JP2004119835A - Device for detecting thin substrate - Google Patents

Device for detecting thin substrate Download PDF

Info

Publication number
JP2004119835A
JP2004119835A JP2002283555A JP2002283555A JP2004119835A JP 2004119835 A JP2004119835 A JP 2004119835A JP 2002283555 A JP2002283555 A JP 2002283555A JP 2002283555 A JP2002283555 A JP 2002283555A JP 2004119835 A JP2004119835 A JP 2004119835A
Authority
JP
Japan
Prior art keywords
thin substrate
light receiving
light
photoelectric sensor
cassette
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002283555A
Other languages
Japanese (ja)
Inventor
Hitoshi Wakisako
脇迫 仁
Kazunari Shiraishi
白石 一成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP2002283555A priority Critical patent/JP2004119835A/en
Publication of JP2004119835A publication Critical patent/JP2004119835A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a small-size device for stably detecting thin substrates. <P>SOLUTION: The device for detecting thin substrates is arranged such that the thin substrates 1 accommodated in a cassette 2 are detected by means of a photoelectric sensor which is disposed adjacent to the cassette 2 and can be moved in one direction by a driving means 5, and that the conditions of the thin substrates 1 are judged by a judging means 6 based on the signals outputted from the photoelectric sensor. The photoelectric sensor is provided with an optical condenser 4 for condensing light that has been scattered around the thin substrates 1, and a light receiving element 3 for receiving the light that has been condensed by the condenser 4 for conversion into electric signals. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、カセット内に収納されたガラス基板等の薄型基板を検出するための薄型基板検出装置に関する。
【0002】
【従来の技術】
図7は、従来の薄型基板検出装置の説明図である。図7に示すように、従来からカセットに収められた薄型基板を検出するには、反射式センサ20が用いられている。この反射式センサ20は、レーザ光やLED光など細いビーム光21を薄型基板1の端面に照射し、その反射光を検出して薄型基板1の有無を判断している。またカセット(図示せず)内の全ての薄型基板1を検出するのに駆動装置(図示せず)を用いて矢印22の方向に反射式センサ20を動かしている。
また、カセットを挟んで投光素子と受光素子を配置した透過型センサを使用したものもある(例えば、特許文献1参照。)。
さらに、CCDカメラを用いて薄型基板1の端面を撮影し、撮影した画像に対して2値化処理やエッジ処理等の画像処理を行い、薄型基板を検出する画像センサ方式のものもある。
【0003】
【特許文献1】
特開平9−148403号公報 (第2−8頁、図3)
【0004】
【発明が解決しようとする課題】
しかし、従来の反射型の薄型基板検出方式では、ビーム光21の反射光の有無、あるいは反射光の強度に依存しているため、薄型基板1の端面の形状によって反射光が返ってこない、あるいは薄型基板1の表面に成膜された膜の反射率によって反射光が弱くなるなどにより、実際には存在する薄型基板1が存在しないと誤判定される不具合が生じる。
【0005】
また、透過型のセンサでは、投光素子と受光素子がカセットを挟んで配置されているので、装置が肥大化するという不具合が生じる。
また、画像センサを用いると、被写体と画像センサとを連続的に相対移動させると、画像がぶれるため、撮像時に停止する必要があり検出時間が遅くなるという欠点がある。
【0006】
そこで、本発明は薄型基板を安定して検出できる小型の薄型基板検出装置を提供することを課題とする。
【0007】
【課題を解決するための手段】
前記課題を解決するために、本発明の薄型基板検出装置は、カセット内に収納された薄型基板を、前記カセットに隣接配置され、駆動手段により一方向に移動可能な光電センサを用いて検出し、判定手段により前記光電センサの出力信号から前記薄型基板の状態を判定する薄型基板検出装置において、前記光電センサは、前記薄型基板の周辺の散乱光を集光する光学集光手段と、前記光学集光手段により集光された光を受けて電気信号に変換する受光素子とを備えていることを特徴とする薄型基板検出装置としたものである。
【0008】
散乱光(自然光)を検出可能な光電センサは、駆動手段により駆動され、室内照明等による周辺の散乱光を受光する。この散乱光は、室内の照明等から発せられた光なので、通常は光量が少ないが、光学集光手段が設けられているので、集光されてから受光素子の受光面に入る。一方、光電センサが薄型基板に近接すると、薄型基板が前記散乱光を遮断するので、光電センサが受ける光量は少なくなる。受光素子は、受けた光を電気信号に変換して、判定手段に送信し、判定手段では、例えば、前記電気信号が閾値を超えるか否かにより薄型基板の有無等の状態を判断する。
【0009】
複数台の前記光電センサを、移動方向に沿って1列に並べて設けると、各受光素子の出力間の差や和により微分値が計算できるという作用を有する。
【0010】
前記光電センサに、1つの受光面を複数に分割した分割受光素子を設けると、隣接したセンサ部の距離が小さくなるので測定精度が向上し、また、装置を小形化することができる。
【0011】
前記判定手段に、前記複数台の光電センサまたは前記分割受光素子を有する光電センサの出力値から2値化処理、1次微分処理または2次微分処理により前記薄型基板の状態判定を行う回路を設けると、CPUを用いずに簡単な構成の装置を形成することができる。
【0012】
【発明の実施の形態】
以下、図を用いて本発明の実施の形態を説明する。
(第1の実施の形態)
図1は、本発明の第1の実施の形態の薄型基板検出装置の構成図である。図1に示すように、本発明の第1の実施の形態の薄型基板検出装置は、カセット2内に収納された薄型基板1を、カセット2に隣接配置され、駆動手段5により上下方向(一方向)に移動可能な光電センサを用いて検出し、判定手段6により光電センサの出力信号から薄型基板1の状態を判定する装置である。
【0013】
カセット2は、前後に開口部を有し、側壁の内側に薄型基板1を水平配置するための案内溝が形成されている。薄型基板1は平板状に形成され、カセット2内に多段に収納されている。光電センサを下方から支持して上下移動可能な駆動手段5は、等速で移動するが、入力パルスに応じて微小距離ずつ移動可能に設けたり、現在位置を測定可能なリニアスケール(図示せず)を設けて現在位置を取得する構成にしたりすることも可能である。
【0014】
光電センサは、レンズやプリズム等からなる光学集光手段4と、フォトダイオードやフォトトランジスタ等からなり光電変換を高速に行う受光素子3とを備え、カセット2の開口部の前側であって、かつ、薄型基板1の端面に正対する位置に配置されている。
【0015】
光学集光手段4は、受光素子3の受光面に配置され、周辺の散乱光を集光することができる。また、受光素子3は、光学集光手段4により集光された光を受けて電気信号に変換することができる。
【0016】
駆動手段5に光電センサを載置して、矢印10に示すように上下に移動させることにより、カセット2内の全ての薄型基板1の端面近辺の明るさ情報を検出できる。
【0017】
ここで、薄型基板検出の原理について説明する。図2は、複数の薄型基板を収納したカセットの正面図である。図2に示すように、カセット2内に収納された薄型基板1の端面を黒く示しているが、これは周囲環境が明るいため、周囲と比べると相対的に端面が暗く見えるためである。また、カセット2内の上から3番目のスロット1’の点線で示した部分は、薄型基板1が収納されてないことを示す。
【0018】
図3は、受光素子の位置と受光強度との関係を示すグラフである。縦軸は光の強度を示し、明るいほど大きな値を示す。また、横軸は破線A上の受光素子の高さ方向の位置を示す。
【0019】
図2の破線Aに沿ってフォトダイオードなどの光・電気変換が可能な受光素子を上下方向に動かしていくと、図3に示すような出力信号が得られる。点線Bは図2のスロット1’に薄型基板1がある場合を示しているが、実際には、スロット1’には薄型基板1が無いため、実線で示すように、光の強度は強いままとなっている。
この信号を、判定手段6で処理することにより、薄型基板1が検出される。
【0020】
判定手段6は、受光素子3からの出力信号をディジタル信号に変換するAD変換部11と、変換されたディジタル信号の処理を行うCPU部12とを有している。
【0021】
CPU部12で行われる薄型基板1の有無を検出するための処理はいくつか考えられる。一般的には、図3の破線Cで示すような閾値を設け、その値との比較によって薄型基板1の有無を検出することができる(ここでは、この処理を2値化処理と呼ぶ)。
【0022】
まず、AD変換部11からの出力を一定時間Tごとにサンプリングした値を、D,D,・・・D,Di+1,・・・とする。ここで添え字iは整数で、Diは時刻T×iのときのサンプリング値である。この場合、駆動装置5は一定速度で移動していることを前提に時間を基準にサンプリングしているが、駆動手段5の位置情報が得られる場合は、これを基に一定移動量ごとにサンプリングすることが望ましい。
【0023】
例えば、薄型基板1の存在により周囲が暗くなると、出力信号の値が閾値より低くなる。また、薄型基板1が無い場合には、出力信号の値は閾値より高いままとなる。すなわち、2値化処理では、あらかじめ設定した閾値Cの大小関係よりD>Cのとき基板無しと判断し、D<Cのときに基板有りと判断する。
【0024】
また、1つのスロットに2枚以上の薄型基板1が重ねて収納されている場合も考えられる。この場合は、基板有りの状態が連続する時間に閾値を定めておき、測定値がこの閾値より大きくなった場合は、複数枚の薄型基板1が重なっていると判別する。
【0025】
また、1枚の薄型基板1が2つのスロットにまたがって挿入され、斜めに配置されている場合も考えられる。この場合は、薄型基板1の端面による周囲光の反射方向が上または下方向にずれ、また、薄型基板1の上面または下面で反射した光が光学集光手段に認識されるので、スロットの位置と異なる位置で薄型基板1が認識されることになる。2値化処理において、予めスロットの位置範囲を設定しておき、この位置を外れた場所で、出力信号の値が閾値より小さくなったときは、斜め挿入と判断する。
【0026】
薄型基板1の有無、2枚重ねおよび斜め挿入のような状況は、薄型基板1の端面形状や基板表面の膜の状態によらず、同じような見え方になり、同じような光強度が得られるため、先に述べたような従来の反射式センサでは難しい場合でも本方式では安定した薄型基板1の検出が可能となる。
【0027】
また、2値化処理以外に、1次微分を計算して基板端面の境界にあたる立下がりDや立ち上がりEを求めたり、2次微分を計算して端面の中央Fを求めたりする手法も考えられる。
【0028】
1次微分においては、例えばDi+1−Dを計算する。この計算値が負になる点を立下がりDとし、正になる点を立ち上がりEとして、DからEまでの間は基板有り、EからDまでの間は基板なしと判定する。
【0029】
また、2次微分においては、例えばDi−1+Di+1−2・Dを計算する。この計算値が最大となるのは、図3の端面の中央Fにおいてであり、この中央Fとサンプリング位置を比較して、基板の有無、または斜め挿入の判定をする。2値化処理、1次微分処理および2次微分処理のうち2以上の処理を組み合わせて行うことにより、検出精度を向上させることができる。
【0030】
(第2の実施の形態)
図4は、本発明の第2の実施の形態の薄型基板検出装置の構成図である。第2の実施の形態の薄型基板検出装置は、前述した第1の実施の形態の薄型基板検出装置で使用した光電センサを上下方向に2台並べ、判定手段6’に演算部13および比較部14を用いた構成としている。すなわち、2組の受光素子(3と3’)と光学手段(4と4’)を上下方向に並べている。そしてそれぞれの信号を処理する判定手段6’では、ハードウエアで構成した演算部13により2つの信号の差を計算する。つまり、受光素子3と3’の出力をP,Pとしたときに、P−Pを計算し、この値と比較部14によりあらかじめ与えた閾値Qとの比較を行い、P−P<−Qのときは立ち下がりDとし、P−P>Qのときは立ち上がりEと判定する。この処理は、第1の実施の形態の1次微分処理と同等の内容である。
【0031】
このように、本実施例では2個の受光素子を用いているが、3個以上の受光素子を並べることにより、2次微分の演算なども簡単な回路(ハードウエア)で構成することができる。
【0032】
また判定手段6’の実現方法として、同じ処理を第1の実施の形態で説明したように、2つの信号をAD変換しCPUによる演算を行ってもよい。ただし、本実施の形態のようにハードウエア化することによりCPUを用いるのに比べ高速化、小型化、低価格化が実現できる。
【0033】
(第3の実施の形態)
図5は、第3の実施の形態の薄型基板検出装置の判定手段と、光電センサの接続状態を示す構成図である。第3の実施の形態の薄型基板検出装置は、光電センサとして、1つの受光面を複数に分割した分割受光素子を有する多分割受光素子を用いている。多分割受光素子とは、一つのチップ上に複数の受光部を集積したものである。なお、他の部分の構成は、第1の実施の形態の薄型基板検出装置と同じなので、説明は省略する。
【0034】
図6は、2分割光学素子の構成図である。このような2分割受光素子の例として、例えば、浜松フォトニクス社の2分割フォトダイオード(S2721−02)等がある。図6に示すように、2分割受光素子は、素子7の上に受光部8が2つ並んでいる。この素子では受光部8の大きさは約3mm×0.5mmである。この受光部8に入射する光の量によって発生する電流が変化する。この電流を検出することで受光量が推定できる。
【0035】
図5に示すように、3分割受光素子9の各受光部8からの出力信号は、判定手段6”で処理される。本実施の形態の判定手段6”ではハードウエアで構成した演算部15により信号同士の加減算を行う。具体的には、受光部の出力を図の上からP,P,Pとすると、P+P−2・Pを演算し、この値と比較部14によりあらかじめ与えた閾値との比較を行い、計算値が閾値より大きいときは基板有り、小さいときは基板なしと判定する。この処理は、第1の実施の形態の2次微分処理と同等の内容である。
【0036】
本実施の形態では、判定手段6”を演算部15と比較部14のハードウエアで構成しているが、図1の実施例のようにAD変換でディジタル信号に変化し、CPUによる演算処理を行ってもよい。
【0037】
また、ここでは3分割の受光素子を用いているが、例えば、5分割の受光素子を用い、受光部の出力をP,P,P,P,Pとして16・P+16・P−P−P−30・Pを計算することで、2次微分の精度を上げることができる。
【0038】
本実施の形態のように多分割の受光素子を用いることで第2の実施の形態のように受光素子を並べるのに比べセンサ部の小型化が可能となる。
【0039】
【発明の効果】
本発明によれば次の効果を奏する。
(1)本発明の薄型基板検出装置は、光電センサに、薄型基板の周辺の散乱光を集光する光学集光手段と、光学集光手段により集光された光を受けて電気信号に変換する受光素子とを備えているので、薄型基板の端面周辺の光を集光してから受光でき、受光素子の信号は、薄型基板の端面の形状や反射率に影響されないため、従来の反射式に比べ安定した薄型基板の検出ができ、また、反射型センサのように発光部を設けていないので、小型に形成することができる。
(2)また、複数の受光素子を並べることによって、各受光素子の出力間の差や和により微分値が計算できる。
(3)また、多分割の受光素子を用いることで、センサ部の小型化が可能となる。
(4)複数台の光電センサの出力値から2値化処理、1次微分処理または2次微分処理により前記薄型基板の状態を判定を行う回路(ハードウエア)を構成することによってCPU無しで安価で高速な検出装置が実現できる。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態の薄型基板検出装置の構成図である。
【図2】複数の薄型基板を収納したカセットの正面図である。
【図3】受光素子の位置と受光強度との関係を示すグラフである。
【図4】本発明の第2の実施の形態の薄型基板検出装置の構成図である。
【図5】第3の実施の形態の薄型基板検出装置の判定手段と、光電センサの接続状態を示す構成図である。
【図6】2分割光学素子の構成図である。
【図7】従来の基板検出装置の説明図である。
【符号の説明】
1 薄型基板
2 カセット
3 受光素子
4 光学集光手段
5 駆動手段
6 判定手段
7 素子
8 受光部
9 3分割光学素子
10 矢印
11 AD変換部
12 CPU部
13 演算部
14 比較部
15 演算部
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a thin substrate detecting device for detecting a thin substrate such as a glass substrate housed in a cassette.
[0002]
[Prior art]
FIG. 7 is an explanatory diagram of a conventional thin substrate detection device. As shown in FIG. 7, a reflection type sensor 20 is conventionally used to detect a thin substrate accommodated in a cassette. The reflection type sensor 20 irradiates a thin beam light 21 such as a laser beam or an LED light to an end surface of the thin substrate 1 and detects the reflected light to determine the presence or absence of the thin substrate 1. In order to detect all the thin substrates 1 in a cassette (not shown), the reflection sensor 20 is moved in the direction of arrow 22 using a driving device (not shown).
In addition, there is one using a transmission type sensor in which a light projecting element and a light receiving element are arranged with a cassette interposed therebetween (for example, see Patent Document 1).
Further, there is an image sensor type that detects an end face of the thin substrate 1 using a CCD camera, performs image processing such as binarization processing and edge processing on the taken image, and detects the thin substrate.
[0003]
[Patent Document 1]
JP-A-9-148403 (page 2-8, FIG. 3)
[0004]
[Problems to be solved by the invention]
However, in the conventional reflection-type thin substrate detection method, the reflected light does not return depending on the shape of the end surface of the thin substrate 1 because it depends on the presence or absence of the reflected light of the light beam 21 or the intensity of the reflected light. The reflected light is weakened by the reflectivity of the film formed on the surface of the thin substrate 1, so that there is a problem that it is erroneously determined that the thin substrate 1 actually does not exist.
[0005]
Further, in the transmission type sensor, since the light projecting element and the light receiving element are arranged with the cassette interposed therebetween, there is a problem that the apparatus is enlarged.
In addition, when the image sensor is used, if the subject and the image sensor are continuously moved relative to each other, the image is blurred.
[0006]
Therefore, an object of the present invention is to provide a small thin substrate detecting device capable of stably detecting a thin substrate.
[0007]
[Means for Solving the Problems]
In order to solve the above-mentioned problem, a thin substrate detection device of the present invention detects a thin substrate housed in a cassette by using a photoelectric sensor that is disposed adjacent to the cassette and can be moved in one direction by a driving unit. A thin substrate detecting device that determines a state of the thin substrate from an output signal of the photoelectric sensor by a determination unit, wherein the photoelectric sensor includes an optical condensing unit that condenses scattered light around the thin substrate; A light-receiving element for receiving the light condensed by the light condensing means and converting the light into an electric signal.
[0008]
The photoelectric sensor capable of detecting scattered light (natural light) is driven by a driving unit and receives peripheral scattered light due to indoor lighting or the like. This scattered light is light emitted from indoor lighting or the like, and thus usually has a small amount of light. However, since the optical condensing means is provided, the scattered light enters the light receiving surface of the light receiving element after being condensed. On the other hand, when the photoelectric sensor approaches the thin substrate, the thin substrate blocks the scattered light, so that the amount of light received by the photoelectric sensor decreases. The light receiving element converts the received light into an electric signal, and transmits the electric signal to the judging means. The judging means judges a state such as the presence or absence of the thin substrate based on whether the electric signal exceeds a threshold value.
[0009]
When a plurality of the photoelectric sensors are arranged in a line along the moving direction, a differential value can be calculated from a difference or a sum between outputs of the respective light receiving elements.
[0010]
If the photoelectric sensor is provided with a divided light receiving element in which one light receiving surface is divided into a plurality of parts, the distance between adjacent sensor portions is reduced, so that the measurement accuracy is improved and the device can be downsized.
[0011]
The determination means is provided with a circuit for determining a state of the thin substrate by binarization processing, primary differentiation processing or secondary differentiation processing from output values of the plurality of photoelectric sensors or the photoelectric sensors having the divided light receiving elements. Thus, a device having a simple configuration can be formed without using a CPU.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
(First Embodiment)
FIG. 1 is a configuration diagram of a thin substrate detection device according to a first embodiment of the present invention. As shown in FIG. 1, the thin substrate detecting apparatus according to the first embodiment of the present invention is arranged such that a thin substrate 1 accommodated in a cassette 2 is disposed adjacent to the cassette 2, This is a device that detects using a photoelectric sensor that can move in the direction (1) and determines the state of the thin substrate 1 from the output signal of the photoelectric sensor by the determination unit 6.
[0013]
The cassette 2 has front and rear openings, and a guide groove for horizontally arranging the thin substrate 1 is formed inside the side wall. The thin substrate 1 is formed in a flat plate shape, and is accommodated in a cassette 2 in multiple stages. The driving means 5 which supports the photoelectric sensor from below and can move up and down moves at a constant speed, but is provided so as to be movable by a small distance according to an input pulse, or a linear scale (not shown) capable of measuring the current position. ) May be provided to obtain the current position.
[0014]
The photoelectric sensor includes an optical condensing unit 4 including a lens and a prism, and a light receiving element 3 including a photodiode and a phototransistor and performing photoelectric conversion at high speed. , Are arranged at positions facing the end face of the thin substrate 1.
[0015]
The optical condensing means 4 is arranged on the light receiving surface of the light receiving element 3 and can condense surrounding scattered light. Further, the light receiving element 3 can receive the light condensed by the optical condensing means 4 and convert it into an electric signal.
[0016]
By mounting the photoelectric sensor on the driving means 5 and moving it up and down as shown by the arrow 10, the brightness information near the end faces of all the thin substrates 1 in the cassette 2 can be detected.
[0017]
Here, the principle of thin substrate detection will be described. FIG. 2 is a front view of a cassette storing a plurality of thin substrates. As shown in FIG. 2, the end face of the thin substrate 1 stored in the cassette 2 is shown in black, because the surrounding environment is bright and the end face looks darker than the surroundings. A portion indicated by a dotted line of the third slot 1 ′ from the top in the cassette 2 indicates that the thin substrate 1 is not stored.
[0018]
FIG. 3 is a graph showing the relationship between the position of the light receiving element and the received light intensity. The vertical axis indicates light intensity, and the brighter the value, the larger the value. The horizontal axis indicates the position of the light receiving element on the broken line A in the height direction.
[0019]
When a light-receiving element such as a photodiode capable of converting light to electricity is moved vertically along a broken line A in FIG. 2, an output signal as shown in FIG. 3 is obtained. The dotted line B shows the case where the thin substrate 1 is present in the slot 1 'of FIG. 2, but in practice, since the slot 1' does not have the thin substrate 1, the light intensity remains strong as shown by the solid line. It has become.
The thin substrate 1 is detected by processing this signal by the determination means 6.
[0020]
The determination means 6 has an AD converter 11 for converting an output signal from the light receiving element 3 into a digital signal, and a CPU 12 for processing the converted digital signal.
[0021]
Several processes for detecting the presence or absence of the thin substrate 1 performed by the CPU unit 12 are conceivable. Generally, a threshold value as shown by a broken line C in FIG. 3 is provided, and the presence or absence of the thin substrate 1 can be detected by comparing the threshold value (this process is referred to as a binarization process).
[0022]
First, values obtained by sampling the output from the AD conversion unit 11 at regular time intervals T are denoted by D 1 , D 2 ,..., D i , D i + 1 ,. Here, the subscript i is an integer, and Di is a sampling value at time T × i. In this case, the drive unit 5 performs sampling on the basis of time on the assumption that the drive unit 5 is moving at a constant speed. It is desirable to do.
[0023]
For example, when the surroundings become dark due to the presence of the thin substrate 1, the value of the output signal becomes lower than the threshold value. Further, when there is no thin substrate 1, the value of the output signal remains higher than the threshold value. That is, in the binarization process, it is determined that there is no substrate when D i > C, and it is determined that there is a substrate when D i <C from the magnitude relationship of the preset threshold value C.
[0024]
It is also conceivable that two or more thin substrates 1 are stored in one slot in an overlapping manner. In this case, a threshold value is set for the time during which the presence of the substrate is continuous, and when the measured value is larger than the threshold value, it is determined that a plurality of thin substrates 1 are overlapped.
[0025]
It is also conceivable that one thin substrate 1 is inserted astride two slots and arranged obliquely. In this case, the direction of reflection of the ambient light by the end surface of the thin substrate 1 shifts upward or downward, and the light reflected by the upper or lower surface of the thin substrate 1 is recognized by the optical condensing means. The thin substrate 1 is recognized at a position different from the above. In the binarization process, the position range of the slot is set in advance, and when the value of the output signal becomes smaller than the threshold value at a position outside this position, it is determined that oblique insertion is performed.
[0026]
The situation such as the presence or absence of the thin substrate 1, the overlapping of two substrates, and the oblique insertion results in the same appearance regardless of the end face shape of the thin substrate 1 and the state of the film on the substrate surface, and the same light intensity is obtained. Therefore, even in the case where it is difficult to use the conventional reflection-type sensor as described above, it is possible to stably detect the thin substrate 1 with this method.
[0027]
In addition to the binarization processing, a method of calculating the first derivative to obtain the falling D and the rising E corresponding to the boundary of the end face of the substrate, or calculating the second differential to obtain the center F of the end face may be considered. .
[0028]
In first derivative, for example, calculates the D i + 1 -D i. A point at which the calculated value becomes negative is defined as falling D, and a point at which the calculated value is positive is defined as rising E, and it is determined that there is a substrate between D and E, and that there is no substrate between E and D.
[0029]
In the second derivative, for example, calculates the D i-1 + D i + 1 -2 · D i. The maximum of the calculated value is at the center F of the end face in FIG. 3, and the center F is compared with the sampling position to determine the presence or absence of the board or the oblique insertion. The detection accuracy can be improved by performing a combination of two or more of the binarization processing, the primary differentiation processing, and the secondary differentiation processing.
[0030]
(Second embodiment)
FIG. 4 is a configuration diagram of a thin substrate detection device according to a second embodiment of the present invention. The thin substrate detecting apparatus according to the second embodiment has a configuration in which two photoelectric sensors used in the thin substrate detecting apparatus according to the first embodiment described above are arranged in the vertical direction. 14 is used. That is, two sets of light receiving elements (3 and 3 ') and optical means (4 and 4') are vertically arranged. Then, in the determination means 6 'for processing each signal, the difference between the two signals is calculated by the arithmetic unit 13 constituted by hardware. That is, when the outputs of the light receiving elements 3 and 3 ′ are P 1 and P 2 , P 2 −P 1 is calculated, and this value is compared with a threshold value Q given in advance by the comparing unit 14 to obtain P 2 When −P 1 <−Q, the falling D is determined, and when P 2 −P 1 > Q, the rising E is determined. This processing has the same contents as the first-order differentiation processing of the first embodiment.
[0031]
As described above, in the present embodiment, two light receiving elements are used. However, by arranging three or more light receiving elements, it is possible to configure the operation of the second derivative with a simple circuit (hardware). .
[0032]
As a method of realizing the determination means 6 ', the same processing may be A / D-converted to two signals and may be operated by the CPU as described in the first embodiment. However, by using hardware as in the present embodiment, higher speed, smaller size, and lower price can be realized as compared with using a CPU.
[0033]
(Third embodiment)
FIG. 5 is a configuration diagram illustrating a connection state between the determination unit of the thin substrate detection device according to the third embodiment and the photoelectric sensor. The thin substrate detection device according to the third embodiment uses a multi-segmented light receiving element having a divided light receiving element obtained by dividing one light receiving surface into a plurality as a photoelectric sensor. The multi-segment light receiving element is one in which a plurality of light receiving sections are integrated on one chip. Note that the configuration of the other parts is the same as that of the thin substrate detection device of the first embodiment, and a description thereof will be omitted.
[0034]
FIG. 6 is a configuration diagram of a two-part optical element. As an example of such a two-part light receiving element, for example, there is a two-part photodiode (S2721-02) manufactured by Hamamatsu Photonics. As shown in FIG. 6, in the two-divided light receiving element, two light receiving sections 8 are arranged on the element 7. In this element, the size of the light receiving section 8 is about 3 mm × 0.5 mm. The generated current changes depending on the amount of light incident on the light receiving unit 8. By detecting this current, the amount of received light can be estimated.
[0035]
As shown in FIG. 5, an output signal from each light receiving section 8 of the three-division light receiving element 9 is processed by the judging means 6 ″. In the judging means 6 ″ of the present embodiment, an arithmetic unit 15 configured by hardware Performs addition and subtraction between signals. Specifically, assuming that the outputs of the light receiving units are P 1 , P 2 , and P 3 from the top of the figure, P 1 + P 3 -2 · P 2 is calculated, and this value is compared with the threshold given in advance by the comparison unit 14. When the calculated value is larger than the threshold value, it is determined that there is a substrate, and when the calculated value is smaller, it is determined that there is no substrate. This process has the same content as the second derivative process of the first embodiment.
[0036]
In the present embodiment, the determination means 6 ″ is constituted by the hardware of the calculation unit 15 and the comparison unit 14. However, as in the embodiment of FIG. May go.
[0037]
Although a three-divided light receiving element is used here, for example, a five-divided light receiving element is used, and the outputs of the light receiving units are set to P 1 , P 2 , P 3 , P 4 , and P 5 to be 16 · P 2 +16. By calculating P 4 −P 1 −P 5 −30 × P 3 , the accuracy of the second derivative can be improved.
[0038]
By using a multi-divided light receiving element as in the present embodiment, the size of the sensor unit can be reduced as compared with arranging the light receiving elements as in the second embodiment.
[0039]
【The invention's effect】
According to the present invention, the following effects can be obtained.
(1) The thin substrate detecting device of the present invention is configured such that an optical condensing unit that condenses scattered light around the thin substrate on a photoelectric sensor, and receives the light condensed by the optical condensing unit and converts the light into an electric signal. Light receiving element that collects light around the end face of the thin substrate before receiving it.The signal of the light receiving element is not affected by the shape or reflectivity of the end face of the thin substrate. It is possible to detect a thin substrate more stably as compared with the above, and it is not necessary to provide a light emitting portion unlike the reflection type sensor, so that it can be formed in a small size.
(2) Further, by arranging a plurality of light receiving elements, a differential value can be calculated based on a difference or a sum between outputs of the respective light receiving elements.
(3) By using a multi-divided light receiving element, the size of the sensor unit can be reduced.
(4) A circuit (hardware) for judging the state of the thin substrate by binarization processing, primary differentiation processing or secondary differentiation processing from output values of a plurality of photoelectric sensors is inexpensive without a CPU. And a high-speed detection device can be realized.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of a thin substrate detection device according to a first embodiment of the present invention.
FIG. 2 is a front view of a cassette containing a plurality of thin substrates.
FIG. 3 is a graph showing a relationship between a position of a light receiving element and a received light intensity.
FIG. 4 is a configuration diagram of a thin substrate detection device according to a second embodiment of the present invention.
FIG. 5 is a configuration diagram illustrating a connection state of a determination unit of the thin substrate detection device according to the third embodiment and a photoelectric sensor.
FIG. 6 is a configuration diagram of a two-piece optical element.
FIG. 7 is an explanatory diagram of a conventional substrate detection device.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Thin substrate 2 Cassette 3 Light receiving element 4 Optical condensing means 5 Driving means 6 Judgment means 7 Element 8 Light receiving section 9 3 divided optical element 10 Arrow 11 AD conversion section 12 CPU section 13 Operation section 14 Comparison section 15 Operation section

Claims (4)

カセット内に収納された薄型基板を、前記カセットに隣接配置され、駆動手段により一方向に移動可能な光電センサを用いて検出し、判定手段により前記光電センサの出力信号から前記薄型基板の状態を判定する薄型基板検出装置において、
前記光電センサは、前記薄型基板の周辺の散乱光を集光する光学集光手段と、前記光学集光手段により集光された光を受けて電気信号に変換する受光素子とを備えていることを特徴とする薄型基板検出装置。
The thin substrate accommodated in the cassette is detected using a photoelectric sensor that is disposed adjacent to the cassette and is movable in one direction by a driving unit, and the state of the thin substrate is determined from an output signal of the photoelectric sensor by a determining unit. In the thin substrate detection device to be determined,
The photoelectric sensor includes an optical condensing unit that condenses scattered light around the thin substrate, and a light receiving element that receives the light condensed by the optical condensing unit and converts the light into an electric signal. A thin substrate detection device characterized by the above-mentioned.
複数台の前記光電センサは、移動方向に沿って1列に並べて設けられていることを特徴とする請求項1記載の薄型基板検出装置。2. The thin substrate detecting device according to claim 1, wherein the plurality of photoelectric sensors are provided in a line along a moving direction. 前記光電センサは、1つの受光面を複数に分割した分割受光素子を有することを特徴とする請求項1記載の薄型基板検出装置。2. The thin substrate detecting device according to claim 1, wherein the photoelectric sensor has a divided light receiving element obtained by dividing one light receiving surface into a plurality. 前記判定手段は、前記複数台の光電センサまたは前記分割受光素子を有する光電センサの出力値から2値化処理、1次微分処理または2次微分処理により前記薄型基板の状態判定を行う回路を備えていることを特徴とする請求項2または3に記載の薄型基板検出装置。The determination means includes a circuit for performing a binarization process, a primary differentiation process, or a secondary differentiation process to determine a state of the thin substrate from output values of the plurality of photoelectric sensors or the photoelectric sensors having the divided light receiving elements. The thin substrate detection device according to claim 2, wherein:
JP2002283555A 2002-09-27 2002-09-27 Device for detecting thin substrate Pending JP2004119835A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002283555A JP2004119835A (en) 2002-09-27 2002-09-27 Device for detecting thin substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002283555A JP2004119835A (en) 2002-09-27 2002-09-27 Device for detecting thin substrate

Publications (1)

Publication Number Publication Date
JP2004119835A true JP2004119835A (en) 2004-04-15

Family

ID=32277384

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002283555A Pending JP2004119835A (en) 2002-09-27 2002-09-27 Device for detecting thin substrate

Country Status (1)

Country Link
JP (1) JP2004119835A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010056500A (en) * 2008-08-27 2010-03-11 Gugeng Precision Industrial Co Ltd Thin substrate pitch measurement equipment, and wafer pitch measurement equipment
CN103353457A (en) * 2013-04-23 2013-10-16 友达光电股份有限公司 Substrate detection device and method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010056500A (en) * 2008-08-27 2010-03-11 Gugeng Precision Industrial Co Ltd Thin substrate pitch measurement equipment, and wafer pitch measurement equipment
CN103353457A (en) * 2013-04-23 2013-10-16 友达光电股份有限公司 Substrate detection device and method
CN103353457B (en) * 2013-04-23 2015-11-18 友达光电股份有限公司 Substrate detection device and method

Similar Documents

Publication Publication Date Title
JP3235249B2 (en) Optical information reader
US8861047B2 (en) Document size detector
JP4805885B2 (en) Lift detection suitable for navigation on transparent structures
TWI391847B (en) Optical navigation system and method of estimating motion with optical lift detection
US20120044344A1 (en) Method and system for detecting defects of transparent substrate
JP2006284573A (en) Method and optical sensor for restraining error caused by scattered light
TWI479457B (en) Subject discriminating apparatus and coin discriminating apparatus
US11754717B2 (en) Distance measurement device having external light illuminance measurement function and external light illuminance measurement method
CN107782732B (en) Automatic focusing system, method and image detection instrument
JP7118825B2 (en) proximity sensor
JP2004119835A (en) Device for detecting thin substrate
EP1816467A3 (en) Lens inspection device
JP2002116015A (en) Apparatus and method for detection of defect
KR100871634B1 (en) Optical measuring method and device thereof
US11287901B2 (en) Optical detecting device with lift height detection function
JP3309484B2 (en) Crystal orientation detection method and apparatus
JPH0455705A (en) End-part detector
JPH1049654A (en) Signal correcting method for image fetching device
KR101090271B1 (en) Apparatus for detecting line position using optical detecting device
JP4293647B2 (en) Paper sheet batch counting device
JP2004264529A (en) Image reading apparatus
KR100205983B1 (en) Passive type auto-focusing control device
JPH0763552A (en) Photoelectric switch
JP2005195416A (en) Distance measuring sensor and electronic device equipped therewith
JP4345283B2 (en) Autofocus device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050714

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080321

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090113

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090512