筋内の血流量を観察する場合、被検体に造影剤を投与した後、心筋内に関心領域を設定して、その関心領域の目印内の画素値から評価指標である輝度、輝度平均、輝度変化等を計測し、計測した評価指標に基づいて心筋内の血流量を把握することにより心筋梗塞等の診断を行うことが行われる。この場合、本発明によれば、関心領域が常に心筋の動きに追従して移動するため確実に関心領域の目印内の画素値から評価指標である輝度、輝度平均、輝度変化等を求めることができ、評価指標の信頼性を向上させることができる。その評価指標に基づいて心筋の血流量を定量的に把握することにより、心筋梗塞の発症場所や症状の程度などを正確かつ的確に診断できる可能性が高まる。さらに、これらの計測情報を線図で表示部に表示させることにより、観者は、計測情報を視覚的に把握することができるため、容易に診断を行うことが可能となる。 For example, when observing blood flow in the myocardium, after administering a contrast agent to the subject, a region of interest is set in the myocardium, and the luminance and luminance average as evaluation indices are determined from the pixel values in the mark of the region of interest. Diagnosis of myocardial infarction or the like is performed by measuring a change in luminance, etc., and grasping the blood flow in the myocardium based on the measured evaluation index. In this case, according to the present invention, since the region of interest always moves following the movement of the myocardium, it is possible to reliably obtain the luminance, luminance average, luminance change, and the like, which are evaluation indices, from the pixel values in the landmark of the region of interest. It is possible to improve the reliability of the evaluation index. By quantitatively grasping the myocardial blood flow based on the evaluation index, the possibility of accurately and accurately diagnosing the location and the degree of symptoms of myocardial infarction increases. Further, by displaying the measurement information on the display unit in a diagram, the observer can visually grasp the measurement information, so that diagnosis can be easily performed.

 また、本発明は、心臓の心筋内の血流量を計測することに限らず、生体組織の動きを伴う部位であれば、どのような部位の生体組織にも適用できることは明らかである。例えば、頚動脈などの大血管壁の血流量の計測に適用できる。この場合、頚動脈の境界を含む関心領域を重畳表示し、表示された関心領域の目印を頚動脈の動きに自動追従させ、その関心領域内の画素値の輝度、輝度平均、輝度変化に基づいて血流量を計測することができる。 Also, it is apparent that the present invention is not limited to measuring the blood flow in the heart muscle of the heart, but can be applied to any part of the living tissue as long as the living tissue moves. For example, the present invention can be applied to measurement of blood flow in a large blood vessel wall such as a carotid artery. In this case, the region of interest including the boundary of the carotid artery is superimposed and displayed, the displayed mark of the region of interest is made to automatically follow the movement of the carotid artery, and the blood value is calculated based on the luminance of the pixel values in the region of interest, the luminance average, and the luminance change. The flow rate can be measured.

 また、上述の実施形態は、オフラインで行なう例について説明したが、ブロックマッチング法の処理に係る速度を向上すれば、オンラインあるいはリアルタイムの動画像にも適用できる。 In the above-described embodiment, an example in which the processing is performed offline has been described. However, if the processing speed of the block matching method is improved, the present invention can be applied to online or real-time moving images.

 また、上述の実施形態は、2次元の断層像を例に説明したが、3次元断層像にも適用できることはいうまでもない。 The above embodiment has been described by taking a two-dimensional tomographic image as an example, but it goes without saying that the present invention can be applied to a three-dimensional tomographic image.

 また、画像相関法は、切出し画像と局所画像の対応する画像の一致度を算出する方法であれば公知の技術を用いることができる。例えば、一般に知られている切出し画像と局所画像の対応する画素ごとに画素値の積を求め、その絶対値の総和をもって相関値とする2次元相互相関法、切出し画像と局所画像の各画素値の平均値を画素ごとの画素値から引き、その積を求め、その絶対値の総和をもって相関値とする2次元正規化相互相関法、画素ごとに画素値の差の絶対値を求め、その絶対値の総和をもって相関値とするSAD法、画素ごとの画素値の差の二乗値を求め、その二乗値の総和をもって相関値とするSSD法などを適用できる。このとき、相関最大である局所画像を選ぶためには2次元相互相関法と2次元正規化相互相関法では相関値が最大の、また、SAD法、SSD法では相関値が最小の局所画像を画像の一致度が最も高い局所画像とすればよい。この相関最大(相関値が最大又は最小)である局所画像を選び出すことに画像相関法の特徴がある。 In addition, a known technique can be used for the image correlation method as long as it is a method of calculating the degree of coincidence between the cut image and the corresponding image of the local image. For example, a generally known product of a pixel value for each corresponding pixel of a cut-out image and a local image is obtained, and a two-dimensional cross-correlation method in which the sum of the absolute values is used as a correlation value, each pixel value of the cut-out image and the local image Is subtracted from the pixel value of each pixel, the product is obtained, and the two-dimensional normalized cross-correlation method, in which the sum of the absolute values is used as the correlation value, calculates the absolute value of the difference between the pixel values for each pixel, and calculates the absolute value. An SAD method in which the sum of the values is used as a correlation value, an SSD method in which a square value of a difference between pixel values of pixels is obtained, and the sum of the square values is used as a correlation value, and the like can be applied. At this time, in order to select the local image having the maximum correlation, the local image having the largest correlation value in the two-dimensional cross-correlation method and the two-dimensional normalized cross-correlation method, and the local image having the smallest correlation value in the SAD method and the SSD method. What is necessary is just to let it be the local image with the highest image matching degree. There is a feature of the image correlation method in selecting a local image having the maximum correlation (the maximum or minimum correlation value).

図1は、本発明の関心領域の追従制御方法の一実施の形態の画像診断装置である。FIG. 1 is an image diagnostic apparatus according to an embodiment of the present invention. 図2は、図1の関心領域の追従制御方法を適用してなる画像診断装置のブロック構成図である。FIG. 2 is a block diagram of an image diagnostic apparatus to which the tracking control method for a region of interest shown in FIG. 1 is applied. 図3は、本発明の関心領域の追従を、心臓の断層像に適用して説明するための図である。FIG. 3 is a diagram for explaining the tracking of the region of interest according to the present invention applied to a tomographic image of the heart. 図4は、本発明に係るブロックマッチング法の一実施形態を説明する図であり、(a)は切出し画像の一例を、(b)は検索領域の一例を示す図である。4A and 4B are diagrams illustrating an embodiment of the block matching method according to the present invention, wherein FIG. 4A illustrates an example of a cut-out image, and FIG. 4B illustrates an example of a search area. 図5は、本発明の追従制御方法により関心領域の表示態様と計測された計測情報の表示画像の例である。FIG. 5 is an example of a display mode of a region of interest and a display image of measurement information measured by the tracking control method of the present invention. 図6は、本発明の追従制御方法により関心領域の表示態様と計測された計測情報の表示画像の例である。FIG. 6 is an example of a display mode of a region of interest and a display image of measurement information measured by the tracking control method of the present invention. 図7は、関心領域の表示態様例を示している。FIG. 7 shows an example of a display mode of the region of interest. 図8は、図1の処理手順を変形した本発明の実施形態2の追従制御手順の図である。FIG. 8 is a diagram of a follow-up control procedure according to the second embodiment of the present invention, which is a modification of the procedure of FIG. 図9は、画像相関法による画像追跡処理を、具体例を用いて説明する図である。FIG. 9 is a diagram illustrating an image tracking process using the image correlation method using a specific example. 図10は、本発明を超音波診断装置に適用してなる一実施形態の画像診断装置のブロック図である。FIG. 10 is a block diagram of an image diagnostic apparatus according to an embodiment in which the present invention is applied to an ultrasonic diagnostic apparatus. 図11は、図8の画像相関法を改善したRF信号補正法の処理手順を示す図である。FIG. 11 is a diagram illustrating a processing procedure of an RF signal correction method in which the image correlation method of FIG. 8 is improved. 図12は、RF信号補正法を説明する図である。FIG. 12 is a diagram illustrating the RF signal correction method.

符号の説明Explanation of reference numerals

  1 画像記憶部
  2 表示部
  3 操作卓
  4 自動追従部
  5 動態情報演算部
  6 信号伝送路
  7 診断画像撮像装置
  8 制御手段
  9 切出し画像設定手段
 10 切出し画像追跡手段
 11 移動量演算手段
 12 移動追跡手段
 14 表示制御手段
REFERENCE SIGNS LIST 1 image storage unit 2 display unit 3 console 4 automatic tracking unit 5 dynamic information calculation unit 6 signal transmission path 7 diagnostic image pickup device 8 control unit 9 cutout image setting unit 10 cutout image tracking unit 11 moving amount calculation unit 12 movement tracking unit 14 Display control means

Claims (27)

 被検体の断層像を撮像する撮像手段と、前記撮像手段により得られる動画像を表示する表示部とを備えた画像診断装置において、前記断層像に関心領域を指定する操作部と、前記関心領域の少なくとも一部に対応する前記断層像の動き追跡して前記関心領域を前記断層像の動きに追従させる追従手段を備えることを特徴とする画像診断装置。 In an image diagnostic apparatus including an imaging unit that captures a tomographic image of a subject and a display unit that displays a moving image obtained by the imaging unit, an operation unit that specifies a region of interest in the tomographic image, An image diagnostic apparatus comprising: a tracking unit that tracks the movement of the tomographic image corresponding to at least a part of the tomography and causes the region of interest to follow the movement of the tomographic image.  被検体の断層像を撮像して得られる動画像を表示する表示部と、前記断層像に関心領域を指定する操作部と、前記関心領域の少なくとも一部に対応する前記断層像の画像部位を抽出し、該画像部位の動きを追跡して前記関心領域の表示位置を移動させる追従手段を備えて成る画像診断装置。 A display unit that displays a moving image obtained by capturing a tomographic image of the subject, an operation unit that specifies a region of interest in the tomographic image, and an image part of the tomographic image corresponding to at least a part of the region of interest. An image diagnostic apparatus comprising a follower for extracting and tracking the movement of the image part to move the display position of the region of interest.  前記追従手段は、前記関心領域に1又は複数の基準点を設定し、該基準点に対応する1又は複数の画像部位を抽出して該画像部位の動きを追跡する追跡手段と、前記画像部位に対応する前記基準点の動きに合せて前記表示部に表示される前記関心領域を追従表示させる制御手段とを備えて成る請求項2に記載の画像診断装置。 Tracking means for setting one or more reference points in the region of interest, extracting one or more image parts corresponding to the reference points, and tracking the movement of the image parts, 3. The image diagnostic apparatus according to claim 2, further comprising: control means for following and displaying the region of interest displayed on the display unit in accordance with the movement of the reference point corresponding to (a).  被検体を撮影してなる動画像に重ねて表示される関心領域を前記動画像上の生体組織の動きに合せて追従させる制御方法であって、前記動画像の一のフレーム画像を表示する第1ステップと、該表示された前記一のフレーム画像の生体組織に関心領域を規定する目印を重ねて表示させる指令を入力する第2ステップと、前記関心領域に対応させて基準点を定め、該基準点を含むサイズの切出し画像を前記一のフレーム画像に設定する第3ステップと、前記動画像の他のフレーム画像を検索して前記切出し画像と画像の一致度が最も高い同一サイズの局所画像を抽出する第4ステップと、該一致度が最も高い局所画像と前記切出し画像の座票差に基づいて前記基準点の移動先座標を求めて記憶する第5ステップと、該記憶された前記基準点の移動先座標に基づいて前記関心領域を規定する前記目印の移動先座標を求めて前記動画像の他のフレーム画像に重ねて表示する第6ステップとを含んでなる関心領域の追従制御方法。 A control method in which a region of interest displayed superimposed on a moving image obtained by capturing an image of an object is followed in accordance with movement of a living tissue on the moving image, wherein a first frame image of the moving image is displayed. One step, a second step of inputting a command to superimpose and display a mark defining a region of interest on the biological tissue of the displayed one frame image, and defining a reference point corresponding to the region of interest; A third step of setting a cut-out image having a size including a reference point as the one frame image; and searching for another frame image of the moving image to search for another frame image and a local image having the same degree of matching between the cut-out image and the image. A fifth step of extracting the coordinates of the reference point based on the vote difference between the local image having the highest degree of coincidence and the cut-out image, and storing the coordinates of the reference point. Point Another sixth step and follow-up control method of the region of interest comprising the displayed over the frame image of the moving image in search of destination coordinate of the mark that defines the region of interest based on Dosaki coordinates.  前記第4ステップは、前記切出し画像と前記局所画像の画像データの相関処理を行って画像の相関が最も高い局所画像を抽出することを特徴とする請求項4に記載の関心領域の追従制御方法。 5. The method according to claim 4, wherein the fourth step performs a correlation process between the cut-out image and the image data of the local image to extract a local image having the highest image correlation. .  前記動画像を超音波撮影法により撮影し、かつ該動画像に対応するRF信号を記憶しておき、
 前記第5ステップは、前記一致度が最も高い局所画像と前記切出し画像の座標差に基づいて前記基準点の移動先座標を求め、該移動先座標の周辺に対応する複数の前記RF信号を抽出し、該抽出した複数のRF信号の相互相関をとり、該相互相関の最大値の位置に応じて前記移動先座標を補正することを特徴とする請求項4に記載の関心領域の追従制御方法。
The moving image is photographed by an ultrasonic imaging method, and an RF signal corresponding to the moving image is stored,
In the fifth step, a destination coordinate of the reference point is obtained based on a coordinate difference between the local image having the highest matching degree and the cut-out image, and a plurality of RF signals corresponding to the periphery of the destination coordinate are extracted. 5. The tracking control method for a region of interest according to claim 4, wherein a cross-correlation of the plurality of extracted RF signals is obtained, and the destination coordinates are corrected according to a position of a maximum value of the cross-correlation. .
 前記第4ステップにおいて抽出された局所画像を前記切出し画像とし、前記動画像のさらに他のフレーム画像に対して前記第4ステップ乃至前記第6ステップを繰り返し実行して、前記関心領域を規定する前記目印を前記動画像上の生体組織の動きに追従させて重ねて表示することを特徴とする請求項4乃至6のいずれかに記載の関心領域の追従制御方法。 The local image extracted in the fourth step is used as the cut-out image, and the fourth to sixth steps are repeatedly performed on still another frame image of the moving image to define the region of interest. The tracking control method for a region of interest according to any one of claims 4 to 6, wherein the mark is superimposed and displayed so as to follow the movement of the living tissue on the moving image.  前記切出し画像のサイズは、前記関心領域の生体組織とは異なる生体組織を含む大きさの領域であることを特徴とする請求項4乃至7のいずれかに記載の関心領域の追従制御方法。 The method according to any one of claims 4 to 7, wherein the size of the cut-out image is a region including a living tissue different from the living tissue of the region of interest.  前記第4ステップにおいて、前記切出し画像と画像の一致度が最も高い同一サイズの局所画像を抽出する検索範囲は、前記切出し画像よりも設定画素数大きい領域に設定されることを特徴とする請求項4乃至8のいずれかに記載の関心領域の追従制御方法。 The method according to claim 4, wherein in the fourth step, a search range for extracting a local image of the same size having the highest degree of matching between the cut-out image and the image is set to an area having a larger number of pixels than the cut-out image. The tracking control method for a region of interest according to any one of claims 4 to 8.  前記関心領域を規定する前記目印は、矩形と円形と楕円形のいずれか1つの枠体、又は対向する2本の線体であることを特徴とする請求項4乃至9のいずれかに記載の関心領域の追従制御方法。 10. The mark according to claim 4, wherein the mark that defines the region of interest is one of a rectangular, circular, and elliptical frame, or two opposing linear bodies. A tracking control method for a region of interest.  前記基準点は、前記関心領域の重心、中心、前記目印上の少なくとも1点であることを特徴とする請求項4乃至10のいずれかに記載の関心領域の追従制御方法。 11. The method according to claim 4, wherein the reference point is at least one point on a center of gravity, a center, and the mark of the region of interest.  前記関心領域内の生体組織に関する情報を計測するステップを含むことを特徴とする請求項4乃至11のいずれかに記載の関心領域の追従制御方法。 The method according to any one of claims 4 to 11, further comprising a step of measuring information on a biological tissue in the region of interest.  前記生体組織に関する情報は、前記関心領域内の輝度と輝度平均と輝度変化の少なくとも1つであることを特徴とする請求項12に記載の関心領域の追従制御方法。 The method according to claim 12, wherein the information about the living tissue is at least one of luminance, a luminance average, and a luminance change in the region of interest.  前記関心領域を少なくとも2つ設定し、該2つの関心領域の移動先領域を記憶しておき、該2つの関心領域における輝度、輝度平均、輝度変化の少なくとも1つを算出するステップを含むことを特徴とする請求項12に記載の関心領域の追従制御方法。 Setting at least two regions of interest, storing destination regions of the two regions of interest, and calculating at least one of luminance, luminance average, and luminance change in the two regions of interest. The method according to claim 12, wherein the tracking control is performed on a region of interest.  前記輝度変化を線図で表示することを特徴とする請求項13又は14に記載の関心領域の追従制御方法。 The method according to claim 13 or 14, wherein the change in luminance is displayed in a diagram.  被検体の断層像を撮影してなる動画像が格納される記憶部と、前記動画像を表示可能な表示部と、指令を入力する操作部と、前記表示部に表示される前記動画像の生体組織の動きを追従する自動追従部と、前記記憶部と前記表示部と前記操作部と前記自動追従部とを接続してなる信号伝送路とを有してなり、
 前記操作部は、前記記憶部に格納された前記動画像の一のフレーム画像を前記表示部に表示させる指令と、該指令に応じて表示された前記一のフレーム画像の生体組織に関心領域を規定する目印を重ねて表示させる指令を入力する手段を備え、
 前記自動追従部は、前記表示部に表示された前記一のフレーム画像の前記目印に対応させて基準点を定め、該基準点を含むサイズの切出し画像を前記一のフレーム画像に設定する切出し画像設定手段と、前記記憶部から前記動画像の他のフレーム画像を読み出して、前記切出し画像と画像の一致度が最も高い同一サイズの局所画像を抽出する切出し画像追跡手段と、該一致度が最も高い局所画像と前記切出し画像の座標差を求める移動量演算手段と、該座票差に基づいて前記基準点の移動先座標を求めて記憶する移動追跡手段と、該記憶された前記基準点の移動先座標に基づいて前記関心領域を規定する前記目印の移動先座標を求めて前記動画像の他のフレーム画像に重ねて表示する表示制御手段とを備えてなる画像診断装置。
A storage unit in which a moving image obtained by capturing a tomographic image of the subject is stored, a display unit capable of displaying the moving image, an operation unit for inputting a command, and an operation unit for displaying the moving image displayed on the display unit An automatic follow-up unit that follows the movement of the living tissue, comprising a signal transmission path connecting the storage unit, the display unit, the operation unit, and the automatic follow-up unit,
The operation unit has a command to display one frame image of the moving image stored in the storage unit on the display unit, and a region of interest in a biological tissue of the one frame image displayed according to the command. A means for inputting a command to superimpose and display the prescribed mark,
The automatic tracking unit determines a reference point corresponding to the mark of the one frame image displayed on the display unit, and sets a cut image having a size including the reference point as the one frame image. A setting unit, a cutout image tracking unit that reads another frame image of the moving image from the storage unit, and extracts a local image of the same size having the highest matching degree between the cutout image and the image, and Movement amount calculating means for calculating a coordinate difference between the high local image and the cut-out image; movement tracking means for calculating and storing a destination coordinate of the reference point based on the ticket difference; An image diagnostic apparatus comprising: display control means for obtaining destination coordinates of the mark defining the region of interest based on the destination coordinates, and displaying the destination coordinates on another frame image of the moving image.
 前記切出し画像追跡手段は、前記切出し画像と前記局所画像の画像データの相関処理を行って画像の相関が最も高い局所画像を抽出することを特徴とする請求項16に記載の画像診断装置。 17. The diagnostic imaging apparatus according to claim 16, wherein the cut-out image tracking unit performs a correlation process between the cut-out image and the image data of the local image to extract a local image having the highest image correlation.  前記記憶部に記憶される前記動画像は超音波撮影法により撮影され、かつ前記記憶部に前記動画像に対応するRF信号が記憶されてなり、
 前記移動追跡手段は、前記座標差に基づいて前記基準点の移動先座標を求め、該基準点の移動先座標の周辺に対応する複数の前記RF信号を抽出し、該抽出した複数のRF信号の相互相関をとり、該相互相関の最大値の位置に応じて前記移動先座標を補正することを特徴とする請求項16に記載の画像診断装置。
The moving image stored in the storage unit is captured by an ultrasonic imaging method, and an RF signal corresponding to the moving image is stored in the storage unit,
The movement tracking means obtains a destination coordinate of the reference point based on the coordinate difference, extracts a plurality of RF signals corresponding to the vicinity of the destination coordinate of the reference point, and extracts the plurality of extracted RF signals. 17. The image diagnostic apparatus according to claim 16, wherein the cross-correlation is obtained, and the destination coordinates are corrected according to the position of the maximum value of the cross-correlation.
 前記切出し画像追跡手段は、前記抽出された局所画像を前記切出し画像として前記動画像のさらに他のフレーム画像に対して繰り返し実行して前記切出し画像と画像の一致度が最も高い同一サイズの局所画像を順次抽出し、前記移動量演算手段は、順次抽出される一致度が最も高い局所画像と前記切出し画像の座標差を求め、前記移動追跡手段は、前記移動量演算手段により求めた座標差に基づいて前記基準点の移動先座標を求め、前記表示制御手段は、該基準点の移動先座標に基づいて前記関心領域を規定する前記目印を前記動画像上の生体組織の動きに追従させて重ねて表示することを特徴とする請求項16乃至18のいずれかに記載の画像診断装置。 The cut-out image tracking means repeatedly executes the extracted local image as the cut-out image on still another frame image of the moving image to obtain a local image of the same size having the highest degree of matching between the cut-out image and the image. Are sequentially extracted, the moving amount calculating means obtains a coordinate difference between the local image having the highest degree of coincidence sequentially extracted and the cut-out image, and the movement tracking means calculates the coordinate difference based on the coordinate difference obtained by the moving amount calculating means. Based on the destination coordinates of the reference point, the display control means causes the mark defining the region of interest to follow the movement of the biological tissue on the moving image based on the destination coordinates of the reference point. 19. The diagnostic imaging apparatus according to claim 16, wherein the diagnostic imaging apparatus displays images in a superimposed manner.  前記切出し画像追跡手段は、前記切出し画像よりも設定画素数大きい領域に設定される検索範囲について、前記切出し画像と画像の一致度が最も高い同一サイズの局所画像を抽出する検索を行なうことを特徴とする請求項16乃至19のいずれかに記載の画像診断装置。 The cut-out image tracking means performs a search for extracting a local image of the same size having the highest degree of coincidence between the cut-out image and the image, with respect to a search range set in an area having a larger number of pixels than the cut-out image. An image diagnostic apparatus according to any one of claims 16 to 19.  前記移動前の関心領域と、前記移動後の関心領域の少なくとも一方の領域内の画素値から前記生体組織に関する情報を計測し、その計測情報の変化を線図で前記表示部に表示する計測情報算出部を備えたことを特徴とする請求項16乃至20のいずれかに記載の画像診断装置。 Measurement information for measuring information on the living tissue from pixel values in at least one of the region of interest before the movement and the region of interest after the movement, and displaying a change in the measurement information on the display unit in a diagram. The image diagnostic apparatus according to any one of claims 16 to 20, further comprising a calculating unit.  前記計測情報は、輝度と、輝度平均と、輝度変化の少なくとも1つであることを特徴とする請求項21に記載の画像診断装置。 22. The diagnostic imaging apparatus according to claim 21, wherein the measurement information is at least one of luminance, luminance average, and luminance change.  前記計測情報算出部は、前記操作部から入力設定される少なくとも2つの前記関心領域の移動先座標を記憶しておき、該2つの関心領域において輝度、輝度平均、輝度変化の少なくとも1つを算出して、その線図を前記表示部に表示することを特徴とする請求項16乃至21のいずれかに記載の画像診断装置。 The measurement information calculation unit stores destination coordinates of at least two regions of interest input and set from the operation unit, and calculates at least one of luminance, luminance average, and luminance change in the two regions of interest. 22. The diagnostic imaging apparatus according to claim 16, wherein the diagram is displayed on the display unit.  操作卓からの指令に応じて記憶部から被検体の断層像を撮影してなる動画像の一のフレーム画像を読み出して表示部に表示させる第1ステップと、該表示された前記一のフレーム画像の生体組織に関心領域を規定する目印を重ねて表示させる指令の入力を要求する第2ステップと、該要求に応じて操作卓から入力設定された前記目印に対応する生体組織の関心領域に関連させて基準点を定める第3ステップと、前記基準点を含むサイズの切出し画像を前記一のフレーム画像に設定する第3ステップと、前記動画像の他のフレーム画像を検索して前記切出し画像と画像の一致度が最も高い同一サイズの局所画像を抽出する第4ステップと、該一致度が最も高い局所画像と前記切出し画像の座票差に基づいて前記基準点の移動先座標を求めて記憶する第5ステップと、該記憶された前記基準点の移動先座標に基づいて前記関心領域を規定する前記目印の移動先座標を求めて前記動画像の他のフレーム画像に重ねて表示させる第6ステップとを含んでなる関心領域の追従制御プログラム。 A first step of reading a frame image of a moving image obtained by capturing a tomographic image of a subject from a storage unit in response to a command from a console and displaying the frame image on a display unit; and the displayed one frame image A second step of requesting an input of a command to superimpose and display a mark defining a region of interest on the living tissue of the subject, and relating to the region of interest of the living tissue corresponding to the mark set from the console in response to the request. A third step of setting a reference point by setting the cutout image having the size including the reference point as the one frame image; and searching the other frame images of the moving image for the cutout image. A fourth step of extracting a local image of the same size having the highest degree of coincidence of the image, and obtaining a destination coordinate of the reference point based on a difference between the local image having the highest degree of coincidence and the cut-out image. A fifth step of obtaining the destination coordinates of the mark defining the region of interest based on the stored destination coordinates of the reference point, and displaying the destination coordinates on the other frame image of the moving image. And a step of controlling the tracking of the region of interest.  前記第5ステップは、前記切出し画像と前記局所画像の画像データの相関処理を行って画像の相関が最も高い局所画像を抽出することを特徴とする請求項24に記載の関心領域の追従制御プログラム。 25. The computer-readable storage medium according to claim 24, wherein the fifth step performs a correlation process between the cut-out image and the image data of the local image to extract a local image having the highest correlation between the images. .  前記動画像は超音波撮影法により撮影されかつ該動画像に対応するRF信号が前記記憶部に記憶されてなり、
 前記第5ステップは、前記一致度が最も高い局所画像と前記切出し画像の座標差に基づいて前記基準点の移動先座標を求め、該移動先座標の周辺に対応する複数の前記RF信号を抽出し、該抽出した複数のRF信号の相互相関をとり、該相互相関の最大値の位置に応じて前記基準点の移動先座標を補正することを特徴とする請求項24に記載の関心領域の追従制御プログラム。
The moving image is photographed by an ultrasonic imaging method and an RF signal corresponding to the moving image is stored in the storage unit,
In the fifth step, a destination coordinate of the reference point is obtained based on a coordinate difference between the local image having the highest matching degree and the cut-out image, and a plurality of RF signals corresponding to the periphery of the destination coordinate are extracted. The cross-correlation of the plurality of extracted RF signals is obtained, and the destination coordinates of the reference point are corrected according to the position of the maximum value of the cross-correlation. Tracking control program.
 前記第4ステップにおいて抽出された局所画像を前記切出し画像とし、前記動画像のさらに他のフレーム画像に対して前記第4ステップ乃至前記第6ステップを繰り返し実行して、前記関心領域を規定する前記目印を前記動画像上の生体組織の動きに追従させて重ねて表示することを特徴とする請求項24乃至26のいずれかに記載の関心領域の追従制御プログラム。 The local image extracted in the fourth step is used as the cut-out image, and the fourth to sixth steps are repeatedly performed on still another frame image of the moving image to define the region of interest. 27. The region of interest tracking control program according to claim 24, wherein the mark is displayed so as to overlap with the movement of the living tissue on the moving image.
JP2003311409A 2002-09-12 2003-09-03 Region-of-interest tracking control method, diagnostic imaging apparatus using the method, and region-of-interest tracking control program Expired - Lifetime JP4389081B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2003311409A JP4389081B2 (en) 2002-09-12 2003-09-03 Region-of-interest tracking control method, diagnostic imaging apparatus using the method, and region-of-interest tracking control program
US10/527,744 US8167802B2 (en) 2002-09-12 2003-09-12 Biological tissue motion trace method and image diagnosis device using the trace method
EP03795425.2A EP1543773B1 (en) 2002-09-12 2003-09-12 Biological tissue motion trace method and image diagnosis device using the trace method
PCT/JP2003/011701 WO2004024003A1 (en) 2002-09-12 2003-09-12 Biological tissue motion trace method and image diagnosis device using the trace method
CNB038213168A CN100393283C (en) 2002-09-12 2003-09-12 Biological tissue motion trace method and image diagnosis device using the trace method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002267071 2002-09-12
JP2003311409A JP4389081B2 (en) 2002-09-12 2003-09-03 Region-of-interest tracking control method, diagnostic imaging apparatus using the method, and region-of-interest tracking control program

Publications (2)

Publication Number Publication Date
JP2004121835A true JP2004121835A (en) 2004-04-22
JP4389081B2 JP4389081B2 (en) 2009-12-24

Family

ID=32301601

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003311409A Expired - Lifetime JP4389081B2 (en) 2002-09-12 2003-09-03 Region-of-interest tracking control method, diagnostic imaging apparatus using the method, and region-of-interest tracking control program

Country Status (1)

Country Link
JP (1) JP4389081B2 (en)

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005305024A (en) * 2004-04-26 2005-11-04 Toshiba Corp Computed tomographic apparatus
JP2005328948A (en) * 2004-05-19 2005-12-02 Hitachi Medical Corp Ultrasonic diagnostic device
JP2006102125A (en) * 2004-10-05 2006-04-20 Toshiba Corp Method for identifying region of interest with time in medical image processing apparatus and medical image processing apparatus
JP2007075333A (en) * 2005-09-14 2007-03-29 Aloka Co Ltd Ultrasonic diagnostic equipment
JP2007125152A (en) * 2005-11-02 2007-05-24 Hitachi Medical Corp Ultrasonic diagnostic apparatus
JP2007313294A (en) * 2006-04-24 2007-12-06 Toshiba Corp Ultrasonic diagnostic apparatus and control program of ultrasonic diagnostic apparatus
JP2008073417A (en) * 2006-09-25 2008-04-03 Hitachi Medical Corp Ultrasonic diagnostic device
JP2008517670A (en) * 2004-10-22 2008-05-29 シーメンス メディカル ソリューションズ ユーエスエー インコーポレイテッド Subvolume virtual grid alignment method
JP2008173236A (en) * 2007-01-17 2008-07-31 Toshiba Corp Medical image display device
JP2010094181A (en) * 2008-10-14 2010-04-30 Toshiba Corp Ultrasonic diagnostic apparatus and data processing program of the same
JP2010099348A (en) * 2008-10-24 2010-05-06 Toshiba Corp Medical image processor
JP2010279408A (en) * 2009-06-02 2010-12-16 Toshiba Medical Systems Corp Ultrasonic diagnosis apparatus
JP2011156286A (en) * 2010-02-03 2011-08-18 Toshiba Corp Ultrasonic diagnosis apparatus and ultrasonic image displaying program
JP2011193904A (en) * 2010-03-17 2011-10-06 Ge Medical Systems Global Technology Co Llc Ultrasonic diagnostic apparatus and control program for the same
WO2011129237A1 (en) * 2010-04-15 2011-10-20 株式会社 日立メディコ Ultrasonic diagnostic device
JP2012143358A (en) * 2011-01-11 2012-08-02 Toshiba Corp Ultrasonic diagnostic equipment and program
JP2013135974A (en) * 2013-04-10 2013-07-11 Hitachi Aloka Medical Ltd Ultrasonic diagnosis apparatus
JP2014000454A (en) * 2013-09-04 2014-01-09 Hitachi Medical Corp Ultrasonic diagnostic apparatus
JP2014050465A (en) * 2012-09-05 2014-03-20 Hitachi Medical Corp Image processor and region of interest setting method
JP2014223063A (en) * 2013-04-23 2014-12-04 パナソニック インテレクチュアル プロパティ コーポレーション オブアメリカPanasonic Intellectual Property Corporation of America Pet health check apparatus, pet health check method, and program
JP2014237041A (en) * 2008-10-27 2014-12-18 株式会社東芝 X-ray diagnosis system
WO2015030091A1 (en) * 2013-09-02 2015-03-05 株式会社 日立メディコ X-ray imaging device and method for displaying x-ray fluoroscopic image
JP2016022111A (en) * 2014-07-18 2016-02-08 株式会社東芝 Magnetic resonance imaging apparatus
JP2018011807A (en) * 2016-07-22 2018-01-25 株式会社日立製作所 Image display device, x-image diagnostic apparatus and image display method
WO2018025347A1 (en) * 2016-08-03 2018-02-08 株式会社島津製作所 X-ray fluoroscopic imaging apparatus
WO2019078054A1 (en) 2017-10-17 2019-04-25 富士フイルム株式会社 Acoustic wave diagnostic apparatus and method for controlling acoustic wave diagnostic apparatus
JP2020062339A (en) * 2018-10-19 2020-04-23 キヤノンメディカルシステムズ株式会社 Medical image processing device, x-ray diagnostic device and medical image processing program

Cited By (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005305024A (en) * 2004-04-26 2005-11-04 Toshiba Corp Computed tomographic apparatus
JP4536419B2 (en) * 2004-05-19 2010-09-01 株式会社日立メディコ Ultrasonic diagnostic equipment
JP2005328948A (en) * 2004-05-19 2005-12-02 Hitachi Medical Corp Ultrasonic diagnostic device
JP2006102125A (en) * 2004-10-05 2006-04-20 Toshiba Corp Method for identifying region of interest with time in medical image processing apparatus and medical image processing apparatus
JP2008517670A (en) * 2004-10-22 2008-05-29 シーメンス メディカル ソリューションズ ユーエスエー インコーポレイテッド Subvolume virtual grid alignment method
JP2007075333A (en) * 2005-09-14 2007-03-29 Aloka Co Ltd Ultrasonic diagnostic equipment
JP4537300B2 (en) * 2005-09-14 2010-09-01 アロカ株式会社 Ultrasonic diagnostic equipment
JP2007125152A (en) * 2005-11-02 2007-05-24 Hitachi Medical Corp Ultrasonic diagnostic apparatus
JP2007313294A (en) * 2006-04-24 2007-12-06 Toshiba Corp Ultrasonic diagnostic apparatus and control program of ultrasonic diagnostic apparatus
JP2008073417A (en) * 2006-09-25 2008-04-03 Hitachi Medical Corp Ultrasonic diagnostic device
JP2008173236A (en) * 2007-01-17 2008-07-31 Toshiba Corp Medical image display device
JP2010094181A (en) * 2008-10-14 2010-04-30 Toshiba Corp Ultrasonic diagnostic apparatus and data processing program of the same
JP2010099348A (en) * 2008-10-24 2010-05-06 Toshiba Corp Medical image processor
JP2014237041A (en) * 2008-10-27 2014-12-18 株式会社東芝 X-ray diagnosis system
US10456095B2 (en) 2008-10-27 2019-10-29 Canon Medical Systems Corporation X-ray diagnosis apparatus and image processing apparatus
US9532754B2 (en) 2008-10-27 2017-01-03 Toshiba Medical Systems Corporation X-ray diagnosis apparatus and image processing apparatus
US10028711B2 (en) 2008-10-27 2018-07-24 Toshiba Medical Systems Corporation X-ray diagnosis apparatus and image processing apparatus
US10827991B2 (en) 2008-10-27 2020-11-10 Canon Medical Systems Corporation X-ray diagnosis apparatus and image processing apparatus
US11937959B2 (en) 2008-10-27 2024-03-26 Canon Medical Systems Corporation X-ray diagnosis apparatus and image processing apparatus
US11540790B2 (en) 2008-10-27 2023-01-03 Canon Medical Systems Corporation X-ray diagnosis apparatus and image processing apparatus
JP2017039007A (en) * 2008-10-27 2017-02-23 東芝メディカルシステムズ株式会社 X-ray diagnostic apparatus
JP2010279408A (en) * 2009-06-02 2010-12-16 Toshiba Medical Systems Corp Ultrasonic diagnosis apparatus
JP2011156286A (en) * 2010-02-03 2011-08-18 Toshiba Corp Ultrasonic diagnosis apparatus and ultrasonic image displaying program
KR101574821B1 (en) 2010-03-17 2015-12-04 지이 메디컬 시스템즈 글로발 테크놀러지 캄파니 엘엘씨 Ultrasonic diagnosis apparatus and program for controlling the same
JP2011193904A (en) * 2010-03-17 2011-10-06 Ge Medical Systems Global Technology Co Llc Ultrasonic diagnostic apparatus and control program for the same
WO2011129237A1 (en) * 2010-04-15 2011-10-20 株式会社 日立メディコ Ultrasonic diagnostic device
JP2012143358A (en) * 2011-01-11 2012-08-02 Toshiba Corp Ultrasonic diagnostic equipment and program
JP2014050465A (en) * 2012-09-05 2014-03-20 Hitachi Medical Corp Image processor and region of interest setting method
JP2013135974A (en) * 2013-04-10 2013-07-11 Hitachi Aloka Medical Ltd Ultrasonic diagnosis apparatus
JP2014223063A (en) * 2013-04-23 2014-12-04 パナソニック インテレクチュアル プロパティ コーポレーション オブアメリカPanasonic Intellectual Property Corporation of America Pet health check apparatus, pet health check method, and program
WO2015030091A1 (en) * 2013-09-02 2015-03-05 株式会社 日立メディコ X-ray imaging device and method for displaying x-ray fluoroscopic image
JPWO2015030091A1 (en) * 2013-09-02 2017-03-02 株式会社日立製作所 X-ray imaging apparatus and X-ray fluoroscopic image display method
JP2014000454A (en) * 2013-09-04 2014-01-09 Hitachi Medical Corp Ultrasonic diagnostic apparatus
JP2016022111A (en) * 2014-07-18 2016-02-08 株式会社東芝 Magnetic resonance imaging apparatus
JP2018011807A (en) * 2016-07-22 2018-01-25 株式会社日立製作所 Image display device, x-image diagnostic apparatus and image display method
JPWO2018025347A1 (en) * 2016-08-03 2019-05-23 株式会社島津製作所 X-ray fluoroscope
WO2018025347A1 (en) * 2016-08-03 2018-02-08 株式会社島津製作所 X-ray fluoroscopic imaging apparatus
WO2019078054A1 (en) 2017-10-17 2019-04-25 富士フイルム株式会社 Acoustic wave diagnostic apparatus and method for controlling acoustic wave diagnostic apparatus
US11170519B2 (en) 2017-10-17 2021-11-09 Fujifilm Corporation Acoustic wave diagnostic apparatus and control method of acoustic wave diagnostic apparatus
US11636616B2 (en) 2017-10-17 2023-04-25 Fujifilm Corporation Acoustic wave diagnostic apparatus and control method of acoustic wave diagnostic apparatus
JP2020062339A (en) * 2018-10-19 2020-04-23 キヤノンメディカルシステムズ株式会社 Medical image processing device, x-ray diagnostic device and medical image processing program
JP7262968B2 (en) 2018-10-19 2023-04-24 キヤノンメディカルシステムズ株式会社 Medical image processing device, X-ray diagnostic device and medical image processing program

Also Published As

Publication number Publication date
JP4389081B2 (en) 2009-12-24

Similar Documents

Publication Publication Date Title
JP4389081B2 (en) Region-of-interest tracking control method, diagnostic imaging apparatus using the method, and region-of-interest tracking control program
US8167802B2 (en) Biological tissue motion trace method and image diagnosis device using the trace method
EP3003161B1 (en) Method for 3d acquisition of ultrasound images
US8126239B2 (en) Registering 2D and 3D data using 3D ultrasound data
KR101625256B1 (en) Automatic analysis of cardiac m-mode views
JP4596759B2 (en) Image diagnostic apparatus and method of operating image diagnostic apparatus
US20030171668A1 (en) Image processing apparatus and ultrasonic diagnosis apparatus
BR112015011288B1 (en) Ultrasound diagnostic system for imaging multiple planes of a fetal heart; method for ultrasound imaging a plurality of different selected image planes of a target anatomy, in real time; and method for ultrasound imaging a plurality of different selected image planes of a fetal heart, in real time
JP2004514526A (en) Method for capturing, analyzing, and displaying an ultrasonic diagnostic heart image
JP5215036B2 (en) Medical image processing apparatus and medical image processing program
EP2059173B1 (en) System and method for measuring left ventricular torsion
JP4321121B2 (en) Method for tracking movement of biological tissue in diagnostic image and diagnostic imaging apparatus using the method
JP4359749B2 (en) Movement display method and diagnostic imaging apparatus for living tissue
JP4503238B2 (en) Movement display method and diagnostic imaging apparatus for living tissue
JP4847684B2 (en) Diagnostic imaging equipment
JP2005087594A (en) Image diagnostic apparatus
JP5508035B2 (en) Diagnostic imaging equipment
JP2004283583A (en) Operation method of image forming medical inspection system
JP2010505494A (en) Medical imaging system
JP2019118694A (en) Medical image generation apparatus
JP2005160688A (en) Image diagnosis apparatus
JP4352212B2 (en) Biological tissue motion tracking display method and diagnostic imaging apparatus
US20240161379A1 (en) Image processing apparatus and image processing method
JP5879098B2 (en) Body organ moving image generation apparatus and body organ moving image generation method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060620

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090707

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090806

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090901

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090917

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121016

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4389081

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121016

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131016

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term