JP2004119707A - Method of manufacturing semiconductor device - Google Patents

Method of manufacturing semiconductor device Download PDF

Info

Publication number
JP2004119707A
JP2004119707A JP2002281349A JP2002281349A JP2004119707A JP 2004119707 A JP2004119707 A JP 2004119707A JP 2002281349 A JP2002281349 A JP 2002281349A JP 2002281349 A JP2002281349 A JP 2002281349A JP 2004119707 A JP2004119707 A JP 2004119707A
Authority
JP
Japan
Prior art keywords
temperature
substrate
radiation thermometer
substrate holding
holding plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002281349A
Other languages
Japanese (ja)
Other versions
JP4391734B2 (en
Inventor
Tsukasa Ooka
大岡 司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Kokusai Electric Inc
Original Assignee
Hitachi Kokusai Electric Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Kokusai Electric Inc filed Critical Hitachi Kokusai Electric Inc
Priority to JP2002281349A priority Critical patent/JP4391734B2/en
Publication of JP2004119707A publication Critical patent/JP2004119707A/en
Application granted granted Critical
Publication of JP4391734B2 publication Critical patent/JP4391734B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing a semiconductor device with a high yield by always carrying out a heat treatment under stable temperature control even if the state of the detection surface of a radiation thermometer changes. <P>SOLUTION: A substrate holding board 2 is heated with a heater 3 and subsequently a semiconductor 1 placed on a front surface of the substrate holding board 2 is heated. The temperature of the heater 3 is detected with a thermo-couple 11, while that of the semiconductor substrate 1 is detected in non-contact measurement of the substrate holding board 2 by means of the radiation thermometer 12. A difference in temperature ΔT between a temperature Tc in an initial state measured with the radiation thermometer 12 and a temperature Tc' after cleaning measured with the radiation thermometer 12 is calculated. By adding the difference in temperature ΔT to the reference value Tc for temperature compensation, stable control of temperature can be always performed with respect to the substrate holding board 2. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、半導体装置用の基板に薄膜形成、不純物ドーピング、および表面処理などの成膜処理を行う半導体装置の製造方法に関し、特に、半導体製造装置の炉内を温度制御しながら熱処理を行うことによって基板に成膜処理を施す半導体装置の製造方法に関するものである。
【0002】
【従来の技術】
従来より、拡散装置やCVD装置などのような半導体製造装置によって、半導体基板(半導体ウエーハ)に薄膜形成、不純物ドーピング、および表面処理などの成膜処理を行う場合は、半導体製造装置の炉内温度を適切な温度に維持して熱処理を施しながらプロセス処理を行っている。したがって、炉内の温度制御は、外乱が生じたときの補償や目標温度の変化に対して高い精度で追従ができるように制御が行われている。また、このような半導体製造装置は、半導体基板を安定的に保持したり均一に加熱するための基板保持手段と、この基板保持手段を介してその上に載置されている半導体基板を加熱するためのヒータなど加熱手段とを有し、非接触の放射温度計を用いて基板保持手段の温度をモニタしながら温度制御を行い、半導体基板に一連のプロセス処理を行っている。
【0003】
【発明が解決しようとする課題】
しかしながら、基板保持手段の温度をモニタする放射温度計は、被測定部分に直接接触して温度を測定する熱電対などのような直接温度計と異なり、被測定物体から放射される熱エネルギーを非接触で検出して温度値に換算している。したがって、放射温度計の検出部分が汚れていたりすると、放射熱エネルギーを効率よく検出することができなくなり、結果的に測定温度に誤差が生じて正確な温度を測定することができなくなる。このため、半導体基板を所望の温度に制御して熱処理することができなくなって、半導体基板の薄膜形成、不純物ドーピング、および表面処理などの成膜処理を安定的且つ高品質に実施することができなくなる。つまり、放射温度計の検出面が汚れていたりすると、目標温度で温度制御して熱処理を行うことができなくなり、半導体基板の製品歩留りを低下させる原因となる。
【0004】
本発明は、このような事情に鑑みてなされたものであり、その目的とするところは、放射温度計の検出面の状態が変化しても、常に安定した温度制御によって熱処理を行うことができるようにして、製品歩留りのよい半導体装置を製造することができる半導体装置の製造方法を提供することにある。
【0005】
【課題を解決するための手段】
上記の目的を達成するため、本発明における半導体装置の製造方法は、基板保持板に基板を載置した状態で、基板保持板(基板保持板)の温度を放射温度計によりモニタしながら基板を所望の処理温度に加熱して成膜処理を行う半導体装置の製造方法であって、基板の成膜処理前に加熱手段の温度を所定温度に保って安定させたとき、初期状態の放射温度計が基板保持板の温度を初期測定温度Tcとしてモニタするステップと、基板のプロセス処理後に加熱手段の温度を前記所定温度に保って安定させたとき、放射温度計が基板保持板の温度をプロセス経過時測定温度Tc’としてモニタするステップと、プロセス経過時測定温度Tc’と初期測定温度Tcとの温度差ΔT=Tc−Tc’を演算するステップと、放射温度計が測定した基板保持板の測定温度に対して、温度差ΔTを加算して温度補正を行い、加熱手段の供給電力量を制御するステップとを含むことを特徴とする。
【0006】
尚、上記のステップにおける基板のプロセス処理後とは、例えば、基板の処理後に行うガスクリーニング後などである。このようなガスクリーニングの前後においては放射温度計の検出面の状態が変化しているので、初期測定温度Tcとプロセス経過時測定温度Tc’の温度差ΔTが顕著に表れる。したがって、この温度差ΔTだけ現在測定した温度に対して加算して温度補正を行えば、ガスクリーニングなどによって放射温度計の検出面の状態が変化しても、測定温度を常に正確な温度としてフィードバックして温度制御を行うことができるので、極めて高精度な温度制御を実現することができる。
【0007】
つまり、本発明における半導体装置の製造方法によれば、放射温度計の表面状態の変化やその他の経時変化などによって炉内温度や基板保持板の温度を正確に測定することができなくなっても、放射温度計の状態変化前後の温度差分だけ温度補正して温度コントローラで温度制御することにより、結果的に、放射温度計が正確な温度検出を行って温度制御した状態と等価な度制御を行うことができる。したがって、プロセス処理後においても極めて安定した温度制御を行って熱処理を施すことができるので、半導体装置の製品歩留りの向上を図ることができる。
【0008】
【発明の実施の形態】
以下、図面を用いて、本発明における半導体装置の製造方法に関する実施の形態を詳細に説明する。尚、以下の説明では、基板(例えば半導体基板)を製造する場合の実施の形態について述べる。
図1は、半導体製造装置における半導体基板搬送時の基板処理室の構成図である。また、図2は、半導体製造装置における予備加熱時の基板処理室の構成図である。さらに、図3は、半導体製造装置における半導体基板処理時の基板処理室の構成図である。尚、図1、図2、および図3に示す半導体製造装置は熱CVD薄膜形成装置の概略的な構成図を示している。そして、図1は開閉弁9を下降させて(つまり、基板挿入口8を開放して)半導体基板1を基板処理室50に搬入した状態を示し、図2は開閉弁9を上昇させて(つまり、基板挿入口8を閉鎖して)半導体基板1を予備加熱している状態を示し、さらに、図3は開閉弁9を上昇させて(つまり、基板挿入口8を閉鎖して)半導体基板1を成膜処理している状態を示している。
【0009】
図1において、半導体製造装置(基板処理装置)30は半導体基板1を1枚ごとに処理ができるように構成されている。この基板処理装置30の一面には、半導体基板1を基板処理室50に搬入するための基板挿入口8と、この基板挿入口8を開閉するための開閉弁9が設けられている。また、基板処理室50の内部には、搬入された半導体基板1を基板保持板2の表面に対して平行に支持するための石英ピンできた基板支持ピン4が設けられている。
【0010】
また、基板処理装置30の内部には、半導体基板1を所望の温度に加熱するための加熱手段であるヒータ3と、成膜処理するときの半導体基板1を保持すると共にヒータ3からの熱を均一化して半導体基板1に伝導するための前記基板保持板(サセプタ)2とによって構成されるヒータユニット20が設けられている。さらに、ヒータユニット20は、半導体基板1の搬送時や成膜処理時などの状態に応じて異なる位置に多段階調整できるように昇降機構10によって支持されている。また、基板処理装置30の上部には、基板処理室50に所望のガス種を所望のガス流量およびガス比率で供給するためのガス供給口6と、半導体基板1の処理面にガスを均一に供給するためのガス分散板5が設けられている。また、基板処理装置30の両側面には、未反応のとき及び反応過程で生成されたガスを排気するための排気口7が設けられている。図2および図3においても構成は同じであるのでその説明は省略する。
【0011】
次に、図1、図2および図3を用いて上記の構造を有する基板処理装置において半導体基板1に成膜処理を施す過程を説明する。先ず、図1に示すように、半導体基板1は、基板処理室50の基板挿入口8より外部に通じる図示しない基板搬送室に設けられた搬送機構によって基板処理室50に搬送され、基板保持板2の面と空間を隔てて平行になるように、石英ピンの基板支持ピン4上に載置される。半導体基板1を基板処理室50へ挿入し基板支持ピン4上に載置した後は、図示しない搬送室と基板処理室50との間を隔離するために、開閉弁9によって基板挿入口8が閉じられる。
【0012】
次に、図2に示すように、基板支持ピン4を降下させて、半導体基板1を基板保持板2の表面近傍まで近づけて半導体基板1を予備加熱する。このとき、基板挿入口8は開閉弁9によって閉じられているので、半導体基板1は短時間で効率よく予備加熱される。
【0013】
さらに、図3に示すように、ヒータ3と基板保持板(サセプタ)2からなるヒータユニット20および基板支持ピン4が昇降機構10によって持ち上げられ、半導体基板1を予備加熱位置から成膜処理位置まで上昇させる。ヒータユニット20を上昇させる際は、基板支持ピン4上の半導体基板1と基板保持板2の間隔がさらに狭くなり、半導体基板1が成膜処理の位置に到達する前に半導体基板1は基板保持板2の上に密着して載置される。したがって、半導体基板1は、ヒータ3によって加熱される基板保持板2の伝導熱によって加熱されることになる。
【0014】
図3の成膜処理中における半導体基板1の温度は、半導体基板1の直接の加熱体である基板保持板2の温度を制御することにより、半導体基板1と空間的に隔てられたヒータ3の温度を制御するのに比べて、より高速且つ正確に温度制御が行われる。さらに、半導体基板1を均一に成膜処理するためには、基板保持板2を図示しない回転機構によって回転する。そのため、基板保持板2の温度モニタには、非接触で温度を測定することができる放射温度計(パイロメータ)が用いられる。
【0015】
次に、図3に示すように、基板処理装置30の上部のガス供給口6より導入されたガスはガス分散板5によって分散されて、加熱された半導体基板1の処理面に均等に拡散される。これによって、半導体基板1の表面層には、均一に、薄膜形成、不純物ドーピング、表面処理などの成膜処理が施される。
【0016】
ここで、半導体基板1を熱処理するときの温度検出の方法について説明する。図4は、図3に示す半導体基板処理時の半導体製造装置における温度検出部分の概念図である。図4に示すように、ヒータ3によって基板保持板2が加熱され、さらに、基板保持板2の表面に載置されている半導体基板1が加熱される。このとき、ヒータ3の表面温度は複数の熱電対11によって検出される。また、半導体基板1の温度は、放射温度計12が基板保持板2の温度を非接触で測定することによって検出される。そして、熱電対11の検出温度情報と放射温度計12の検出温度情報は図示しないカスケード制御ループ系の温度コントローラにフィードバックされ、温度コントローラがヒータ3へ供給する電力量を制御することによって半導体基板1の温度制御が行われる。
【0017】
図5は、一般のカスケード制御ループ系による温度コントローラの構成図である。通常、図1〜図3に示すような基板処理装置は、図5に示すようなカスケード制御ループを構成した温度コントローラによって温度制御が行われている。カスケード制御ループは、目標温度Yと放射温度計12からの検出温度との偏差を出力する第1の加算器21と、第1の加算器21の出力レベルに応じてPID(比例、積分、微分)演算し、ヒータ熱電対11からの検出温度が追従すべき値に制御する第1のPID調節部22と、第1のPID調節部22の出力レベルとヒータ熱電対11からの検出温度の偏差を出力する第2の加算器23と、第2の加算器23の出力レベルに応じてPID演算し、ヒータ3へ供給する電力量Zを制御する第2のPID調節部24とによって構成されている。このような構成のカスケード制御ループによる温度コントローラによってヒータ3へ供給する電力量Zを制御することにより、基板保持板3(つまり、半導体基板1)は目標温度Yに精度よく追従するので、半導体基板1を高精度に温度制御することができる。
【0018】
このようにして温度制御を行って熱処理しながら半導体基板1の成膜処理を施した後は、ヒータユニット20は再び図1に示すように搬送位置まで降下する。ヒータユニット20の降下の際は、基板支持ピン4は再び半導体基板1を突き上げ、半導体基板1と基板保持板2との間に半導体基板1を搬送するための空間を作る。そして、半導体基板1は基板挿入口8から搬送機構によって図の左方の図示しない搬送室へ運び出される。
【0019】
ところで、図5のような温度コントローラによる温度制御において、半導体基板1を所望の温度にするためのヒータ3の温度をTaとし、ヒータ3を温度Taに保って充分に温度を安定させたとき、基板保持板2の温度をTbとし、この基板保持板2を放射温度計12で測定したときの測定温度をTcとする。このとき、放射温度計12が理想的な状態で温度を正確に測定できるとすれば、基板保持板2の温度Tbは放射温度計12で測定した測定温度Tcと等しく、Tb=Tcである。
【0020】
しかし、放射温度計12は半導体基板1のプロセス処理中またはプロセス処理後におけるガスクリーニングなどによって検出面の表面状態が変化して、放射温度計12が受光する放射エネルギーの受光効率が変わるので、結果的に、放射エネルギーより測定温度Tcを演算するためのパラメータ値が変わってしまう。このため、放射温度計12がモニタしている温度測定値も変化し、結果的に、基板保持板2を正確な温度で測定することができなくなる。
【0021】
ここで、ガスクリーニングなどによって放射温度計12の表面状態が変化したときでも、ヒータ3を所定の温度Taに保ち、十分に温度が安定したときの基板保持板2の温度Tb’は再現する。つまり、常にTb=Tb’となる。しかし、ガスクリーニングなどによって放射温度計12の表面状態が変化した場合は、放射温度計12がモニタした測定温度Tc’は変化してしまい、ガスクリーニング前に放射温度計12で測定した基板保持板2の測定温度Tcと異なった値となる。つまり、Tc≠Tc’となる。よって、放射温度計12の表面状態の変化前のモニタ温度(測定温度)Tcをフィードバックして図5に示すような温度コントローラが温度制御した場合は、Tc−Tc’=ΔTの温度差分の誤差が生じた状態で温度制御を行うことになる。この結果、目標温度Yに対してΔTの温度差が生じたまま半導体基板1を熱処理して成膜処理を施すため、半導体基板1の製品歩留りが低下して安定した製品品質レベルを維持することができない。
【0022】
そこで、本発明による半導体装置の製造方法では、半導体基板1のプロセス処理中またはプロセス処理後におけるクリーニングなどによって放射温度計12の表面状態が変化して検出温度に誤差が生じた場合は、クリーニング前における基板保持板2の基準温度に対してクリーニング後の検出温度の誤差分を加味して基準温度の温度補正を行う。このような温度補正を行うことにより、高精度な温度制御による熱処理を実現して製品歩留りのよい半導体基板1の製造を行うことができる。言い換えれば、本発明による半導体装置の製造方法は、温度制御モニタである放射温度計の状態変化による測定温度の誤差分を、一定温度を測定することで検出し、この検出値に基づいて補正する。
【0023】
さらに詳しく述べれば、半導体基板1のプロセス処理の過程においてクリーニングなどを行った後にヒータ3の温度を一定値に保って安定にさせる。そして、このときの放射温度計12によって測定した基板保持板2の測定温度Tc’と、クリーニングなどを行う前の初期状態で放射温度計12が測定した基板保持板2の測定温度Tcとの温度差、つまり、Tc−Tc’=△Tを求める。そして、この温度差ΔT分の温度を温度コントローラで補正することによって、見掛け上、放射温度計12はその汚れ等に拘わらず正確な温度を測定したことと同じことになる。
【0024】
図5を用いて述べれば、放射温度計12がプロセス終了後に測定した基板保持板2の温度Tに対して上記のクリーニング前後の温度差△Tを加算し、(△T+T)の値を温度コントローラの第1の加算器21にフィードバックすれば、放射温度計12がプロセス処理前の正確な温度を測定した場合と等価な電力量Zを第2のPID調節部24よりヒータ3に供給することができる。したがって、プロセス処理(クリーニングなど)によって放射温度計12の表面状態が変化しても、温度コントローラは、放射温度計12の表面状態が変化する前の測定温度で半導体保持板2(つまり、半導体基板1)の温度を制御することができる。このような構成を得るために、例えば図7に示すように温度補正部27を設け、この温度補正部27により得られる△Tを放射温度計12による測定結果に加算するようにすればよい。
【0025】
次に、フローチャートを用いて温度補正部27の動作である、放射温度計12が測定したモニタ温度の自動補正の流れを説明する。図6は、本発明による半導体装置の製造方法において、放射温度計12が状態変化する前後のモニタ温度の自動補正の流れを示すフローチャートである。先ず、放射温度計12のモニタ温度の自動補正の条件を述べる。ヒータ3によって加熱される基板保持板2の温度はヒータ3の温度によって決定される。また、ヒータ3の温度を一定値に制御すれば、放射温度計12のモニタ温度が変化しても基板保持板2の温度は一定である。さらに、半導体基板1の成膜処理時の熱処理は、応答性の良い放射温度計12の検出したモニタ温度をフィードバックした温度制御によって行われる。
【0026】
図6のフローチャートに従って処理の流れを説明すると、先ず、半導体基板1のプロセス処理開始時において、ステップS1で、熱電対11によってヒータ3の温度を測定する。このとき、ヒータ3の中心部、中間部、および外周部の温度を測定し、それぞれの測定温度はThc1、Thm1、Tho1とする。さらに、放射温度計12によって基板保持板2の温度を非接触で測定する。このとき、基板保持板2の中心部、中間部、および外周部の温度を測定し、それぞれの測定温度はTpc、Tpm、Tpoとする。
【0027】
次に、ステップS2において、プロセス処理中またはプロセス処理後にクリーニングなどのイベントによって放射温度計12の表面状態が変化すると、ステップS3で、熱電対11によってヒータ3の温度を測定するが、このときヒータ3の温度変化がない。つまり、ヒータ3の中心部、中間部、および外周部の温度は、それぞれ、前回の測定値と同じThc1、Thm1、Tho1である。さらに、放射温度計12によって基板保持板2の温度を非接触で測定する。このとき、放射温度計12の検出面の状態が変化しているので基板保持板2の測定温度は変化し、基板保持板2の中心部、中間部、および外周部の測定温度は、それぞれTpc1、Tpm1、Tpo1である。
【0028】
そこで、ステップS4で、ヒータ3をイベント発生前と同じ温度になるように制御するために、放射温度計補正用レシピを自動的に動作させて、イベント発生前後の放射温度計12の測定温度の温度差を演算する。そして、ステップS5で、放射温度計12のイベント発生前後の測定温度の温度差として、中心部:ΔTc=Tpc1−Tpc、中間部:ΔTm=Tpm1−Tpm、外周部:ΔTo=Tpo1−Tpoを求め、これらの温度差ΔTc/ΔTm/ΔToを温度制御の補正値とする。
【0029】
次に、ステップS6において、先に求めた放射温度計12の補正値ΔTc/ΔTm/ΔToを用いて、放射温度計12の現在の(つまり、イベント発生後の)測定値の補正を行う。すなわち、放射温度計12の現在の測定値は、初期に測定した基準温度に対してステップS5で演算した補正値を加算(または減算)した値とし、それぞれ、中心部:Tpc’=Tpc+ΔTc、中間部:Tpm’=Tpm+ΔTm、外周部:Tpo’=Tpo+ΔToとする。そして、このような補正後の補正測定値Tpc’/Tpm’/Tpo’に基づいて、温度コントローラがヒータ3の電力量Zを制御して温度制御を行う。これによって、基板保持板2(つまり、半導体基板1)はイベント発生前と同じ温度に制御される。このような温度補正は、半導体基板1のプロセス処理中は繰り返し行われる。
【0030】
このように、放射温度計12の検出面が汚れるなど状態が変化しても、初期に測定した基準温度に対して放射温度計の測定温度の誤差分を補正して温度制御を行うことにより、放射温度計12の測定温度の誤差の大きさに関わらず、常に、正確に温度に基づいて温度制御を行うことができる。
【0031】
以上述べた実施の形態は本発明を説明するための一例であり、本発明は、上記の実施の形態に限定されるものではなく、発明の要旨の範囲で種々の変形が可能である。上記の実施の形態では、半導体基板のプロセス処理後におけるクリーニングなどのイベント発生ごとに温度補正を行う例を述べたが、これに限ることはなく、イベントの発生の有無に関係なく、定期的に上記のような方法によって放射温度計12の温度補正を行ってもよい。
【0032】
【発明の効果】
以上説明したように、本発明によれば、放射温度計を用いて温度制御を行う半導体製造装置装置(基板処理装置)において、放射温度計の表面状態の変化やその他の経時変化などによって炉内温度や基板保持板の温度を正確に測定することができなくなっても、放射温度計の状態変化前後の温度差分だけ基準温度に対して温度補正して温度コントローラで温度制御することにより、結果的に、放射温度計が正確な温度検出によって温度制御を行った状態と等価は温度制御を行うことができる。したがって、このような温度補正方法を用いることにより、半導体製造装置のクリーニング前後においても再現性よく温度制御を行うことができるので、半導体基板の製品歩留りの向上を図ることができる。
【図面の簡単な説明】
【図1】半導体製造装置(基板処理装置)における半導体基板搬送時の基板処理室の構成図である。
【図2】半導体製造装置(基板処理装置)における予備加熱時の基板処理室の構成図である。
【図3】半導体製造装置(基板処理装置)における半導体基板処理時の基板処理室の構成図である。
【図4】図3に示す半導体基板処理時の半導体製造装置における温度検出部分の概念図である。
【図5】カスケード制御ループ系による温度コントローラの構成図である。
【図6】本発明による半導体装置の製造方法において、放射温度計が状態変化する前後のモニタ温度の自動補正の流れを示すフローチャートである。
【図7】本発明の温度コントローラの一例を示す構成図である。
【符号の説明】
1 半導体基板、2 基板保持板、3 ヒータ、4 基板支持ピン、5 ガス分散板、6 ガス供給口、7 排気口、8 基板挿入口、9 開閉弁、10 昇降機構、11 熱電対、12 放射温度計、20 ヒータユニット、21 第1の加算器、22 第1のPID調節部、23 第2の加算器、24 第2のPID調節部、30 基板処理装置、50 基板処理室。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for manufacturing a semiconductor device, which performs a film forming process such as thin film formation, impurity doping, and surface treatment on a substrate for a semiconductor device, and particularly to performing a heat treatment while controlling the temperature in a furnace of the semiconductor manufacturing device. And a method of manufacturing a semiconductor device for forming a film on a substrate.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, when a film forming process such as thin film formation, impurity doping, and surface treatment is performed on a semiconductor substrate (semiconductor wafer) by a semiconductor manufacturing device such as a diffusion device or a CVD device, the furnace temperature of the semiconductor manufacturing device is high. While maintaining the temperature at an appropriate temperature and performing heat treatment. Therefore, temperature control in the furnace is performed so as to be capable of compensating for a disturbance and to follow a change in the target temperature with high accuracy. Further, such a semiconductor manufacturing apparatus has a substrate holding means for stably holding or uniformly heating a semiconductor substrate, and heats a semiconductor substrate mounted thereon via the substrate holding means. The temperature control is performed while monitoring the temperature of the substrate holding means using a non-contact radiation thermometer, and a series of process processing is performed on the semiconductor substrate.
[0003]
[Problems to be solved by the invention]
However, a radiation thermometer that monitors the temperature of the substrate holding means, unlike a direct thermometer such as a thermocouple that directly contacts the part to be measured and measures the temperature, does not measure the heat energy radiated from the object to be measured. It is detected by contact and converted to a temperature value. Therefore, if the detection part of the radiation thermometer is dirty, the radiation heat energy cannot be detected efficiently, and as a result, an error occurs in the measured temperature, and the accurate temperature cannot be measured. As a result, the semiconductor substrate cannot be heat-treated at a desired temperature, and film formation such as thin film formation, impurity doping, and surface treatment of the semiconductor substrate can be performed stably and with high quality. Disappears. That is, if the detection surface of the radiation thermometer is dirty, it becomes impossible to perform the heat treatment by controlling the temperature at the target temperature, which causes a reduction in the product yield of the semiconductor substrate.
[0004]
The present invention has been made in view of such circumstances, and an object of the present invention is to always perform heat treatment by stable temperature control even when the state of a detection surface of a radiation thermometer changes. It is an object of the present invention to provide a method of manufacturing a semiconductor device capable of manufacturing a semiconductor device having a good product yield.
[0005]
[Means for Solving the Problems]
In order to achieve the above object, a method of manufacturing a semiconductor device according to the present invention includes a method of monitoring a temperature of a substrate holding plate (substrate holding plate) with a radiation thermometer while the substrate is placed on the substrate holding plate. A method of manufacturing a semiconductor device for performing a film forming process by heating to a desired process temperature, wherein a radiation thermometer in an initial state is provided when the temperature of a heating unit is stabilized at a predetermined temperature before a film forming process on a substrate. Monitoring the temperature of the substrate holding plate as an initial measured temperature Tc, and when the temperature of the heating means is stabilized at the predetermined temperature after the substrate processing, the radiation thermometer monitors the temperature of the substrate holding plate during the process. Monitoring as an hourly measured temperature Tc ′, calculating a temperature difference ΔT = Tc−Tc ′ between the process elapsed time measured temperature Tc ′ and the initial measured temperature Tc, and a substrate holding plate measured by the radiation thermometer. The measurement temperature, subjected to temperature correction by adding the temperature difference [Delta] T, characterized in that it comprises the step of controlling the supply power amount of the heating means.
[0006]
Note that the term "after the substrate processing in the above step" refers to, for example, after gas cleaning performed after the substrate processing. Before and after such gas cleaning, the state of the detection surface of the radiation thermometer changes, so that a temperature difference ΔT between the initial measurement temperature Tc and the measurement temperature Tc ′ during the process is remarkable. Therefore, if temperature correction is performed by adding the temperature difference ΔT to the currently measured temperature, even if the state of the detection surface of the radiation thermometer changes due to gas cleaning or the like, the measured temperature is always feedbacked as an accurate temperature. Therefore, the temperature control can be performed with extremely high accuracy.
[0007]
In other words, according to the semiconductor device manufacturing method of the present invention, even if it becomes impossible to accurately measure the furnace temperature or the temperature of the substrate holding plate due to a change in the surface state of the radiation thermometer or other aging, By correcting the temperature by the temperature difference before and after the temperature change of the radiation thermometer and controlling the temperature with the temperature controller, as a result, the radiation thermometer performs accurate temperature detection and performs degree control equivalent to the temperature controlled state be able to. Therefore, even after the process, the heat treatment can be performed with extremely stable temperature control, so that the product yield of the semiconductor device can be improved.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of a method for manufacturing a semiconductor device according to the present invention will be described in detail with reference to the drawings. In the following description, an embodiment in the case of manufacturing a substrate (for example, a semiconductor substrate) will be described.
FIG. 1 is a configuration diagram of a substrate processing chamber when a semiconductor substrate is transported in a semiconductor manufacturing apparatus. FIG. 2 is a configuration diagram of a substrate processing chamber during preheating in a semiconductor manufacturing apparatus. FIG. 3 is a configuration diagram of a substrate processing chamber during semiconductor substrate processing in a semiconductor manufacturing apparatus. The semiconductor manufacturing apparatus shown in FIGS. 1, 2 and 3 is a schematic configuration diagram of a thermal CVD thin film forming apparatus. FIG. 1 shows a state in which the on-off valve 9 is lowered (that is, the substrate insertion port 8 is opened) and the semiconductor substrate 1 is carried into the substrate processing chamber 50, and FIG. That is, FIG. 3 shows a state in which the semiconductor substrate 1 is pre-heated (with the substrate insertion port 8 closed), and FIG. 3 shows a state in which the on-off valve 9 is raised (ie, the substrate insertion port 8 is closed). 1 shows a state in which a film formation process is being performed.
[0009]
In FIG. 1, a semiconductor manufacturing apparatus (substrate processing apparatus) 30 is configured to be able to process semiconductor substrates 1 one by one. On one surface of the substrate processing apparatus 30, a substrate insertion port 8 for carrying the semiconductor substrate 1 into the substrate processing chamber 50 and an on-off valve 9 for opening and closing the substrate insertion port 8 are provided. Further, inside the substrate processing chamber 50, substrate support pins 4 made of quartz pins for supporting the loaded semiconductor substrate 1 in parallel with the surface of the substrate holding plate 2 are provided.
[0010]
Further, inside the substrate processing apparatus 30, a heater 3 serving as a heating unit for heating the semiconductor substrate 1 to a desired temperature, the semiconductor substrate 1 for forming a film, and the heat from the heater 3 are held. A heater unit 20 including the substrate holding plate (susceptor) 2 for making the semiconductor substrate 1 uniform and conducting the same to the semiconductor substrate 1 is provided. Further, the heater unit 20 is supported by the elevating mechanism 10 so that the heater unit 20 can be adjusted to different positions in multiple stages according to a state such as when the semiconductor substrate 1 is transported or when a film is formed. Further, a gas supply port 6 for supplying a desired gas species to the substrate processing chamber 50 at a desired gas flow rate and a desired gas ratio is provided at an upper portion of the substrate processing apparatus 30, and the gas is uniformly supplied to the processing surface of the semiconductor substrate 1. A gas distribution plate 5 for supplying is provided. Further, on both side surfaces of the substrate processing apparatus 30, exhaust ports 7 are provided for exhausting gas generated during the non-reaction and during the reaction process. Since the configuration is the same in FIGS. 2 and 3, the description is omitted.
[0011]
Next, a process of performing a film forming process on the semiconductor substrate 1 in the substrate processing apparatus having the above structure will be described with reference to FIGS. First, as shown in FIG. 1, the semiconductor substrate 1 is transferred to the substrate processing chamber 50 by a transfer mechanism provided in a substrate transfer chamber (not shown) which communicates with the outside through the substrate insertion port 8 of the substrate processing chamber 50, and The substrate 2 is placed on a substrate support pin 4 made of quartz so as to be parallel to the surface of the substrate 2 with a space therebetween. After the semiconductor substrate 1 is inserted into the substrate processing chamber 50 and placed on the substrate support pins 4, the substrate insertion port 8 is opened and closed by the on-off valve 9 to isolate the transfer chamber (not shown) from the substrate processing chamber 50. Closed.
[0012]
Next, as shown in FIG. 2, the substrate supporting pins 4 are lowered to bring the semiconductor substrate 1 close to the vicinity of the surface of the substrate holding plate 2, and the semiconductor substrate 1 is preheated. At this time, since the substrate insertion port 8 is closed by the on-off valve 9, the semiconductor substrate 1 is efficiently preheated in a short time.
[0013]
Further, as shown in FIG. 3, the heater unit 20 including the heater 3 and the substrate holding plate (susceptor) 2 and the substrate support pins 4 are lifted by the elevating mechanism 10 to move the semiconductor substrate 1 from the preheating position to the film forming position. To raise. When the heater unit 20 is raised, the distance between the semiconductor substrate 1 and the substrate holding plate 2 on the substrate support pins 4 is further reduced, and the semiconductor substrate 1 is held before the semiconductor substrate 1 reaches the position of the film forming process. It is placed on the plate 2 in close contact. Therefore, the semiconductor substrate 1 is heated by the conduction heat of the substrate holding plate 2 heated by the heater 3.
[0014]
The temperature of the semiconductor substrate 1 during the film forming process shown in FIG. 3 is controlled by controlling the temperature of the substrate holding plate 2 which is a direct heating body of the semiconductor substrate 1, thereby controlling the temperature of the heater 3 spatially separated from the semiconductor substrate 1. Temperature control is performed faster and more accurately than when temperature is controlled. Further, in order to uniformly form a film on the semiconductor substrate 1, the substrate holding plate 2 is rotated by a rotation mechanism (not shown). Therefore, a radiation thermometer (pyrometer) that can measure the temperature in a non-contact manner is used for the temperature monitor of the substrate holding plate 2.
[0015]
Next, as shown in FIG. 3, the gas introduced from the gas supply port 6 in the upper part of the substrate processing apparatus 30 is dispersed by the gas dispersion plate 5 and is evenly diffused on the processing surface of the heated semiconductor substrate 1. You. As a result, the surface layer of the semiconductor substrate 1 is uniformly subjected to film formation processing such as thin film formation, impurity doping, and surface treatment.
[0016]
Here, a method of detecting a temperature when the semiconductor substrate 1 is heat-treated will be described. FIG. 4 is a conceptual diagram of a temperature detecting portion in the semiconductor manufacturing apparatus at the time of processing the semiconductor substrate shown in FIG. As shown in FIG. 4, the substrate holding plate 2 is heated by the heater 3, and the semiconductor substrate 1 placed on the surface of the substrate holding plate 2 is further heated. At this time, the surface temperature of the heater 3 is detected by the plurality of thermocouples 11. The temperature of the semiconductor substrate 1 is detected by the radiation thermometer 12 measuring the temperature of the substrate holding plate 2 in a non-contact manner. The detected temperature information of the thermocouple 11 and the detected temperature information of the radiation thermometer 12 are fed back to a temperature controller of a cascade control loop system (not shown), and the temperature controller controls the amount of electric power supplied to the heater 3 so that the semiconductor substrate 1 Is performed.
[0017]
FIG. 5 is a configuration diagram of a temperature controller using a general cascade control loop system. Normally, in the substrate processing apparatus as shown in FIGS. 1 to 3, temperature control is performed by a temperature controller having a cascade control loop as shown in FIG. The cascade control loop includes a first adder 21 that outputs a deviation between the target temperature Y and a detected temperature from the radiation thermometer 12, and a PID (proportional, integral, and differential) according to the output level of the first adder 21. A) a first PID adjusting unit 22 that calculates and controls the detected temperature from the heater thermocouple 11 to a value to follow; a deviation between the output level of the first PID adjusting unit 22 and the detected temperature from the heater thermocouple 11 , And a second PID adjusting unit 24 that performs PID calculation according to the output level of the second adder 23 and controls the amount of power Z supplied to the heater 3. I have. By controlling the amount of electric power Z supplied to the heater 3 by the temperature controller based on the cascade control loop having such a configuration, the substrate holding plate 3 (that is, the semiconductor substrate 1) accurately follows the target temperature Y. 1 can be temperature controlled with high accuracy.
[0018]
After performing the film forming process on the semiconductor substrate 1 while performing the temperature control and the heat treatment in this manner, the heater unit 20 is again lowered to the transfer position as shown in FIG. When the heater unit 20 is lowered, the substrate support pins 4 push up the semiconductor substrate 1 again, and create a space between the semiconductor substrate 1 and the substrate holding plate 2 for transporting the semiconductor substrate 1. Then, the semiconductor substrate 1 is carried out from the substrate insertion opening 8 to a transfer chamber (not shown) on the left side of the figure by a transfer mechanism.
[0019]
By the way, in the temperature control by the temperature controller as shown in FIG. 5, when the temperature of the heater 3 for setting the semiconductor substrate 1 to a desired temperature is set to Ta, and the temperature is sufficiently stabilized while maintaining the heater 3 at the temperature Ta, The temperature of the substrate holding plate 2 is represented by Tb, and the measured temperature of the substrate holding plate 2 measured by the radiation thermometer 12 is represented by Tc. At this time, if the radiation thermometer 12 can accurately measure the temperature in an ideal state, the temperature Tb of the substrate holding plate 2 is equal to the measurement temperature Tc measured by the radiation thermometer 12, and Tb = Tc.
[0020]
However, the radiation thermometer 12 changes the surface state of the detection surface due to gas cleaning or the like during or after the processing of the semiconductor substrate 1, and the light receiving efficiency of the radiation energy received by the radiation thermometer 12 changes. Therefore, the parameter value for calculating the measured temperature Tc from the radiant energy changes. For this reason, the temperature measurement value monitored by the radiation thermometer 12 also changes, and as a result, the substrate holding plate 2 cannot be measured at an accurate temperature.
[0021]
Here, even when the surface state of the radiation thermometer 12 changes due to gas cleaning or the like, the heater 3 is maintained at the predetermined temperature Ta, and the temperature Tb ′ of the substrate holding plate 2 when the temperature is sufficiently stabilized is reproduced. That is, Tb = Tb 'always holds. However, when the surface state of the radiation thermometer 12 changes due to gas cleaning or the like, the measurement temperature Tc ′ monitored by the radiation thermometer 12 changes, and the substrate holding plate measured by the radiation thermometer 12 before gas cleaning. 2 is different from the measured temperature Tc. That is, Tc ≠ Tc '. Therefore, when the temperature controller as shown in FIG. 5 controls the temperature by feeding back the monitor temperature (measured temperature) Tc before the change of the surface state of the radiation thermometer 12, the error of the temperature difference of Tc−Tc ′ = ΔT is obtained. The temperature control is performed in a state where the error occurs. As a result, the semiconductor substrate 1 is heat-treated while the temperature difference of ΔT with respect to the target temperature Y is generated to form a film, so that the product yield of the semiconductor substrate 1 is reduced and a stable product quality level is maintained. Can not.
[0022]
Therefore, in the method of manufacturing a semiconductor device according to the present invention, if an error occurs in the detected temperature due to a change in the surface state of the radiation thermometer 12 due to cleaning during or after the processing of the semiconductor substrate 1, the error may occur before the cleaning. The temperature of the reference temperature of the substrate holding plate 2 is corrected by taking into account the error of the detected temperature after cleaning. By performing such a temperature correction, a heat treatment with high-precision temperature control can be realized, and the semiconductor substrate 1 with a good product yield can be manufactured. In other words, in the method of manufacturing a semiconductor device according to the present invention, an error in the measured temperature due to a change in the state of the radiation thermometer, which is a temperature control monitor, is detected by measuring a constant temperature, and is corrected based on the detected value. .
[0023]
More specifically, after cleaning and the like are performed in the process of processing the semiconductor substrate 1, the temperature of the heater 3 is maintained at a constant value to be stable. The temperature between the measured temperature Tc ′ of the substrate holding plate 2 measured by the radiation thermometer 12 at this time and the measured temperature Tc of the substrate holding plate 2 measured by the radiation thermometer 12 in an initial state before performing cleaning or the like. The difference, that is, Tc−Tc ′ = ΔT, is obtained. Then, by correcting the temperature corresponding to the temperature difference ΔT by the temperature controller, the radiation thermometer 12 is apparently the same as measuring the accurate temperature regardless of the contamination or the like.
[0024]
Referring to FIG. 5, the temperature difference ΔT between before and after the cleaning is added to the temperature T of the substrate holding plate 2 measured by the radiation thermometer 12 after the process, and the value of (ΔT + T) is set to the temperature controller. Is fed back to the first adder 21, the second PID adjusting unit 24 supplies the heater 3 with an electric energy Z equivalent to the case where the radiation thermometer 12 measures an accurate temperature before the process processing. it can. Therefore, even if the surface state of the radiation thermometer 12 changes due to the process (cleaning, etc.), the temperature controller operates the semiconductor holding plate 2 (that is, the semiconductor substrate) at the measurement temperature before the surface state of the radiation thermometer 12 changes. The temperature of 1) can be controlled. In order to obtain such a configuration, for example, a temperature correction unit 27 may be provided as shown in FIG. 7 and ΔT obtained by the temperature correction unit 27 may be added to the measurement result of the radiation thermometer 12.
[0025]
Next, the flow of automatic correction of the monitor temperature measured by the radiation thermometer 12, which is the operation of the temperature correction unit 27, will be described using a flowchart. FIG. 6 is a flowchart showing a flow of automatic correction of the monitor temperature before and after the radiation thermometer 12 changes state in the method of manufacturing a semiconductor device according to the present invention. First, conditions for automatic correction of the monitor temperature of the radiation thermometer 12 will be described. The temperature of the substrate holding plate 2 heated by the heater 3 is determined by the temperature of the heater 3. Further, if the temperature of the heater 3 is controlled to a constant value, the temperature of the substrate holding plate 2 is constant even if the monitor temperature of the radiation thermometer 12 changes. Furthermore, the heat treatment at the time of the film forming process of the semiconductor substrate 1 is performed by temperature control in which the monitor temperature detected by the radiation thermometer 12 having good response is fed back.
[0026]
The process flow will be described with reference to the flowchart of FIG. 6. First, at the start of the process of processing the semiconductor substrate 1, the temperature of the heater 3 is measured by the thermocouple 11 in step S1. At this time, the temperatures of the central portion, the intermediate portion, and the outer peripheral portion of the heater 3 are measured, and the measured temperatures are Thc1, Thm1, and Thol. Further, the temperature of the substrate holding plate 2 is measured by a radiation thermometer 12 in a non-contact manner. At this time, the temperatures of the central portion, the intermediate portion, and the outer peripheral portion of the substrate holding plate 2 are measured, and the measured temperatures are Tpc, Tpm, and Tpo.
[0027]
Next, in step S2, when the surface state of the radiation thermometer 12 changes due to an event such as cleaning during or after the process, the temperature of the heater 3 is measured by the thermocouple 11 in step S3. No temperature change of 3. That is, the temperatures at the center, the middle, and the outer periphery of the heater 3 are Thc1, Thm1, and Th1, respectively, which are the same as the previously measured values. Further, the temperature of the substrate holding plate 2 is measured by a radiation thermometer 12 in a non-contact manner. At this time, since the state of the detection surface of the radiation thermometer 12 has changed, the measurement temperature of the substrate holding plate 2 changes, and the measurement temperatures of the central portion, the intermediate portion, and the outer peripheral portion of the substrate holding plate 2 are Tpc1. , Tpm1, and Tpo1.
[0028]
Then, in step S4, in order to control the heater 3 to the same temperature as before the event occurrence, the radiation thermometer correction recipe is automatically operated, and the measured temperature of the radiation thermometer 12 before and after the event occurrence is measured. Calculate the temperature difference. Then, in step S5, the central part: ΔTc = Tpc1-Tpc, the middle part: ΔTm = Tpm1-Tpm, and the outer peripheral part: ΔTo = Tpo1-Tpo are obtained as the temperature difference between the measured temperatures before and after the occurrence of the event of the radiation thermometer 12. These temperature differences ΔTc / ΔTm / ΔTo are used as correction values for temperature control.
[0029]
Next, in step S6, the current (that is, after the occurrence of the event) measured value of the radiation thermometer 12 is corrected using the correction value ΔTc / ΔTm / ΔTo of the radiation thermometer 12 obtained earlier. That is, the current measurement value of the radiation thermometer 12 is a value obtained by adding (or subtracting) the correction value calculated in step S5 to the reference temperature measured initially, and the central part is: Tpc ′ = Tpc + ΔTc; Part: Tpm ′ = Tpm + ΔTm, outer peripheral part: Tpo ′ = Tpo + ΔTo. Then, based on the corrected measurement values Tpc '/ Tpm' / Tpo 'after such correction, the temperature controller controls the electric energy Z of the heater 3 to perform temperature control. Thereby, the substrate holding plate 2 (that is, the semiconductor substrate 1) is controlled to the same temperature as before the event occurred. Such a temperature correction is repeatedly performed during the processing of the semiconductor substrate 1.
[0030]
As described above, even if the detection surface of the radiation thermometer 12 becomes dirty or the state changes, the temperature is controlled by correcting the error of the measurement temperature of the radiation thermometer with respect to the reference temperature measured initially. Regardless of the magnitude of the error in the measured temperature of the radiation thermometer 12, temperature control can always be performed based on the temperature accurately.
[0031]
The embodiment described above is an example for describing the present invention, and the present invention is not limited to the above embodiment, and various modifications are possible within the scope of the invention. In the above-described embodiment, an example has been described in which temperature correction is performed for each event such as cleaning after the semiconductor substrate is processed. However, the present invention is not limited to this. The temperature of the radiation thermometer 12 may be corrected by the above method.
[0032]
【The invention's effect】
As described above, according to the present invention, in a semiconductor manufacturing apparatus (substrate processing apparatus) that performs temperature control using a radiation thermometer, the inside of the furnace is changed due to a change in the surface state of the radiation thermometer or other aging. Even if it becomes impossible to accurately measure the temperature or the temperature of the board holding plate, the temperature difference is corrected for the reference temperature by the temperature difference before and after the state change of the radiation thermometer, and the temperature is controlled by the temperature controller. In addition, the temperature control can be performed in a state equivalent to a state in which the radiation thermometer controls the temperature by accurate temperature detection. Therefore, by using such a temperature correction method, temperature control can be performed with good reproducibility before and after cleaning of the semiconductor manufacturing apparatus, so that the product yield of semiconductor substrates can be improved.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of a substrate processing chamber when a semiconductor substrate is transported in a semiconductor manufacturing apparatus (substrate processing apparatus).
FIG. 2 is a configuration diagram of a substrate processing chamber during preheating in a semiconductor manufacturing apparatus (substrate processing apparatus).
FIG. 3 is a configuration diagram of a substrate processing chamber during semiconductor substrate processing in a semiconductor manufacturing apparatus (substrate processing apparatus).
FIG. 4 is a conceptual diagram of a temperature detecting portion in the semiconductor manufacturing apparatus at the time of processing the semiconductor substrate shown in FIG. 3;
FIG. 5 is a configuration diagram of a temperature controller based on a cascade control loop system.
FIG. 6 is a flowchart showing a flow of automatic correction of a monitor temperature before and after a radiation thermometer changes state in the method of manufacturing a semiconductor device according to the present invention.
FIG. 7 is a configuration diagram illustrating an example of a temperature controller according to the present invention.
[Explanation of symbols]
REFERENCE SIGNS LIST 1 semiconductor substrate, 2 substrate holding plate, 3 heater, 4 substrate support pins, 5 gas dispersion plate, 6 gas supply port, 7 exhaust port, 8 substrate insertion port, 9 on / off valve, 10 elevating mechanism, 11 thermocouple, 12 radiation Thermometer, 20 heater unit, 21 first adder, 22 first PID adjuster, 23 second adder, 24 second PID adjuster, 30 substrate processing apparatus, 50 substrate processing chamber.

Claims (1)

基板保持板に基板を載置した状態で、前記基板保持板の温度を放射温度計によりモニタしながら前記基板を所望の処理温度に加熱して成膜処理を行う半導体装置の製造方法であって、
前記基板の成膜処理前に加熱手段の温度を所定温度に保って安定させたとき、初期状態の放射温度計が前記基板保持板の温度を初期測定温度Tcとしてモニタするステップと、
前記基板のプロセス処理後に前記加熱手段の温度を前記所定温度に保って安定させたとき、前記放射温度計が前記基板保持板の温度をプロセス経過時測定温度Tc’としてモニタするステップと、
前記プロセス経過時測定温度Tc’と前記初期測定温度Tcとの温度差ΔT=Tc−Tc’を演算するステップと、
前記放射温度計が測定した前記基板保持板の測定温度に対して、前記温度差ΔTを加算することで温度補正を行い、前記加熱手段の供給電力量を制御するステップと、
を含むことを特徴とする半導体装置の製造方法。
A method for manufacturing a semiconductor device in which a substrate is placed on a substrate holding plate, and the substrate is heated to a desired processing temperature while a temperature of the substrate holding plate is monitored by a radiation thermometer to form a film. ,
A step of monitoring the temperature of the substrate holding plate as an initial measurement temperature Tc by an emission thermometer in an initial state when the temperature of the heating unit is kept at a predetermined temperature and stabilized before the film forming process on the substrate;
When the temperature of the heating means is stabilized at the predetermined temperature after the processing of the substrate and stabilized, the radiation thermometer monitors the temperature of the substrate holding plate as a process elapsed measurement temperature Tc ′,
Calculating a temperature difference ΔT = Tc−Tc ′ between the process elapsed measurement temperature Tc ′ and the initial measurement temperature Tc;
A step of performing a temperature correction by adding the temperature difference ΔT to a measured temperature of the substrate holding plate measured by the radiation thermometer, and controlling a power supply amount of the heating unit;
A method for manufacturing a semiconductor device, comprising:
JP2002281349A 2002-09-26 2002-09-26 Manufacturing method of semiconductor device Expired - Lifetime JP4391734B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002281349A JP4391734B2 (en) 2002-09-26 2002-09-26 Manufacturing method of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002281349A JP4391734B2 (en) 2002-09-26 2002-09-26 Manufacturing method of semiconductor device

Publications (2)

Publication Number Publication Date
JP2004119707A true JP2004119707A (en) 2004-04-15
JP4391734B2 JP4391734B2 (en) 2009-12-24

Family

ID=32275819

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002281349A Expired - Lifetime JP4391734B2 (en) 2002-09-26 2002-09-26 Manufacturing method of semiconductor device

Country Status (1)

Country Link
JP (1) JP4391734B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160177450A1 (en) * 2014-12-22 2016-06-23 Tokyo Electron Limited Heat treatment apparatus
JP2017168781A (en) * 2016-03-18 2017-09-21 信越半導体株式会社 Vapor etching method and manufacturing method for epitaxial substrate

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160177450A1 (en) * 2014-12-22 2016-06-23 Tokyo Electron Limited Heat treatment apparatus
JP2016119412A (en) * 2014-12-22 2016-06-30 東京エレクトロン株式会社 Thermal treatment device
US10847350B2 (en) 2014-12-22 2020-11-24 Tokyo Electron Limited Heat treatment apparatus
JP2017168781A (en) * 2016-03-18 2017-09-21 信越半導体株式会社 Vapor etching method and manufacturing method for epitaxial substrate

Also Published As

Publication number Publication date
JP4391734B2 (en) 2009-12-24

Similar Documents

Publication Publication Date Title
US6924463B2 (en) Pyrometer calibrated wafer temperature estimator
TWI781426B (en) Multi-zone heater model-based control in semiconductor manufacturing
US8920162B1 (en) Closed loop temperature heat up and control utilizing wafer-to-heater pedestal gap modulation
KR100955561B1 (en) Thermal processing apparatus and thermal processing method
US6064799A (en) Method and apparatus for controlling the radial temperature gradient of a wafer while ramping the wafer temperature
TW473807B (en) Adaptive temperature controller and method of operation
US6329643B1 (en) Method of temperature-calibrating heat treating apparatus
JP2010168649A (en) Substrate processing apparatus, deposition method, and electronic device manufacturing method
US6780795B2 (en) Heat treatment apparatus for preventing an initial temperature drop when consecutively processing a plurality of objects
JP2005123286A (en) Substrate treatment equipment
JP3764689B2 (en) Semiconductor manufacturing method and semiconductor manufacturing apparatus
US20040144488A1 (en) Semiconductor wafer processing apparatus
JP4391734B2 (en) Manufacturing method of semiconductor device
JPH07201765A (en) Heat-treating device and heat treatment
JPH06132231A (en) Cvd equipment
JP4783029B2 (en) Heat treatment apparatus and substrate manufacturing method
JPH05267200A (en) Semiconductor thermal treatment device
CN111276396A (en) Heat treatment apparatus and heat treatment method
JP2001085339A (en) Temperature control method
JP2000232108A (en) Substrate heating method and substrate heating device
JP2002198320A (en) Heat treatment apparatus and its method, and method for manufacturing semiconductor device
JP2005333032A (en) Forming method of temperature conversion function of processed materials for monitor, calculating method of temperature distribution, and sheet-fed type heat treatment equipment
JPH11140651A (en) Cvd device and cvd treating method
JPH04297054A (en) Method and apparatus for processing semiconductor wafer
JP2640269B2 (en) Processing method and processing apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050922

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050928

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070806

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071002

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090915

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091008

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121016

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4391734

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121016

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131016

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term